
The art of systems architecting 
Tbe design of complex 
systems must blend 
tbe art of arcbitecture 
witb tbe science of 
engineering 

ew engineers would be sur- 
prised, today, to see the 
word “architecture” in 
their professional journals; 
nor would they have to 
think twice about its mean- 
ing. Architecture is under- 
stood to be the underlying 

structure of things-whether of buildings, 
communication networks, neural networks, 
spacecraft, computers, software or organi- 
zation charts-systems all. 

Less recognized, perhaps, is that where 
there are architectures, there must be ar- 
chitects. Moreover, there must be a process, 
“architecting,” by which the architectures 
are created, designed, and built. 

Architecting, itself, has ancient roots. It 
first appeared in Egyptian writings some 
4000 years ago. Many of its basic principles 
were codified by the Roman, Vitruvius, in 
the 1st century B.C. But only in the last 50 
years or so has the concept of “systems” 
been comparably formalized. 

The merging of architecting and systems 
into systems architechg is still more recent. 
That process is acceleratmg, driven by three 
factors: the increasing architectural com- 
plexity and scope of global-sized projects and 
markets, the ubiquity of computers in vir- 
tually all modem systems, and the power of 
computer aids to system design. 

Retrospectively, it is apparent that the 
success or failure of many defense, space, 
and civil systems of the last half century has 
depended in large part on how they were 
structured. The most successful ones were 
conceived, built, tested, certified, and oper- 
ated in a way that ensured their integrity and 
performance. They were based on a consis- 
tent set of principles and techniques that 
were maintained throughout all phases of the 
project. And their designs were resilient 
enough to bend to the inevitable changes 
brought about by time and circumstance. 
As civil architects would say, they had 

good bones. They also had fine architects 
who supervised their programs from begin- 
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ning to end. The systems that have failed- 
whether technologically, politically, or 
economically-lacked these essentials. 

Such conclusions are not new. Similar 
ones have been drawn over the centuries 
about pyramids, cathedrals, cities, ships, and 
fortiiications. What is new is that those con- 
clusions are now being seen as relevant to 
the engineering of electrotechnical systems. 

Systems engineering and architectmg are 
brought together by certain common prin- 
ciples. Each is concerned with complexity 
and reliability-systems engineering be- 
cause of its nature and architecting because 
of its scope. The form of a system is strongly 
driven by the functions it is called upon to 
perform. Architecting defines that form by 
matchmg, fitbng, balancing, and compromis- 
ing proposed functions and forms until a 
practical result can be achieved. 
SYSTEMS PRINCIPLES. Our first focus is on 
the principles of systems-an area more fa- 
miliar to most engineers. Different people 
can mean different things by the word “sys- 
tem.” For the purposes of architecting, a 
useful and sufficiently precise definition of 
a system is: “A collection of different things 
so related as to produce a result greater than 
what its parts, separately, could produce.” 
Indeed, the purpose of building a system is 
to achieve that greater result. 
Example: The system function of an assembled 
automobile is transportation, unavailable from 
the parts separately. 

This definition of system has at least two 
important consequences. First, all systems 
have subsystems ana‘ all systems are parts of 
larger systems. Hence the systems world is 
inherently unbounded: no matter where a 
boundary might be drawn, things important 
to the system will exist outside it. 

The same situation occurs in classical ar- 
chitecture. 
Example: Designing a water faucet (a very 
small system, but a system nonetheless) 
means considering not only its own function, 
but also the demands of the systems within 
which it operates, such as the inclusion of 
urban water-usage restrictors to minimize the 
effects of drought on scenic lakes several hun- 
dred kilometers away. 

Thus, complex systems cannot be ar- 
chitected, built, or operated in isolation. 
Their “outer” and “inner” worlds will al- 
ways intrude. The best that can be done is 
to draw boundaries so that intrusions, when 
they occur, are secondary and not 
primary-that is, that they can be accommo- 
dated without breaking the system. 

Example: The design of a manned spaceflight 
program, a strategic defense system, a nation- 
al wideband communication network, an air- 
line, or a light rail system is strongly influenced 
by extra-technical imperatives-economic, 
human, social, political, and international. 
These imperatives must be included in the de- 
sign or the system will fail or abort, quite pos- 
sibly well before completion. Placing them 
“outside” the system for design purposes 
could destroy any chance of success. 

