
University Relations

What do IT architects do all day?

Toby Thurston

December 2006

c� IBM Corporation 2006

University Relations — What do IT architects do all day?

Contents

1 Introduction 3

2 Concepts and ideas 4

2.1 The idea of architecture in IT . 4

2.2 The wider context . 6

2.3 What happens next? . 7

2.4 Standards . 8

2.5 Views . 9

3 Roles and Responsibilities 13

3.1 The architect as technical pre-sales support 13

3.2 The architect in the software development life cycle 14

3.3 The architect on an end-to-end implementation project 15

3.4 Managing the software stack . 16

3.5 The architect as town planner . 17

3.6 The design authority . 18

3.7 Consulting engagements . 21

3.8 Working with other IT professionals . 22

3.9 The architect in procurement . 23

3.10 Skills required for architecture roles . 24

4 The common language of architecture 24

4.1 Open systems . 25

4.2 Parts of an application . 26

4.3 Clients and servers . 27

4.4 Distribution architecture . 28

4.5 Object-oriented terms . 29

4.6 Transaction processing . 29

4.7 Design style . 30

5 Applying the vocabulary of architecture 31

5.1 Internal application architecture . 32

5.2 Architecture of complex systems . 32

5.3 Coordination of many applications . 34

5.4 Service Oriented Architecture . 36

6 Techniques and Method 38

6.1 Why do architects need a method? . 38

6.2 What does a method include? . 38

6.3 Architectural Thinking . 41

7 Retrospect and prospect 42

7.1 What architecture is not . 43

7.2 What architecture is . 43

7.3 Career paths . 43

7.4 Suggestions for further work . 44

7.5 Technical discussion topics . 44

c Page 2 � IBM Corporation 2006

� � �

University Relations — What do IT architects do all day?

1 Introduction

Aficionados of American children’s literature may recognise in the title of this lecture a

reference Richard Scarry’s What to people do all day? [1], a childhood classic from the

1960s that remains as delightful as it is dated. It is a book that explains how things work,

and the part people play in keeping them working. It is full of cut-away drawings and

unexpected connections that explain how water, power, raw materials, food, and transport

systems are provided to keep an overall system working. That system is of course the

community in which we live.

Without wishing to strain the analogy too far, it is possible to see in Scarry’s work the

childish beginnings of one of the core motivations of the IT architect: a desire to

understand not only how the individual details work (at lease in concept) but also an

interest in seeing the connections between things, and the big picture of a busy society at

work. For this is — in essence — what the IT architect is about: understanding enough

about the details to make informed decisions and seeing the overall situation clearly

enough to direct resources to what is important.

IT architecture [has] proved to be successful in providing an analytical and

decision-making framework for a sequence of new initiatives or changes, at

the same time ensuring design integrity and stability. — Cherbakov, et al. [2]

This document accompanies a seminar that introduces the concepts, roles, and activities

of IT architects. This text is deliberately written in a text book or discursive style instead of

simple lecture notes: in this way you get a readable reference to which you can return after

the seminar in order to explore the ideas in more detail. Suggestions for further study are

included in the concluding section.

The material for this introduction to IT architecture session has been adapted from IBM

education material that is designed for fairly recent graduates who have had 18–24 months

experience on IT development and implementation projects. The IBM material comes from

a class that introduces a broad sweep of technology from the basic hardware components

of computers, disks, and networks, through operating systems, databases, and

middleware, up to application development and deployment environments. The emphasis

is on the principles of how these things work, rather than on the specifics of the current

implementations available in the market; these are what is important for a broad

understanding of IT (also they change more slowly, so it is easier to keep the class material

up to date). The class is taught in three or four days and intentionally covers a very wide

range of topics, in order to help students appreciate the ‘big picture’ of technology and to

make connections from one topic to another.

