
GartnerGroup

Entire contents © 1997 by Gartner Group, Inc. All rights reserved. Reproduction of this publication in any form without prior written permission is forbidden. The information contained herein has been obtained from sources believed
to be reliable. Gartner Group disclaims all warranties as to the accuracy, completeness or adequacy of such information. Gartner Group shall have no liability for errors, omissions or inadequacies in the information contained herein
or for interpretations thereof. The reader assumes sole responsibility for the selection of these materials to achieve its intended results. The opinions expressed herein are subject to change without notice.

R-ARCH-104
R. Schulte

Strategic Analysis Report
28 April 1997

Architecture and Planning for Modern Application Styles

Management Summary

Most enterprises spend too little time thinking about the topology of their applications. This lack of
attention results in application systems that take too long to deploy, cost too much, are difficult to maintain
and expand, have needless redundancy in program logic and data, and suffer from low-quality data. In
many enterprises, “architecture” means only a short list of standard products that have been approved for
use, and even this form of architecture is unevenly implemented. Although it is often useful to minimize
the diversity of software tools that are bought and deployed, short-list architectures do not offer application
developers enough information to make successful design decisions.

A good architecture includes topology guidelines for partitioning and targeting both data and processes.
Partitioning means dividing program logic and data into segments; targeting refers to the physical
placement of those program and data segments onto one or more systems. Topology concerns a number
of runtime deployment issues such as: What runs on the desktop client? What runs on the server? If
something is on a server, which server?

The most common mistake in application topology is the failure to distinguish between local, intra-
application architectural “blueprint” issues and macrocosmic, multiapplication “city planning” issues. For
example, two- and three-tier architectures are useful blueprint concepts when designing individual parts of
an application. However, the concepts do not apply to the relationships among whole application systems
that are implemented by different divisions or departments. Such enterprisewide issues are addressed by
macro-level topologies such as data warehouses, message brokers and organized batch transaction
reconciliation architectures.

Successful modern IT architectures leverage the appropriate use of the following fundamental design
principles:

• Modularity

• Encapsulation

• Reuse or sharing of functions

• Separation of presentation (user interface) logic from flow control, business rules and data access
logic

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 ii

• Use of server-centric processing to minimize software distribution problems and to maximize code
reuse, and

• Incremental adoption of any desired changes in application design style or middleware.

These principles are applied on a fine-grained level within an application program using the concept of
runtime component software. The same principles are also applied on a medium-grained level (“services”)
between related application modules in one application system and on a coarse-grained level between
multiple whole, independently designed application systems.

The single most valuable thing that an enterprise can do to ensure a durable and extensible application
portfolio is to use a service-oriented architecture for most new midsize or large applications. A service-
oriented architecture maximizes code reuse and minimizes the redundancy of logic and data by
organizing functions into shareable, encapsulated modules that can be accessed from multiple client
(requesting) applications.

In this Strategic Analysis Report, we analyze the benefits and limitations of all of the major topological
trends in modern application design, including two-, three- and multitier architectures; service-oriented
architectures; organized and unorganized batch data reconciliation; shared data; real-time data
integration; data warehouses; operational data stores (ODSs); and message brokers. We address the
following SSA Key Issues:

• How will technology and business trends affect architectural trade-offs during the next five years?

• What is three-tier computing and why does it matter?

• What impact will objects and components have on data and process topology?

• How and when will mainstream enterprises derive practical benefits from message brokering?

• What are the trade-offs between database gateways and program-to-program middleware?

• How can new applications best be integrated with purchased applications and legacy systems?

Among the major Strategic Planning Assumptions that derive from our research into these issues are the
following:

• Ninety percent of all new C/S applications will be multitier (three or more tiers) in 2001, up from 40
percent in 1996 (0.7 probability).

• By 1999, object request brokers (ORBs) and object transaction middleware (OTM) will be the
dominant method of program-to-program communication for new applications (0.7 probability).

• Service-oriented topologies will account for more than one-third of new, mission-critical operational
applications by 2001, up from less than 15 percent in 1997 (0.7 probability).

• Despite enterprise data modeling techniques and advances in database gateway middleware, the
goal of sharing data directly among heterogeneous operational applications will remain unattainable
during and beyond our five-year planning horizon, i.e., 2002 (0.9 probability).

• Until 2000, except for clearly focused applications, ODS deployment will be difficult and suitable only
for the skillful and strategically minded who can justify the costs (0.8 probability).

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 iii

• Through 2002, even in their most successful installations, ODSs and shared databases will never
hold more than 25 percent of the data of record for any large enterprise (0.8 probability).

• By 2001, more than half of all large enterprises will have some form of message broker in production
(0.7 probability).

• Message brokers, data warehouses, ODSs, multitier architectures and service-oriented architectures
are complementary notions; none of them will replace another during our planning horizon (0.9
probability).

• No compelling architectural leadership will emerge from any individual vendor or consortium through
2002, compelling users to plan, assemble and manage their own architectures using pieces from
many sources (0.9 probability).

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 iv

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 v

CONTENTS

1.0 Introduction to IT Architecture ... 1
1.1 Challenges.. 1
1.2 Architecture vs. City Planning .. 3

2.0 Trends in Application Design ... 4
2.1 Changing Relationships Between Data and Processing Logic ... 4
2.2 The Growing Importance of the Black Box Metaphor .. 6

3.0 Basic Intra-application Architecture .. 6
3.1 Overview of Two- and Three-Tier Architectures ... 7
3.2 The Accelerating Use of Three-Tier Architectures ... 9
3.3 The Trade-offs Between Two- and Three-Tier Architectures... 10
3.4 The Role of Component Software in Two- and Three-Tier Architectures 12

4.0 The Architecture of Complex Structures ... 16
4.1 Service-Oriented Architectures .. 17

5.0 Organizing Multiple Applications of Heterogeneous Origin .. 19
5.1 The Challenge of Coordinating Disparate Application Systems ... 20
5.2 Direct Data Sharing.. 21
5.3 Data Integration.. 22
5.4 Data Warehouses ... 24
5.5 ODSs ... 26
5.6 Batch Data Reconciliation... 28
5.7 Message Brokers ... 31

6.0 Implementing Modern Architectures.. 33
6.1 Applying the Black Box Metaphor at Different Levels.. 33
6.2 Selecting the Appropriate Topology .. 36
6.3 Case History: Combining Service-Oriented and Message Broker Architectures 38

7.0 Summary of Recommendations ... 41
7.1 Architecture and Topology Planning Processes .. 41
7.2 Guidelines... 43

Appendix: Acronym Key .. 47

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 vi

FIGURES

Figure 1. Architecture vs. City Planning .. 3
Figure 2. Three IT Eras ... 5
Figure 3. Architecture of Simple Structures .. 7
Figure 4. Two- and Three-Tier Architectures ... 8
Figure 5. Relative Merits of Two- and Three-Tier Architectures... 12
Figure 6. Three Different Notions of Objects ... 15
Figure 7. Component Software in Two- and Three-Tier Applications ... 16
Figure 8. Complex Structures ... 17
Figure 9. Designs That Reduce Data and Logic Redundancy.. 17
Figure 10. A Service-Oriented Architecture ... 18
Figure 11. Macrocosmic “City Planning”-Level Design Issues .. 20
Figure 12. Unintegrated Applications ... 21
Figure 13. The Myth of Enterprisewide Data Sharing .. 22
Figure 14. Universal Data Access Pipeline .. 23
Figure 15. Data Integration for Decision Support .. 24
Figure 16. Data Warehouse Architecture ... 25
Figure 17. Operational Data Store ... 27
Figure 18. Batch Data Reconciliation ... 29
Figure 19. Organized Transaction Reconciliation ... 30
Figure 20. Message Broker Architecture.. 31
Figure 21. Message Broker Functions .. 33
Figure 22. Components and Services as Black Boxes ... 34
Figure 23. Message Broker Encapsulation... 35
Figure 24. From Whom Data and Code Is Hidden ... 36
Figure 25. Roles Played by the Major Architectures ... 37
Figure 26. Forces Affecting User Architectures .. 44

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 1

1.0 Introduction to IT Architecture

1.1 Challenges

The goal of this Strategic Analysis Report is to provide practical guidance on the subject of application
topology in large and midsize enterprises. Topology is one of the most crucial aspects of architecture and
refers the issues of data and process partitioning and targeting. Partitioning means dividing program logic
and data into segments; targeting refers to the physical placement of those program and data segments
onto one or more systems. Topology concerns a number of runtime deployment issues such as:

• What runs on the desktop client?

• What runs on the server? If something is on a server, which server?

• Within a system, how will the program logic modules relate to each other and to various sections of
the data?

Topology issues may be addressed by two-tier or three-tier architectures, data warehouses, message
brokers or any of several other design models. In this Strategic Analysis Report, we discuss these
concepts in detail. There is more to architecture than just topology, however (although we focus here only
on topology). There is no industry consensus on the nature or even the purpose of an IT “architecture.”
The term is applied to many different things, including:

• A short list of products to be used in IT projects, such as the approved hardware platforms,
operating systems (OSs), DBMSs, development tools, middleware products and packaged
applications. An enterprise may be said to base its architecture on RS/6000s, AIX, Oracle, Forte,
CICS, SAP R/3 or some combination of these and other specific products. The goals of short-list
architectures are the following:

- To maximize application portability or interoperability through technology consistency across the
enterprise

- To reduce the number of redundant products that are used so that the technical staff does not
have to maintain knowledge of many products

- To save effort in the procurement process because, after the initial product selection is made,
subsequent purchases will not require a reinvestigation of the competing alternatives

- To achieve economies of scale by buying large quantities of a product from a single vendor (e.g.,
acquire an enterprisewide license)

• A list of formal “open systems” standards, such as XPG/4, Posix 1003.1, CORBA, ANSI SQL, ANSI
C, ANSI COBOL or TCP/IP. This is an attempt to provide consistent technology across an enterprise
without locking the enterprise into a particular vendor in any category. Open systems are based on
the idealistic premise that portability and interoperability can be achieved across many different base
products as long as they all conform to the same multivendor interface and protocol specifications.
However, in many areas of IT, this premise has not been fulfilled in practice because the standards
have been slow to develop and are incomplete, and vendors have continued to deviate from a strict
implementation of the standards. Interest in open systems peaked about four years ago, and most
user enterprises, even those that were previously the most enthusiastic in their pursuit of this
strategy, have since reduced their efforts and their expectations in this direction. Most enterprises
continue to pay attention to the importance of de facto standards, but many now place relatively little

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 2

reliance on official standards unless they also happen to be (or appear likely to become) de facto
standards.

• A specification of the functions and interfaces of the component parts of a system. An architecture in
this sense is essentially the high-level design of a particular thing, such as an application system, a
program or a system software product. An “architected” system is one that has a formal, abstract
specification of some type, in contrast to a nonarchitected system that is directly implemented
without using an explicit model.

• Any of a wide array of other general guidelines for analysis and design, especially those that employ
enterprise data, process or organization models. Some architectures specify the methodology of the
design process. In other cases, the architecture is a template or specification for the data, process or
organization model(s) that are produced by executing the design methodology. Such models can be
aimed at the conceptual, logical or physical levels. It is difficult to generalize about the nature of such
architectures because they vary so widely, but their general goals are usually to facilitate the
development of more flexible and durable application systems by minimizing overlap and maximizing
reuse of design, data and code. Such architectures are part of a formal approach to application
design and often relate to concepts such as information engineering and computer-aided software
engineering (CASE).

These “architectures” are not mutually exclusive; an enterprise may pursue one or all of them. However,
the goal of providing good architecture for IT is as elusive as it is attractive. The following are some of the
numerous obstacles that continuously thwart the efforts of users to implement architectures:

• Formal architecture projects are often characterized by their lack of clear deliverables, fixed
deadlines and real management commitment. Team members who are responsible for developing
an architecture may not even have an understanding of which type of architecture they are
supposed to generate. Joint responsibility often translates into no responsibility.

• Architectural guidelines are difficult to enforce, particularly now that application development and
management are usually dispersed across different groups and different geographical locations. IT
is almost never concentrated within a single line of control in the organization hierarchy. It is difficult
even to communicate the contents of an architecture across a large organization. It is especially
difficult to get voluntary compliance with guidelines that maximize the overall, long-range corporate
good but cause an increase in near-term expense or inconvenience to a local department or
development team.

