
76 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 75

Adding the word architect to a software practitioner’s title seems sim-
ple enough, but beneath the surface fundamentally different thinking,
toolsets, and disciplines are required to succeed. In teaching software
architecture and working as a software architect, database architect, and
chief architect, I have often found that an unfortunate lack of knowledge
surrounds the architect’s role. Even experienced software practitioners are
often unable to define what exactly the architect does or adds to the soft-
ware development process.

THE SOFTWARE
ARCHITECT

By Matthew R. McBride

Leadership is the defining characteristic in
an unforgiving technology arena.

The context for my discussion here is the
construction of enterprise-level business appli-
cations. I chose it for its inherent difficulty and
complexity, though the related architectural
principles may be applied to any type of soft-
ware construction. Specifically, I examine the
results of applying these principles to three sep-
arate development efforts: a product-ordering
Web site, a complex business-to-business inte-
gration project, and the design and develop-
ment of an enterprise application. Regardless
of the situation, my experience has been that
software architects are not born but trained,

sometimes in the school of hard knocks.
Although effective software architects seem to
intuitively understand and guide projects, an
intellectual framework and its associated disci-
plines and tools are behind this thinking.
Reports of IT overspending and project failure
emphasize the fact that these skills must be
developed. Software professionals in a variety
of roles can leverage them to lead software pro-
jects to exceed customer expectations.

Many seminal ideas in software architecture
can be traced back to a speech Christopher
Alexander, a distinguished building architect,

• Explicit requirements explode by a factor of 50 or
more into implicit (design) requirements as a soft-
ware solution proceeds.

Perhaps more than any other task, managing com-
plexity is an essential element of architecture the
architect must address in order to deliver the
promised system. Strategic approaches are high-level,
broad-brush techniques
used by architects to master
complexity across technical
and nontechnical audiences
alike (see Figure 2).
Included are effective com-
munication and informa-
tion gathering, detailed
planning, and the educa-
tion of all stakeholders
regarding all relevant tech-
nologies. Tactical
approaches address the
techniques the architect
employs at a lower level of
detail, typically with those
who construct or use the
system. This group includes software designers, pro-
ject teams, and end users. Requirements planning,
separation of the system into logical layers, and care-
ful interface definition are
only a few of the tactical
tools at the architect’s dis-
posal.

Logical layering and
careful interface definition
improve the overall design
effort in several ways. First,
there is a clear separation of
design concerns that must
be enforced. Additionally,
smaller design subteams
tend to form organically
within boundaries provided
by the logical layers, greatly
reducing the complexity
each design team must
address. A GUI designer
does not have to address the
insertion of data into a database, only how it is repre-
sented to the user.

Effective object-oriented code is modular; that is, it
is packaged efficiently, and each component is well-
defined and constructed. The architect must use sim-
ilar techniques at the system level. The definition and
packaging of components, subsystems, and a system’s

logical layers are critical to the system’s performance.
The system-level solution environment is not readily
mastered, and without strong supervision from the
software architect, projects and attempted solutions
tend to fall apart due to the weight of unmitigated
complexity.

MANAGE FUNCTIONAL REQUIREMENTS

At the start of a project,
the software architect
monitors the require-
ments-elicitation effort
to derive the high-level
design solution. While
architects are not neces-
sarily planning or
domain experts, they
must be able to act on
and process this informa-
tion effectively (see Fig-
ure 3). The architect
establishes several impor-

tant baselines during initial requirements gathering.
First, and possibly most important, is an initial
understanding of the problem domain. High-level
requirements and unstated expectations for the
design must also be identified and validated.

During the initial requirements process, the archi-
tect must be able to per-
form some out-of-the-box
thinking. This is impor-
tant because business and
domain experts under-
stand their business and
its problems but are inher-
ently constrained by
them. As the solution
expert, the architect must
transcend these limita-
tions and imagine what is
possible, given time and
budget constraints. New
approaches to old prob-
lems may have to be con-

sidered and requirements altered, added, or deleted to
deliver an optimal solution.

System requirements are sometimes relatively static
and unchanging. Most of the time, they represent
only a first look at the problem domain, which may
still be evolving. Customer expectations (both stated
and unstated) and technology are also constantly
changing. Perhaps the most successful way to manage
this change is to deliver the software solution in itera-
tions. Each one takes four to six weeks and results in

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 7776 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

delivered at the OOPSLA conference in 1996 [1, 2].
The practical application of this growing body of
knowledge will continue to play an important role in
the maturing of the software development profession
and its ability to deliver solutions.

In my own early days as a chief architect, I encoun-
tered a business owner who demanded quarterly
releases of software without regard to the system’s
scope or complexity. When I asked him why, he said,
“Because that is the only way I
will get anything from your
guys.” As we applied the princi-
ples of architecture, he eventually
became one of my software
development group’s strongest
allies. Another business owner
who actually screamed at me
regarding previously unfulfilled
promises for her software prod-
uct—the product-ordering Web
site—became one of the group’s
most vocal supporters. Navigat-
ing these situations involves more
than just coding skill. Funda-
mentally different ways of
thinking about design and inter-
acting with systems and stake-
holders represent the essence of
the software architect.