This ability to connect and to have insight into the general principles of communications

and information technology is one of the key characteristics of a good IT architect. This

introduction is designed to show you what other characteristics are required in an architect,

to give you an understanding of the issues that they wrestle with, the roles they play on

projects and in IT departments, the vocabulary, techniques, and methods that they use,

and the different career paths that they might follow. Your learning objectives for this

session are to appreciate what IT architects do and why they are needed.

� IBM Corporation 2006 Page 3 c

University Relations — What do IT architects do all day?

In order to cover the ground at a fairly brisk pace, we make some assumptions about you:

first that you are studying a relatively technical degree subject and that you already are

familiar with the basic ideas and concepts of communications and information systems;

second that you have an interest in the application of technology to business problems (for

that is what architects do); and thirdly that you have at least a passing familiarity with the

organizational structures (projects, operational departments, development teams, etc) that

are found in the IT industry, preferably from some first hand work experience. At least two

of these three are required for you to get the most from this course, but please do not be

afraid to ask and to question what is said if there is anything that is not clear, or that

contradicts things that you thought you knew.

In preparation for this course you were asked to review — at least to skim-read — some

Gartner Group articles [3, 4] about IT architecture. We will not formally review these

papers, but we will refer to them, and you are welcome to raise issues about the matters

that they discuss. You are warmly recommended to re-read them after the course.

This session will consist mainly of lectures, although there will be some exercises and

group discussion. Your active participation is requested during these exercises and

discussions; afterwards your feedback; and at all times, your attention.

2 Concepts and ideas

We are all familiar with the term architect in its traditional sense, a designer of buildings,

bridges, or gardens. More an artist than an engineer perhaps, but how does the term

translate into communications and information technology? Thirty years ago, technical staff

at IBM were called ‘system engineers’, and their job was essentially to help customers

install and use computer equipment; as computing has evolved this job has also evolved

into what we now call an IT architect.

2.1 The idea of architecture in IT

There are two distinct usages of “architecture” in computing: of these one is rather more

interesting than the other. If we look at the dictionary definition below, we find the less

interesting meaning at sense 4:

architecture noun 1 the art, science and profession of designing buildings,

ships and other large structures and supervising their construction. 2a a

specified historical, regional, etc style of building design, especially when it is

thought of as fine art Victorian architecture; b the buildings built in any •
particular style. 3 the way in which anything is physically constructed or

designed. 4 computing the general specification and configuration of the

internal design of computer or local area network. architectural adj.

architecturally adverb. ETYMOLOGY: 16c: from Latin architectura.

— Chambers Online

We will come back (briefly) to sense 4 when we discuss the parts of the IT architect’s job

that deal with infrastructure, but it is not the main purpose of this course. (If you thought

c Page 4 � IBM Corporation 2006

University Relations — What do IT architects do all day?

you were going to find out about the architecture of chip design, you have been sadly

misinformed; you had better go to the library and get a copy of Hennessey and

Patterson [5] to read). The more interesting sense is actually the first, when ‘other large

structures’ is taken to include major business applications of computing.

One of the earliest (and still useful) attempts to define this usage in computing was made

by John Zachman writing for the IBM System Journal in 1987. With the increasing size

and complexity of IT systems, Zachman foresaw the need to provide a means to control the

division of the system into manageable components, and the integration of these and

perhaps external components into a single entity that supported a business need.

Borrowing from the construction industry, his paper introduces the idea of different views of

a system; each one designed to assist those involved in the project to understand what it

being built and how their part fits into the whole.

John Zachman has made an entire business out of elaborating his idea (see

www.zifa.com), but original simple framework segmented a system vertically into data,

processes, and distribution; and horizontally into layers of increasing detail, and looked like

this:

Framework Data Process Network

Scope description

Model of the business

Model of the information

Technology model

Detailed description

Actual implementation

The contents of the boxes were not strictly prescribed, in order to make the framework

more flexible (the above contents are examples). The key idea is that at each level the view

across the system can be more specialised or detailed, but will remain consistent with the

layer above. Zachman illustrated this idea with examples from the construction industry. So

at the top level would be the client’s view of what they want, while down at the technology

model level there might be the electricians’ wiring diagrams, and the plumbers’ installation

plan.

