
The art of systems architecting
Tbe design of complex
systems must blend
tbe art of arcbitecture
witb tbe science of
engineering

ew engineers would be sur-
prised, today, to see the
word “architecture” in
their professional journals;
nor would they have to
think twice about its mean-
ing. Architecture is under-
stood to be the underlying

structure of things-whether of buildings,
communication networks, neural networks,
spacecraft, computers, software or organi-
zation charts-systems all.

Less recognized, perhaps, is that where
there are architectures, there must be ar-
chitects. Moreover, there must be a process,
“architecting,” by which the architectures
are created, designed, and built.

Architecting, itself, has ancient roots. It
first appeared in Egyptian writings some
4000 years ago. Many of its basic principles
were codified by the Roman, Vitruvius, in
the 1st century B.C. But only in the last 50
years or so has the concept of “systems”
been comparably formalized.

The merging of architecting and systems
into systems architechg is still more recent.
That process is acceleratmg, driven by three
factors: the increasing architectural com-
plexity and scope of global-sized projects and
markets, the ubiquity of computers in vir-
tually all modem systems, and the power of
computer aids to system design.

Retrospectively, it is apparent that the
success or failure of many defense, space,
and civil systems of the last half century has
depended in large part on how they were
structured. The most successful ones were
conceived, built, tested, certified, and oper-
ated in a way that ensured their integrity and
performance. They were based on a consis-
tent set of principles and techniques that
were maintained throughout all phases of the
project. And their designs were resilient
enough to bend to the inevitable changes
brought about by time and circumstance.
As civil architects would say, they had

good bones. They also had fine architects
who supervised their programs from begin-

Eberhardt Rechtin University of Southern California

ning to end. The systems that have failed-
whether technologically, politically, or
economically-lacked these essentials.

Such conclusions are not new. Similar
ones have been drawn over the centuries
about pyramids, cathedrals, cities, ships, and
fortiiications. What is new is that those con-
clusions are now being seen as relevant to
the engineering of electrotechnical systems.

Systems engineering and architectmg are
brought together by certain common prin-
ciples. Each is concerned with complexity
and reliability-systems engineering be-
cause of its nature and architecting because
of its scope. The form of a system is strongly
driven by the functions it is called upon to
perform. Architecting defines that form by
matchmg, fitbng, balancing, and compromis-
ing proposed functions and forms until a
practical result can be achieved.
SYSTEMS PRINCIPLES. Our first focus is on
the principles of systems-an area more fa-
miliar to most engineers. Different people
can mean different things by the word “sys-
tem.” For the purposes of architecting, a
useful and sufficiently precise definition of
a system is: “A collection of different things
so related as to produce a result greater than
what its parts, separately, could produce.”
Indeed, the purpose of building a system is
to achieve that greater result.
Example: The system function of an assembled
automobile is transportation, unavailable from
the parts separately.

This definition of system has at least two
important consequences. First, all systems
have subsystems ana‘ all systems are parts of
larger systems. Hence the systems world is
inherently unbounded: no matter where a
boundary might be drawn, things important
to the system will exist outside it.

The same situation occurs in classical ar-
chitecture.
Example: Designing a water faucet (a very
small system, but a system nonetheless)
means considering not only its own function,
but also the demands of the systems within
which it operates, such as the inclusion of
urban water-usage restrictors to minimize the
effects of drought on scenic lakes several hun-
dred kilometers away.

Thus, complex systems cannot be ar-
chitected, built, or operated in isolation.
Their “outer” and “inner” worlds will al-
ways intrude. The best that can be done is
to draw boundaries so that intrusions, when
they occur, are secondary and not
primary-that is, that they can be accommo-
dated without breaking the system.

Example: The design of a manned spaceflight
program, a strategic defense system, a nation-
al wideband communication network, an air-
line, or a light rail system is strongly influenced
by extra-technical imperatives-economic,
human, social, political, and international.
These imperatives must be included in the de-
sign or the system will fail or abort, quite pos-
sibly well before completion. Placing them
“outside” the system for design purposes
could destroy any chance of success.

The architect’s task is made particularly
difficult by the fact that rarely, if ever, is
there a single optimal solution for all parties
and all circumstances. The objective, in-
stead, is a kind of general satisfaction based
on practicality, fit, balance, and compromise.
As experienced architects will a f f i i , that
takes both science and art.