As a starting point for this dis-
cussion, the Unified Modeling
Language and other industry
standards agree: architecture is a system’s organiza-
tional structure [10, 11]. Some organizations allow
that structure to evolve unintentionally or through
neglect; others focus on designing or deriving it by
following a planned process. However, allowing sys-
tems to evolve haphazardly often results in failure.
Martin Fowler, a noted software development author,
wrote: “In its common usage, evolutionary design is a
disaster. The design ends up being the aggregation of
a bunch of ad-hoc tactical decisions, each of which
makes the code harder to alter. As design deteriorates,
so does your ability to make changes effectively; over
time the design gets worse and worse” [6]. Unfortu-
nately, many businesses fail to consider the ramifica-
tions of poorly designed systems and suffer significant
losses in terms of competitive advantage, time to mar-
ket, and total cost of ownership.

Software architects are sometimes viewed by cus-
tomers and developers alike as technical experts in a
specific set of development technologies. Given the
types of decisions they must make and influence, this
perception is not surprising. However, identifying a

single trait of software architects does not begin to
capture the depth and breadth of their work. It is
essential to proactively focus on system- and subsys-
tem-level issues to establish a solid foundation for
detailed design, particularly for large-scale efforts (see
Figure 1). Software architects are technically compe-
tent system-level thinkers, guiding planned and eco-
nomically efficient design processes to bring a system
into existence. To do this, they must lead multiple

stakeholders in a technologically challenging and
sometimes politically charged environment.

The guiding principles behind the architectural
decisions explored here represent an intellectual
framework for any architect and a basis for success;
they also represent a concrete agenda for training
future architects.

MITIGATE UNBOUNDED COMPLEXITY

Almost 2,500 years ago, the Chinese philosopher
and military general Sun Tzu, wrote, “If you know
the enemy and know yourself, you need not fear the
result of a hundred battles. If you know yourself and
not the enemy, for every victory gained you will also
suffer a defeat. If you know neither the enemy or
yourself, you will succumb in every battle” [4].
Unbounded complexity represents a formidable
enemy for any software architect. Architects must deal
with the inherent complexity of both the problem
and the solution domains. This complexity manifests
itself [8] in two ways:

• For every 25% increase in problem (domain)
complexity, there is a 100% increase in complex-
ity of the software solution; and

McBride fig 1 (5/07)

System level
• High-level technology analysis for solution space
• System design based on high-level requirements
• Risk identification and mitigation

Subsystem level
• Separation of system into subsystems, logical layers
• Application of enterprise level patterns

Package level
• Interface design
• Deployment planning

A
rc

hi
te

ct
In

vo
lv

em
en

t

Lo
w

(g
ui

de
an

d
m

on
ito

r)
H

ig
h

(h
an

ds
on

)

Component level
• Idioms
• Application of design patterns

P
ro

je
ct

T
im

el
in

e

C
on

st
ru

ct
io

n
In

ce
pt

io
n

El
ab

or
at

io
n

Figure 1. Architecture
is the foundation of

successful design.

McBride fig 2 (5/07)

Strategic
Strong project management and risk analysis

Effective (audience appropriate) communication
Technology and solution space education

Tactical
Effective requirements gathering
Layering and interface definition

Iterative development and build out

Project Manager

CEO

Developer

User

Business Manager

CFO

Technical Manager

Analyst

Figure 2. Multiple approaches
are needed to mitigate

complexity.

McBride fig 3 (5/07)

Software Architect
Solution Expert

Project Manager
Planning Expert

Business Manager
Domain Expert

Figure 3. Sample team
relationships required to build

an effective solution.

• Explicit requirements explode by a factor of 50 or
more into implicit (design) requirements as a soft-
ware solution proceeds.

Perhaps more than any other task, managing com-
plexity is an essential element of architecture the
architect must address in order to deliver the
promised system. Strategic approaches are high-level,
broad-brush techniques
used by architects to master
complexity across technical
and nontechnical audiences
alike (see Figure 2).
Included are effective com-
munication and informa-
tion gathering, detailed
planning, and the educa-
tion of all stakeholders
regarding all relevant tech-
nologies. Tactical
approaches address the
techniques the architect
employs at a lower level of
detail, typically with those
who construct or use the
system. This group includes software designers, pro-
ject teams, and end users. Requirements planning,
separation of the system into logical layers, and care-
ful interface definition are
only a few of the tactical
tools at the architect’s dis-
posal.

Logical layering and
careful interface definition
improve the overall design
effort in several ways. First,
there is a clear separation of
design concerns that must
be enforced. Additionally,
smaller design subteams
tend to form organically
within boundaries provided
by the logical layers, greatly
reducing the complexity
each design team must
address. A GUI designer
does not have to address the
insertion of data into a database, only how it is repre-
sented to the user.

Effective object-oriented code is modular; that is, it
is packaged efficiently, and each component is well-
defined and constructed. The architect must use sim-
ilar techniques at the system level. The definition and
packaging of components, subsystems, and a system’s

logical layers are critical to the system’s performance.
The system-level solution environment is not readily
mastered, and without strong supervision from the
software architect, projects and attempted solutions
tend to fall apart due to the weight of unmitigated
complexity.