Each level can be associated with activities that you might already have experienced on

software development projects. These activities can be grouped into phases.

• Working with clients to capture their business requirements

• Analysis of how the users work and how their requirements translate into IT terms

� IBM Corporation 2006 Page 5

Business entities Business processes Business locations

E-R diagram Functional flows Logical network

Data model Data flows Distributed system design

Data design Structure chart System architecture

Data base description Program Netork architecture

Data Function Communications

c

www.zifa.com

University Relations — What do IT architects do all day?

•	 Design of a whole system, or may be just parts of a system; and the development of

high level designs, low level designs and module specifications

•	 Building software to a specification, developing and running unit tests to ensure that

your module does what it should

•	 Testing a collection of modules that form a complete system

Your experience may also include a spell in a support team that fixed problems after a

system went live. Or even part of the team that actually deployed what your colleagues had

written. In some projects it is possible that you have been involved in running the

development systems, and also running the production systems for real. If you did, this

might have included monitoring the performance of the system, fixing bugs, controlling

changes, scheduling releases etc. Even if you have never done any of these broader roles,

you are probably aware that clients have (large) groups of IT staff who do these things.

2.2 The wider context
If you ever have written software as part of a bigger team, then when you finished testing

your modules, you may have handed them on to another team to do integration testing, or

system testing as it’s sometimes called. Your module would have had to work with other

components in the client’s system, and the whole system that you and your colleagues had

built would have to work with other systems that the client might be already running. To the

other systems in the integration test, your part of it is nothing but a black box that takes

certain input and creates output — preferably in a correct form. Assembling and testing a

large system is easier when all the components have clean, well-defined interfaces.

Infrastructure

Architecture

Requirements

Other systems

Design
choices

Your work

HW OS DB Middleware Tools

Users

Testing

Going back a little, when you designed your part of the system you may have followed

design guidelines that constrained how you were able to solve your design challenges, and

that shaped the overall result of your design. When you built the system, you — probably

without being aware of it — used development tools and a development environment that

had been carefully selected long before you started work. These either came with the

application package you were working on, or were the client’s choice — so that what you

created would work with other existing systems.

The important point to note is that there are choices to be made and that the notion of

well-defined interfaces is what makes it possible to assemble complex systems. To

understand this better we will look at the issue from the other way around.

� IBM Corporation 2006	 Page 6 c

University Relations — What do IT architects do all day?

2.3 What happens next?

In the seminar we do an exercise called “What happens next?” that helps us to understand

the layers of complexity involved in any computer system (or any complex system at all)

and why interfaces are important.

We take a hypothetical application that does on-line stock checking over the Web. The

interface is simple: you select a stock item, you press the ‘check’ button and information

about the current level of stock for that item is shown. The exercise explores what happens

between the moment you click on the mouse and the moment the information appears on

the screen.

� If you have not yet done the exercise, take a few moments to think about what components

of hardware and software are involved in translating the movement of your index finger on

the mouse into some information in a database.

The first point of the exercise is to demonstrate that without layers of abstraction we would

never get anything done. If we had to start every system development by building a

pointing device and writing software to interpret the electronic signals that it emits, then we

would never get anywhere. This is called reinventing the wheel and you should avoid it;

nevertheless it’s surprising how often programmers do it. In an academic environment

(such as IBM Research division) re-invention might be a valuable learning experience, or

might (just possibly) turn up a wonderful novel technique, but in the commercial world, it is

generally preferable to reuse well-known and existing functions or components wherever

possible.

Even when there are no components available — because we are genuinely breaking new

ground perhaps — it would be important to create some to get our work done. It is a

fundamental principle in good design and IT architecture to keep each part of our design

consistent and coherent. You are storing up trouble if you mix up the management of your

user interfaces with your business logic. This principle is called the separation of

concerns. If you adhere to it you will be able to test each part independently before you try

to integrate the complete system; and when you come to maintain your creation (or when

someone else has to) the job will be simpler if you have clearly separated the logical

groups of function.