The architect’s task is made particularly 
difficult by the fact that rarely, if ever, is 
there a single optimal solution for all parties 
and all circumstances. The objective, in- 
stead, is a kind of general satisfaction based 
on practicality, fit, balance, and compromise. 
As experienced architects will a f f i i ,  that 
takes both science and art. 

The second architecturally relevant con- 
sequence of our definition of system is the 
value added by a system must come from the 
relationships between the parts, notfrom the 
pa& per se. Each part already contributes 
its own inherent value to the system. But 
it is the total of all the parts working together 
that yields the whole system-a phenome- 
non sometimes known as synergism. 
Example: The Douglas Aircraft DC-3, the first 
commercial airliner to make a profit for its own- 
ers, consisted of airfoils from the National Ad- 
visory Committee on Aeronautics (the 
predecessor to the U S .  National Aeronautics 
and Space Administration), monocoque de- 
signs already tried by the Boeing Aircraft Co., 
engines on the shelf, and control systems then 
in development. But, with modified elements 
in novel combination, the DC-3 made air trav- 
el efficient, reliable, and pleasurable. 

It follows that syslarns arshitects who work 
with systems must be specialists in 
relationships-notgenralisk who k m  a lit- 
tle bit about all the parts. Their specialty is 

Defining terms 
Arclllecllng: the process by which a system is 
created, designed, and built. 
Herrltllcs: empirical rules of thumb derived from 
experience and judgment, useful for attacking prob- 
lems too complex to be solved by analytical tech- 
niques alone. 
Sytlem: a collection of different things related in 
such a way as to produce a result greater than what 
its parts, separately, could produce. 
Sysler anhHrclrm: the underlying structure of 
a system, such as a communication network, a neu- 
ral network, a spacecraft, a computer, major soft- 
ware, or an organization. 
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a concentration on the system as a whole: 
that is, on those elements, interfaces, and 
factors that have the most effect on overall 
system performance, cost, and schedule. 
Systems architects must necessarily know, 
or learn, a great deal about some details- 
those that impinge on the overall system- 
but need not, and probably should not, pay 
much attention to the rest, which are best 
handled by the subsystem experts with 
whom the systems specialists work. 
Example: A launch vehicle systems engineer 
need not know the detailed design of a solid 
rocket motor. But that systems engineer would 
be expected to understand in some detail how 
the rocket’s segments were connected, how 
each rocket was attached to others and to the 
payload, what its performance tolerances must 
be compared to other rockets on the same ve- 
hicle, what control authority is provided by its 
thrust control mechanisms, and so forth. 

Without question, it requires expertise to 
know which details, interfaces, tradeoffs, 
and compromises count the most and which, 
the least. Poor choices can be disastrous; too 
many choices can be overwhelming. 
ART AND SCIENCE. Much more so 
than engineering, architecting is 
an art as well as a science. There 
is an art to creating any structure, 
whether a building, a ship, a 
spacecraft, a network, or any 
other system. It is not just a fig- 
ure of speech to praise a system 
as elegant or as having style. 

The artistic element of ar- 
chitecting is most apparent when 
architects are asked how they cre- 
ate what they do, how they come 
up with alternatives out of the blue 
that withstand the scrutiny of anal- 
yses, and how they know that 
when all the parts come together, 
a system never built before will 
work to a client’s satisfaction. 

The usual, and not very helpful, 
answer is, “I just use common 
sense.” Further inquiry leads to 
the discovery that what is really 
meant is contextual sense: doing 
what is sensible in the context of 
the problem. Commercial aircraft 
architects do it in creating a safe 
and profitable aircraft, spacecraft 
architects in producing a reliable 
and efficient spacecraft, and soft- 
ware architects in developing 
powerful and user-friendly soft- 
ware. And that means the use of 
empirical insights, tricks of the 
trade, and lessons learned from 
past successes and failures-that 
is, heuristics. 

The art in architecting is a spe- 
cial process, essential in treating 
situations too complex for analy- 
sis. It evolved centuries ago as a 
way to handle ill-structured prob- 
lems with all their uncertainties, 
unknowns, conflicting require- 

ments, and sociopolitical imperatives- 
problems typical of complex systems. 

At the risk of oversimplification, disci- 
pline-oriented engineering is deductive, ana- 
lytcal, and rational, while systems-oriented 
architecting is inductive, intuitive, synthet- 
ical, and pragmatic. At one extreme are the 
powerful applied science tools of engineer- 
ing; at the other are the often personal arts 
of architecting. Straddling both is the prac- 
tice of systems engineering. 