The second architecturally relevant con-
sequence of our definition of system is the
value added by a system must come from the
relationships between the parts, notfrom the
pa& per se. Each part already contributes
its own inherent value to the system. But
it is the total of all the parts working together
that yields the whole system-a phenome-
non sometimes known as synergism.
Example: The Douglas Aircraft DC-3, the first
commercial airliner to make a profit for its own-
ers, consisted of airfoils from the National Ad-
visory Committee on Aeronautics (the
predecessor to the U S . National Aeronautics
and Space Administration), monocoque de-
signs already tried by the Boeing Aircraft Co.,
engines on the shelf, and control systems then
in development. But, with modified elements
in novel combination, the DC-3 made air trav-
el efficient, reliable, and pleasurable.

It follows that syslarns arshitects who work
with systems must be specialists in
relationships-notgenralisk who k m a lit-
tle bit about all the parts. Their specialty is

Defining terms
Arclllecllng: the process by which a system is
created, designed, and built.
Herrltllcs: empirical rules of thumb derived from
experience and judgment, useful for attacking prob-
lems too complex to be solved by analytical tech-
niques alone.
Sytlem: a collection of different things related in
such a way as to produce a result greater than what
its parts, separately, could produce.
Sysler anhHrclrm: the underlying structure of
a system, such as a communication network, a neu-
ral network, a spacecraft, a computer, major soft-
ware, or an organization.

66 0018-9235/92/$3.00@1992 IEEE IEEE SPECTRUM OCTOBER 1%

a concentration on the system as a whole:
that is, on those elements, interfaces, and
factors that have the most effect on overall
system performance, cost, and schedule.
Systems architects must necessarily know,
or learn, a great deal about some details-
those that impinge on the overall system-
but need not, and probably should not, pay
much attention to the rest, which are best
handled by the subsystem experts with
whom the systems specialists work.
Example: A launch vehicle systems engineer
need not know the detailed design of a solid
rocket motor. But that systems engineer would
be expected to understand in some detail how
the rocket’s segments were connected, how
each rocket was attached to others and to the
payload, what its performance tolerances must
be compared to other rockets on the same ve-
hicle, what control authority is provided by its
thrust control mechanisms, and so forth.

Without question, it requires expertise to
know which details, interfaces, tradeoffs,
and compromises count the most and which,
the least. Poor choices can be disastrous; too
many choices can be overwhelming.
ART AND SCIENCE. Much more so
than engineering, architecting is
an art as well as a science. There
is an art to creating any structure,
whether a building, a ship, a
spacecraft, a network, or any
other system. It is not just a fig-
ure of speech to praise a system
as elegant or as having style.

The artistic element of ar-
chitecting is most apparent when
architects are asked how they cre-
ate what they do, how they come
up with alternatives out of the blue
that withstand the scrutiny of anal-
yses, and how they know that
when all the parts come together,
a system never built before will
work to a client’s satisfaction.

The usual, and not very helpful,
answer is, “I just use common
sense.” Further inquiry leads to
the discovery that what is really
meant is contextual sense: doing
what is sensible in the context of
the problem. Commercial aircraft
architects do it in creating a safe
and profitable aircraft, spacecraft
architects in producing a reliable
and efficient spacecraft, and soft-
ware architects in developing
powerful and user-friendly soft-
ware. And that means the use of
empirical insights, tricks of the
trade, and lessons learned from
past successes and failures-that
is, heuristics.

The art in architecting is a spe-
cial process, essential in treating
situations too complex for analy-
sis. It evolved centuries ago as a
way to handle ill-structured prob-
lems with all their uncertainties,
unknowns, conflicting require-

ments, and sociopolitical imperatives-
problems typical of complex systems.

At the risk of oversimplification, disci-
pline-oriented engineering is deductive, ana-
lytcal, and rational, while systems-oriented
architecting is inductive, intuitive, synthet-
ical, and pragmatic. At one extreme are the
powerful applied science tools of engineer-
ing; at the other are the often personal arts
of architecting. Straddling both is the prac-
tice of systems engineering.