As a result, many architectures degenerate into shelfware, i.e., never-used documents that serve only to
answer an objection when someone asks if there is a coherent plan behind some aspect of IS practice.
Nevertheless, many other architectures succeed, particularly those that do the following: focus on the
most critical aspects of IT practice; provide realistic, simple, understandable guidelines; can be
implemented incrementally without having to throw away vast amounts of legacy code and databases;
and provide tangible returns in a short time frame.

Here, we aim to improve the practice of IT architecture by clarifying topology issues that affect the design
and deployment of many kinds of application systems. Topology is always relevant to application design
because it deals with issues that are inescapable. All application systems have a topology, although some
are determined implicitly and some are determined explicitly. We believe that a clear understanding of
topology issues can improve the design of a single application program or one application system, even if

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 3

other applications and design teams do not adhere to the same guidelines. However, good topological
decisions that affect multiple application systems and multiple groups can do even more – they can make
a huge difference to the operation of the whole enterprise.

Most enterprises spend too little time thinking about topology. This lack of attention often results in
application systems that cost too much to develop, are difficult to maintain and modify, have needless
redundancy in program logic and data, have low-quality data and consume more hardware and network
resources than are necessary. Many enterprises have only the short-list form of “architecture,” which is
usually valuable and worthwhile, but it does provide much help to developers in the design of the
application topology. It is certainly a good idea to minimize the unnecessary diversity of technology,
interfaces, protocols and products where practical. But many additional benefits can be derived by also
using a thoughtful, planned blueprint for data and process partitioning and targeting. In the succeeding
sections of this Strategic Analysis Report, we describe a variety of topologies and their roles in a
successful IT infrastructure.

1.2 Architecture vs. City Planning

IT architectures fail more often than they succeed, and the single biggest source of trouble is the failure to
distinguish between architectural “blueprint” level issues and macrocosmic “city planning” issues. The
design of a building or an application system is an architectural issue; one set of blueprints can describe
the structure in detail because there is one developer. However, it is not practical to enforce a blueprint for
a whole city — or for an enterprise IS portfolio — because they are developed at different times by
independent organizations (see Figure 1).

Architecture City Planning

Source: Gartner Group

Figure 1. Architecture vs. City Planning

Cities and IS portfolios both evolve through a combination of circumstance and planning. City plans and
building codes concentrate on the shared infrastructure, such as roads and pipes, and issues that affect
outside parties, such as building height and parking spaces. A functioning city is the result of efforts on
three levels: city agencies and utility companies provide the shared infrastructure; developers and
contractors assemble the structures; and the occupants provide and arrange the furniture and decide the
color of the walls. Similarly, three levels of work go into a functioning IT portfolio: the central IS

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 4

department provides infrastructure; application developers and outside vendors provide application
systems; and end users may tailor them to their particular requirements. So the central IS department is
most effective when it concentrates on the communication infrastructure, application interfaces and
shared resources rather than trying to control design details. It is as impractical to mandate one DBMS,
one language or one design style for all enterprise applications as it would be to mandate that all buildings
in a city use the same layout and the same building materials.

Planning guidelines that affect the work of multiple development teams cannot be detailed and must focus
on external interfaces and shared resources.

In the next section of this Strategic Analysis Report, we introduce some design principles that apply to all
levels of application topology. In the succeeding sections, we review how these notions are applied to
each level, beginning with simple applications (Section 3), then complex applications (Section 4) and then
to collections of multiple applications (Section 5).

2.0 Trends in Application Design

2.1 Changing Relationships Between Data and Processing Logic

The way that application developers regard the relationship between data and logic has gradually
evolved. The thinking has gone through three major steps since the beginning of the IT industry:

• The underlying insight of the early data processing era (approximately 1950 to 1970) was that
computers can offload the drudgery of repetitive calculations from people. The focus was on logical
algorithms; programs were considered durable, but data was something to be transformed. In
business applications, most of the work was batch-oriented. The input-process-output diagram (see
Figure 2, top section) represented the most common way of envisioning the operation of an
application. The validity of this way of modeling computer work has never been repudiated. Input-
process-output still works and it still is a useful way to model batch work and parts of some other
application styles. However, new ideas on application design have relegated this approach to
irrelevance for the majority of applications.

• The primary insight of the data processing or “database” era (approximately 1970 to 1990) was that
data is a valuable asset in its own right. Data that is properly organized and maintained can be used
by multiple application programs for many different purposes (see Figure 2, middle section).
Processing logic was considered more ephemeral than the data model. Once the data is modeled
and a database is implemented, application programs that use that data can be added and modified
for a long time before the data model must change. During the database era, conventional wisdom
considered the task of application integration to be a data integration issue and little attention was
given to opportunities for reusing processing logic. Application programs related to each other
through data, either by sharing the same database or by extracting data from one database to insert
or update another database. Most of the critical software integration tools were aimed at shipping
data from place to place, or they enabled remote programs to directly access foreign databases.
Examples of such tools include file transfer utilities, database replication and propagation tools,
database gateways and program generators for extract programs. The data-centric approach is still
the best way to model many situations, including data warehousing and other types of decision
support. However, for an increasing number of applications, another way of modeling computer work
has become more useful (described next).

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 5

• We are now in the early stages of what may be termed the data processing era, which is driven by
the insight that programming logic is often intrinsically related to the data upon which it acts (see
Figure 2, lower section). It is often helpful to design data and logic together rather than in separate
steps because the integrity constraints, access algorithms (navigational logic) and even business
rules may be closely related to a particular set of data. Moreover, logic and data are sometimes
even manipulated by the same software infrastructure products. For example, DBMS stored
procedures, database triggers, OO programming environments and some ORBs combine data
management and logic management into one product.

Input OutputProcess

Data processing (1950-1970)

Data processing (1970-1990)

Database

Application

Application

Application Application

Application

Application

Data processing (1990-?)

Data Logic DataLogic

Source: Gartner Group

Figure 2. Three IT Eras

Many types of applications in the new data processing era (post-1990) emphasize the use of program-to-
program communication (function integration) more than the data transfer or direct data access
mechanisms (data integration) that dominated in the previous era. Functionally integrated application
systems interact via some form of message passing, such as RPCs, Sockets, message-oriented
middleware, ORBs, TP monitors or OTM. Function integration applies to the architecture within a single
application system, and it also applies to the global relationships between multiple application systems.
Systems that are based on function integration are designed differently from traditional application
systems, particularly in their frequent use of modularity and encapsulation.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 6

2.2 The Growing Importance of the Black Box Metaphor

IT design practices are being reshaped by the increasing use of the black box metaphor and two related
design principles:

• Modularity — organizing applications into smaller modules, and

• Encapsulation — hiding data and logic from uncontrolled external access.

Modularization divides big problems into smaller “bite sized” problems that are easier to solve.
Encapsulation implies that all communication between modules is done only through controlled,
documented interfaces (“contracts”). Encapsulation has the following two benefits:

• It helps protect internal data and code from careless or malicious misuse (i.e., integrity protection)

• It helps shield the external developers from the complexity and dynamism of the contents of a
module

External people who want to use a module do not have to see or understand the logic or data model that
is inside the module. The module is a “black box” that is accessed only through the defined interfaces.
The reuse or sharing of a module implies reuse or sharing of both logic and data. By contrast, the direct
reuse or sharing of data (as in data integration) means that one is not reusing any program logic.

The principles of modularity and encapsulation are applied on several levels:

• They are applied within a single application program via techniques such as component software
(see Section 3), DBMS stored procedures, database triggers and OO programming. Each of these
techniques has its own particular benefits and limitations (however, these are middleware issues
that go beyond the scope of this Strategic Analysis Report).

• The same principles are applied between related application programs in the same application
system or group of related application systems using a service-oriented architecture. Services are
modules that contain a shareable set of business rules and data access logic that may be invoked
by multiple requesting client application modules (see Section 4).

• The principles of modularity and encapsulation can also apply on a macrocosmic level, using
program-to-program messages (function transfer) that cross the boundaries of independently
designed application systems. In this manner, production databases are encapsulated on a coarser
level. They are accessed only by their respective native application programs so that edits, integrity
checks and business rules can be reused. Extract and update programs can be made unnecessary
because data are indirectly kept in synch through message passing or other program-to-program
communication. Section 5.7 explores message brokers which represent an organized approach to
macrocosmic encapsulation.

In the remainder of this Strategic Analysis Report, we examine the practical implications and use of
modularity and encapsulation in more detail.

3.0 Basic Intra-application Architecture

In this section, we examine architectural trends in the basic architecture of online applications (see Figure
3).

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 7

Source: Gartner Group

Figure 3. Architecture of Simple Structures

3.1 Overview of Two- and Three-Tier Architectures

The number of software tiers is an intra-application architectural issue. The design tiers of the software
determine which functions run on the desktop and which functions run on the server. We define the
various configurations of software tiers as follows:

• Two-tier fat-client topologies put all of the application program logic on the desktop and use the
server simply to run the DBMS.

• Two-tier “plump client” applications put some of the application logic (usually presentation logic and
business rules) on the desktop and rest of the application logic (usually the data access logic and,
occasionally, some business rules) on the server in the form of DBMS stored procedures. “Data
access logic” is implemented with a data manipulation language (DML) such as SQL.

• Three-tier thin-client applications are those that have some application logic (business rules or data
access logic) running on the server in a tier that is separate from the DBMS. The desktop runs
presentation logic and, occasionally, some business rules.

• Four-tier applications are those in which flow control functions are implemented in a software layer
that is separate from the presentation, business rules and data access logic.

Figure 4 shows the two types of two-tier applications and two types of three-tier applications. In the
interest of simplicity, we do not include a diagram of four-tier applications that have an explicit flow control
tier. Flow control is the set of instructions that direct the sequence of operations to be performed for a
particular task. In any application, logic flow must somehow be controlled within a program and between
programs. Flow control between application programs was traditionally addressed by OS-related services
such as IBM’s MVS Job Control Language (JCL), Digital Equipment’s VMS Digital Control Language
(DCL) and Unix shell scripts. Flow control within an application program is usually left to the developer
and programming tools, including the 3GL compiler (e.g., “do” loops, “perform” commands and if-then-else
constructs). The nature of flow control has changed from fairly predictable, bounded sequences of steps
to complex, unpredictable series of events. Flow control in a C/S application is sometimes implemented in
the application program or it may be implemented in middleware or in a separate tier that may be
implemented with a scripting language whose sole purpose is flow control. When flow control is in its own

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 8

tier, it may be more modular, flexible and easier to maintain than when it is embedded in the business
rules.

Fat Client
Two Tiers

Thin Client
Three Tiers

Plump Client
Two Tiers

Three App.
Program Tiers

Server

Desktop

Presentation
Bus. Rules

Data Access

DBMS

Presentation
Bus. Rules

DBMS w/

stored
procedure

Data Access
Bus. Rules

Presentation

DBMS

Data Access

Presentation

DBMS

Bus. Rules

Source: Gartner Group

Figure 4. Two- and Three-Tier Architectures

Most of the first user-written C/S applications used two-tier fat client topologies. As experience with C/S
grew, more two-tier applications began to put some of the application logic on the server in the form of
stored procedures. Three-tier “thin client” applications are rapidly becoming the dominant mode of C/S
processing because of the growth of the World Wide Web (browsers usually are thin clients), the
migration of vendor-written applications to three-tier topologies and improvements in multitier
development tools and middleware (see Section 3.3). It is important to note that some of the processing
paths within an application may be two-tier and others can be three-tier.

We do not recommend a rigid approach to partitioning the logic. It is likely that some business rules and
flow control will find their way into presentation modules. It is also likely that some business rules will be
embedded in a data access layer, or that some DML statements will be coded into a business logic layer.
These exceptions are often good design. Purity can be bad design, although there are no simple rules as
to when functions should be put into other layers.

A data access layer will be implemented differently on each platform. On MVS, it might be done as
COBOL subroutines linked into an IMS/TM or CICS application program. In this case, the distinction
between data logic and business rules may exist just at design time, because at runtime, the code may be
linked into each transaction program. On PCs or Unix, the more common techniques are the following:

• User-written code, e.g., C++ classes. ISVs often do it this way so that they can readily port their
products across several different DBMSs. However, this is generally not worthwhile for user
enterprises because it is requires so much discipline on the part of the application developers.

• Data instantiation facilities that are built into a wide range of OO development/runtime tools, from
Sybase’s PowerBuilder to Gemstone’s Gemstone, IBM’s Visual Age and Next Software’s Nextstep.
Middleware such as Microsoft’s DCOM and Iona Technologies’ Orbix ORB also have services that
load some kinds of data into components so that the component logic sometimes does not have to

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 9

execute traditional embedded DML statements to read or write data. This is a significant change in
application design.