MANAGE FUNCTIONAL REQUIREMENTS

At the start of a project,
the software architect
monitors the require-
ments-elicitation effort
to derive the high-level
design solution. While
architects are not neces-
sarily planning or
domain experts, they
must be able to act on
and process this informa-
tion effectively (see Fig-
ure 3). The architect
establishes several impor-

tant baselines during initial requirements gathering.
First, and possibly most important, is an initial
understanding of the problem domain. High-level
requirements and unstated expectations for the
design must also be identified and validated.

During the initial requirements process, the archi-
tect must be able to per-
form some out-of-the-box
thinking. This is impor-
tant because business and
domain experts under-
stand their business and
its problems but are inher-
ently constrained by
them. As the solution
expert, the architect must
transcend these limita-
tions and imagine what is
possible, given time and
budget constraints. New
approaches to old prob-
lems may have to be con-

sidered and requirements altered, added, or deleted to
deliver an optimal solution.

System requirements are sometimes relatively static
and unchanging. Most of the time, they represent
only a first look at the problem domain, which may
still be evolving. Customer expectations (both stated
and unstated) and technology are also constantly
changing. Perhaps the most successful way to manage
this change is to deliver the software solution in itera-
tions. Each one takes four to six weeks and results in

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 7776 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

delivered at the OOPSLA conference in 1996 [1, 2].
The practical application of this growing body of
knowledge will continue to play an important role in
the maturing of the software development profession
and its ability to deliver solutions.

In my own early days as a chief architect, I encoun-
tered a business owner who demanded quarterly
releases of software without regard to the system’s
scope or complexity. When I asked him why, he said,
“Because that is the only way I
will get anything from your
guys.” As we applied the princi-
ples of architecture, he eventually
became one of my software
development group’s strongest
allies. Another business owner
who actually screamed at me
regarding previously unfulfilled
promises for her software prod-
uct—the product-ordering Web
site—became one of the group’s
most vocal supporters. Navigat-
ing these situations involves more
than just coding skill. Funda-
mentally different ways of
thinking about design and inter-
acting with systems and stake-
holders represent the essence of
the software architect.

As a starting point for this dis-
cussion, the Unified Modeling
Language and other industry
standards agree: architecture is a system’s organiza-
tional structure [10, 11]. Some organizations allow
that structure to evolve unintentionally or through
neglect; others focus on designing or deriving it by
following a planned process. However, allowing sys-
tems to evolve haphazardly often results in failure.
Martin Fowler, a noted software development author,
wrote: “In its common usage, evolutionary design is a
disaster. The design ends up being the aggregation of
a bunch of ad-hoc tactical decisions, each of which
makes the code harder to alter. As design deteriorates,
so does your ability to make changes effectively; over
time the design gets worse and worse” [6]. Unfortu-
nately, many businesses fail to consider the ramifica-
tions of poorly designed systems and suffer significant
losses in terms of competitive advantage, time to mar-
ket, and total cost of ownership.

Software architects are sometimes viewed by cus-
tomers and developers alike as technical experts in a
specific set of development technologies. Given the
types of decisions they must make and influence, this
perception is not surprising. However, identifying a

single trait of software architects does not begin to
capture the depth and breadth of their work. It is
essential to proactively focus on system- and subsys-
tem-level issues to establish a solid foundation for
detailed design, particularly for large-scale efforts (see
Figure 1). Software architects are technically compe-
tent system-level thinkers, guiding planned and eco-
nomically efficient design processes to bring a system
into existence. To do this, they must lead multiple

stakeholders in a technologically challenging and
sometimes politically charged environment.

The guiding principles behind the architectural
decisions explored here represent an intellectual
framework for any architect and a basis for success;
they also represent a concrete agenda for training
future architects.

MITIGATE UNBOUNDED COMPLEXITY

Almost 2,500 years ago, the Chinese philosopher
and military general Sun Tzu, wrote, “If you know
the enemy and know yourself, you need not fear the
result of a hundred battles. If you know yourself and
not the enemy, for every victory gained you will also
suffer a defeat. If you know neither the enemy or
yourself, you will succumb in every battle” [4].
Unbounded complexity represents a formidable
enemy for any software architect. Architects must deal
with the inherent complexity of both the problem
and the solution domains. This complexity manifests
itself [8] in two ways:

• For every 25% increase in problem (domain)
complexity, there is a 100% increase in complex-
ity of the software solution; and

McBride fig 1 (5/07)

System level
• High-level technology analysis for solution space
• System design based on high-level requirements
• Risk identification and mitigation

Subsystem level
• Separation of system into subsystems, logical layers
• Application of enterprise level patterns

Package level
• Interface design
• Deployment planning

A
rc

hi
te

ct
In

vo
lv

em
en

t

Lo
w

(g
ui

de
an

d
m

on
ito

r)
H

ig
h

(h
an

ds
on

)

Component level
• Idioms
• Application of design patterns

P
ro

je
ct

T
im

el
in

e

C
on

st
ru

ct
io

n
In

ce
pt

io
n

El
ab

or
at

io
n

Figure 1. Architecture
is the foundation of

successful design.