In fact this separation of concerns is also useful in describing a system as a whole or an

enterprise-level collection of systems, but on a different level (or perhaps in an orthogonal

plane). Clearly the detailed design will be vertically segmented into the different

components that make up the whole system, but in documenting the architecture of a

system or an enterprise it useful to separate the concerns of those involved in

understanding the system too. What we need are different views for different people. We

will explore this shortly.

The final point that should emerge from the exercise is that just as the mouse cable fits into

a standard socket on the back of your computer so the mouse driver fits into a standard

interface provided by the operating system, and its signals are presented to application

programs in a standard way. All these interfaces are defined standards. How they are

defined we’ll come to in a minute.

c Page 7 � IBM Corporation 2006

University Relations — What do IT architects do all day?

It should be clear that when developing a system there is a great deal going on beneath

the surface that you don’t see — and that you don’t want to see. In computer buzz word

terms, it is transparent to your application. As an aside, it is interesting to note that there

are also things that you do see in your program but that are not really there — memory is

the obvious example. The following table may help you remember the buzz words:

Can see it Can’t see it

Can touch it real transparent

Can’t touch it virtual requirement

Now we will look in more detail at standards and views.

2.4 Standards

We are now beginning to look back up at the wider picture, and we will eventually discover

that there is the same need for interfaces and standards at that level too. First we will

consider formal — and informal — computer standards.

Successful standards are developed in more or less the same way, and not just in the

computer industry. They start with a good idea. Someone comes up with a clever way of

solving a problem. The solution is normally arbitrary, like making clocks that go clockwise

rather than the other way, or laying railway tracks 4 feet 6 inches apart. There are often

competing solutions to the same problem — like laying railway tracks at 7 feet and a

quarter of an inch apart. These other solutions may be technically superior, and there may

be a great debate about them. Manufacturers may make their products to fit one or the

other, typically they have to choose in order to keep costs down. Eventually one side wins

and the other standard is dropped — even the Great Western Railway eventually took up

its broad gauge tracks. Finally the standard may become enshrined in some form of

legislation. These three stages in the life of a standard may be called: proprietary, de facto,

and de jure

One could argue that proprietary standards are not really standards at all, but it’s important

to note that some standards are owned by private commercial organizations and others are

in the public domain, controlled by committees and industry representatives. As the long

history of anti-trust lawsuits and other legislative action against large IT corporations

shows, governments tend to take a dim view when a de facto, proprietary standard is used

to gain unfair commercial advantage.

It takes a long time for formal independent bodies, like the International Standards

Organization (ISO), or the British Standards Institute (BSI) or the American National

Standards Institute (ANSI) to act over standards, so in recent years the trend has been for

commercial companies to co-operate and form a consortium to build up support for their

particular pet standard. In the mean time the market place may have different ideas.

If you browse the catalogue at the ISO web site, you will get an idea of the breadth of what

can be standardized. The list includes things that you may not have considered suitable for

standardization, for example ISO 12207:1995 is the international standard for software life

cycle processes. However the widely used ones nearly always define some form of

interface between systems. These include:

c Page 8 � IBM Corporation 2006

University Relations — What do IT architects do all day?

•	 The syntax of programming languages

•	 Protocols for communication between systems

Definition of the behaviour of standard Unix tools
•
•	 Guidelines for presenting information to users on the screen

•	 Standards for defining other standards

This last may sound bizarre, but it covers an important area. The obvious omission from

the above list is what we refer to as APIs — application programming interfaces — and the

reason it is omitted is because they are nearly all proprietary, and although some are in so

widespread use that they are standards de facto, very few of them are so de jure. However

there is a standard for describing an API. It’s called ‘interface definition language (IDL)’, and

it’s widely used by certain forms of middleware. Did someone say “but what is an API?”?