3.2 The Accelerating Use of Three-Tier Architectures

Recent trends in the software market have caused us to update our planning assumption regarding the
spread of three-tier computing. Users are demanding the flexibility of three-tier topologies more broadly
than we had anticipated, and vendors are lowering the cost and complexity of three-tier computing faster
than we had expected. Ninety percent of new C/S applications will be three or more tiers by 2001 (0.7
probability).

We base our revised Strategic Planning Assumption on the following four general trends and events:

• Web technology is spreading rapidly into many types of applications. The Web is almost entirely a
thin-client/three-tier phenomenon in which the browser executes only presentation logic. Even with
the addition of applets, most of the business rules and data access logic will run on the server.
Although browser applications technically can be two-tier, few or none are now, and only a minority
will be in the future. Using a browser does not automatically make application design simple, but it
acts as a catalyst for developers to make their server-side logic more efficient than it would be in a
two-tier approach. To the extent that browser applications supplant traditional C/S GUIs, the number
of two-tier applications will drop correspondingly. Furthermore, Web browsers are only one of many
alternative front ends that cannot run traditional two-tier C/S applications. Other such front ends
include hand-held appliances, interenterprise messaging and some point-of-sale devices and voice
response units.

• Packaged applications are moving rapidly to three-tier architectures. Some of the major C/S
application packages, including those from Baan and SAP, have been based on three-tier
architectures for years. PeopleSoft, which had been primarily two-tier, announced a migration to
three-tier applications in September 1996. It is reimplementing its applications in stages using a
message-based infrastructure centered on BEA Systems’ Tuxedo middleware product. Geac
Computer (formerly Dun & Bradstreet Software Services) and Hyperion Software are also beginning
to move from hybrid, mostly two-tier designs, to server-centric three-tier designs.

• Oracle embraced three-tier topologies in its Network Computing Architecture (NCA) announcement
(Oct. 1, 1996). Oracle is the most powerful DBMS vendor and previously stressed two-tier
computing. The two-tier architecture gives more control to the DBMS because DBMS middleware
handles all client-to-server communication and the server application logic is locked into the
proprietary stored procedure language. However, Oracle’s upcoming NCA products will include full-
blown three-tier application server middleware (the Web Application Server) and language-
independent “data cartridges” (an enhancement to stored procedures). This will eventually also
affect Oracle’s packaged C/S applications. These were originally three-tier, but Oracle gradually
rewrote them to rely more heavily on stored procedures and two-tier processing. We expect that
Oracle will reverse this by rewriting its applications again, this time to exploit the power of NCA and
three-tier topologies. Initial deliveries of the new generation of applications will not begin before 1999
(0.7 probability).

• There has been a significant expansion in the number and quality of three-tier middleware and
development tools. Even Visual Basic (in version 4) and PowerBuilder (in v.5) were upgraded to
support a limited form of three-tier computing. We expect that these tools will become more adept at

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 10

multitier applications as they exploit DCOM better and as Microsoft enhances DCOM with
transactions and other advanced features. Other ORB vendors are also improving their middleware,
reducing the complexity of client-to-server program-to-program communication which is the basis of
three-tier computing.

The cumulative effect of all these trends is to make it easier and less costly for enterprises to buy or
develop three-tier applications. In an increasing number of situations, particularly involving the Web,
three-tier applications are less complex than two-tier architectures in terms of the design process, the
software acquisition process and the ongoing tuning and administration tasks. At the same time, the
inherent architectural power of multitier architectures is becoming increasingly important, even for
decision support applications that were often considered to be naturally suited for two-tier topologies.

3.3 The Trade-offs Between Two- and Three-Tier Architectures

Application developers should be aware of the following trade-offs between two- and three-tier designs:

• Advantages of two tiers: Historically, the case for the two-tier architecture rested on its simplicity.
The middleware and server programming tools (stored procedures), if any were used, were bought
from one vendor (i.e., the DBMS provider). In contrast, three-tier architectures sometimes entailed
buying middleware from one vendor, a (server) programming tool from another vendor and the
DBMS from a third vendor. Furthermore, developers of fat-client applications do not have to decide
how to partition the application: everything just goes on the desktop (client). Two-tier/plump-client
applications and three-tier applications are more complex in this regard because the developer must
decide what functions to put on the server and what functions to put on the desktop.

• Disadvantages of two-tier fat clients: Three-tier and plump-client/two-tier applications are more
efficient than fat-client applications because they transmit fewer and smaller messages between
client and server by executing the business logic processing closer to the location of the data. Such
applications make it possible to confine all database I/O within the server and let server-based
application logic preprocess the data so that only condensed messages go back to the client.

• Advantages of three tiers: The case for the three-tier architecture traditionally was based on the
flexibility of general-purpose communication or middleware products (e.g., Sockets, CPI-C, RPCs,
messaging systems and TP monitors) compared with stored procedures. Three-tier server
applications run under the control of the OS or a middleware runtime environment and are thus more
powerful than plump-client/two-tier applications that run in the DBMS and are subject to the
limitations of stored procedures.

Stored procedures and the DBMS facilities that manage them at runtime have improved during the past
three years, but they are still less flexible than some other forms of middleware in certain key respects.
Depending on the particular middleware that is used, a three-tier architecture is superior to a two-tier,
stored-procedure-based system in many ways. A three-tier solution:

• Can be dynamically load balanced for high numbers of users and high transaction rates (depending
on the middleware);

• Can fail over to a backup copy, for uninterrupted availability;

• Can readily access data outside the local RDBMS, such as real-time data feeds, files or multiple
heterogeneous DBMSs;

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 11

• Can easily invoke other heterogeneous server application programs, including those not embedded
within the DBMS;

• Can readily call out across a network, e.g., invoke a transaction on CICS/MVS through a gateway;

• Is often visible to standard software distribution tools, system monitors, OS utilities and system
management tools (depending on the middleware environment); and

• Helps enable DBMS independence (e.g., porting an application between Oracle and Sybase) albeit
with some discipline and limitations.

The spread of Web technology and the delivery of better three-tier middleware and development tools are
reducing the drawbacks to three-tier architectures. First, the partitioning decision for (three-tier) Web
applications is as clear as the partitioning decision for two-tier applications, although the default design
choice is reversed. Web applications put most business rules and data access logic on the server rather
than on the client (presentation is on the client in both cases). It should be noted, however, that Web
servers can be configured many different ways, so there may still be some complicated design issues.
Second, the software to enable undemanding three-tier applications can now be bought from one vendor,
e.g., Microsoft. As long as the server is NT, Microsoft offers the middleware (DCOM), server-side
programming languages and the DBMS. Oracle’s NCA product set will provide similar one-stop three-tier
shopping by 1998. Finally, large or demanding applications have always been three-tier, and although
one-stop shopping will not apply to these kinds of applications during the next five years, the enabling
middleware (especially OTM) are becoming better and more available every year.

The net effect of these changes will be to push two-tier computing into a niche (see Figure 5). In 2001,
two tier topologies will be appropriate only for applications that meet all of the following conditions:

• Use one DBMS, generally on the same LAN;

• Have a moderate-volume workload, generally fewer than 10,000 transactions per day;

• Have little or no interapplication communication, such as access to a mainframe application or
interenterprise communication; and

• Always use a desktop PC front end.

Enhanced versions of stored procedures (e.g., data cartridges) will thrive, but their major role will be to
supplement three-tier architectures rather than to run the whole server-side application logic.

Three-tier architectures will be appropriate for any application in which one or more of the following
conditions exist:

• Most browser user interfaces, i.e., environments that require low administration and software
distribution costs, such as network computers;

• Two or more heterogeneous data sources, e.g., two DBMSs or a DBMS and a file system;

• High-volume workload (more than 10,000 transactions per day);

• Need for very high availability or fault tolerance (failover);

• Significant interapplication communication, such as access to a mainframe application or
interenterprise communication (message brokers will be appropriate for many of these needs); or

• Upsizing, i.e., the application may grow in time so that one of the previous conditions will apply.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 12

Cost to Develop
and Maintain

Application Complexity
and Length of Application Life

Two-Tier Architecture

Multitier Architecture
(1997)

Multitier Architecture
(2001)

Source: Gartner Group

Figure 5. Relative Merits of Two- and Three-Tier Architectures

In summary, developers must consider the nature of each application and choose between two-tier and
three-tier designs on a case-by-case basis. For small, routine applications, a two-tier approach is still
faster, simpler and less expensive. For complex or large applications, a three-tier design costs less to
develop, maintain and administer. By 1999, however, most applications will be best implemented using
three-tier topologies.

3.4 The Role of Component Software in Two- and Three-Tier Architectures

Software is becoming ever larger and more complicated because of the demands for greater functionality,
friendlier user interfaces, tighter application integration and increasing distribution across multiple
systems. It is therefore increasingly desirable to apply the principles of modularity and encapsulation so
that applications can be assembled from multiple, finer-grained (smaller) programs. Component software
has emerged as the most popular design technique for this purpose.

A runtime software component is a dynamically bindable package of one or more programs managed as a
unit and accessed through documented interfaces that can be discovered at runtime. In other words, a
component is a black box that is particularly friendly to the developer because it is implemented with a
formal mechanism for defining and managing the parameters in the program-to-program messages.
Components are generally implemented using ORB middleware. Other forms of middleware, such as
RPCs, messaging systems and TP monitors, also support encapsulation and modularity (i.e., they can
treat a program as a black box), but they do not manage the interfaces in a formal dynamic way. For this
reason, we believe that the majority of future C/S applications will use an ORB such as Microsoft’s

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 13

COM/DCOM or a CORBA-style ORB on either or both the client and server(s). By 1999, ORBs and OTM
will be the dominant method of program-to-program communication for new applications (0.7 probability).

ORBs and OTM differ from other program-to-program middleware in two respects: formal, dynamic
interface management, and explicit component uniqueness:

• Formal interface management. An ORB maintains or has access to directories and repositories that
document various aspects of application programming interfaces (APIs). These directories and
repositories make it possible to defer to runtime certain decisions about how the programs will
connect to each other. They specify the name of each supported operation (a verb, or “method
name”) and its associated parameter list, including the data types of each input and output
parameter. In COM/DCOM, there is a Registry for finding server components and a type library for
specifying the message contents. In CORBA, an Implementation Repository helps locate server
components and an Interface Repository specifies message contents. APIs are usually specified
using an interface definition language (IDL), although they do not have to be.

In theory, client programs could call a previously unfamiliar server component using information
gleaned by programmatically inquiring into these runtime repositories to dynamically assemble the
call. However, fully exploiting this possibility would require extremely sophisticated client software. In
practice, runtime API inspection appears to be useful mostly for the more limited function of letting
clients and servers of different development generations work together. For this reason, the clearest
benefit of component software is to enable incremental maintenance and incremental
enhancements of software (i.e., to make it easier to upgrade one module in a system without having
to reinstall or modify other modules). Contrary to conventional wisdom, component reuse
(recombining components in a new, unique way) is not the most important benefit of component
software, although components do facilitate reuse in some circumstances (particularly for GUI
desktop programs).

• Explicit component uniqueness: The second characteristic that distinguishes an ORB or OTM from
other kinds of software runtime environments is the notion of explicitly managed component
uniqueness. The ORB passes a unique identifier for a specific instance of a server component to a
client program. The client uses this identifier to communicate with the server component and can
also pass the identifier to other clients, enabling them to access the identical server component. In
CORBA, the identifier is the “object reference”; in COM/DCOM, the interface pointer and optional
moniker accomplish about the same thing. There are significant differences in how COM/DCOM and
CORBA work, but a discussion of these differences is beyond our scope here. This Strategic
Analysis Report addresses the general characteristics of components that are common between
COM and CORBA.

A component contains logic and data — just as any other program does. But the ORB’s unique identifier
mechanism makes it easier to apply “object”-related concepts to components. We define an object as a
representation of any thing, real or abstract, in terms of a set of operations and data values (which
represent its state). Components can implement one or more of the following three different aspects of
object technology (see Figure 6):

• Programming objects. All well-behaved components are objects in the sense that they encapsulate
code and data. ORBs (like RPCs and some other middleware) by their nature hide code and data
from external programs because messages into the component enter and exit only through formal,
managed APIs. Of course, it is sometimes possible to bypass the ORB to expose data or entry

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 14

points to external programs, thereby creating a misbehaved component that is not exactly an object.
Nevertheless, most components are well behaved in practice, and the words object and component
are often used interchangeably to refer to ORB server programs (e.g., a COM/DCOM object means
the same as a COM/DCOM component).