Architects of buildings who have studied 
the process of architecting-how architects 
work-have identified four methods in com- 
mon use that depend on the nature and 
phase of the project, the particular problem 
to be solved, and the style of the architect: 
Uormarlve merhodelogy relies on standard, 
quantitative solutions based on subjective 
value judgments (“good” vs. “bad” prac- 
tice). Building codes, communication pro- 
tocols, and design handbooks are examples. 
R a l l o d  n # t h & / ~  is based on quantitative 
analysis and algorithms that tell how to find 
a solution, but not what it is. The scientific 
method of data gathering, hypothesis, and 

test is an example. Calculus is mother. Ra- 
tional methodology-the mainstay of sys- 
tems engineering-is intended to be as ob- 
jective as possible. Optimization is one of its 
goals. 
Algurnentotl yo mthodelwy is based on broad 
participation of interested parties. Brain- 
storming is one of its techniques; quality cir- 
cles is another. This methodology aims for 
imaginative consensus. Its strength is group 
commitment to a common goal. 
Heurlstlc methdolorr is based on common 
sense or rules of thumb derived from ex- 
perience and judgment. The law of supply 
and demand is an example from economics. 
Murphy’s Law is an example from system 
design. The aim here is reasonable, satis- 
factory solutions and an avoidance of system- 
level disasters. More than the other three 
methodologies, the heuristic methodology 
is an art. 

The normative and rational methodologies 
are widely taught in engineering schools and 
used extensively in practice. These methods 
have powerful tools available-statistics, 
probability theory, modeling, optimization, 

tmdeoff charts. simulation. statis- 

The ConceptVal phase: 
.The choice between acclittedures may weU degend upon which set d 
drawbacks the dmt can handle best. 

Extreme r~~~~ should remain under challenge throughout sp 
kfim design, ~~~, and oprwation. 

the oripinal skkmentof the pfablem is mcessrily 

lions optimized. 

averill architecture 
than if there are not. 

The build and aast phases: 

ough h a  small sy&n is wilrkelyto be good enough 

Within the same class of producEs and processes, the failure rate d a 
product is h m l y  propwtmal to its cost. 

by high-qualii architecting, 
inspection, test, and rework. 

acceptance Miteria determine 

The operations phase: 
Before the flight, it’s opinion. After the flight, it‘s obvious. 
The first are often wrong. 

*For every is a COun$lsystem. 
*Sucees is deibled by the bholder, not the architet. 

There’s nothing lii being the first success. 

Spbm&h&#ng: C~~~ Compbx-, by Eberhardl 
Rechtin, published by Prentke Hall, Englewood clifls, N.J., 1991. 

tics, operations research, and per- 
formance analysis. They help 
break down problems into solva- 
ble subproblems whose solutions 
are then integrated into the whole. 
System certification is quantitative 
and not easily disputed. These 
two methodologies comprise the 
‘ ‘science’ ’ part of architecting and 
the technical foundation of sys- 
tems engineering, detailed de- 
sign, and integration. 

In argumentative methodology, 
free-xanging discussion reigns. Its 
weakness is design by committee. 
On the surface, it seems to con- 
tradict a widely held view that the 
best architectures are the product 
of a single mind or small team. 
Success, therefore, requires good 
team dynamics-a well-designed 
human system guided by the em- 
pirical knowledge of human be- 
havior. In this respect, the ar- 
gumentative methodology might 
be considered a managerial vari- 
ation of the more general heuris- 
tic method. 
HEURISTICS UNBOUND. The heuris- 
tic methodology is particularly 
characteristic of architecting. In 
contrast with the other meth- 
odologies, it is synthetical, induc- 
tive, and experiential. Its tools are 
heuristics-rules of thumb for 
discarding out of hand unreasona- 
ble options, for maintaining the 
integrity of system goals, for tak- 
ing precautions against pitfalls 
ahead, and for recalling lessons 
learned. 

But most important, heuristics 
is the only methodology that 
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directly attacks problems too complex to be 
solved by analytical techniques alone; that 
is, those characteristic of unbounded 
systems. 

A good example of a descriptive heuris- 
tic, mentioned earlier, is  Murphy’s Law: “If 
something can go wrong, it will.” A n  as- 
sociated prescriptive heuristic, an antidote 
to Murphy’s Law, is: “Simpldy, simplify, 
simphfy.” Neither of these mentions statis- 
tics or statistical quality control. Instead, 
they suggest a strategy: if a system is  built 
in such a way that something could possibly 
go wrong, no matter how improbable, fix it. 

