
Architectural Frameworks: Defining the
Contents of Architectural Descriptions

David E. Emery

The MITRE Corporation
1820 Dolley Madison Blvd, MS W538 McLean, VA 22102-3481 USA

emery@mitre.org, +1 703 883 7606 v, +1 703 883 6143 fax

Abstract. This paper describes experiences with several architectural
frameworks. An “architectural framework” specifies what is included in
the description of an architecture, independent of the specific system
being described. The three frameworks are the U.S. DoD C4ISR Archi-
tecture Framework, the associated Core Architecture Data Model and
the emerging IEEE Recommended Practice on Architecture Description.
From these experiences, we speculate on the further evolution of archi-
tecture frameworks and architectural descriptions.

1 Introduction

The term “architecture” means many things to many people. Initially, there was
no ‘formal’ defininition of the term. Users of the term relied instead on intui-
tion and the analogy with other disciplines, such as structural architecture and
landscape architecture. Within the last two years, though, there have been many
attempts to add structure and rigor to the notion of ‘architecture’, resulting in
several different approachs to defining what constitutes an architecture. These
attempts have defined “architecture” by defining how to -describe- architectures.

These examples give us a notion of an abstract “architecture” with many
possible “architectural descriptions”, where the contents of an architectural de-
scription (the concrete representation of the architecture) is established by an
“architectural framework”. Thus an “architectural framework” is a specification
of how to describe architectures, rather than the definition of a specific architec-
ture.

This paper relates the author’s experience with several different architectural
frameworks. There are many architectural frameworks and approaches in the
literature; we concentrate here on those that are used to describe the systems
aspects of software-intensive systems, rather than the more specific notion of
“software architectures.” (A survey of architectural frameworks can be found
in [9]). Architectural frameworks are important, since the value of architecture
comes as a communications medium, and a common “language” (as defined by
an architectural framework) is needed to compare architectures.

M. González Harbour and J.A. de la Puente (Eds.): Ada-Europe’99, LNCS 1622, pp. 64–75, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Architectural Frameworks 65

1.1 Characterizing Architecture Frameworks

An architectural framework tells the user how to describe an architecture. The
framework may imply a methodology, but the intent of the framework is to
establish the contents of a (conforming) description of an architecture. Generally,
a framework consists of a definition of “architecture” and related terms and
concepts, along with the definition of one or more “views”, or representations.
The architecture is described by a set of these views, where each view conforms
to the requirements of the framework. Some frameworks may place additional
requirements on the set of views (e.g. cross-view consistency rules).

2 DoD C4ISR Architecture Framework Document

This section discusses the U.S. Department of Defense Command, Control Com-
munications and Computers, Intelligence, Surveillance and Reconaissance
(C4ISR) Architecture Framework document. [16]

2.1 The C4ISR Architecture Framework

The C4ISR Architecture Framework was developed in response to U.S. Depart-
ment of Defense need for a coordinated approach for developing, integrating
and using Command, Control, Communications, Computers, Intelligence, Sur-
veillance and Reconnaissance (C4ISR) systems. Operation Desert Storm showed
both strengths and weaknesses in combining systems developed by each military
service into an integrated system for the Commander in Chief. One of the most
notable examples from Desert Storm is that the Navy and Air Force were redu-
ced to exchanging air tasking information on floppy disks, rather than through
any interactive or automated process.

The Framework document prescribes that architectural descriptions will be
oriented around three views, with a series of products for each view. These views
are

– Operational View: tasks and activities, operational elements and informa-
tion flows required to accomplish or support a military operation. (Often
abbreviated “OA”)

– Systems View: descriptions, including graphics, of systems and interconnec-
tions providing for, or supporting, warfighting functions. (Often abbreviated
“SA”)

– Technical View: minimal set of rules governing the arrangement, interaction
and interdependence of system parts or elements, whose purpose is to ensure
that a conformant sytsem satisfies a specified set of requirements. (Often
abbreviated “TA”)