Here’s what the Free Online Dictionary of Computing has to say: See www.foldoc.org.

Application Program Interface �programming� (API, or "application

programming interface") The interface (calling conventions) by which an

application program accesses operating system and other services. An API is

defined at source code level and provides a level of abstraction between the

application and the kernel (or other privileged utilities) to ensure the portability

of the code.

An API can also provide an interface between a high level language and

lower level utilities and services which were written without consideration for

the calling conventions supported by compiled languages. In this case, the

API’s main task may be the translation of parameter lists from one format to

another and the interpretation of call-by-value and call-by-reference

arguments in one or both directions.

2.5 Views

The discipline of architecture was invented to cope with the complexity of modern

sophisticated communications and information systems. The key aims of the discipline are

to be able to present different, but coherent, views of a system in order to allow different

specialized teams to work effectively together on a large project.

By treating other parts of the system as black boxes with well known interfaces (but whose

implementation details are hidden from us) we can make progress towards building useful

functional systems. Instead of dealing with the low level electrical impulses coming from a

mouse (for example) we deal with an idealized abstraction of a mouse represented as a

device driver. This approach not only makes us more productive, but insulates us from

lower level changes. For example we can use a new infrared mouse, or a Bluetooth mouse,

without needed to change our application programmes. This simple idea of a dealing with

hardware complexity can be extended to help us to deal with similar complexity and

change in software.

The following diagram shows a high-level summary of the “4 + 1 Model View” that is a

central part of the IBM Rational Unified Process for software design and development.

c	 Page 9 � IBM Corporation 2006

www.foldoc.org

University Relations — What do IT architects do all day?

Logical view

End user
Functionality

Process view

System integrators
Performance
Scalability
Throughput

Implementation view

Programmers
Configuration management

Deployment view

System engineering
System topology
Communication

Provisioning

Use case view

Conceptual Physical

This diagram represent a system architecture. The use case view in the middle controls

the whole picture and the other views are specializations derived from it. A ‘use case’ is a

written down document that describes one particular interaction with the system. Use

cases involve actors (people or machines or other systems), processes, inputs, output,

sequences, and timings related to some business task. They are grouped in related sets

and may have alternatives paths either surrounding them or embedded in them. Together

the use cases define the system. They are useful in many ways. They can be easily

understood (with a little training) by ordinary users and business analysts. They are

(supposed to be) a succinct and unambiguous way of writing down the business

requirement for what the system actually does. They can be used to test the system on

paper and in early prototypes, and so on. Alistair Cockburn’s book Writing Effective Use

Cases [6] provides a good practical introduction.

The other four views are aimed at the various audiences that need to understand the

system, but they are not intended to stand alone in all cases. Programmers are allowed

(even required) to look at the other views in order to complete their work. Nevertheless this

separation of views allows for a more complete approach to the documentation of the

architecture and makes it easy for large teams to coordinate their work.

There is no room in this class to do more than introduce these views here, but this area is

well provided with good references. In particular you should read Documenting Software

Architectures [7]. The author of the 4 + 1 model, Philippe Kruchten from IBM Rational

heartily recommends it. The following is from his online review [8] of the book, and explains

some of the background to why they invented the model.

Ten years ago, I was brought in to lead the architecture team of a new and

rather ambitious command-and-control system. After a rocky beginning, the

architectural design work started to proceed full speed, with the architects

finally forging ahead, inventing, designing, trying, and resolving, in an almost

euphoric state. We had many brainstorming sessions, filling whiteboards with

design fragments and notebooks with scribblings; various prototypes

validated–or invalidated–our reasoning.

� IBM Corporation 2006 Page 10 c

University Relations — What do IT architects do all day?

As the development team grew in size, the architects had to explain the

principles of the nascent architecture to a wider and wider audience,

consisting not only of new developers but also of many parties external to the

development group. Some were intrigued by this new (to them) concept of a

software architecture. Some wanted to know how this architecture would

impact planning, organization of the teams and the contractors, delivery of the

system, and acquisition of some system parts. Some parties wanted to

influence the design of this architecture. At a further remove from

development, customers and prospects wanted a peek, too. So the architects

had to spend hours and days describing the architecture in various forms and

levels and tones to varied audiences, so that each audience could better

understand it.