An older heuristic, often used for simpler 
products, is: “If it ain’t broke, don’t fix 
it”-a strategy demonstrably not competi- 
t ive for large-scale, complex products. I t  is 
not competitive primarily because an ele- 
ment “good enough” in a small system is  
unlikely to be good enough in a more com- 
plex one. (As more and more parts are 
added, the system reliabil ity will go down 

unless the individual part reliabilities go up.) 
The practical value of heuristic insights is 

seen in their extensions by W. Edwards 
Deming, Joseph M. J u m ,  Genichi Taguchi, 
and others. These are known as total quali- 
ty management (TQM), continuous meas- 
urable improvement (CMI), just-in-time 
(JIT) inventories, and other techniques. 

A quite different heuristic, useful in aero- 
space and computer design, is: “In parti- 
tioning a system into subsystems, choose a 
configuration with minimal communications 
between the subsystems.” With a few word 
changes, this could be applied to the design 
of communication networks, organizations, 
and system subcontracts. 
Example: A common question in the design of 
complex, smart spacecraft is whether to use 
a centralized or distributed computer system 
to run the major subsystems, such as propul- 
sion, guidance, control, command, tele- 
metering, science instrumentation, and sys- 
tem test. The centralized configuration is 

generally lighter, smaller, computationally more 
efficient, and less power consuming. The dis- 
tributed configuration requires less informa- 
tion transfer, and solves local problems local- 
ly. But most important, it permits each 
subsystem to be self-testing without recourse 
to a central control unit. As such, it enables 
subsystem subcontractors to deliver checked- 
out units to a prime contractor. To do likewise, 
a centralized configuration requires central 
computer copies at each subcontractor site 
and/or delivery of subsystems that can be 
checked out only at the system level-a con- 
tracting nightmare and a prescription for over- 
runs and delays. Fixing such problems usually 
requires adding weight, space, power, and 
computer capacity late in the development. The 
decentralized configuration is now preferred, 
for management and not technical reasons. 

Heuristics cannot promise that a heuristi- 
cally designed system will be the best per- 
forming of all possible systems. But, from 
experience, that type of system will be much 

Teaching systems architecting: science and art 
Instructing others in systems architecting involves 
both its science and its art. Teaching the underly- 
ing science is straightforward; teaching the art is 
still in the experimental stage. Existing guidelines 
are few, even from classical architecture. 

What does seem to be true, though, is that until 
the science of systems architecting is understood 
and the complexities of systems experienced, the 
role of its art is lime appreciated. Consequently, at 
the University of Southern California (USC) in Los 
Angeles, systems architecting is taught only to en- 
gineers with three or more years of experience (the 
average is seven years)-those who already recog 
nize that the science of engineering, though pwerful 
indeed, is somehow not sufficient to meet the d e  
mands they face in building complex systems. 

The challenge is to teach the art without crush- 
ing its creative core under a burden of memorized 
dictates and caveats. 
COOlFYlW6 C8MNIBW SENSE. Fortunately and per- 
haps surprisingly, codifying the common sense of 
successful systems architects is not so difficult. The 
first step is to show students that what is meant by 
common sense is contextual sense: what seems 
sensible depends on the system’s particular con- 
text (whether the system is a building, an aircraft, 
a spacecraft, a missile, a computer, software, a net. 
work, or an organization). 

That means that a heuristic (an empirical rule of 
thumb) that applies in one context may not apply 
in another. True, a heuristic that is sensible in one 
context may be sensible in another, but showing ap- 
plicability has to be by example to be credible. It can- 
not be deduced mathematically. Instead, a proposed 
heuristic, on presentation to people versed in a field, 
has to seem ”reasonable” to them and then must 
survive their almost automatic mental search for sup 
porting or contradicting examples. 

A diligent search for useful heuristics reveals a 
wealth of wisdom and lessons learned in many fields. 
Once given the concept of heuristics as architec. 
tural aids, an alert student can spot statements of 

common sense in most articles describing success- 
ful or unsuccessful systems. 

At USC, well over 100 heuristics have been found 
or newly articulated for the acquisition of electrical 
and aerospace systems. Comparable numbers no 
doubt can be found scattered through the literature 
of computers, software, manned space flight, ship. 
building, law, economics, and management. 

Though it might be wished that only a handful 
of heuristics existed that mlght be used as a checklist 
for all occasions, that does not seem to be the case. 
Different heuristics apply to the different phases of 
system acquisition-conceptualization, engineering, 
design, production, test, cerfmcation, and operations. 