Architects of buildings who have studied
the process of architecting-how architects
work-have identified four methods in com-
mon use that depend on the nature and
phase of the project, the particular problem
to be solved, and the style of the architect:
Uormarlve merhodelogy relies on standard,
quantitative solutions based on subjective
value judgments (“good” vs. “bad” prac-
tice). Building codes, communication pro-
tocols, and design handbooks are examples.
R a l l o d n # t h & / ~ is based on quantitative
analysis and algorithms that tell how to find
a solution, but not what it is. The scientific
method of data gathering, hypothesis, and

test is an example. Calculus is mother. Ra-
tional methodology-the mainstay of sys-
tems engineering-is intended to be as ob-
jective as possible. Optimization is one of its
goals.
Algurnentotl yo mthodelwy is based on broad
participation of interested parties. Brain-
storming is one of its techniques; quality cir-
cles is another. This methodology aims for
imaginative consensus. Its strength is group
commitment to a common goal.
Heurlstlc methdolorr is based on common
sense or rules of thumb derived from ex-
perience and judgment. The law of supply
and demand is an example from economics.
Murphy’s Law is an example from system
design. The aim here is reasonable, satis-
factory solutions and an avoidance of system-
level disasters. More than the other three
methodologies, the heuristic methodology
is an art.

The normative and rational methodologies
are widely taught in engineering schools and
used extensively in practice. These methods
have powerful tools available-statistics,
probability theory, modeling, optimization,

tmdeoff charts. simulation. statis-

The ConceptVal phase:
.The choice between acclittedures may weU degend upon which set d
drawbacks the dmt can handle best.

Extreme r~~~~ should remain under challenge throughout sp
kfim design, ~~~, and oprwation.

the oripinal skkmentof the pfablem is mcessrily

lions optimized.

averill architecture
than if there are not.

The build and aast phases:

ough h a small sy&n is wilrkelyto be good enough

Within the same class of producEs and processes, the failure rate d a
product is h m l y propwtmal to its cost.

by high-qualii architecting,
inspection, test, and rework.

acceptance Miteria determine

The operations phase:
Before the flight, it’s opinion. After the flight, it‘s obvious.
The first are often wrong.

*For every is a COun$lsystem.
*Sucees is deibled by the bholder, not the architet.

There’s nothing lii being the first success.

Spbm&h&#ng: C~~~ Compbx-, by Eberhardl
Rechtin, published by Prentke Hall, Englewood clifls, N.J., 1991.

tics, operations research, and per-
formance analysis. They help
break down problems into solva-
ble subproblems whose solutions
are then integrated into the whole.
System certification is quantitative
and not easily disputed. These
two methodologies comprise the
‘ ‘science’ ’ part of architecting and
the technical foundation of sys-
tems engineering, detailed de-
sign, and integration.

In argumentative methodology,
free-xanging discussion reigns. Its
weakness is design by committee.
On the surface, it seems to con-
tradict a widely held view that the
best architectures are the product
of a single mind or small team.
Success, therefore, requires good
team dynamics-a well-designed
human system guided by the em-
pirical knowledge of human be-
havior. In this respect, the ar-
gumentative methodology might
be considered a managerial vari-
ation of the more general heuris-
tic method.
HEURISTICS UNBOUND. The heuris-
tic methodology is particularly
characteristic of architecting. In
contrast with the other meth-
odologies, it is synthetical, induc-
tive, and experiential. Its tools are
heuristics-rules of thumb for
discarding out of hand unreasona-
ble options, for maintaining the
integrity of system goals, for tak-
ing precautions against pitfalls
ahead, and for recalling lessons
learned.

But most important, heuristics
is the only methodology that

Rechtm-The art of systems architecting 67

directly attacks problems too complex to be
solved by analytical techniques alone; that
is, those characteristic of unbounded
systems.

A good example of a descriptive heuris-
tic, mentioned earlier, is Murphy’s Law: “If
something can go wrong, it will.” A n as-
sociated prescriptive heuristic, an antidote
to Murphy’s Law, is: “Simpldy, simplify,
simphfy.” Neither of these mentions statis-
tics or statistical quality control. Instead,
they suggest a strategy: if a system is built
in such a way that something could possibly
go wrong, no matter how improbable, fix it.

An older heuristic, often used for simpler
products, is: “If it ain’t broke, don’t fix
it”-a strategy demonstrably not competi-
t ive for large-scale, complex products. I t is
not competitive primarily because an ele-
ment “good enough” in a small system is
unlikely to be good enough in a more com-
plex one. (As more and more parts are
added, the system reliabil ity will go down

unless the individual part reliabilities go up.)
The practical value of heuristic insights is

seen in their extensions by W. Edwards
Deming, Joseph M. J u m , Genichi Taguchi,
and others. These are known as total quali-
ty management (TQM), continuous meas-
urable improvement (CMI), just-in-time
(JIT) inventories, and other techniques.