McBride fig 2 (5/07)

Strategic
Strong project management and risk analysis

Effective (audience appropriate) communication
Technology and solution space education

Tactical
Effective requirements gathering
Layering and interface definition

Iterative development and build out

Project Manager

CEO

Developer

User

Business Manager

CFO

Technical Manager

Analyst

Figure 2. Multiple approaches
are needed to mitigate

complexity.

McBride fig 3 (5/07)

Software Architect
Solution Expert

Project Manager
Planning Expert

Business Manager
Domain Expert

Figure 3. Sample team
relationships required to build

an effective solution.

level design decisions with incomplete information
early in the design process. This is risky at best, requir-
ing a significant amount of experience and under-
standing of both the problem domain and the
technologies involved in the solution. Competent
software architects always seek the counsel of project
and domain managers, technical leads, individual
designers, and key customers. The decision-making
process involves constantly gathering and mentally
assembling relevant information.

Finally, leadership is not the same as management;
it involves a variety of skills, including active concern
for team members and the ability to coach, influence,
and inspire. I like the way former U.S. Secretary of
State Colin Powell said it: “At best (organization
charts and titles) advertise some authority—an official
status conferring the ability to give orders and induce
obedience. But titles mean little in terms of real
power, which is the ability to influence and inspire.
Have you ever noticed that people will personally
commit to certain individuals who on paper (or on
the org chart) possess little authority—but do possess
pizzazz, drive, expertise, and genuine caring for team-
mates and products? On the flip side, nonleaders in
management may be formally anointed with all the
perks and frills associated with high positions, but
they have little influence on others, apart from their
ability to extract minimal compliance to minimal
standards” [9].

PAY ATTENTION TO NONFUNCTIONAL REQUIREMENTS

Nonfunctional requirements are observable charac-
teristics of the system as a whole. While functional
requirements are primarily concerned with the stated
needs of the problem domain, nonfunctional
requirements represent capabilities that are orthogo-
nal to domain requirements. They crosscut each
layer of the design, as well as each design team. All
too often, however, they surface as a customer’s
unstated expectations.

Part of the architect’s role is to elicit these expecta-
tions during the initial requirements-gathering
process. The architect must then identify and allocate
additional nonfunctional requirements to each design
subteam—a difficult and sometimes painstaking
process requiring thoughtful judgment. For example,
consider a three-layer system consisting of user inter-
face, business-logic layer, and database layer. What
portion of a customer’s response time requirement
should the user interface design team be required to
meet? Each allocation and interaction must be
mapped out and validated through specific system-
level tests.

Many definitions of nonfunctional requirements

have been proposed; the core ones by which any sys-
tem is measured include availability, throughput,
security, and scalability. The architect is accountable
for ensuring that system performance meets user
expectations. Unfortunately, if the architect does not
actively address them during the initial system-design
process, they could be forgotten or ignored until sig-
nificant rework must be performed to address them.

BRING A WELL-STOCKED TOOLKIT

Effective software architects have a bag of tricks and
tools that are largely experience-based and form the
intellectual framework they use to guide decisions
on a day-to-day basis. New architects may learn of
them by consulting key works or references and by
actively devoting time, effort, and thought
to building their own. Such tools fall into several
categories:

Patterns and idioms. A pattern describes a recurring
problem and the core of a solution that can be modi-
fied or extended. Patterns are not specific to a partic-
ular language; rather, they seek to state the problem
and outline the solution through pseudocode or plain
text. Patterns provide some of the basic building
blocks for both system- and component-level
solutions.

The 1995 book Design Patterns: Elements of
Reusable Object-Oriented Software formalized 23 stan-
dard design patterns [7]. Such patterns contain four
essential elements: a name, a problem description, a
solution, and the consequences of applying the pat-
tern. At a component level, they provide both a com-
mon language for communication and proven
outlines of solutions that may be modified and reused
again and again. Several enterprise- and system-level
design patterns have also been identified and put to
use. They are equally useful to the seasoned architect,
providing an invaluable resource for improving
designs. Martin Fowler delivered a solid collection in
his 2002 book Patterns of Enterprise Application Archi-
tecture [5].

If patterns are language-independent, idioms are
their language-specific cousins. Idioms are examples
of specific software language usage and conventions
that represent a proven way of accomplishing a spe-
cific task. Almost every language involves generally
accepted ways of connecting with a database, reading
or inserting data, and closing the connection. During
code reviews by system developers, compliance with
these idioms must be enforced for the construction of
a reliable system. Additionally, component-level
development should be accomplished through a stan-
dard coding convention to promote reuse, testability,
and maintainability, in addition to dramatically sim-

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 79

deliverables (an artifact or software build that demon-
strates specific functionality) the architect can discuss
with the customer. Early iterations must address high-
risk portions of the system design and identify key
features. A greater understanding of the requirements,
system-level design, and customer’s priorities emerges
as the process moves ahead. As customers become
familiar with the emerging system, they gain confi-
dence in a productive and responsive development
team.

COMMUNICATE EFFECTIVELY

The stakeholders the architect deals with vary
greatly in terms of domain knowledge and software
expertise and can be sorted into several categories:

Developer. Developers tend to be wonderfully cre-
ative people, though their creativity must be defined
and bounded within the context of the problem
domain. Moreover, their focus may at times be lim-
ited to the particular technologies and tools they use
rather than to a holistic view of the solution under
construction. At times, the architect must challenge
this limited view to maintain the integrity of the sys-
tem-level solution.