Basically, architecting is both multidimensional 
and relational; it has many parts, some of them relat- 
ed to several others. Its problems come in sets, not 
singly or in sequence. Similarly, its practitioners are 
multifaceted, broad-ranging, “renaissance” people. 
Like systems, they seem to have no bounds to their 
thinking and inquiry. If heuristics are to be taught, 
they have to be taught not as a bounded set of rules, 
but as a technique, an abbreviated form of ex. 
perience and the starting point for creativity. 

One technique of instruction might be the one 
commonly used for teaching law, economics, and 
conventional architecture: case studies. But the con 
text of the system poses a practical difficulty. Doing 
a detailed case study of an aircraft system might 
not be of much help to a telecommunications ar- 
chitect and vice versa. Unless the heuristic fits the 
student‘s system and context, it will not be remem- 
bered when it counts. And in a typical USC class 
of graduate students-systems engineers from local 
aerospace and electronic firms-there may be as 
many systems of interest as there are students. 
A CASE IN PUNT. In the classes in systems ar- 
chitecting at USC, each student is asked to choose 
a system of personal interest, using it as a frame 
of reference to which the ideas in the course can 
be attached. Each student thus develops a personal 
case study as the course progresses. Although the 

technique works well, it does require that the stu- 
dent know at least one system in some detail. For 
the time being, at least, that confines it to the gradu- 
ate level and for practicing engineers. 

The hundred-plus heuristics studied so far range 
from the energy management system of the Gener- 
al Motors Corp.’s upcoming electric car to the U.S. 
government‘s Strategic Defense Initiative. And the 
insights the students have brought to the class- 
both their own and those of the architects they 
interviewed-have contributed substantially to the 
field of systems architecting. 

Better yet, the students have been able to apply 
the lessons learned back on their jobs by assess. 
ing and modifying the systems studied. One fact 
about heuristics has become evident: whereas the 
science of architecting can be used by people of 
many skill levels, using its art effectively takes ex- 
perience and judgment in context. 

That result might have been expected; it is charac- 
teristic of any art. No one becomes a musician by 
studying mathematics or drawing, much as those 
three arts might be intertwined philosophically. 

USC has now established a formal Master of 
Science degree in systems architecture and en- 
gineering. The utility of the program has been vali- 
dated by the number of graduate students enroll- 
ing in it and by executive-level endorsement from 
major companies in southern California. 

The program consists of systems architecting the 
ory and practice complemented by analytic courses 
in each student’s specialty, such as aerospace and 
mechanical systems, automation and control sys- 
tems, communication and signal-processing sys- 
tems, computer and information systems, and con- 
struction and manufacturing systems. 

USC’s experience in this field has demonstrated 
that the tools for the art of architecting systems can 
be taught, that they can be applied effectively, and 
that they will appreciably shorten the time needed 
for students to become professional systems ar- 
chi tec ts. -ER. 
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less likely to encounter unpleasant surprises 
down the road. More resilient to changes in 
its technical, budgetary, political, and com- 
petitive environment, it is more likely to be 
“good enough’ ’ (satisfactory) and less like- 
ly be “the best possible” (optimum)-if in- 
deed a “best” or optimum exists at all. 

Why might an optimum not exist? Two 
relevant heuristics tell why. First, “No com- 
plex system can be optimum to all parties 
concerned, nor all functions op- 
timized.” Secondly, “A system tight- 
ly optimized for a particular competi- 
tive situation is unlikely to be presented 
with that situation (the competition 
knows better than to do so!).” 
CRADLE TO GRAVE. Archite- does not 
end with a first rough sketch, but con- 
tinues through production into opera- 
tion. In many systems that have been 
the architectural successes of this cen- 
tury, such as the Apollo moon project, 
the original architects were active for 
the entire project. 

Lacking such architecting continuity, sys- 
tems integrity would have been threatened, 
early consideration of likely events and prob- 
lems down the road might not have oc- 
curred, controversies over system test and 
acceptance would have been exacerbated, 
and accountability for operations would have 
been diffused. 

Direct participation by the architect is 
most critical during two phases of system 
buildmg: conceptualization and certification. 
Two heuristics succinctly say why. For con- 
ceptualization: “All the serious mistakes are 
made in the first day.” And for certification: 
“Regardless of what has gone before, the 
acceptance criteria determine what is actu- 
ally built.” The architect’s role is in estab- 
lishing acceptance criteria at the outset and 
certifymg compliance with them at the end. 