For each of the three views, the Framework document specifies a set of “pro-
ducts”. A “product” is a document that contains information relating to some
aspect of the architecture. Products are classified as “Essential” or “Suppor-
ting”, with Essential products containing the minimum information needed to



66 D.E. Emery

understand a given architecture. Products are specified by examples in the Fra-
mework document, rather than through a rigorous Data Item Description. An
architectural description is considered conformant with the Framework if it pro-
vides all of the Essential products and appropriate Supporting products, and if
it uses terms and graphics consistent with the Framework document and normal
DoD usage. Thus the C4ISR Framework approach sees architecture as a series
of documents.

The Framework document has undergone a trial use and review cycle, pro-
ducing Version 2.0, which has been mandated for use within the DoD. Each
military service is responsible for determining how to implement the Framework
document.

2.2 An Implementation of the C4ISR Framework

The U.S. Army has adopted the C4ISR Framework for describing how Army
units and their command, control and communications systems are connected.
This is described in the Army Enterprise Architecture (AEA) [14] document.
The AEA document establishes responsibilities for the three views of the C4SIR
Framework. The Operational View is the responsibility of the Army’s Training
and Doctrine Command (TRADOC), specifically the TRADOC Program In-
tegration Office for Army Battle Command Systems at Ft. Leavenworth, KS.
The Technical View is the responsibility of the Office of the Director, Infor-
mation Systems, Command, Control, Communications, Computers (DISC4) at
Army Headquarters in the Pentagon. Responsibility for the System view is spit
between the Army Signal Center, Ft. Gordon, GA and the Program Executive
Officer for Command, Control and Communications Systems (PEO C3S) at Ft.
Monmouth, NJ. The integration responsibility for the Army Enterprise Archi-
tecture lies with DISC4 in the Pentagon.

The Army has adopted the notion that each C4ISR Framework View can be
done relatively independently of the other views. This is clear by the fact that
each view is done in a different location. Furthermore, the Army specifies a rela-
tive ordering for the various views. The Technical View, as defined by the Joint
Technical Architecture-Army document [13] provides the core interoperability
standards for Army systems. The Operational View is focused on the concept
of “Information Exchange Requirements”, which represent the flow of informa-
tion from one element to another. For instance, one IER specifies that orders
flow from the Battalion Commander to the Company Commanders, and another
specifies that periodic spot reports flow from the Company Commanders back
to the Battalion Commander. According to the Army’s approach [14], both the
Operational and Technical Views should be developed before work starts on the
System View.

The Army has divided the Systems View into two parts. The first part, which
is always completed first, is called the “Conceptual Systems Architecture” (‘SA-
C’). This part is developed by the Army Signal Center, and identifies organiza-
tions and equipment. So, from the example in the previous paragraph, the SA-C
would specify that the Battalion Commander and each Company Commander



Architectural Frameworks 67

has a radio on the Battalion Command Net which is used to pass the orders from
Battalion to Company, and the spot reports back from Company to Battalion.
The second part of the Systems view is called the “Detailed Sstems Architecture”
(‘SA-D’). This work is performed by PEO C3S, and includes all of the specific
pieces of equipment needed to implement the actual system architecture. For
example, if the Battalion Command Net is implemented using a Packet Radio
system such as EPLRS, then the Detailed Systems Architecture must ensure
that there are sufficient packet nodes available to cover the battalion area.

With the “digitization” of Army tactical forces, much of the traffic formerly
carried via voice radios is now carried as TCP/IP packets. So a Battalion may
have both a Voice Command Net and a Digital Command Net. One of the main
funtions of the Detailed Systems Architecture is to ensure that these digital nets
have an appropriate network structure, including IP subnet definitions, routers,
security firewalls, and related digital network gear.