Becoming such a center of communication slowly stretched our capacity.

On one hand, we were busy designing, and validating the architecture; on the

other hand, at the same time we were communicating to a large audience

what the architecture was, why it was the way it was, and why we did not

choose some other solution. A few months into the project, overwhelmed, we

began having a hard time even agreeing among ourselves about what it was

we had actually decided.

This led me to the conclusion that ‘If it is not written down, it does not exist.’

This became sort of a leitmotiv within the architecture team for the following

two years. The architecture could have been whatever we had talked about,

argued, imagined, or even drafted on a board. But in the end, the architecture

of this system was only what was described in one major artifact: the Software

Architecture Document (SAD). Architectural elements and architectural

decisions not captured in this document simply did not exist. This one rule —

‘If is not in the SAD, it does not exist’ — provided incentive to evolve the

document and keep it up to date, almost to the week. It also gave us an

incentive not to include anything and everything, such as untried ideas, in the

SAD, which became the project’s definitive arbiter and a central element in the

life of the project. It was our display window for showing off our stuff, our

comfort when we were down, and our shield when attacked.

The key questions we faced at the time were: What should we document

for our software architecture? How should we document it? What outline

should we use? What notation? How much or how little information should we

include? There were few exemplars of architectural descriptions for systems

as ambitious as ours. Driven by necessity, we improvised. We made mistakes,

and corrected them. We rapidly discovered that architecture was not flat, but

rather multidimensional, with several intertwined facets. Some facets — or

views — were of interest to only a few parties. We found that many readers

would not even open a document that weighed more than a pound, and that

we would have a hard time updating it anyhow. We realized that, unless we

captured the reasons for our choices, we were doomed to reconstruct them

again and again, every time a new stake holder with a sharp mind came

around. We picked a visual notation that was neither too vague and fuzzy nor

too esoteric and convoluted, to avoid discouraging most parties.

Today, software architects have a great starting point for deciding how to

� IBM Corporation 2006 Page 11 c

University Relations — What do IT architects do all day?

document their software architecture: With this book, you will have what you

need in your hands. The authors went through many experiences similar to

mine and extracted the important lessons learned. They read many software

architecture documents. They reviewed the academic literature, studied all the

published books, checked the standards, and synthesized all of this wisdom

into this handbook, which describes the essential things you need to know in

order to define your own software architecture document. You will find

guidance for defining the document’s scope and organization, and on the

techniques, tools, and notation to use (or not to use), as well as comparisons,

advice, and rules of thumb. You’ll also find templates to get you started, and

continuing guidance for the times you get lost or feel despair along the way.

This book is of immense value. Description and communication about a

software architecture is crucial to that architecture’s many stake holders. This

handbook can help you with both and save you from months of trial and error,

lots of undeserved hassle, and many costly mistakes that could potentially

jeopardize your entire endeavor. It is an important reference for the shelf of

any software architect. . . . you will find this book is a complete Users’ Guide

that explains not only the ‘4 + 1 views’ from the Rational Unified Process, but

other approaches as well.

� IBM Corporation 2006 Page 12 c

University Relations — What do IT architects do all day?

3 Roles and Responsibilities

This section deals with the roles and responsibilities of the IT architect. It looks forwards to

a future class that will examine the “Business–IT Gap” and how IT architects can help to

bridge it. We will explore the purpose of the roles and how the IT architect fits into a project

or a permanent organization.

IT architect is the principal technical leader in his or her given domain. A chief architect for

a major commercial, industrial, or governmental concern will be the person who oversees

the technical strategy of the whole organization; such a chief architect will generally report

to a Chief Technology Officer, or to a Chief Information Officer. Unlike the CTO or the CIO,

who normally have some executive responsibility in a large organization, the chief architect

will be unlikely to manage a large department, but will spend his time consulting and

advising on how to get the best out of the organization’s investments in IT. His or her prime

responsibility is to understand the technical issues and to communicate them clearly to the

executive decision makers.