A quite different heuristic, useful in aero-
space and computer design, is: “In parti-
tioning a system into subsystems, choose a
configuration with minimal communications
between the subsystems.” With a few word
changes, this could be applied to the design
of communication networks, organizations,
and system subcontracts.
Example: A common question in the design of
complex, smart spacecraft is whether to use
a centralized or distributed computer system
to run the major subsystems, such as propul-
sion, guidance, control, command, tele-
metering, science instrumentation, and sys-
tem test. The centralized configuration is

generally lighter, smaller, computationally more
efficient, and less power consuming. The dis-
tributed configuration requires less informa-
tion transfer, and solves local problems local-
ly. But most important, it permits each
subsystem to be self-testing without recourse
to a central control unit. As such, it enables
subsystem subcontractors to deliver checked-
out units to a prime contractor. To do likewise,
a centralized configuration requires central
computer copies at each subcontractor site
and/or delivery of subsystems that can be
checked out only at the system level-a con-
tracting nightmare and a prescription for over-
runs and delays. Fixing such problems usually
requires adding weight, space, power, and
computer capacity late in the development. The
decentralized configuration is now preferred,
for management and not technical reasons.

Heuristics cannot promise that a heuristi-
cally designed system will be the best per-
forming of all possible systems. But, from
experience, that type of system will be much

Teaching systems architecting: science and art
Instructing others in systems architecting involves
both its science and its art. Teaching the underly-
ing science is straightforward; teaching the art is
still in the experimental stage. Existing guidelines
are few, even from classical architecture.

What does seem to be true, though, is that until
the science of systems architecting is understood
and the complexities of systems experienced, the
role of its art is lime appreciated. Consequently, at
the University of Southern California (USC) in Los
Angeles, systems architecting is taught only to en-
gineers with three or more years of experience (the
average is seven years)-those who already recog
nize that the science of engineering, though pwerful
indeed, is somehow not sufficient to meet the d e
mands they face in building complex systems.

The challenge is to teach the art without crush-
ing its creative core under a burden of memorized
dictates and caveats.
COOlFYlW6 C8MNIBW SENSE. Fortunately and per-
haps surprisingly, codifying the common sense of
successful systems architects is not so difficult. The
first step is to show students that what is meant by
common sense is contextual sense: what seems
sensible depends on the system’s particular con-
text (whether the system is a building, an aircraft,
a spacecraft, a missile, a computer, software, a net.
work, or an organization).

That means that a heuristic (an empirical rule of
thumb) that applies in one context may not apply
in another. True, a heuristic that is sensible in one
context may be sensible in another, but showing ap-
plicability has to be by example to be credible. It can-
not be deduced mathematically. Instead, a proposed
heuristic, on presentation to people versed in a field,
has to seem ”reasonable” to them and then must
survive their almost automatic mental search for sup
porting or contradicting examples.

A diligent search for useful heuristics reveals a
wealth of wisdom and lessons learned in many fields.
Once given the concept of heuristics as architec.
tural aids, an alert student can spot statements of

common sense in most articles describing success-
ful or unsuccessful systems.

At USC, well over 100 heuristics have been found
or newly articulated for the acquisition of electrical
and aerospace systems. Comparable numbers no
doubt can be found scattered through the literature
of computers, software, manned space flight, ship.
building, law, economics, and management.

Though it might be wished that only a handful
of heuristics existed that mlght be used as a checklist
for all occasions, that does not seem to be the case.
Different heuristics apply to the different phases of
system acquisition-conceptualization, engineering,
design, production, test, cerfmcation, and operations.

Basically, architecting is both multidimensional
and relational; it has many parts, some of them relat-
ed to several others. Its problems come in sets, not
singly or in sequence. Similarly, its practitioners are
multifaceted, broad-ranging, “renaissance” people.
Like systems, they seem to have no bounds to their
thinking and inquiry. If heuristics are to be taught,
they have to be taught not as a bounded set of rules,
but as a technique, an abbreviated form of ex.
perience and the starting point for creativity.

One technique of instruction might be the one
commonly used for teaching law, economics, and
conventional architecture: case studies. But the con
text of the system poses a practical difficulty. Doing
a detailed case study of an aircraft system might
not be of much help to a telecommunications ar-
chitect and vice versa. Unless the heuristic fits the
student‘s system and context, it will not be remem-
bered when it counts. And in a typical USC class
of graduate students-systems engineers from local
aerospace and electronic firms-there may be as
many systems of interest as there are students.
A CASE IN PUNT. In the classes in systems ar-
chitecting at USC, each student is asked to choose
a system of personal interest, using it as a frame
of reference to which the ideas in the course can
be attached. Each student thus develops a personal
case study as the course progresses. Although the

technique works well, it does require that the stu-
dent know at least one system in some detail. For
the time being, at least, that confines it to the gradu-
ate level and for practicing engineers.