Each architecture View is associated with one or more products. The Techni-
cal View is expressed by a single product, the Joint Technical Architecture-Army
(JTA-A) document.[13] The JTA-A document extends the DoD Technical Ar-
chitecture [15] definition by adding additional Army-specific requirements to the
DoD baseline. (One notable Army addition is the Army’s continuing use of Ada.)
In this respect, the JTA-A looks like a profile of the JTA document. The Ope-
rational View is captured in a database of IERs and related requirements, along
with publications that list the IERs, expected battlefield layouts and related doc-
trine. The Systems View products are captured using a network diagramming
tool called “netViz” [10] that provides an interactive way to view Army orga-
nizations, the equipment assigned to organizations, and the networking of that
equipment. There is also a database representation of this information with an
on-line query capability, and a representation that shows only units and equip-
ment (without network connections). This latter representation is widely used to
make sure that the right equipment is being procured and delivered to the using
organization. The Army implementation of the C4ISR Framework represents
architecture as both documents and CASE tool databases.

3 Core Architecture Data Model

This section describes the C4ISR Core Architecture Data Model (CADM). The
CADM captures the intent of the C4ISR Framework Document by describing
the various data elements that can be used to describe architectures, and how
these data elements interrelate.

3.1 IDEF-1X Data Modelling

Data Modelling is a formal process built on the Entity-Attribute-Relationship
(ERA) model. A data model captures the data elements and relationships in a
fully normalized form. The most common use for a data model is to capture the
requirements for a database, but data models are also commonly used to capture
data interchange requirements. [2] [4]



68 D.E. Emery

3.2 CADM Goal: Capture C4ISR Framework Architectures

The CADM attempts to capture the core data needed to represent the archi-
tecture products defined by the C4ISR Framework Document. The Framework
document, as a text document, is subject to substantial interpretation by its
users. The CADM represents the belief that ultimately architectural represen-
tations are really databases of information about architectures.

The C4ISR Framework document does not specify any particular metho-
dology or approach for producing architectural representations. As previously
described, the Army’s Enterprise Architecture represents one approach. Other
Services and projects can apply other approaches. The intent of the CADM is
to capture the underlying data, regardless of approach. In particular, the belief
is that two architectures, developed using completely independent approaches,
can be combined and/or compared by representing each representation as an
instance of a CADM database.

The CADM was developed by a group of experts who analyzed the Frame-
work document, extracting data elements, and working those data elements into
an IDEF1X format (using the software tool ERWin.) This produces a “rich”
(or “complex”) data model. This complexity is managed by having a separate
database view for each C4ISR Framework product. Thus, it is possible to view
the data model for the product entitiled “Node to Node Connectivity Matrix”.
This data model shows that nodes are related via one or more IER, and also that
this relationship can be associated with one or more communications channels
(used to pass the messages between the nodes.)

The CADM was also defined to be ‘self-describing,’ in that the CADM con-
tains a data model for data models. This is not so difficult, since data models
follow the Entity-Relationship-Attribute approach. But it allows an architec-
ture description to contain information about itself, or about other architecture
descriptions (described as a data model, or as some other form of document.

3.3 Applying the CADM to an Existing Architecture Framework

One of the motivations for the CADM was to serve as a basis for exchanging in-
formation among architecture description developers. The Army used the CADM
as the basis for exchanging information between the Army Signal Center (SA-C)
and PEO C3S (SA-D). This was accomplished by starting with CADM enti-
ties that matched data in the netViz representation of the Army System View.
The Army then extended the CADM in two directions. One direction contained
data that was tool-specific, such as the netViz icon for each organization type or
equipment type. More importantly, additional entities were added that reflected
Army-specific data requirements. This was done by preserving, as much as possi-
ble, the key structures in the CADM. So Army-specific extension to the CADM
entity “Organization-Type” has the exact same keys as its parent CADM entity.
This preserves both the CADM core data (by not modifying existing CADM
structures), and the structural intent of the CADM, by following existing key
structures as much as possible. The result is two entities in the data model.



Architectural Frameworks 69

A subsequent physical schema design reduced these two entities (the CADM
“Organization-Type” and the Army-specific “Army-Organization-Type”) into a
single table, producing no performance penalty.