A programming object may not model any real world thing. For example, a currency conversion
component for translating dollars to yen represents an action rather than a noun. Furthermore, a
programming object may even not identify one particular target of the operation. For example, if the
programmer is wrapping an entire legacy banking application as one “object” (implying that there is a
single object identifier), the ORB is not aware of the difference between Joe’s bank account and
Fred’s bank account. In this case, information regarding which account to access is passed as a
parameter inside the message, just as it is in traditional middleware, rather than through the ORB’s
identifier mechanism. Finally, components are sometimes “process objects” that contain only
processing logic and ephemeral data with no state (in a technical sense of the word). Strictly
speaking, “state” implies that the component remembers changes to its data slots and will behave
differently upon subsequent invocations, whereas stateless components do not remember changes
between subsequent messages. A date routine may be an example of a (“stateless”) process object
because its remembered data values may just be static, unchangeable storage.

• Object-based design. An ORB is a good way to implement an object-based design metaphor
because of its ability to generate or work with unique instance identifiers. “Object based”
components operate on one coherent set of data that represents the state of a thing that has been
modeled, e.g., Joe’s bank account. This is a refinement on the notion of a programming object, and
it introduces a different way of thinking about the server component. In a programming object, the
identifier merely specifies a unique instance of a program. By contrast, in an object-based design,
the identifier refers to a particular program instance and also explicitly specifies the exact subject of
the operation. The subject is generally something that is understandable to users and system
analysts, not just to the programmer (e.g., again, Joe’s bank account). Each object operates on one
and only one modeled thing. For example, the object-based component that represents Joe’s bank
account does not execute operations against Fred’s bank account (it would send a message to
Fred’s bank account object if it needed to operate against it). Object-based objects are not
necessarily object-oriented (OO). Applications built of object-based components are programmed
differently than applications built of traditional programs or unspecific programming objects. In other
words, the fact that ORBs and OTM support the unique instance identifier mechanism encourages
(but does not force) developers to design components that are each dedicated to handling only one
kind of data — a sometimes-helpful design discipline. Further discussion of object-based design
issues goes beyond the scope of this Strategic Analysis Report.

• Object-oriented construction. Gartner Group defines object orientation (OO) as a paradigm in which
objects have encapsulation, classes have inheritance and operations have polymorphism. We
further define a class as a specification that defines the operations and data attributes for a set of
(like) objects. (Implementation) inheritance is a relationship among classes in which a subclass
shares, overrides or supplements operations or data values from one or more superclasses. A
subclass is a specialization of one or more superclasses. Finally, polymorphism is the capability of
an operation to accept arguments of different or unknown types. Parametric polymorphism executes
the same operation on different types. Overloading polymorphism selects appropriate operations
according to the type.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 15

Programming objects and object-based components (as described previously) may or may not be
constructed using OO technology. However, all OO components can be classified as either
programming objects or object-based components. ORBs do not require nor do they directly enable
OO-style polymorphism or implementation inheritance. ORBs support only the notions of
encapsulation, interface inheritance and a restricted version of overloading polymorphism, which
amounts to reusing the same verb name and signature in multiple programs (in other words, ORBs
reuse only the API specification, not the underlying code). If a component happens to be an OO
language object, that fact is not visible to external (client) programs that invoke the component
through the ORB. Moreover, the ORB itself is not affected if the server component is written as a
monolithic program or if it is written as an OO object with many levels of inheritance.

Date routine
Input:

 CCYYDDD
Output:

 MM/DD/YY

Programming
object

“Object-
based”
design

“Object-
oriented”

construction

Joe123

Client
Program

Joe’s
bank

account

ORBORB

Repositories, libraries
or registries

Customer
order

Source: Gartner Group

Figure 6. Three Different Notions of Objects

Programming objects, object-based components and even (in theory) OO components can be written in
any programming language. In practice, more than 90 percent of all extant components (whether
managed by COM/DCOM, CORBA or other ORBs) are written in C++, although Java is increasingly
popular and there are also some components written in COBOL, C, Smalltalk, ADA and other languages.
However, even components written in C++ or Java may not necessarily exercise a significant amount of
OO construction characteristics.

Encapsulation is generally a feature of the runtime software environment (e.g., the ORB). Encapsulation
simply means that the current rendering of an instance of data (the object state) is under the exclusive
control of a particular component while that component is running. Of course, most object-based and
many OO applications store their persistent data in a regular database (usually relational) where it may be
used by other programs at other times. In other words, most object-based objects and OO objects do not
exclusively own “their” data for all time. However, a few OO environments, particularly those implemented
with Smalltalk or ODBMSs, do encapsulate their data on persistent storage as well as in memory.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 16

Although component software will make it easier to expand and maintain applications incrementally,
independently designed application modules will not really “plug and play.” Plug and play (or as some
irreverently call it, “plug and pray”) means adding or changing part of the functionality of an application
without disturbing the other functions that are already deployed. However, the full realization of this ideal
is impeded by the intractable semantic and protocol incompatibilities between components that will remain
unresolved during the five-year planning horizon. ORBs make it easier to interchange modules of different
generations, including modules that are sometimes written by different groups, but ORBs still require that
all of the development groups use the same interface definitions. In practical terms, this means that one
development team will dictate the interface specifications and other development teams will follow those
specifications to the letter if their modules are to work together. Components may be independently
developed, but they are not fully independently designed.

Component software is a change in middleware technology; it is not a new application topology.
Component applications will use the familiar two- or three-tier approaches for application and data
partitioning and placement (see Figure 7). Component-based applications still require the same design
decisions that apply to applications built with traditional middleware such as RPCs, messaging systems,
Sockets or TP monitors. The component application developer must still decide whether to use two, three
or more tiers, whether to use stored procedures, whether the desktop should be a fat or thin client,
whether to use a Web browser and whether to separate data access logic from business rules. However,
ORBs (including Microsoft’s DCOM) lower the barriers to multitier topologies by their ability to manage the
interfaces between components in a formal, organized fashion. Like other good middleware, ORBs also
use the same syntax and semantics between components on separate systems as is used between
components that run on the same system. These characteristics of component software will accelerate
the adoption of three-tier architectures somewhat because they lower the cost and complexity penalty of
using a three-tier architecture (compared to a two-tier model).

Server

Desktop

DBMS

DBMS w/ Data Access

DBMSDBMS

Component
Two Tiers

Component
Three Tiers

Component
Two Tiers

Component
Three Tiers

stored
procedure

Presentation
Bus. Rules

Presentation Presentation

Bus. RulesBus. Rules
Data Access

Presentation

Data Access

Bus. Rules

Source: Gartner Group

Figure 7. Component Software in Two- and Three-Tier Applications

4.0 The Architecture of Complex Structures

In the previous section, we concentrated on the processing paths for a single task. In this section, we look
at the design of larger structures (see Figure 8), i.e., complex application systems that handle many
related business tasks but are still designed by one development team.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 17

Source: Gartner Group

Figure 8. Complex Structures

4.1 Service-Oriented Architectures

Application systems are being broadened to support new channels of user access, notably, three-tier C/S,
mobile computing, the Internet and interenterprise transactions. The very definition of an application
“system” is evolving, as the logical overlap between related applications increases. There is a growing
need to share data and code across multiple access channels (including batch programs) to streamline
the development and management of complex application sets.

Shared-Nothing “Stove Pipes”

Mobile
application

database

Batch EDI C/S Internet Online
CRT app.

Shared Data
Enterprise
database

Mobile Batch EDI C/S Internet

Service-Oriented
Architecture Enterprise

database

Mobile Batch EDI C/S Internet

Services:
Shared Logic

Online
CRT app.

Online

database database database database database

application application application application

application application application application application

Source: Gartner Group

Figure 9. Designs That Reduce Data and Logic Redundancy

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 18

Traditional computing topologies rarely share data directly (see Figure 9, middle section) and virtually
never share program logic (see Figure 9, lower section). Most enterprise application portfolios are a blend
of shared-nothing stove pipes and data sharing (see Figure 9, top two options). Conventional application
portfolios are poor at sharing logic mostly because of shortsighted design decisions regarding partitioning
and targeting. The solution lies in service-oriented architectures that can share both logic and data among
multiple applications.

A service-oriented architecture is a particular style of multitier computing that helps enterprises share logic
and data. It assumes multiple software tiers and usually has thin clients and fat servers (i.e., little or no
business logic on the client), but it is more than that. A service-oriented architecture leverages the
principle that many aspects of processing logic are common to many users of some particular data set
rather than being uniquely associated with one particular application. For example, the business rules,
integrity checks and sequence of steps to enter an order may be common to all users (online or batch) of
that order, billing and inventory data. The code associated with that order-entry function is therefore
organized as a modular service that can be invoked by one or more “requesters” or software “client”
programs using defined interfaces. The front-end logic, including presentation, business rules and flow
control unique to each application and access mode (e.g., Internet, batch or C/S) is handled outside the
service (see Figure 10). Common two-tier remote-data management C/S applications are particularly
unhelpful; they cannot participate in a service-oriented architecture because the application logic is locked
up in code that runs on the desktop and is thus unavailable for batch, Internet, mobile and interenterprise
clients.

Services: Shared logic

Batch
front end

EDI
front end

Internet
serverMobile

agent(s)

Inter-
enterprise

Web
Browser

Trans-
action

file

Shared
databases

Fat-Client
C/S

Sales Force
Automation

Three-
Tier C/S

Batch
Trans-
actions

Source: Gartner Group

Figure 10. A Service-Oriented Architecture

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 19

A service is a black box that hides code and data from the developer of the client application. Services
treat all transactions (online or batch) the same, except that online input sources may be given priority
over batch sources in the order in which the work is executed. The difference between batch and online
users is only on the requesting side. All online tasks, including C/S, Internet and dumb-terminal OLTP,
must be executed immediately, because someone is waiting. Processing is deferred for batch tasks
because no immediate feedback is expected. Online tasks can be conversational, returning up-to-the-
minute information about inventory levels or account balances to a user who is deciding in real time how
to proceed. Online applications can also return input errors and other feedback from integrity checks so
that the user can re-enter the input immediately. All forms of batch processing must save feedback from
failed transactions in files or queues for later delivery to a program or user that can correct and re-enter
the transaction.

In practice, service-oriented architectures rarely span the range of application types shown in Figure 10.
They often have been confined to online applications although more enterprises are now beginning to
apply service-oriented topologies to some deferred processing (batch) jobs. The software in both a
desktop computer and a server computer can be organized in a service-oriented fashion. Note that the
kind of reuse supported by service-oriented architectures is much different from source-code copying or
linking a separate copy of an executable module into an application program. Those other types of reuse
are described in ADM Strategic Analysis Report R-480-129, Jan. 30, 1996.

Service-oriented topologies will account for more than one-third of new, mission-critical operational
applications by 2001, up from less than 15 percent in 1997 (0.7 probability). However, service-oriented
architectures are not a universal solution.

• They are not attractive for casual application development because they require some of the
inevitable disciplines of reuse: design standards, quality assurance, an administrator or facilitator,
incentives to encourage use and documentation for the inventory of prebuilt services.

• They will not replace two-tier C/S applications built with desktop-based tools, because legacy PC
4GLs are widely entrenched and end users often demand control of some of their software
development. Small applications whose scope is limited to one person, workgroup or department
may be developed faster and easier without the rigor of services.

• They provide no clear benefit for functions that are unique to a single application, although it is
difficult to predict that a function will not become a candidate for sharing in the future.

• They are not efficient enough to replace all traditional batch applications where the task demands
locking, sorting or sequential passes of many records.

• They are also insufficient for integrating applications that are designed by different development
organizations. For this purpose, we must look at topologies that are broader and more flexible in
their scope (see Section 5).

5.0 Organizing Multiple Applications of Heterogeneous Origin

We now turn to macrocosmic “city planning”-level design issues (see Figure 11) that deal with managing
the relationships between multiple heterogeneous applications.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 20

Source: Gartner Group

Figure 11. Macrocosmic “City Planning”-Level Design Issues

5.1 The Challenge of Coordinating Disparate Application Systems

Enterprise IT portfolios are, for the most part, still composed of many independently designed application
domains (see Figure 12). Within a domain, the technology, data models and semantics are consistent
because one development group designs all of the application programs and databases. Even if a domain
encompasses multiple application “systems,” multiple databases, several OSs (e.g., Windows 95
desktops and Unix servers), multiple development languages (one for the client and one for the server)
and other complexities, it still can have a coherent architecture. It is possible to directly share some data
and code, as in a service-oriented architecture, although there may be multiple copies of the same data
and code in, for example, the data center, branch offices and departments.