The domain of the more ordinary architect may not be so broad as the technical strategy of

an entire organization, but the main role is the same: on a development and

implementation project the IT architect is still the principal technical leader; the person who

understands the whole system from the business objectives down to the coding techniques

used in a program module. Most importantly, the architect is also a communicator. There is

no point understanding the whole system (apart perhaps from the personal satisfaction of

the train spotter) without also explaining it to all those involved as appropriate. Crucially

this probably means explaining a single, coherent system in a number of quite different, but

consistent ways.

3.1 The architect as technical pre-sales support
The large IT vendors and services companies are important employers of IT architects,

and it is likely that most people in the IT industry whose job title includes ‘technical’ and

‘architect’ are actually working in customer-facing roles in large sales organizations. We

will mention later their role in developing responses to bids and designing solutions as part

of an effort to win a big development contract, but in many large organizations it has

become essential to support the sales force with sufficient technical staff who can

understand how complex products are supposed to work together, and can explain to

potential customers how they might benefit from buying them.

In the early days of computing, most vendors employed staff to help to physically install the

equipment they supplied. These members of staff were typically called ‘systems

engineers’. As IT systems developed the systems engineer role specialized into hardware

and software engineers. As IT became pervasive in an organization the role needed

further specializations: experts at getting different products to work together, and technical

staff that understood not only the vendors products but the problems of their customer’s

industry or commercial sector and could advise on how best to solve the customer’s

business problems with the technology. This latter role is still an important one for IT

architects. Sometimes the role focuses on a specific industry sector, sometime on a range

of products. Sometimes the focus is at the business application level, sometimes at the

level of the infrastructure (because just running the IT has become an industry in itself).

c Page 13 � IBM Corporation 2006

University Relations — What do IT architects do all day?

3.2 The architect in the software development life cycle

In many software development projects it is unusual to have a full time architect on the

immediate management team, although many of the large consulting firms employ one of

their more technical and senior developers to do many of the architect’s jobs. Typically this

individual will also be the team leader of a small infrastructure team that acquires and

manages the development and test infrastructure, and works closely with the customer’s IT

staff to hand over the finished article at the end of the project.

In other projects the architect may be involved part time, perhaps as a reviewer at critical

stages of the project. These interventions are typically to make sure that the finished

system will work correctly. There are several aspects to this:

•	 Traceability — it is important in many industries, especially tightly regulated ones like

financial services, for the organization to be able to demonstrate that they are

making good use of their investments. For an IT project, this generally means being

able to demonstrate (to an auditor) that a given set of investments in software or

hardware actually supports some business function. The financial planners like to be

able to see that the money spent is providing some tangible benefit. The architect is

the professional who is most able to explain how what is actually implemented

supports what was originally required.

•	 Performance — a familiarity with what is physically possible in computing and a

sense of confidence in simple numerical analysis are vital skills for an architect.

Making sure that the system will perform adequately is second only to making sure

that it does what was required. In fact adequate performance is always (at least)

implicit in every requirement statement. One of the roles of the architect is to tease

out these implicit statements and to ensure that the numbers are captured along with

the requirements.

The numbers will include: likely numbers of users; seasonal, weekly, and daily

patterns of usage; likely numbers of transactions of a given type; the worst response

time for a given transaction that would be acceptable to the business users; the

rough size of data required; the geographic distribution of the users and the

computer locations; the likely network capacity and response times available.

As the design of a system progresses, these numbers will be built up into a

performance model which will be used to predict the performance of the whole

system, to design the performance testing, and ensure that improvement efforts are

concentrated on the right places.