There were a few cases where the Army data model added new entities
and keys. The Army System View is very concerned about fully describing the
TCP/IP topology of the military Internet. Entities and attributes were added to
fully capture the IP addresses for (appropriate) pieces of equipment, along with
IP subnet routing data for organizations. These extensions were made in part to
support network modelling and simulation activities that verify the behaviour
of the resulting TCP/IP network under various loading conditions. It also sup-
ports the modelling of how this network will have to be reconfigured when a
tactical unit reorganizes, moving organizations and equipment from one subnet
to another.

4 IEEE 1471: Recommended Practice for Architectural
Descriptions

IEEE Project P1471 for Architectural Descriptions is, at the time of this writing,
in final ballot as an IEEE Recommended Practice. The focus of P1471 is specify
how to produce an architectural description of a “software-intensive system.” [6]

4.1 P1471 Basic Meta-model

P1471 describes an architectural description in terms of views, viewpoints and
stakeholders. A viewpoint is the specification of a view, including the methods
used to describe the view and the stakeholders and their concerns addressed by
the view. The idea is that viewpoints can be shared across descriptions (e.g. a
‘data viewpoint’ or a ‘performance modelling viewpoint’), providing for a com-
mon representation of architectural descriptions. In Ada terms, the Viewpoint
is like a generic template that is instantiated for each architectural description.
Another analogy is that a Viewpoint is a ‘pattern’ used to specify Views. See [6]
more details.

The viewpoint-stakeholder-view approach in P1471 is very close to the me-
thod used by MITRE for several architectural products [3]. Thus we use P1471
as a codification of the MITRE method. The P1471 framework can be used to
capture other architectural methods, such as ISO RM-ODP [7] and even C4ISR
Architecture Framework. The key concept behind P1471 is that architecture is
represented by sets of views and viewpoints that capture stakeholder concerns.

4.2 Applying Viewpoint-Stakeholder-View

In each of the MITRE projects, there was a multi-phased approach to developing
the architecture description. The first phase determined the basic system require-
ments, both the functional requirements and the user preferences and trade-offs.



70 D.E. Emery

At the same time, all of the system stakeholders were identified, along with a
set of concerns for each stakeholder.

The next phase selected viewpoints that met these stakeholder concerns. This
started by iterating through previous viewpoint descriptions, selecting those vie-
wpoints that would address stakeholder concerns. If all stakeholder concerns were
not covered, we defined new viewpoints. For example, we applied this method
to the Army’s Distance Learning project. One key stakeholder was the training
developer (often different from the instructor actually delivering the training.)
Training developers were concerned about how their training materials would
be distributed to the instructors, and also about gathering feedback from both
students and instructors on the effectiveness of their training materials. For
this project, we defined a new viewpoint that captured the Training Develo-
per’s concerns. This same project reused existing viewpoints for data, security,
network/systems management and software development and maintenance.

Once we have the set of viewpoints defined, we then flesh out a view for each
viewpoint. This view contains the actual architectural contents for the system.
The separation of viewpoint from view allows us to figure out ahead of time
the data requirements and framework. With this firm foundation, we concen-
trate on developing the system-specific contents of each view. Our experience
to date is that about 75% of the viewpoints we select for each system are pre-
existing viewpoints. But this means that each system has enough system-specific
issues that some number of new viewpoints are needed to cover that system, its
stakeholders, and their concerns.

5 What Do We Know about Representing Architectures?

We have learned a lot about the representation of architectures over the last
several years. In particular, there exists a strong consensus on two points:

– Multiple views are required to capture an architecture.
– There exist definitions of the description (“viewpoints,” in IEEE 1471 terms)

that exist independent of any particular architectural instance.