Senior-level manager and CxO-level executive. IT
and non-IT executives have different needs that tend
to be specific to their positions and backgrounds.
Communicating with them requires the software
architect’s creativity and adaptation of a single vision
to a specific stakeholder. For example, a CFO may
tend to look at a project primarily in terms of cost and
ROI to the organization. The architect must deal
with the CFO on this basis, translating into financial
terms the business value of a particular effort. Saying
“We’re using .NET” may have little meaning to a
CFO, but saying “We found a way to save $20,000
and get to market two weeks earlier” will be music to
this executive’s ears.

Project manager. Project managers are often an
architect’s ally, aiming to bring order and predictabil-
ity to the creative process of software construction.
However, they must successfully negotiate a balance
between creativity (which tends to be increasingly
chaotic) and order (which limits creativity and favors

predictability). In most cases, the architect allows
designers and their design teams to exercise their cre-
ativity while being shepherded within reasonable
schedule boundaries provided by the project manager.

Customer. Customers tend to add complexity in
several ways: not clearly elaborating requirements;
demanding feature-rich solutions in an unreasonable
timeframe; continuously introducing new require-
ments; and simply failing to partner with the software
design team. Nurturing a trusted partnership built on
demonstrated performance by the development team
can help address and mitigate these concerns.

The architect must be a translator during software
construction so each stakeholder stays involved and
consistently supports the proposed software solution.
A number of abstractions or views may be necessary
to communicate this vision across a diverse con-
stituency. As it is communicated and validated, the
architect must also identify and address the concerns
of silent or unsupportive customers. The effective
architect leads the diverse group of stakeholders with
a servant’s heart.

EMBRACE LEADERSHIP

The architect is the author of the solution, undeni-
ably accountable for the effort’s success or failure.
While software architects may be concerned about
component-level design detail, they must also cham-
pion the system-level design effort. Frederick Brooks
of the University of North Carolina at Chapel Hill
captured this dichotomy when discussing the need
for conceptual integrity: “One must also learn a
whole lore of how the [design] elements are com-
bined in practice. Simplicity and straightforward-
ness proceed from conceptual integrity. Conceptual
integrity in turn dictates that the design must pro-
ceed from one mind or from a very small number of
agreeing resonant minds” [3].

For an architect, leadership includes the ability to
provide system-level design and technical direction,
work with a variety of teams and individuals, and rec-
ognize when and how to make decisions that guide
the team to a successful solution.

The architect is often required to make system-

78 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

Without strong supervision from the software architect,
projects and attempted solutions tend to fall apart due to the

weight of unmitigated complexity.

level design decisions with incomplete information
early in the design process. This is risky at best, requir-
ing a significant amount of experience and under-
standing of both the problem domain and the
technologies involved in the solution. Competent
software architects always seek the counsel of project
and domain managers, technical leads, individual
designers, and key customers. The decision-making
process involves constantly gathering and mentally
assembling relevant information.

Finally, leadership is not the same as management;
it involves a variety of skills, including active concern
for team members and the ability to coach, influence,
and inspire. I like the way former U.S. Secretary of
State Colin Powell said it: “At best (organization
charts and titles) advertise some authority—an official
status conferring the ability to give orders and induce
obedience. But titles mean little in terms of real
power, which is the ability to influence and inspire.
Have you ever noticed that people will personally
commit to certain individuals who on paper (or on
the org chart) possess little authority—but do possess
pizzazz, drive, expertise, and genuine caring for team-
mates and products? On the flip side, nonleaders in
management may be formally anointed with all the
perks and frills associated with high positions, but
they have little influence on others, apart from their
ability to extract minimal compliance to minimal
standards” [9].

PAY ATTENTION TO NONFUNCTIONAL REQUIREMENTS

Nonfunctional requirements are observable charac-
teristics of the system as a whole. While functional
requirements are primarily concerned with the stated
needs of the problem domain, nonfunctional
requirements represent capabilities that are orthogo-
nal to domain requirements. They crosscut each
layer of the design, as well as each design team. All
too often, however, they surface as a customer’s
unstated expectations.

Part of the architect’s role is to elicit these expecta-
tions during the initial requirements-gathering
process. The architect must then identify and allocate
additional nonfunctional requirements to each design
subteam—a difficult and sometimes painstaking
process requiring thoughtful judgment. For example,
consider a three-layer system consisting of user inter-
face, business-logic layer, and database layer. What
portion of a customer’s response time requirement
should the user interface design team be required to
meet? Each allocation and interaction must be
mapped out and validated through specific system-
level tests.

Many definitions of nonfunctional requirements

have been proposed; the core ones by which any sys-
tem is measured include availability, throughput,
security, and scalability. The architect is accountable
for ensuring that system performance meets user
expectations. Unfortunately, if the architect does not
actively address them during the initial system-design
process, they could be forgotten or ignored until sig-
nificant rework must be performed to address them.