Architectural concepts that apply to a single application domain are impractical for managing
macrocosmic “city planning” issues. There is no simple way to impose a three-tier architecture or a
service-oriented architecture on a collection of diverse applications that have been developed by separate
groups at separate times. Purchased and legacy applications are notoriously troublesome because their
data models and interfaces do not conform to enterprise standards (if any exist). Most enterprises suffer
from cumbersome and inefficient integration schemes because the links between application systems are
independently conceived and deployed, as additional applications are installed or modified. The problem
is not in the technology of the individual interfaces — reasonable middleware tools exist, ranging from file-
transfer utilities, database gateways, message-queuing products, RPC services, ORBs, TP monitors and
such. The problem is that enterprises cannot effectively manage or maintain the overall morass of logical
connections, and many cannot even document all of their interapplication data and message flows.

Despite the difficulty of the task, the need to integrate disparate application systems is becoming
increasingly acute for a variety of reasons. In some cases, enterprises are re-engineering their business
processes to accommodate customer-focused views that require close cooperation between previously
“stove piped” applications. In other cases, the motivator is a corporate acquisition or divestiture. There is
also movement toward “virtual enterprises” that must link application systems from different companies.
Regardless of the motivation, however, integrating independently developed application systems is a
challenge. Applications may be incompatible on one or many levels, such as the OS, DBMS,
programming language, communication protocols, data models or data semantics.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 21

Program Program

Legacy Mainframe
Application System

Program Program

Purchased Unix
Application System

New “Service Oriented”
Application Domain

Service Service

Client Client

Source: Gartner Group

Figure 12. Unintegrated Applications

Enterprises attack this type of problem with macro-level techniques and architectures such as batch data
transfer, real-time data integration, data warehouses, ODSs and message brokers. Some of these
strategies are much more successful than others, and each has a particular set of conditions for which it is
most appropriate. In the next sections of this Strategic Analysis Report, we review the available options in
more detail.

5.2 Direct Data Sharing

It seems intuitively desirable to directly share one copy of all data across an entire enterprise (see Figure
13). If achieved, this configuration would eliminate data redundancy and all programs would have access
to the most up-to-date version of the data. However, purchased and legacy applications are built around
their own embedded data models and semantics, and there is no practical way to unhook their respective
databases. Direct data sharing works only among programs within one application system or a set of
related systems (one domain) that are built by cooperating development groups.

Despite enterprise data modeling techniques and advances in database gateway middleware, the goal of
sharing data directly among heterogeneous operational applications will remain unattainable during our
five-year planning horizon, i.e., 2002 (0.9 probability) and probably forever (0.8 probability).

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 22

Program Program

Service

Legacy Mainframe
Application System

Program

Program

Purchased Unix
Application System

New “Service Oriented”
Application Domain

Service

Client Client

Enterprise
Data

Source: Gartner Group

Figure 13. The Myth of Enterprisewide Data Sharing

5.3 Data Integration

Periodically, we see enterprises attempting to install a data access middleware tier to create some version
of a virtual shared database across multiple applications where a physically shared database is
impossible to achieve for reasons described in the previous section. This strategy may be aimed at
operational applications, read-only business intelligence (BI) applications or both. We will first examine the
more ambitious, and less practical, of these alternatives, which is to use a data access tier for operational
(updating) applications.

The purpose of a generalized data access tier (sometimes called a “pipeline”) is to buffer application
programs from the differences in the structure of the various application data models, the syntactic and
semantic disparities of the many database data manipulation languages (DMLs) or the location of the
databases in the enterprise (see Figure 14). The application program sees only a consistent API, usually
SQL-based and generally based on the ODBC API. A data access tier theoretically would make it possible
to change the data management software (e.g., from VSAM to Oracle), the server platform (e.g., move the
database from MVS to Unix) and the application database design (e.g., normalize, denormalize, add
columns or tables), all without changing the application program in any way. Application programs would
read and write data only through an indirect, logical view.

A data access tier could be enabled by a database gateway, a user-written middleware layer or some
combination of these. A user-written layer, built atop a general-purpose message-queuing product, for
example, is the most flexible alternative, because it can be customized to read and update any data
source (e.g., MVS VSAM or an obscure DBMS). Although it will have to include its own data catalogs,
directories and possibly transaction management logic, a user-written pipeline could leverage purchased

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 23

gateways and replication capabilities for some of its functions to minimize the custom work required. A
data access tier can be configured on two hardware tiers (e.g., a PC client and MVS server or an MVS
client and Unix server, etc.), but it could also be deployed across three hardware tiers.

Program

Application System C

ProgramProgram

Application System B

ProgramProgram

Application System A

Program

Data Access Pipeline

Source: Gartner Group

Figure 14. Universal Data Access Pipeline

We have not seen a successful deployment of a general data access tier for updating applications,
however. User experience with database gateways suggests that real-time data integration is practical
only for read-only applications and even then it is usually less practical than alternative solutions such as
data warehouses. A practical solution for universal anything-to-anything data access with transparency
and good performance does not seem to exist. It is difficult to map SQL into VSAM, IMS or other DMLs
completely and efficiently. Moreover, it appears to be impossible with today’s software and hardware
technology to reformat every database request from each of the physical database schemas into the
custom data structures that would be desired for reading and writing into application programs that were
designed in isolation from the databases. The translation process would have to take place for every
database read or write and would be one or two decimal orders of magnitude (10 to 100 times) less
efficient than the normal execution of a DBMS DML request. Furthermore, a real-time data access
pipeline could create huge holes in the integrity of application databases if it bypasses all of the integrity
constraints, edits and business rules that are applied to normal database updates. The real-time data
integration approach is even less likely to work if the server databases are nonrelational (e.g., VSAM,
ISAM, IMS or Integrated Database Management System) or if the applications will run moderate or heavy
production workloads. Historically, the primary reason that the database gateway vendors such as IBI and
Sybase/MDI added RPC capabilities to their respective database gateways was because of the functional
and performance limitations of this approach. A user-coded data access tier will encounter the same
technical challenge.

The notion of real-time data integration is somewhat more successful when applied to read-only BI
applications (see Figure 15), although there are some significant limitations that apply even for this mode
of usage. The goal of universal data access has largely eluded large organizations, but it is not for lack of
trying. On one level, it seems desirable to be able to present a comprehensive view of all the data in an
enterprise to an end user who is armed only with a desktop BI tool. However, the intractable problems of
complicated data models and undocumented data semantics continue to thwart this effort. End users

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 24

cannot be expected to understand where the data is, what it means and how it is stored across a broad
range of independently designed production databases. The database gateway products, such as
Information Builders’ EDA/SQL, Sybase/MDI’s OmniServer and Oracle’s Transparent Gateway, do a
creditable job of translating among SQL dialects, and some even provide access to nonrelational
databases. However, database updates are slow where they are even supported, and the performance
and security implications of allowing ad hoc access into production databases are significant. SQL access
through database gateways will remain a niche solution for read-only decision support using preplanned
queries into a subset of databases.

Program Program

Billing System

Database
gateway

hub

Business
Intelligence
Queries

MVS
VSAM

Program Program

General Ledger

Unix
Sybase

Program Program

Customer Information
 System

MVS
DB2

Source: Gartner Group

Figure 15. Data Integration for Decision Support

In summary, the siren song of universal data access has been muted as users have gradually recognized
the limitations of direct access to heterogeneous data. Data integration does not work well for OLTP. It
works a little for some forms of decision support, but even then it can be dangerous, costly and
misleading, and we consider it to be generally inferior to alternative offline architectures such as data
warehouses.

5.4 Data Warehouses

Data warehousing, simply stated, is a means for creating and managing a data architecture for user
access and analysis. This involves the design and creation of physical and logical database structures
intended specifically for this purpose, and the extraction, transformation, consolidation and quality
improvement of data to form an information resource rather than raw data. This is the critical foundation
for both BI and data mining.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 25

BI, a term coined by Gartner Group in the late 1980s, describes an enterprise’s ability to access and
explore information (contained in a warehouse), analyze that information and develop insights and
understanding, all of which lead to improved and informed decision making. BI products include decision
support systems (DSSs), executive information systems (EISs), and query and report-writing tools.

Data mining, unlike BI tools, is far less user-directed and instead relies upon specialized algorithms (e.g.,
fuzzy logic, neural networks, genetic algorithms and induction) that correlate information (possibly from a
data warehouse) and assist in discerning important (and perhaps obscured) trends, unguided by user bias
and assumptions. Data mining also refers to a process rather than a technology, with the goal of that
process to explore large amounts of data to discover new trends, relationships and categories in that data.
Data mining is also referred to as knowledge discovery.

A data warehouse is an example of interapplication or “extra-application” data sharing. Data is extracted
from multiple sources, pruned, “cleansed,” reconciled and transformed into a more usable format and then
loaded into the data warehouse for subsequent access by multiple interested consumers (see Figure 16).

Data
ware-
house

Program Program

Customer Information
SystemMVS

DB2

Program Program

Billing System

MVS
VSAM

Program Program

General Ledger
System

Unix
Sybase

Data
mart

Business
Intelligence

Queries

Source: Gartner Group

Figure 16. Data Warehouse Architecture

A data warehouse architecture should include extracts of operational data that are “frozen views of
information” trapped in time capsules, which in some cases have some level of summation and history
associated with the view of information. The extracts are created either by handcrafted programs that take
time and expense to maintain or through tools that help automate the generation of the extract
applications or processes. These applications should provide the capabilities to perform the complex task
of integrating data from multiple sources to create a consolidated view of the data, as well as the

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 26

transformation of data for use by BI applications. In addition, a data warehouse project can create the
opportunity to perform procedures to ensure the quality of the data through data “unduplication” (e.g.,
householding) and data element validation. Once the extracts are created, their use should be audited
automatically by system software that senses the use of files. This tells data administration who is using
the data so that business changes that result in data changes can be reflected in extract programs. If not,
enterprises may, at best, have their programs malfunction or, at worst, produce erroneous results for
management.

In most circumstances, a data warehouse is more effective than a database gateway for decision support
and other BI applications because its data model is designed for ad hoc query access. Operational
databases are usually optimized for production purposes, including OLTP updates. And, of course, a data
warehouse is a persistent data store, whereas a database gateway is an online process.

Data warehouses satisfy most decision support requirements better than database gateways into
operational databases because the data models, data semantics and management practices of data
warehouses are designed specifically for decision support.

DSSs and data warehouses are not the same. Although decision support is a major benefit that is
provided by a data warehouse, the DSS activity can be independent of a data warehouse and exists
outside a data warehouse architecture. Also, a stand-alone (i.e., stovepipe) DSS does not include the
architecture, administration, infrastructure and auditability that a data warehouse does. Furthermore,
because of the erroneous equivalency awarded to DSSs and data warehousing, and the similar
terminology used by these disciplines, many enterprises believe they are planning to implement a data
warehouse when they are simply implementing a DSS database specific to a particular business
requirement. Out of approximately 2,000 companies that say they are planning to implement a data
warehouse during the next two years, fewer than 350 of those actually are. Gartner Group identifies the
retail, banking, insurance and telecommunications industries to be the leading industry segments that are
putting together data warehousing architectures, with evidence that the pharmaceutical and healthcare
industries are beginning to adopt this technology.

Unlike a specific DSS, a genuine data warehouse implementation is usually done in stages with an
enterprise strategy in mind. The characteristics of the first stage include one or two BI applications, ad hoc
query users and one or two subject areas of data. As enterprises transition to the latter stages, the main
difference in characteristics are found in an increased number of BI applications and subject areas
contained in the database. Adding subject areas enables an enterprise to perform cross-functional data
analysis, which provides a more accurate look at business profiles. Here, the role of an enterprise strategy
cannot be understated. After completing the first stage, enterprises without an enterprise strategy will
experience difficulty in moving to subsequent stages.

In summary, data warehouses reflect the growing need to provide a coordinated view of data across the
enterprise. They are proving effective despite their cost and complexity. Although sometimes mishandled,
they will continue to grow in popularity. Note, however, that data warehouses are read-only and do not
address the needs of transaction processing application systems.

5.5 ODSs

ODSs are a new articulation of the perennial concept of shared production data. Different from a data
warehouse, an ODS supports day-to-day operational decision support (e.g., customer service) and

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 27

contains current value data propagated from operational applications. This causes the data maintained in
the ODS to be subjected to frequent changes as the corresponding data in the operational system
changes.