These two points are consistent with practice in structural architecture, where
floorplans, elevation drawings and architectural models are all used to represent
different aspects of a building (multiple views). Each of these representations
has a well-defined set of notations and conventions (viewpoints). [5]

5.1 It Takes Multiple Views to Dscribe an Architecture

There is substantial acceptance in other domains for representing a single de-
scription using multiple views. For instance, in structural architecture, floor
plans, elevations and architectural models are all widely used representations
of a single architecture.

Some representations of ‘software architecture’ [12] have concentrated on a
single view of the software, consisting of the software ‘structure’. Recent work



Architectural Frameworks 71

[1] has revealed that some essential system properties are not easily determined
from a single structural view, including performance and security. In the Army
implementation of the C4ISR Framework, security issues are spread across the
three Views. Consolidating the security aspects from each view into a coherent
discusson of system security is proving difficult. A separate Security view would
certainly help capture all of the security issues into a single representation.

5.2 Viewpoints Can Exist Independent of the System Being
Described

In each of our examples above, there is the notion of a ‘viewpoint’ that exists se-
parate from any instance of an architectural description. The C4ISR Architecture
Framework document provides a traditional textual presentation of ‘viewpoints’.
The CADM provides an alternate representation of the same viewpoints, descri-
bed as an IDEF1X data model. IEEE P1471 codifies this notion of viewpoints,
but does not specify the contents of viewpoints, instead leaving this decision to
the architect.

Thus we can conceive of one step in an architecting process [11] as the sel-
ection of viewpoints to be used in a specific architectural description. There is
an implied prior step, that of defining and archiving architectural descriptions.
The C4ISR Framework starts with a static set of viewpoints, as do some other
architectural methods, such as RM-ODP [7] and “4+1” [8]. The MITRE experi-
ence shows that we can define a library of viewpoints, supporting browsing and
selection based on stakeholders and concerns.

5.3 Comparing and Analyzing Architecture

Once we have architectural representations, the next step is to compare or inte-
grate these descriptions. Integration is a particular issue within the U.S. DoD,
where each military service develops an architecture for its forces (e.g. Army
Division, Air Force Wing, Navy Surface Action Group). When we build a Joint
Task Force (JTF) with forces from each service, the JTF itself needs an archi-
tecture description that shows how each service works in the larger whole.

If two architectural descriptions are based on the same set of viewpoints,
comparisons should be much easier. The views can be compared, “like to like”,
based on the underlying viewpoint. Without this level of consistency, much of the
effort in comparing two architecture descriptions will occur in trying to reduce
two dissimilar views to some sort of common denominator.

The CADM approach, describing viewpoints through a data model, may yield
substantial results in comparing and integrating viewpoints. The underlying da-
tabase notion makes it easy to extract common elements, or to join elements
of two architecture descriptions into a new description. There are some efforts
within the U.S. DoD that plan to use the CADM for integrating architectures.

Tools and techniques for comparing architectures are a very promising rese-
arch area.



72 D.E. Emery

5.4 Architecture Descriptions as an Evolving Process

Each of the specification approaches described in this paper are relatively static,
in that each defines a “complete set” of architectural description products, with-
out providing any sort of ordering or process. Thus they specify the end-state of
an architectural description, without providing any guidance on intermediate re-
presentations. The C4ISR Framework Document, as it has been commonly inter-
preted, generally implies that Operational and Technical view products preceed
Systems view products, but this is not specified by the Framework Document
itself.

Architecture specifications may be evolving from specifications of “paper pro-
ducts” such as reports and matrices, towards more interactive representations
of architectures. Both the C4ISR Framework Document and the IEEE Recom-
mended Practice define “paper products.” The CADM, as a data model, lends
itself to implementation via a database. The Army implementation of the C4ISR
Framework Document uses both a database and a network diagraming tool.

As we gain more experience with architecture as a discipline, our descrip-
tion techniques will evolve to time/event sequences of products. The MITRE
Architecture Approach [3] includes a set of preliminary products (Goals, Vision,
Needs) that preceed those captured by the IEEE AWG document (viewpoints
and views). Thus architectural descriptions will probably evolve towards more
dynamic representations, including a process orientation that defines when and
how products are produced, and a tool orientation that specifies architectural
representations as databases and tool datasets, rather than paper products.