BRING A WELL-STOCKED TOOLKIT

Effective software architects have a bag of tricks and
tools that are largely experience-based and form the
intellectual framework they use to guide decisions
on a day-to-day basis. New architects may learn of
them by consulting key works or references and by
actively devoting time, effort, and thought
to building their own. Such tools fall into several
categories:

Patterns and idioms. A pattern describes a recurring
problem and the core of a solution that can be modi-
fied or extended. Patterns are not specific to a partic-
ular language; rather, they seek to state the problem
and outline the solution through pseudocode or plain
text. Patterns provide some of the basic building
blocks for both system- and component-level
solutions.

The 1995 book Design Patterns: Elements of
Reusable Object-Oriented Software formalized 23 stan-
dard design patterns [7]. Such patterns contain four
essential elements: a name, a problem description, a
solution, and the consequences of applying the pat-
tern. At a component level, they provide both a com-
mon language for communication and proven
outlines of solutions that may be modified and reused
again and again. Several enterprise- and system-level
design patterns have also been identified and put to
use. They are equally useful to the seasoned architect,
providing an invaluable resource for improving
designs. Martin Fowler delivered a solid collection in
his 2002 book Patterns of Enterprise Application Archi-
tecture [5].

If patterns are language-independent, idioms are
their language-specific cousins. Idioms are examples
of specific software language usage and conventions
that represent a proven way of accomplishing a spe-
cific task. Almost every language involves generally
accepted ways of connecting with a database, reading
or inserting data, and closing the connection. During
code reviews by system developers, compliance with
these idioms must be enforced for the construction of
a reliable system. Additionally, component-level
development should be accomplished through a stan-
dard coding convention to promote reuse, testability,
and maintainability, in addition to dramatically sim-

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 79

deliverables (an artifact or software build that demon-
strates specific functionality) the architect can discuss
with the customer. Early iterations must address high-
risk portions of the system design and identify key
features. A greater understanding of the requirements,
system-level design, and customer’s priorities emerges
as the process moves ahead. As customers become
familiar with the emerging system, they gain confi-
dence in a productive and responsive development
team.

COMMUNICATE EFFECTIVELY

The stakeholders the architect deals with vary
greatly in terms of domain knowledge and software
expertise and can be sorted into several categories:

Developer. Developers tend to be wonderfully cre-
ative people, though their creativity must be defined
and bounded within the context of the problem
domain. Moreover, their focus may at times be lim-
ited to the particular technologies and tools they use
rather than to a holistic view of the solution under
construction. At times, the architect must challenge
this limited view to maintain the integrity of the sys-
tem-level solution.

Senior-level manager and CxO-level executive. IT
and non-IT executives have different needs that tend
to be specific to their positions and backgrounds.
Communicating with them requires the software
architect’s creativity and adaptation of a single vision
to a specific stakeholder. For example, a CFO may
tend to look at a project primarily in terms of cost and
ROI to the organization. The architect must deal
with the CFO on this basis, translating into financial
terms the business value of a particular effort. Saying
“We’re using .NET” may have little meaning to a
CFO, but saying “We found a way to save $20,000
and get to market two weeks earlier” will be music to
this executive’s ears.

Project manager. Project managers are often an
architect’s ally, aiming to bring order and predictabil-
ity to the creative process of software construction.
However, they must successfully negotiate a balance
between creativity (which tends to be increasingly
chaotic) and order (which limits creativity and favors

predictability). In most cases, the architect allows
designers and their design teams to exercise their cre-
ativity while being shepherded within reasonable
schedule boundaries provided by the project manager.

Customer. Customers tend to add complexity in
several ways: not clearly elaborating requirements;
demanding feature-rich solutions in an unreasonable
timeframe; continuously introducing new require-
ments; and simply failing to partner with the software
design team. Nurturing a trusted partnership built on
demonstrated performance by the development team
can help address and mitigate these concerns.

The architect must be a translator during software
construction so each stakeholder stays involved and
consistently supports the proposed software solution.
A number of abstractions or views may be necessary
to communicate this vision across a diverse con-
stituency. As it is communicated and validated, the
architect must also identify and address the concerns
of silent or unsupportive customers. The effective
architect leads the diverse group of stakeholders with
a servant’s heart.

EMBRACE LEADERSHIP

The architect is the author of the solution, undeni-
ably accountable for the effort’s success or failure.
While software architects may be concerned about
component-level design detail, they must also cham-
pion the system-level design effort. Frederick Brooks
of the University of North Carolina at Chapel Hill
captured this dichotomy when discussing the need
for conceptual integrity: “One must also learn a
whole lore of how the [design] elements are com-
bined in practice. Simplicity and straightforward-
ness proceed from conceptual integrity. Conceptual
integrity in turn dictates that the design must pro-
ceed from one mind or from a very small number of
agreeing resonant minds” [3].

For an architect, leadership includes the ability to
provide system-level design and technical direction,
work with a variety of teams and individuals, and rec-
ognize when and how to make decisions that guide
the team to a successful solution.

The architect is often required to make system-

78 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

Without strong supervision from the software architect,
projects and attempted solutions tend to fall apart due to the

weight of unmitigated complexity.

proactively oversee the software’s construction, par-
ticularly in large systems.