Like data warehouses, ODSs are generally populated by regular, periodic extracts from production
databases (see Figure 17). Some are updated in near real time by replication or message-queuing
mechanisms, others by a nightly batch run. ODSs are generally read-only. However, for new applications,
the ODS may serve as the shared (“updatable”) transaction processing database for new applications.

ODS

Program Program

Mainframe Customer
Information System

Program Program

Legacy Mainframe
Billing System

Program Program

Purchased Unix
Application System

Program Program New Order Entry
Application System

Source: Gartner Group

Figure 17. Operational Data Store

An ODS is an alternative to having operational query applications access data directly from the database
that supports transaction processing. In some cases, this is helpful in eliminating the potential
performance problems that transactional applications may otherwise experience when queries contend for
the same data resources. However, many applications have no problems supporting queries into the
production databases, either via direct lookups or, where there are multiple application systems involved,
by going through a message broker (see Section 5.7).

ODSs and shared databases work best when all the applications that are involved are designed by one
group or by cooperating development groups. However, ODSs are forever redundant with the databases
in legacy and purchased applications, which sharply limits their benefits. Because of the complexity in
obtaining the current data of record from operational systems in a timely manner and the effort required to
maintain redundant copies of data, organizations will be reluctant to employ an ODS until it can coexist
and be managed in concert with the data warehouse. With the data fragmentation commonly found in
large enterprises, it is difficult to combine data from multiple systems. Most ODS systems will be targeted

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 28

to a particular application requirement, giving the database administrator and data administrator the
opportunity to design the ODS to perform optimally for that specific application (e.g., by minimizing the
number of indexes). However, this means that the ODS is less suitable for new, unforeseen application
needs such as ad hoc queries.

Until 2000, except for clearly focused applications, ODS deployment will be difficult and suitable only for
the skillful and strategically minded who can justify the costs (0.8 probability). Through 2001, even in their
most successful installations, ODSs and shared databases will never hold more than 25 percent of the
data of record for any large enterprise (0.8 probability).

In one example of which we are aware, a financial enterprise has successfully created a combined ODS
and data warehouse using a single database. The ODS-oriented data is maintained in a near-current
state by using several types of data input mechanisms, including:

• Message broker technology to input transaction data from local online trading application systems

• File transfer of flat-file spreadsheet extracts from remote locations

This data is maintained in a specially designed, ODS-oriented schema to support the performance
requirements of a real-time “trader’s dashboard” application. On a nightly basis, data from these ODS-
related tables are selected and transformed into another set of normalized tables (within the same
database) that support the data warehouse requirements. We believe that this integration of ODS and
data warehouse represents a likely direction of evolution for many variations of the ODS.

5.6 Batch Data Reconciliation

The most common technique for “integrating” disparate application systems is still batch file transfer
(uploads and downloads of databases or database extracts). File transfer is a simple way to reconcile
data that is held by different application systems. In a data synchronization approach, data is extracted
from the source application database(s) with an add-on program or some data extraction utility. These
updates are temporarily stored in a transfer file, queue or database (see Figure 18). Alternatively, an
application program in the source application (system B) could be modified to write directly into the
transfer file. At periodic intervals, usually nightly or weekly, a user-written update program, or possibly an
incremental load utility, reads the updates from the transfer file and inserts them into one or more target
operational databases.

Standard DBMS replication facilities are usually not flexible enough by themselves to translate and apply
the database changes between disparate application domains. Replication utilities operate mostly within
the domain of a homogeneously designed application system, and are primarily used to maintain a hot
backup of data for availability purposes or to download data from a central site to branch or regional
offices. Between independently designed systems, the data models and semantics in the source and
recipient databases are incompatible. Therefore, user-written programs are generally involved, especially
on the update side, in most enterprises employing this architecture.

This method works, and every application designer and programmer understands how to do it. However, it
burdens the enterprise with a perpetual need to reconcile data between multiple stove-piped application
domains because some data are inevitably redundant. Most enterprises store dozens of copies of their
customers’ names and addresses, and these copies often disagree with each other. This solution is
inherently complex and subject to the following drawbacks:

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 29

Program

Program

Program

Application System C

Program

Program

Program

Extract
Program

Down-
load
File

Load
Program

Trans-
action

file

Extract
Program

Down-
load
File

Load
Program

Load
Program

Down-
load
File

Extract
Program

Trans-
action

file

Application System B

Application System A

Database
replicator

Source: Gartner Group

Figure 18. Batch Data Reconciliation

• Redundant copies of data are difficult to manage and potentially expensive if the databases are
large.

• The data is not fully up-to-date, introducing a high probability of inconsistencies.

• The application design is relatively inflexible in time, because changes in one database require
changes in other databases and other applications.

Thirty-five percent to 40 percent of a typical IS maintenance budget is spent on the extract and update
programs that support this style of integration. However, there are ways to improve on this situation by
applying planning and forethought to the data transfer process. A growing number of enterprises are
moving to organize their batch data transfer operations around shareable transfer files or transfer
databases (see Figure 19).

This is essentially a type of multisystem batch updates. It funnels all updates of each type through one or
more shared transfer files that are available to all sending or receiving applications that need to deal with
that class of data. The transfer may take place once a day or every few minutes, depending on the
application requirements and the choice of middleware.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 30

Program

Program

Program

Application System C

Program

Program

Program

Trigger

Load
Program

Transfer
Files

Application System B

Application System A

Database
of record

Transaction
file

Source: Gartner Group

Figure 19. Organized Transaction Reconciliation

Organized transaction reconciliation is superior to other forms of batch data transfer in two ways:

• It can execute one-to-many transfers (one source to one or more recipients) or even many-to-many
transfers. The source application system does not have to resend the data separately to each
recipient system, so this technique is more efficient than traditional interapplication batch transfer
“spaghetti” designs.

• It is more reliable and flexible than designs that enable file transfer programs to directly update the
database of record in the receiving application systems. Updates are always processed through
application programs that are native to the receiving application systems, so there are no add-on
programs or utilities that duplicate application logic in the receiving application systems. The update
program in the receiving application system may directly read from a shared transfer file or a load
program may extract data from the transfer file, transform the data and create a transaction file in
the receiving application system. By contrast, in direct batch data reconciliation schemes (see Figure
18) where the database of record is directly updated, someone must remember to change the add-
on programs or utilities that apply the updates when the database in receiving application C is
modified to add a new field, or when changes are made to some kinds of business rules in a
program in receiving application A. This effort is redundant and prone to error. Organized transaction
reconciliation is inherently simpler to maintain, because most database changes and business-rule
changes will require no additional maintenance effort beyond the work required within the native
application system.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 31

Organized transaction reconciliation is a batch version of message brokering (see Section 5.7). Both
approaches can be reasonably reliable (i.e., not lose data) because they can rely on the backup and
transaction integrity mechanisms of a DBMS or message-queuing system (respectively). Moreover, both
approaches can leverage off-the-shelf transformation products that will reformat update records to match
the receiving application without having to do all of this in a custom application program. However, batch
transaction transfer models are still batch-oriented and still transfer information only in one direction. They
are inferior to full-blown message brokers for addressing a number of requirements, such as:

• Up-to-the-minute consistency of data across multiple different applications.

• Multistep processes where data is processed and then forwarded to other applications in a complex
workflow where flow control decisions are based on the value of individual data fields in a record.

• On-demand, request/reply communication models where the receiving application system asks for
the data at a time of its own choosing (batch transfer is only a one-way process).

Therefore, organized batch transaction reconciliation can be used to complement real-time record-at-a-
time message brokers, but is not sufficient as a replacement for message brokers.

5.7 Message Brokers

A message broker is a logical middleware-based hub that copies and resends messages to one or more
destinations (see Figure 20). It is an intelligent third party (hence “broker”) between information sources
and information consumers that makes communication an independent, sharable function.

Program Program

Service

Legacy Mainframe
Application System

Program Program

Purchased Unix
Application System

New “Service Oriented”
Application Domain

Message
broker

Service

ClientClient

Source: Gartner Group

Figure 20. Message Broker Architecture

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 32

Unlike the previous forms of integration across multiple applications, message brokers are based on
function integration, i.e., they use program-to-program communication rather than direct data access.
Message brokers add value to the communication process in the following ways:

• By transforming messages from the incoming message format to different output formats;

• By temporarily storing messages in a message warehouse to be retransmitted later; and

• By organizing and executing complex, multistep business procedures through flow-control
(workflow) services.

Message brokers can be easily combined with service-oriented application systems because such
systems already have clean interface contracts into the client and service application programs. Message
brokers can also be fitted to work with standard (nonservice-oriented) systems by wrapping the
application programs with some type of interface layer. However, this often involves modifying the
application programs or using a screen scraper if there are no native interfaces available. Message broker
architectures often leverage development tools, EDI interfaces, screen scrapers and other mechanisms
that make it easier to build connections into legacy or purchased applications.

A message broker treats the entire application system domain as a black box. Users and developers from
other application domains can interact with the code and data inside the black box only by sending a
message through the message broker, using a documented formal message interface.

The ability to reuse messages, and the processing logic that sends and receives messages to and from
each application, is a major part of the financial justification of message brokers. Message brokers have
the potential to reduce software development and maintenance costs for situations that require connecting
multiple applications. The other main benefit of a message broker its ability to encapsulate and reuse
legacy and purchased applications. Through a message broker, organizations can impose a new workflow
process, thus enabling business process re-engineering without discarding application programs or
changing their databases.

Message brokers assume that the interfaces of the participating applications are inconsistent and
therefore provide specific, tailorable integration services. However, message brokers are overkill for use
within one application system where everything is new and programs and databases are inherently
compatible. A service-oriented architecture and shared database are more appropriate for systems where
there is commonality of technology and design decisions.

A message broker performs some or all of the following functions (see Figure 21):

• Message distribution. Copies and resends messages to multiple destinations.

• Transformation. Transforms messages from the incoming message format to different output
formats.

• Message warehouse. Temporarily stores messages to be retransmitted at a later time based on
logical selection criteria.

• Flow control (workflow). Organizes complex, multistep business procedures.

• Message dictionary. Holds metadata description of message formats for development purposes.

• Administration and monitoring. Manages the operation of the broker configuration.

• Adapters. Provides tools for connecting to or encapsulating participating applications.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 33

Message
warehouse

Message
Distribution
Mechanism

ApplicationApplication

Application

Application Application

Application

Message
Dictionary

Flow
Controller

Mgmt.
Facility

Message
Transformer

Source: Gartner Group

Figure 21. Message Broker Functions

Message brokers have the potential to improve significantly the way heterogeneous applications are
integrated. However, off-the-shelf message broker software is still fairly immature. For high-volume, high-
integrity workloads, user enterprises often must write some of their own middleware code to augment ISV
products that provide parts of the solution. A number of leading-edge enterprises have achieved
significant benefits from message brokers. However, they are not a mainstream phenomenon yet, except
in the banking and healthcare industries. Organizations with a high need to integrate heterogeneous
systems and a willingness to tolerate immature technology should investigate this approach to message
handling. As the relevant middleware tools mature and mainstream enterprises become familiar with this
style of architecture, we expect message brokers to become more pervasive. By 2001, more than half of
all large enterprises will have some form of message broker in production (0.7 probability).

6.0 Implementing Modern Architectures

6.1 Applying the Black Box Metaphor at Different Levels

Now that we have reviewed the major modern architectures, it may be helpful to put them into perspective
by examining how each of the architectures leverages the black box metaphor that was described in
Section 2.2.

To repeat our earlier point, the major benefits of encapsulation are to protect data and code from careless
or malicious misuse (i.e., to increase system integrity) and to shield the external developers from the
complexity and dynamism of the contents of a module (thereby shortening the time it takes to deliver a
working application and lowering the cost of application development and maintenance). Our use of the

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 34

term encapsulation implies that external users can interact with the logical black box only through
interface contracts that specify the input and output parameters of the messages.

The three major message-based techniques described in this Strategic Analysis Report (component
software, service-oriented architectures and message brokers) exploit the black box metaphor in the
following three different ways:

• A component is a program or subroutine that acts as if it is in a fine-grained software black box. A
component can be as little as a few statements, although some components are many thousands of
lines of code.