The hundred-plus heuristics studied so far range
from the energy management system of the Gener-
al Motors Corp.’s upcoming electric car to the U.S.
government‘s Strategic Defense Initiative. And the
insights the students have brought to the class-
both their own and those of the architects they
interviewed-have contributed substantially to the
field of systems architecting.

Better yet, the students have been able to apply
the lessons learned back on their jobs by assess.
ing and modifying the systems studied. One fact
about heuristics has become evident: whereas the
science of architecting can be used by people of
many skill levels, using its art effectively takes ex-
perience and judgment in context.

That result might have been expected; it is charac-
teristic of any art. No one becomes a musician by
studying mathematics or drawing, much as those
three arts might be intertwined philosophically.

USC has now established a formal Master of
Science degree in systems architecture and en-
gineering. The utility of the program has been vali-
dated by the number of graduate students enroll-
ing in it and by executive-level endorsement from
major companies in southern California.

The program consists of systems architecting the
ory and practice complemented by analytic courses
in each student’s specialty, such as aerospace and
mechanical systems, automation and control sys-
tems, communication and signal-processing sys-
tems, computer and information systems, and con-
struction and manufacturing systems.

USC’s experience in this field has demonstrated
that the tools for the art of architecting systems can
be taught, that they can be applied effectively, and
that they will appreciably shorten the time needed
for students to become professional systems ar-
chi tec ts. -ER.

68 IEEE SPECTRUM OCTOBER 19!

less likely to encounter unpleasant surprises
down the road. More resilient to changes in
its technical, budgetary, political, and com-
petitive environment, it is more likely to be
“good enough’ ’ (satisfactory) and less like-
ly be “the best possible” (optimum)-if in-
deed a “best” or optimum exists at all.

Why might an optimum not exist? Two
relevant heuristics tell why. First, “No com-
plex system can be optimum to all parties
concerned, nor all functions op-
timized.” Secondly, “A system tight-
ly optimized for a particular competi-
tive situation is unlikely to be presented
with that situation (the competition
knows better than to do so!).”
CRADLE TO GRAVE. Archite- does not
end with a first rough sketch, but con-
tinues through production into opera-
tion. In many systems that have been
the architectural successes of this cen-
tury, such as the Apollo moon project,
the original architects were active for
the entire project.

Lacking such architecting continuity, sys-
tems integrity would have been threatened,
early consideration of likely events and prob-
lems down the road might not have oc-
curred, controversies over system test and
acceptance would have been exacerbated,
and accountability for operations would have
been diffused.

Direct participation by the architect is
most critical during two phases of system
buildmg: conceptualization and certification.
Two heuristics succinctly say why. For con-
ceptualization: “All the serious mistakes are
made in the first day.” And for certification:
“Regardless of what has gone before, the
acceptance criteria determine what is actu-
ally built.” The architect’s role is in estab-
lishing acceptance criteria at the outset and
certifymg compliance with them at the end.

During the other phases-system en-
gineering, detailed design, development,
production, diagnosis, and operation-the
architect is a monitor, advising the client on
how well the system is conforming to plan
at each stage, suggestq actions that would
benefit the system as a whole, and helping
the system accommodate to change.
COMPLEMENTING STRATEGIEB Architecting is
an ongoing process-one that continues until
the system is acquired. It is not just a front-
end design-md-proposal effort tossed over
the transom to the next group.

In this respect, architecting historically
predates and affiis the principles of con-
current engineering, total quality manage-
ment, continuous measurable improvement,
and just-in-time inventory. Like architectmg,
those strategies also call for bringing togeth-
er design, engineering, and production in the
interest of better products and systems.

There are, nonetheless, notable differ-
ences between them and architecting. Com-
pared with concurrent engineering, ar-
chitecting is broader in its scope, covering
higher-level system concepts and focusing
less on detailed design. Also, its organiza-

tional structure of a small team contrasts
with the collective style of concurrent en-
gineering, and it places heavier emphasis on
the certification (buy-off) process. On the
other hand, concurrent engineering, which
is valuable in making designers more aware
of production problems, postulates an ongo-
ing product line and generally puts to one
side questions of concept, certification, pub-
lic policy, and post-sale accountability.