Designing a software solution involves the manage-
ment of functional and nonfunctional requirements.
Software architects must also be able to address the
inherent complexity of building software as commu-
nicators and leaders and bring to bear proven skills
related to the lower-level component design and con-
struction tasks. Though some of these skills may be
acquired through study, there is no substitute for
hands-on experience.

These skills form a framework from which the
architect, as well as other software professionals, may
drive software projects toward success. In practice, it
adds significant value to an organization, is vital to the
growth of the software development profession,
and represents the essence of the effective software
architect.

References
1. Alexander, C. The Origins of Pattern Theory, the Future of the Theory,

and the Generation of a Living World. Speech at the 1996 ACM Con-
ference on Object-Oriented Programs, Systems, Languages, and Appli-
cations (OOPSLA) (San Jose, CA, Oct. 6–10, 1996).

2. Alexander, C., Ishikawa, S., and Silverstein, M. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, Inc., 1978.

3. Brooks, F. The Mythical Man-Month, Anniversary Edition. Addison-
Wesley, Boston, 1995.

4. Clavell, J., Ed. The Art of War. Delacorte Press, New York, 1983.
5. Fowler, M. Patterns of Enterprise Application Architecture. Addison-

Wesley, Boston, 2002.
6. Fowler, M. Is Design Dead? Online article, 2001;

www.martinfowler.com/articles/designDead.html.
7. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, MA, 1995.

8. Glass, R. Sorting out software complexity. Commun. ACM 45, 11
(Nov. 2002), 19–20.

9. Harari, O. The Leadership Secrets of Colin Powell. McGraw-Hill, New
York, 2002.

10. IEEE. IEEE Standard Glossary of Software Engineering Terminology
(IEEE Std. 610.12-1990). IEEE, New York, 1990.

11. Object Management Group. OMG Unified Modeling Language Specifi-
cation. OMG, Needham, MA, 2003.

12. Reifer, D. Industry software cost, quality, and productivity bench-
marks. Crosstalk: The Journal of Defense Software Engineering 7, 2 (June
2004).

Matthew R. McBride (mcbride@computer.org) is a director of
software development for Countrywide Financial Corp. and adjunct
professor and advisory board member in the Department of Computer
Science and Engineering at Southern Methodist University, Dallas, TX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/0500 $5.00

c

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 81

plifying the work of developers and testers.
Frameworks. Several language-specific frameworks

are also available, with notable contributions from
Java (J2EE) and Microsoft (.NET) and associated
open source and vendor toolsets. Tasks that are greatly
simplified in these frameworks include concurrency,
database connection pooling, and transaction man-
agement. The effective architect leverages them
whenever appropriate while keeping a watchful eye
on potential vendor lock-in problems. However, they
often represent a double-edged sword, offering
tremendous power and capability while introducing
significant constraints. A prudent approach is often to
delay framework-selection decisions until after the
domain concepts are well formed (but not completely
defined).

Best practices. Beyond the best practices identified
earlier, others (such as iterative development, proac-
tive requirements planning, test-infected develop-
ment, and product-line development) can contribute
significantly to a project’s success. Many other disci-
plines (notably systems engineering) have made solid
contributions along these lines and should be lever-
aged. Continuous learning and skill development is a
hallmark of an effective software architect. The learn-
ing process restocks the toolkit, allowing the architect
to bring the right tool to bear during each phase of a
system’s design.

REPORTING RESULTS

Reporting the results of how these principles are
used is another challenge. The architect’s influence
affects several key aspects of a project, including the
ease of designing the solution, the efficiency with
which the teams communicate and interact, the
ability to deliver on time and within budget, and the
satisfaction of stakeholders with the final solution.
Measuring the productivity of a manufacturing
process (such as number of widgets manufactured
per day) is relatively straightforward and well under-
stood. Measuring the productivity of creating soft-

ware is inherently difficult. While many different
standards are available, the one I emphasize here is
source lines of code per staff month, or SLOC/SM.
It is easily understood and provides a standard of
comparison that can be used to measure progress
against similar design efforts.

For the three design efforts noted earlier, the team’s
self-reported productivity was significantly greater
than the industry average of 275 SLOC/SM for Web-
based business projects [12]. The three teams
reported the following:

• For the development of the product-ordering
Web site, the team generated 2,370 SLOC/SM,
deploying the site well ahead of schedule; previ-
ously dissatisfied stakeholders became strong
advocates of the new process;

• The business-to-business integration team gener-
ated 3,760 SLOC/SM; the customer noted that
of several companies involved in the integration,
it viewed the architecture-driven process as “best
in class”; and

• The design and development of the enterprise
application proceeded smoothly, with the team
generating 1,732 SLOC/SM; meanwhile, overall
customer satisfaction with the development team
improved dramatically.

Other factors (such as team size and the experience
of individual team members) also influence produc-
tivity. However, the principles noted here strongly
influenced each team to achieve much greater pro-
ductivity than they expected. More important, cus-
tomers realized significant improvement in terms of
time to market and development costs.

CONCLUSION

Requirements and design teams, customers, and
managers all look to the architect for leadership in
the system-level design process. When the software-
construction process begins, the architect must

80 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

The architect is the author of the solution, undeniably
accountable for the effort’s success or failure.

proactively oversee the software’s construction, par-
ticularly in large systems.