During the other phases-system en- 
gineering, detailed design, development, 
production, diagnosis, and operation-the 
architect is a monitor, advising the client on 
how well the system is conforming to plan 
at each stage, suggestq actions that would 
benefit the system as a whole, and helping 
the system accommodate to change. 
COMPLEMENTING STRATEGIEB Architecting is 
an ongoing process-one that continues until 
the system is acquired. It is not just a front- 
end design-md-proposal effort tossed over 
the transom to the next group. 

In this respect, architecting historically 
predates and affiis the principles of con- 
current engineering, total quality manage- 
ment, continuous measurable improvement, 
and just-in-time inventory. Like architectmg, 
those strategies also call for bringing togeth- 
er design, engineering, and production in the 
interest of better products and systems. 

There are, nonetheless, notable differ- 
ences between them and architecting. Com- 
pared with concurrent engineering, ar- 
chitecting is broader in its scope, covering 
higher-level system concepts and focusing 
less on detailed design. Also, its organiza- 

tional structure of a small team contrasts 
with the collective style of concurrent en- 
gineering, and it places heavier emphasis on 
the certification (buy-off) process. On the 
other hand, concurrent engineering, which 
is valuable in making designers more aware 
of production problems, postulates an ongo- 
ing product line and generally puts to one 
side questions of concept, certification, pub- 
lic policy, and post-sale accountability. 

The success or failure 
of many civil and 
defense sys tems 

depends mainly on 
their architecture 

Thus, concurrent engineering and ar- 
chitecting complement each other. They 
might even be combined. For example, the 
architect could act as the chairman of the 
concurrent-engineering group, maintaining 
overall systems integrity and balancing the 
conflicting demands of design, engineering, 
and production. 

Quality management strategies such as 
total quality management, continuous meas- 
urable improvement, and just-in-time inven- 
tory are based on normative rules for pro- 
cesses to make similar products with an 
established architecture. In contrast, ar- 
chitecting creates something new, an origi- 
nal effort for which data (and solutions 
deduced from the data) are unavailable, es- 
tablished procedures may be inadequate, and 
clients’ needs are ill-formed, inconsistent, 
and conflicting-even into operation. 
STAKES ARE HIGH. Staying up-to-date in sys- 
tems architecting requires an awareness of 
ongoing research in the field. In today’s com- 
petitive world, learning and teaching cannot 
remain static. Not only must individuals par- 
ticipate in lifelong learning, but instruction 
also must advance based on several promis- 
ing areas of research: 

Techniques for assessing architectures, ar- 
chitecting, and architects prior to, during, 
and after system construction. Application: 
management. 

The behavioral and functional profiling of 
architects and architectural teams for creat- 
ing effective architectures. Application: hir- 
ing personnel and forming compatible teams. 

The effects of the political process on sys- 
tem architecture and design; for example, 
changes in tawtion, regulation, privatization, 
national security policy, and space explora- 
tion mission priorities. Application: 
government. 

The design of ultraquality systems whose 
failure rate is intended to be so low as to be 
statistically unmeasurable prior to use, as for 
spacecraft to the planets and for nuclear 

power plants. Application: product and pro- 
cess certification. 

The design of purposefully opposed sys- 
tems, such as opposing weapons and cryp- 
tographic systems. Application: defense and 
security systems. 

Biologically inspired architectures for in- 
telligent machines, such as n e d  networks, 
associative memories, and artificial intelli- 
gence languages. Application: designers of 

smart systems and their software. 
All in all, the future of systems archi- 

tecting and instruction in it is exception- 
ally promising. Technological develop- 
ments and programs of national scope 
are increasing the need, which is felt 
by both individuals and companies. 
TO PROBE FURTHER. Perhaps the first 
text to relate the process of architect- 
ing to that of systems and their en- 
gineering is Systems Architecting: 
Creating and Building Complex Sys- 
tems, by Eberhardt Rechtin, published 
by Prentice Hall, Englewood Cliffs, 

N.J., 1991. 
A classic book of heuristics-and satire- 

applicable to defense systems acquisition is 
Augustim’s Laws, by Norman R. Augustine, 
published by the American Institute of Aero- 
nautic~ and AStrona~t i~~,  Washington, D.C., 
1982. 

A famous system architect-engineering 
text, applicable well beyond its own field, 
is The Mythical Man-Month, Essays on So#- 
ware Engineering. by Frederick P. Brooks 
Jr., published by Addison-Wesley, Reading, 
Mass., 1982. 
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