6 Where Are We Going with Architecture Descriptions?

There seems to be two evolving notions, that of “system architectures” as de-
scribed in this paper, and the notion of “software architecture” as described in
[12]. The primary focus of “software architecture” is on the (internal) structure
of a software system, while “systems architecture” approaches concentrate more
on the role of a given system in its environment. Thus it is common to read
of “client-server software architectures” or “pipe and filter software architectu-
res,” but no similar terms describing common styles or ‘patterns’ have evolved
in systems architecture representation.

However, the system architecture approaches, such as described in this pa-
per, allow for a wider variety of topics than software architecture representations.
There are many properties of systems, such as security, fault tolerance, main-
tainability, adaptability, etc, that are common in system architecture analyses.
A definition of software architecture that focuses solely on structure is less suited
to capture such non-structural properties of systems.

Both communities are investigating tools, particularly tools that capture the
dynamic properties of systems and software. The tools used in the author’s pro-
jects have concentrated on capturing the data behind the description, to allow
various representations of the architectural description. One of the motivations



Architectural Frameworks 73

for a data-centric representation is that the database containing a specific ar-
chitectural representation has been used as input to other efforts attempting to
model or simulate the resulting architecture. These models have included classic
network performance analysis, military simulations (wargames), and to a lesser
degree, as inputs for testing systems that are components of the architecture.

Thus the future of architecture descriptions should include:

– Representations that cover non-structural aspects of systems
– Common sets of viewpoints.
– Increased tool support, particularly for interactive specification and analysis

of architectural representations.
– “Interoperability” of architectural representations based on common view-

points and underlying descriptions of the information in these viewpoints.

Both “system architecture” and “software architecture” approachs will contri-
bute to this evolution.

7 Summary

The evolution of ‘architecting’ has reached the point where there is wide ac-
ceptance that ‘architectures are important’, but that previous ad-hoc methods
for describing architectures are insufficient. Thus there have been several re-
cent efforts to describe the contents of architectures, independent of any specific
architecture.

This paper has described the author’s experiences with several of these ‘ar-
chitecture description technologies’, including the textual description of the US
DoD’s C4ISR Architecture Framework document, the associated Core Architec-
ture Data Model and the IEEE Recommended Practice for Architectural De-
scription. All of these approaches acknowledge the need for multiple views to
describe a single architecture. They vary in how they define the contents of the
views, and their relative focus on ‘documents’, ‘databases’ and ‘viewpoints’ as
key architectural framework decisions.

Once we capture architectural representations, the obvious next step is to
compare them. The current state-of-the-art in such comparisons, supporting a
variety of methods that produce architectural descriptions, is based on data
modelling. We require more experience with architectural analysis to know if
architectural data models are sufficient to permit analysis and comparison of
architectures.

The evolution of the architectural process will produce changes in our archi-
tectural specification technologies. In particular, current practice tends to imply
paper-based static representations. With the evolution of tools and interactive
representations (such as the World Wide Web), architectural meta-techologies
will move towards process and behavior models. Methods for defining the con-
tents and meaning of architectural descriptions should continue to evolve. We
have captured here a snapshot of current efforts; stay tuned for further develop-
ments.



74 D.E. Emery

References

1. Allen, Robert J. “A Formal Approach to Software Architecture.” PhD Thesis,
Carnegie-Mellon University (CMU-CS-97-144), May 1997.

2. Bruce, Thomas A; “Designing Quality Databases with IDEF1X Information Mo-
dels,” Dorset House Publishing, 1992.

3. Emery, David E, Hilliard, Richard F II and Rice, Timothy B; Ex-
periences Applying a Practical Software Architedture Method, in A.
Strohmeier (ed), “Reliable Software Technologies - Ada Europe ‘96.”
Springer-Verlag: Lecture Notes in Computer Science 1088, 1996. http :
//thomas.pithecanthropus.com/ awg/CaseStudies.pdf

4. Federal Information Processing Standards (FIPS) Publication 184, Integration
Definition for Data Modeling (IDEF1X), 21 December 1993.