• Services use the black box metaphor on a larger and more abstract, medium-grained level. Contrary
to the current conventional wisdom, one service usually does not map directly to one component.
Some services can indeed be implemented as one entry point in one component, but most services
would fail miserably if they were implemented in this fashion. This is an important point. For
example, a service such as “enter an order,” must be resolved into a series of method calls into
several different components (see Figure 22). The incoming “enter order” message may first be sent
to a component that validates the customer name and credit history and then sends another
message to a second component that validates the order line items and availability. Next, a third
component may create a shipping transaction, a fourth component may update inventory databases
and a fifth may update the billing system. Service-oriented architectures use the black-box metaphor
as a design-level abstraction. Unlike components, services do not exist at runtime. There is no
directory or repository of services except, possibly, at software development time for use by
programmers. At runtime, only the executable code of the components or programs that implement
the service actually exist.

Service
Monolithic
Program

Monolithic
Client Program

Com.

Front-End
Clients

NT, OS/390 or
Unix Server

Service
Black Box

Component
Black Box

Service

Com.

Com.

Com.
Com.

Com.Com.

Source: Gartner Group

Figure 22. Components and Services as Black Boxes

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 35

• A message broker can encapsulate an entire application system, including hundreds of programs
and databases, in a black box. The message broker is the most macrocosmic implementation of
encapsulation (see Figure 23).

Message
broker

Message Broker Black Box

Service

Other
Applic.Sys.

Other
Applic.Sys.

Program
Client

Application System Domain

Source: Gartner Group

Figure 23. Message Broker Encapsulation

Note that encapsulation is in the mind of the developer of the external, requesting (client) application
module that sends requests into the black box or receives information out of a black box. Each of the
three design styles hides the code and data from a different audience (type of developer). In the case of a
message broker, the code and data are hidden from anyone outside the team that develops the
encapsulated application system (see Figure 24). In the case of a service-oriented architecture, the
service’s code and data are hidden from client program developers working within the same development
team. In the case of components, no one except the author of the component itself needs to know the
contents of the component.

The benefits of components, service-oriented architectures and message brokers do not require that they
have exclusive ownership of their respective data sources for all time. All three approaches work even if
the data “inside” the black box is accessed by other components, services or application systems that are
outside the black box (as in Figure 21 and Figure 22). However, there is clearly an advantage to having
few or no other external modules that access the same data. Having fewer modules will increase code
reuse, security and data integrity and make it easier to locate the source of any bugs. Ten developers
writing 10 components/services or application systems that directly access certain data will have more
problems than 10 developers that funnel through one, two or three components, services or systems to
read and write the same data.

Note that in any of these approaches, there may be multiple interfaces (message types) in and out of a
single black box. Moreover, all three can be implemented with an ORB style of interface, although it is not
necessary to use an ORB-like interface for any of them. Again, we use the term ORB in a general sense,
one that is applicable to CORBA-style products, Microsoft’s DCOM and other middleware services that
have roughly equivalent features.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 36

Programmers of
client applications

in this domain

Programmers
outside this one

component

Message
broker

architecture

Service-
oriented

architecture
Component

software

Developers from
other domains

Rogue hackers

X

X

X

X X

X

Source: Gartner Group

Figure 24. From Whom Data and Code Is Hidden

Examples of message brokers that use an ORB-style interface include SAP R/3’s Business Object Broker,
IBM’s Business Object Server (BOS) and the Republic National Bank of New York’s Pipeline project (the
latter two use the CORBA IDL).

Examples of ORB-style service-oriented architectures include many current CORBA applications. We also
expect that most applications implemented with Microsoft’s new Transaction Server will be configured as
services that consist of one or many DCOM components.

It is possible and potentially useful to use all three forms of encapsulation simultaneously. The whole
system may be encapsulated through a message broker; within the system there may be encapsulated
services; these encapsulated services may be made up of encapsulated components (like a Matroshka
doll).

6.2 Selecting the Appropriate Topology

The architectures reviewed in this Strategic Analysis Report are complementary notions — most large
enterprises can benefit from most of them, as long as each is used where it fits (see Figure 25). Some
application systems will use several of the design styles simultaneously.

Multitier and service-oriented architectures apply within an application domain that has been designed as
a coherent whole by one development team or closely cooperating development teams:

• Two- and three-tier concepts apply to the arrangement of individual parts of the application system.
Some application systems use two-tier topologies for some work and three-tier topologies for other
work, although this generally is to be discouraged because it can restrict the flexibility of the three-
tier applications.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 37

• Service-oriented architectures apply to large systems with many related programs and (usually)
multiple databases. Service-oriented architectures are used in durable application systems that will
grow and be maintained for a period of years. They are usually not relevant for casual, ad hoc small
applications. Many modern, component-based applications will be both multitier and service-
oriented.

Multiple,
heterogeneous

applications

Message
broker

Multitier
C/S

Two-tier C/S
Data

integration

Data
warehouse

Demanding
operational

applications

Read-only
decision
support

Single
application

Lightweight
operational

applications

Service-oriented
architecture

Operational
data store

“Architecture” “City Planning”

Source: Gartner Group

Figure 25. Roles Played by the Major Architectures

Organized batch transaction synchronization, message brokers, database gateways and data
warehouses are relevant to macrocosmic planning issues that cross the boundaries of heterogeneous
application systems:

• Batch data transfer will remain a common and useful basic mechanism for transmitting data between
heterogeneous application systems, both within and between enterprises. However, planned,
consolidated, organized approaches to batch transaction transfer (i.e., those that send all updates of
the same type of information through a common logical hub) are more efficient, flexible and
manageable than the customary, unplanned morass of individual file transfers that dominate most
enterprises today.

• ODSs generally contain information pulled from multiple sources but are occasionally relevant within
a single domain, as a shared database. ODSs address the needs of applications that require
predictable, individual queries into up-to-date data.

• Data warehouses address ad hoc, read-only BI requirements and can present a unified view of data
derived from many different applications systems from across the enterprise.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 38

• Message brokers are not ad hoc. They are for operational applications that may need to update as
well as read the databases that are maintained in multiple independently designed application
systems.

Message brokers, data warehouses, ODSs, multitier architectures and service-oriented architectures are
complementary notions; none of them will replace another during our planning horizon (0.9 probability).

Some enterprises are now planning to use a message broker to keep a data warehouse up-to-the-minute
by posting changes as they occur. Such a move, however, distorts the intent of a data warehouse. A
warehouse is a static store of cleansed and reconciled data. It rarely needs to be up-to-the-minute and
always needs to enforce strict quality standards concerning the data entered into it. A message broker is
more likely to be helpful for updating an ODS, where the data is more current and the need for elaborate
cleansing and reconciliation is lower. Just as a data warehouse is capable of meeting the needs of many
ad hoc queries, a message broker can often accommodate new, unforeseen information sources or
consumers without having to be restructured.

6.3 Case History: Combining Service-Oriented and Message Broker Architectures

Service-oriented architectures and message brokers work well together because they both are based on
the notion of interface “contracts.” The primary difference between them is that service-oriented
architectures assume a consistent middleware infrastructure and do not have message transformation,
flow control and adapter toolkits (for building wrappers) that make it easier to coordinate the work of
heterogeneous applications. However, it is possible to merge the two concepts within a single
architecture, just as an ODS and data warehouse were merged in a previous example.

MCI is one company that achieved dramatic benefits by applying a service-oriented C/S architecture to a
hybrid network that includes mainframes, Unix systems and PCs. It then enhanced its configuration by
adding message-broker services to the service-oriented infrastructure so that it could support new
application requirements using existing application code and data. So, MCI’s deployment is incremental in
the following two ways:

• It is adding new applications and new message types gradually

• It is expanding the functional capabilities of the infrastructure gradually

MCI operates in a highly competitive industry where new products must be brought to market quickly.
There is no time to develop new application programs every time the marketing department devises a new
way to package or price services. MCI has a large, heterogeneous computing infrastructure that includes
mainframes, PCs, Unix platforms and other systems.

MCI’s application portfolio had considerable redundancy of logic embedded in applications that had been
developed incrementally. For example, there were nine separate application programs that could establish
a new account, which made maintenance difficult and complicated such tasks as migrating some of the
customer data from VSAM and Adabas to DB2. A second problem was the connection from client PCs to
the mainframe. Most C/S applications relied on 3270 data stream screen scraping, resulting in high
network overhead and slow response times.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 39

MCI’s initial objective was to reduce the time needed to implement a new product by reusing mainframe
program logic more often and more efficiently. Its secondary objectives were to reduce the application
maintenance effort, improve response times and reduce system and network overhead.

MCI reworked its application architecture by defining certain business functions as logical services (e.g.,
“Establish new customer account”) rather than embedding them in separate “stove piped” applications. All
interactions from requesting application programs into the shared services (programs) are done using
predefined, fully documented message types. The messages flow over a common, general-purpose
middleware infrastructure called “Registry” that runs on 12 different OSs. MCI implemented Registry in
layers. The lower layer uses a choice of message-queuing mechanisms, including a custom MVS
subsystem, a custom Unix subsystem and IBM’s MQSeries. The upper layer manages message status,
recovery, exception reporting, application server triggering and other dialog management functions. It also
does data-sensitive routing because customer data is geographically partitioned across several databases
in three data centers.

Registry facts and figures

• Development started in the fall of 1993, with large-scale production beginning in 1995.

• Grew from seven product-related application system participants in January 1995 to 65 applications
by December 1995, with continuing expansion in 1996.

• Runs on AIX, HP/UX, MVS, Nextstep, OS/2, OSF/1, Sun OS, Sun Solaris, Unisys, VMS, Windows
3.1 and Windows NT OSs and a total of 28 different combinations of languages, middleware and
OSs.

• Currently supports more than 200 message types (services) and it is still expanding.

• Transfers 30 million online and batch transactions originating from hundreds of MCI locations
throughout the United States per week.

• Largest single application is its SystemOne customer service system, with 5,000 online C/S end-
users in 11 locations generating about 14 million transactions per week.

MCI achieved a dramatic reduction in the number of its application programs: 60 percent of the batch
programs and 50 percent of the online programs are expected to be decommissioned in the affected
application areas. For example, one service program, executing one message type, establishes a new
customer account on behalf of nine requesting applications. Jobs that had previously run in batch mode
were made more timely by redefining them as a series of periodic, asynchronous minibatches that call the
same services that support online requests. PC-to-host communication has been converted from screen
scraping to Registry message-passing for half of all the C/S workload so far (the remainder will migrate to
Registry later). PC-based application tasks that required scraping as many as 19 separate screens of data
have been modified to use a single pair of messages (a request and its associated reply). Furthermore,
the turnaround time of an individual mainframe transaction was improved by 0.8 seconds, reducing
network overhead, the mainframe processing load and the overall duration of an average customer center
phone call.

MCI needed middleware that would be accessible from many different OSs and languages and from
asynchronous (minibatch) and online requesters. It determined that a platform-independent message-
queuing infrastructure was the best solution for its needs. When MCI first adopted a service-oriented
architecture, it had to develop its own message-queuing middleware because the vendor products were

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 40

not strong enough. MCI has since decided to adopt IBM’s MQSeries for most of its messaging work and is
about halfway through a transition from its proprietary in-house middleware to MQSeries. This transition
has been transparent to the applications and relatively simple overall because the customized Registry
upper layer acts as a “super-API” layer of insulation whose “Standard Verb Set” has not changed. MCI
has the option to swap in other middleware without affecting applications if it so chooses.

MCI’s Registry project initially was aimed at getting the considerable benefits of a service-oriented
architecture and the advantages of messaging. It found that a service-oriented architecture and
messaging can be implemented separately, but the benefits of both are increased by combining them.
However, MCI did not stop there. It then enhanced its infrastructure by adding message broker services.
The message broker phase of the Registry is aimed at providing a layer of value-added coordination to
improve customer service and implement customer-focused business processes by reusing previously
developed application services in new ways.

Like most enterprises, MCI historically developed its applications as separate, distinct systems. Each
application system did the account administration and other functions for one “product” (an MCI product is
a particular package of telecommunication services). However, the telecommunication market is rapidly
evolving to require “customer focused” processing that involves integrating data from multiple products
that are related to a single customer. It would have cost too much and taken too long to write new
customer-focused applications from scratch. MCI uses a diverse range of OSs, DBMSs, languages and
other technologies, and its applications are written by independent development groups at five locations in
the United States.