The success or failure
of many civil and
defense sys tems

depends mainly on
their architecture

Thus, concurrent engineering and ar-
chitecting complement each other. They
might even be combined. For example, the
architect could act as the chairman of the
concurrent-engineering group, maintaining
overall systems integrity and balancing the
conflicting demands of design, engineering,
and production.

Quality management strategies such as
total quality management, continuous meas-
urable improvement, and just-in-time inven-
tory are based on normative rules for pro-
cesses to make similar products with an
established architecture. In contrast, ar-
chitecting creates something new, an origi-
nal effort for which data (and solutions
deduced from the data) are unavailable, es-
tablished procedures may be inadequate, and
clients’ needs are ill-formed, inconsistent,
and conflicting-even into operation.
STAKES ARE HIGH. Staying up-to-date in sys-
tems architecting requires an awareness of
ongoing research in the field. In today’s com-
petitive world, learning and teaching cannot
remain static. Not only must individuals par-
ticipate in lifelong learning, but instruction
also must advance based on several promis-
ing areas of research:

Techniques for assessing architectures, ar-
chitecting, and architects prior to, during,
and after system construction. Application:
management.

The behavioral and functional profiling of
architects and architectural teams for creat-
ing effective architectures. Application: hir-
ing personnel and forming compatible teams.

The effects of the political process on sys-
tem architecture and design; for example,
changes in tawtion, regulation, privatization,
national security policy, and space explora-
tion mission priorities. Application:
government.

The design of ultraquality systems whose
failure rate is intended to be so low as to be
statistically unmeasurable prior to use, as for
spacecraft to the planets and for nuclear

power plants. Application: product and pro-
cess certification.

The design of purposefully opposed sys-
tems, such as opposing weapons and cryp-
tographic systems. Application: defense and
security systems.

Biologically inspired architectures for in-
telligent machines, such as n e d networks,
associative memories, and artificial intelli-
gence languages. Application: designers of

smart systems and their software.
All in all, the future of systems archi-

tecting and instruction in it is exception-
ally promising. Technological develop-
ments and programs of national scope
are increasing the need, which is felt
by both individuals and companies.
TO PROBE FURTHER. Perhaps the first
text to relate the process of architect-
ing to that of systems and their en-
gineering is Systems Architecting:
Creating and Building Complex Sys-
tems, by Eberhardt Rechtin, published
by Prentice Hall, Englewood Cliffs,

N.J., 1991.
A classic book of heuristics-and satire-

applicable to defense systems acquisition is
Augustim’s Laws, by Norman R. Augustine,
published by the American Institute of Aero-
nautic~ and AStrona~t i~~, Washington, D.C.,
1982.

A famous system architect-engineering
text, applicable well beyond its own field,
is The Mythical Man-Month, Essays on So#-
ware Engineering. by Frederick P. Brooks
Jr., published by Addison-Wesley, Reading,
Mass., 1982.
ACKNOWLEDGMENTS, The work reported
here has been supported by the School of
Engineering of the University of Southern
California in Los Angeles, with encourage-
ment and student tuition support from south-
ern California aerospace companies, espe-
cially Aerospace Corp., Hughes Aircraft, the
National Aeronautics and Space Administra-
tiodCalifornia Institute of Technology’s Jet
Propulsion Laboratory, Northrop, Rockwell
International, and TRW. Key insights have
been provided by Harry Hillaker, Gerald
Nadler, Robert Spinrad, Albert D. Wheelon,
and dozens of students.
ABOUT THE AUTHOR. Eberhardt Rechtin (F)
is president-emeritus of Aerospace Corp.,
El Segundo, Calif., and professor of en-
gineering at the University of Southern
California in Los Angeles with appointments
in electric systems, aerospace, and indus-
trial and systems engineering.

Rechtin has been an assistant director of
the California Institute of Technology’s Jet
Propulsion Laboratory in Pasadena, a direc-
tor of the Defense Advance Research
Projects Agency, an assistant secretary of
defense (telecommunications), and the chief
engineer of Hewlett-Packad Co. He was the
chief architect and director for the National
Aeronautics and Space Administration of the
Jet Propulsion Laboratory’s Deep Space
Network for its first 10 years of construc-
tion and use in tracking spacecraft.

Rechtin-The art of systems architeding 69