5. Hoke, John Ray (ed), “Architectural Graphic Standards,” John Wiley & Sons,
1994

6. Institute of Electrical and Electronic Engineers; ”IEEE Recommended Prac-
tice for Architecture Descriptions, Draft 4.1; IEEE, 1998. See http :
//www.pithecanthropus.com/ awg.

7. Internationl Standards Organization; ISO/IEC 10746-3, Open Distributed Com-
puting - Reference Model Part 3: Architecture. ISO, 1995. http : //www.iso.ch :
8000/RM − ODP

8. Kruchten, Philippe; ‘’The 4 + 1 View Model of Architecture”, IEEE Software, 28
(11), 42-50, November 1995. http : //www.rational.com/sitewide/support/white-
papers/dynamic.jtmpl?doc key = 350

9. Mowbray, Thomas J; “Will the Real Architecture Please Sit Down?” Component
Strategies, December 1988.

10. “netViz 3.0.” netViz Corporation. http : //www.quyen.com
11. Rechtin, Eberhard and Maier, Mark; “The Art of System Architecting” CRC

Press, 1996.
12. Shaw, Mary A and Garlan, David; “Software Architecture: Perspectives on an

Emerging Discipline” Prentice-Hall, 1996.
13. U.S. Department of the Army; Joint Technical Architecture - Army Ver-

sion 5.0, Washington, DC 1999. http : //www.usace.army.mil/inet/func-
tions/im/lcmis/ata/ata.htm

14. U.S. Department of the Army; Army Enterprise Architecture Guidance Do-
cument, Washington DC 1999. http : //arch − odisc4.army.mil/aes/html/
aeagd.htm

15. U.S. Department of Defense; Joint Technical Architecture version 2.0, Washing-
ton, DC 1998. http : //www − jta.itsi.disa.mil/jta/jtav2 dnld.html

16. U.S. Department of Defense; C4ISR Architecture Fra-
mework, Version 2.0, Washington, DC. http :
//www.rl.af.mil/programs/jcaps/download.html#FRAME

17. Walker, Robert (editor); C4ISR Core Architecture Data Model (CADM), Arling-
ton, VA: Institute for Defense Analyses 1999. http : //www.rl.af.mil/tech/pro-
grams/jcaps/cadm.html



Architectural Frameworks 75

Acknowledgements: The Army System Architecture team was led by LTC Angel
Colon and LTC Jim Travis. The CADM team was led by Dr. Robert Walker and
Dr. Francisco Loaiza of IDA. Jim Perry, EER Corporation and Tim Anderson and
Jack Garhart, BDM Corporation defined the Army System Architecture extensions to
the CADM. Teams led by Steve Schwarm, Tim Rice and Kevin Heidemann produced
the series of MITRE architecture projects. Basil Sherlund led the P1471 Architecture
Working Group. Thanks to Karl Nyberg, Rich Hilliard and Olimpia Velez


	Introduction
	Characterizing Architecture Frameworks

	DoD C4ISR Architecture Framework Document
	The C4ISR Architecture Framework
	An Implementation of the C4ISR Framework

	Core Architecture Data Model
	IDEF-1X Data Modelling
	CADM Goal: Capture C4ISR Framework Architectures
	Applying the CADM to an Existing Architecture Framework

	IEEE 1471: Recommended Practice for Architectural Descriptions
	P1471 Basic Meta-model
	Applying Viewpoint-Stakeholder-View

	What Do We Know about Representing Architectures?
	It Takes Multiple Views to Dscribe an Architecture
	Viewpoints Can Exist Independent of the System Being Described
	Comparing and Analyzing Architecture
	Architecture Descriptions as an Evolving Process

	Where Are We Going with Architecture Descriptions?
	Summary