The initial implementation of the Registry provides a common API and a message-passing bus that
connects a range of related applications, thus enabling the sharing of certain reusable program “services.”
The Registry does not yet directly provide value-added message broker services, but it provides a strong
foundation for such features. In the near term, some message broker functions are implemented in MCI’s
Integrated Services Management (ISM) system, a separate software module. ISM is a hub that is
connected to the Registry bus like any other Registry application. Its function is to provide directory
services and to call a series of other Registry applications in a specific sequence to execute compound
business functions that cross application boundaries.

ISM facts

• Written in C and runs on IBM SP/2 under AIX

• Its internal control tables are stored in an Oracle database on a separate HP/UX server

• Communicates with internal Long Distance, Internet, Wireless, Billing and other applications, which
run on CICS/MVS and other platforms

• Is being extended to external applications in other business partners

• Includes basic message transformation to send and receive messages from product-related
applications

MCI began the ISM project in January 1996 and put its first message broker application, MCI One, into
production in May 1996. MCI One is a new packaging of multiple MCI services, such as paging, voice
mail, Internet, mobile cellular and regular telephone numbers. It offers service using one telephone
number through one telephone vendor with one bill.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 41

MCI believes that its quick success was enabled by Registry, which provided a pre-existing middleware
infrastructure and set of application connections. However, Registry is still a work in progress. MCI is
exploring ways to add flow control to Registry by incorporating IBM’s AIF product to decompose complex
requests into separate processing steps. MCI is also investigating ISV transformation packages. Such
services would expand Registry into a full-blown message broker and potentially decrease the amount of
work that applications and add-on hubs, such as ISM, need to do.

The ISM project was able to show immediate value by delivering a running application quickly, even
though its ultimate functionality was not completed. The highly modular, layered approach to the Registry
makes it possible to add additional services without disrupting the current application base. MCI is
planning to integrate the Registry/ISM infrastructure with its corporate X.500 directory, external security
mechanisms and system management facilities (these functions are mostly performed outside the
Registry/ISM infrastructure today). ISM imposed very little extra work on the development groups that own
the participating applications because of the insulating effect of the Registry message “contracts.” The
interfaces (inputs and outputs) to all application programs are documented and managed by a central
Registry team of 46 people (including infrastructure developers and developers who assist the application
groups). However, application development and Registry usage is decentralized to autonomous IS
groups.

In summary, MCI is gradually assembling a message broker by extending a well-structured messaging
infrastructure. Like most successful message brokers, MCI started small and grew its broker configuration
incrementally, application by application and message by message, rather than taking a “big bang”
approach.

7.0 Summary of Recommendations

7.1 Architecture and Topology Planning Processes

We believe that central IS organizations have a valuable role to play in developing and disseminating an
understanding of topological issues throughout the enterprise. These organizations can provide
background guidance on topology trade-offs as part of their work in providing leadership in other aspects
of IT architecture, such as maintaining enterprise IT standards and product short lists.

Central IS organizations are also the only ones that are in a position to actually implement the shared
aspects of an IT infrastructure. These shared aspects of infrastructure are typically thought to be the
central data center (with its mainframes and other systems) and the enterprise network. However, we
believe that this view of “shared infrastructure” is too narrow. Central IS organizations must take a larger
role in implementing some of the cross-system integration architectures described in this Strategic
Analysis Report, specifically, data warehouses, organized transaction reconciliation configurations and
message brokers. Such topologies have an impact across multiple departments within the same
enterprise or across multiple enterprises. We believe that central IS organizations must even take charge
of the overall management of some of the larger, cross-functional service-oriented architectures,
specifically those whose scope spans multiple departments.

It is often difficult for individual divisional or departmental IS organizations to implement the macro-level
architectures, because they do not control what happens in other groups and in many cases, do not even
know much about what other IS groups are doing. Even when departmental or divisional IS groups are

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 42

aware of each others’ projects, they may be unable or unwilling to coordinate their work because of the
need to meet local targets for low cost and high (locally optimized) function.

Even central IS departments can sometimes be lead to implement suboptimal designs by the influence of
disparate local development groups. For example, a large insurance company reported that it had
developed a set of stovepiped applications. They had been created in response to clear and urgent needs
from managers in different business units, with whom the central IS department had excellent
relationships. However, IS managers were concerned about the lack of integration in these separate
systems; they believed enterprises were missing an opportunity for cross-selling and defining new
products. The central IS managers, however, were nervous about suggesting any additional work that
might harm the excellent reputation of the central IS organization.

Their response was to appeal to the corporate strategy committee. Unfortunately, this committee was
staffed with the same business-unit managers who had promoted the parochial systems in the first place.
The managers felt threatened by any challenge to their responsibilities (e.g., control over sales force and
data ownership issues). So the IS department continued to meet divisional needs through short-term
tactical solutions, but not the long-term strategic needs of the enterprise, because no one was promoting
the overall long-term interests of the IT infrastructure as a whole.

Users should expect little help on issues of macrocosmic application topology from most system vendors
and ISVs. Product vendors of platforms (hardware and OSs), DBMSs, middleware and even packaged
applications spend most of their attention on the local topology of their particular products and other
issues of local architecture. Unless they are selling a tool that specifically targets data warehousing or
message brokering, they rarely will bring up the subject of macro-level topologies. Even system
integrators are often more interested in rewriting whole application systems than they are in figuring out
how certain needs could be met by extending and leveraging legacy systems or other purchased
applications with a modest amount of new code. The net effect of vendor pressure is therefore to divert
much of the focus of the IS departments and end-user management away from macro-level topology
planning issues.

Business unit managers are deluged with requests from users who have a thirst for data and applications
and want the business units to fund an application implementation. Because of this demand, and with the
encouragement of vendors, business unit managers often approve the purchase of hardware and
software products without considering either local or macro-level design issues. This is commonly done in
one of two ways: By shutting the IS department out of the process or by forcing it to create new systems
that are relevant to the business unit but ignore the enterprise’s vision.

When the IS department is shut out of the process, the created systems do not share data or logic with
other applications. After the systems have been implemented, the business unit often discovers that it
lacks the staff and expertise to support and maintain them. When this happens, one of three situations
occur:

• The business unit outsources product support.

• The business unit builds its own modest IS department.

• The IS organization has to pick up the pieces and, by default, support these systems.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 43

All three scenarios cost much more and are less flexible and durable than applications that are developed
(whether within the central or dispersed IS departments) with a clear picture of how they will fit within the
macro-level enterprise IT topologies.

The second method is to force the IS department to write or purchase stovepiped systems that are not
easily integrated into other application systems. When this happens, it is difficult to build a data
warehouse or a service-oriented architecture. However, with a modest amount of planning and work, a
message broker can still be used to tie the new, stovepiped application into other application systems as
long as central IS department is capable of implementing a message broker. However, it is easier and
more effective to implement a message broker when it is part of the initial plan for deploying a new
application system than it is to retrofit it into an application after it has gone into production.

No standards organization or single vendor is sufficiently smart or well-financed to promulgate a
comprehensive set of recommendations or de facto standards that can address all the architectural needs
of modern enterprises. IBM tried to do this (with SAA) and failed, and it is trying again with its Open
Blueprint (with about the same result). Microsoft would like to dominate enterprise computing and is
putting all its bets on component software. Its ActiveX will be important as middleware, but, like SAA and
the Open Blueprint, Microsoft addresses only the software technology aspects of architecture and, in
particular, the relationship of modules within a single application domain. Packaged application suppliers,
notably SAP, offer their own proprietary infrastructures but will be unable to impose order across
applications that they do not write themselves. Enterprises will have to deal with multiple infrastructure
standards through 2001 (0.8 probability).

None of these vendor frameworks directly addresses the major issues regarding application topology,
particularly regarding the macrocosmic “city planning” issues that span multiple heterogeneous
applications. No compelling architectural leadership will emerge from any individual vendor or consortium
through 2002, forcing users to plan, assemble and manage their own architectures using pieces from
many sources (0.9 probability). In a world of competing vendors and limited open systems standards, the
burden for planning, organizing and managing the computing infrastructure falls to the consumer (see
Figure 26). IS departments working with end-user departments must cooperate to find anchors and
common threads. IT has never before held so much promise nor been so complex to handle.

7.2 Guidelines

Successful modern architectures leverage the appropriate use of the following fundamental design
principles:

• Modularity

• Encapsulation

• Reuse or sharing of functions (services)

• Separation of presentation (user interface) logic from business rules, flow control and data access
logic

• Server-centric processing to minimize software distribution problems and to maximize code reuse

• Incremental adoption of any desired changes in application design style or middleware

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 44

Complexity of
Client/Server

IS Organization’s Architecture

• Patchwork of products and protocols
• Proliferation of network transports
• Partially incompatible system and
 network management tools
• Ongoing need for tailored database
 and TP monitor gateways
• Limited application portability
• Polluted data architectures, redundancy
• Unclear responsibility for vendor
 support, finger pointing
• Significant systems integration burden

Fragmented
Vendor Power

Influence
of Legacy

Investments

Ongoing Fast
Pace of

Innovation

Growing User
Technical

Sophistication

International
Standards
Movement

Budget
Pressures

Source: Gartner Group

Figure 26. Forces Affecting User Architectures

The following general guidelines help apply the concepts developed in this Strategic Analysis Report to
particular application deployment choices:

• Within a single application and for individual code paths in complex applications, the default choice
now is to use a three-tier or multitier architecture for all but a few types of applications. Two-tier
topologies should be used only for small, simple applications that use one DBMS, have a moderate-
volume workload (generally fewer than 10,000 transactions per day), have little or no interapplication
communication, no access to a mainframe application or interenterprise communication, have no
need for a browser user interface and always use a desktop PC front end.

• For midsize or large new application systems that consist of many programs and involve multiple
channels of access and overlapping logic and data, a service-oriented architecture is ideal. This is
probably the single most valuable thing that an enterprise can do to build a durable and extensible
application portfolio.

• A service-oriented architecture can be retroactively applied to applications, but this requires
modifying applications to support the appropriate middleware interfaces and message types. Legacy
and purchased applications are more readily integrated by means of a message broker because the
message broker supports message transformation and flow control and has adapters that can
conform to the peculiarities of foreign application systems.

• Batch file transfer is still a fundamental part of the processing in most large enterprises. It remains
appropriate for data distribution within the bounds of a single application system when data does not
have to be up-to-the-minute. There are times when it also makes sense between heterogeneous
application systems, but it is overused in this role because of its familiarity. In some such cases, a
message broker would be more appropriate because the message broker can buffer the application
programs and databases from changes that may occur in other application systems.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 45

• Real-time data integration using a data access tier or database gateway is never practical for
operational (updating) applications and only occasionally appropriate for decision support. Except for
a few, simple, undemanding, predictable low-volume situations, a data warehouse is a superior
design for BI applications.

• An ODS is rarely practical except for predictable lookups of current data. ODSs will be more useful
when they are integrated with data warehouses.

• A message broker is a general solution for integrating heterogeneous operational (read and write)
production applications, although the relevant tools, techniques and middleware are immature.
Leading-edge enterprises and aggressive mainstream users with the appropriate application profile
can derive value from them now.

• Enterprises with successful message brokers will treat the management of interapplication interfaces
as an independent discipline rather than leave this function to the individual application development
groups.

We are aware of numerous enterprises that are doing projects that implement a blend of one or several of
these concepts. Regardless of which new design approach(s) are being adopted, the project is much
more likely to be successful if it is implemented in steps rather than with a big bang approach. All of these
architectures can be approached incrementally, showing practical results from a partial implementation.
The risk associated with any of them depends on exactly what choices are made in implementing the
vision. In other words, none of the general topologies is inherently risky, but projects will fail if they use the
wrong tools or poor application design.

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 46

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 47

Appendix: Acronym Key

3GL Third-generation language

4GL Fourth-generation language

ANSI American National Standards Institute

API Application programming interface

C/S Client/server

CICS Customer Information Control System

CORBA Common Object Request Broker Architecture

CPI-C Common Programming Interface for Communications

DBMS Database management system

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

EDA Enterprise Data Access

EDI Electronic data interchange

GUI Graphical user interface

I/O Input/output

IDL Interface definition language

IS Information systems

ISV Independent software vendor

IT Information technology

NCA Network Computing Architecture

ODBC Open Database Connectivity

OLTP Online transaction processing

OO Object-oriented

ORB Object request broker

OS Operating system

OSF Open Software Foundation

OTM Object transaction middleware

PC Personal computer

RDBMS Relational DBMS

Architecture and Planning for Modern Application Styles

GartnerGroup RAS Services
Copyright © 1997

R-ARCH-104
28 April 1997 48

RPC Remote procedure call

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

TP Transaction processing

VSAM Virtual Storage Access Method