Designing a software solution involves the manage-
ment of functional and nonfunctional requirements.
Software architects must also be able to address the
inherent complexity of building software as commu-
nicators and leaders and bring to bear proven skills
related to the lower-level component design and con-
struction tasks. Though some of these skills may be
acquired through study, there is no substitute for
hands-on experience.

These skills form a framework from which the
architect, as well as other software professionals, may
drive software projects toward success. In practice, it
adds significant value to an organization, is vital to the
growth of the software development profession,
and represents the essence of the effective software
architect.

References
1. Alexander, C. The Origins of Pattern Theory, the Future of the Theory,

and the Generation of a Living World. Speech at the 1996 ACM Con-
ference on Object-Oriented Programs, Systems, Languages, and Appli-
cations (OOPSLA) (San Jose, CA, Oct. 6–10, 1996).

2. Alexander, C., Ishikawa, S., and Silverstein, M. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, Inc., 1978.

3. Brooks, F. The Mythical Man-Month, Anniversary Edition. Addison-
Wesley, Boston, 1995.

4. Clavell, J., Ed. The Art of War. Delacorte Press, New York, 1983.
5. Fowler, M. Patterns of Enterprise Application Architecture. Addison-

Wesley, Boston, 2002.
6. Fowler, M. Is Design Dead? Online article, 2001;

www.martinfowler.com/articles/designDead.html.
7. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, MA, 1995.

8. Glass, R. Sorting out software complexity. Commun. ACM 45, 11
(Nov. 2002), 19–20.

9. Harari, O. The Leadership Secrets of Colin Powell. McGraw-Hill, New
York, 2002.

10. IEEE. IEEE Standard Glossary of Software Engineering Terminology
(IEEE Std. 610.12-1990). IEEE, New York, 1990.

11. Object Management Group. OMG Unified Modeling Language Specifi-
cation. OMG, Needham, MA, 2003.

12. Reifer, D. Industry software cost, quality, and productivity bench-
marks. Crosstalk: The Journal of Defense Software Engineering 7, 2 (June
2004).

Matthew R. McBride (mcbride@computer.org) is a director of
software development for Countrywide Financial Corp. and adjunct
professor and advisory board member in the Department of Computer
Science and Engineering at Southern Methodist University, Dallas, TX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/0500 $5.00

c

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 81

plifying the work of developers and testers.
Frameworks. Several language-specific frameworks

are also available, with notable contributions from
Java (J2EE) and Microsoft (.NET) and associated
open source and vendor toolsets. Tasks that are greatly
simplified in these frameworks include concurrency,
database connection pooling, and transaction man-
agement. The effective architect leverages them
whenever appropriate while keeping a watchful eye
on potential vendor lock-in problems. However, they
often represent a double-edged sword, offering
tremendous power and capability while introducing
significant constraints. A prudent approach is often to
delay framework-selection decisions until after the
domain concepts are well formed (but not completely
defined).

Best practices. Beyond the best practices identified
earlier, others (such as iterative development, proac-
tive requirements planning, test-infected develop-
ment, and product-line development) can contribute
significantly to a project’s success. Many other disci-
plines (notably systems engineering) have made solid
contributions along these lines and should be lever-
aged. Continuous learning and skill development is a
hallmark of an effective software architect. The learn-
ing process restocks the toolkit, allowing the architect
to bring the right tool to bear during each phase of a
system’s design.

REPORTING RESULTS

Reporting the results of how these principles are
used is another challenge. The architect’s influence
affects several key aspects of a project, including the
ease of designing the solution, the efficiency with
which the teams communicate and interact, the
ability to deliver on time and within budget, and the
satisfaction of stakeholders with the final solution.
Measuring the productivity of a manufacturing
process (such as number of widgets manufactured
per day) is relatively straightforward and well under-
stood. Measuring the productivity of creating soft-

ware is inherently difficult. While many different
standards are available, the one I emphasize here is
source lines of code per staff month, or SLOC/SM.
It is easily understood and provides a standard of
comparison that can be used to measure progress
against similar design efforts.

For the three design efforts noted earlier, the team’s
self-reported productivity was significantly greater
than the industry average of 275 SLOC/SM for Web-
based business projects [12]. The three teams
reported the following:

• For the development of the product-ordering
Web site, the team generated 2,370 SLOC/SM,
deploying the site well ahead of schedule; previ-
ously dissatisfied stakeholders became strong
advocates of the new process;

• The business-to-business integration team gener-
ated 3,760 SLOC/SM; the customer noted that
of several companies involved in the integration,
it viewed the architecture-driven process as “best
in class”; and

• The design and development of the enterprise
application proceeded smoothly, with the team
generating 1,732 SLOC/SM; meanwhile, overall
customer satisfaction with the development team
improved dramatically.

Other factors (such as team size and the experience
of individual team members) also influence produc-
tivity. However, the principles noted here strongly
influenced each team to achieve much greater pro-
ductivity than they expected. More important, cus-
tomers realized significant improvement in terms of
time to market and development costs.

CONCLUSION

Requirements and design teams, customers, and
managers all look to the architect for leadership in
the system-level design process. When the software-
construction process begins, the architect must

80 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

The architect is the author of the solution, undeniably
accountable for the effort’s success or failure.