•	 Reliability — closely related to the performance model is the reliability or availability

model. The architect needs to take a broad view of the components and context of

the whole system. This view will help to inform decisions about which components

are worth duplicating, how back up should be managed, where to rely on a third

party system for input, and where to remain self-contained and independent.

•	 Cost — the fourth major area that an architect will need to review on all commercial

software projects is the cost of the system. Designing to a price involved

compromises and trade-offs between function, speed, and realistic project time

tables. The architect is a crucial player in making these decisions on a project, as

cutting costs here and now may have an even more expensive effect over there and

c	 Page 14 � IBM Corporation 2006

University Relations — What do IT architects do all day?

then. It is vital therefore that the architect should have a good grasp of the

fundamental economics of computing and the basic principles of financial analysis.

Besides the management and reviewing role outlined above, the architect working on

software development projects will also be responsible for design and development

standards (and overseeing their enforcement), development environments and tools, and

writing design guidelines and rules. As ever, such rules and guidelines are useless if

no-one knows about them or follows them, so the architect must get involved in a

communications programme and must ensure that the management and compensation

arrangements work to encourage staff to follow the rules.

3.3 The architect on an end-to-end implementation project

As noted above, at IBM the IT architect job evolved from one that used to be called system

engineering. This job still exists, and from time to time architects are still required to get

involved at this end. Many of them rather enjoy it. It is the world of product specialists and

technical support staff who have deep knowledge in narrow specialized areas; often the

architect’s ability to grasp the big picture makes them very good at managing all the

technical details without getting ‘lost in the weeds’. Nevertheless it is important for an

architect to know when to seek specialist advice.

At this level the job consists of making sure all the infrastructure works. This infrastructure

clearly includes all the hardware and communications equipment, and also large parts of

the software ‘stack’ that runs it. But is also includes some softer aspects: these include

system management and operational planning.

Hardware considerations

At the lowest level the architect-as-system-engineer must ensure that the necessary

equipment is in place in time for the planned system, or for the planned changes. This

means working closely with the vendors of the kit to ensure that it is ordered in good time

(long lead times are still with us for large IT systems), that the machine room will have

enough space to accommodate it, that the power and air-conditioning will cope with the

extra load, that the operator manuals will arrive on time, that the doors will be big enough,

and so on. This is known as operational readiness, and the more organized vendors will do

much of this for you: they often have their own planners and specialists who will provide the

necessary checklists, and environmental planning information.

The architect is also responsible for making sure that the right kit is ordered and that there

is enough of it. As early as possible in any design effort, the architect (or a delegated

specialist in the architecture team) should start collecting numbers of users and transaction

types from the business requirements, and begin to translate these numbers into physical

processing requirements, and network capacities. In RUP terms this is a combination of

the process view and the deployment view.

Even if the hardware issues are delegated to a specialist, the architect must ensure that

the specialist has a good understanding of the whole system and the overall purpose, so

that he or she directs their efforts to the right ends, and can communicate what is required

c Page 15 � IBM Corporation 2006

University Relations — What do IT architects do all day?

to the appropriate vendor. One of the key skills here is to be able to judge from the results

of benchmark tests or the vendor’s planning information how the planned business

transaction workload is going perform on a given machine. In extreme cases, or for

radically new workloads, it may be necessary to get the vendor to prove the performance of

the system by running pilot or prototype tests as part of the development cycle.

3.4 Managing the software stack

Software takes over where hardware leaves off, and in some cases slightly before. It is not

unknown for the ‘microcode’ in some IT systems to cause compatibility problems, even for

kit from the same vendor. As a system engineer the architect must make sure that all the

software required to develop and to run the system is in place at the right time, and, in view

of the cost of monthly software licence rental on large systems, not a moment too soon.

The software concerned includes the basic operating systems for all the hardware,

middleware, and development tools.

•	 The operating system can be surprisingly complicated. Each machine type has its

own operating system, and a vendor will typically support several different versions

or levels of each system. The architect must understand all the differences and

potential incompatibilities and ensure that necessary upgrades are planned into the

project schedule and budget.

With Windows — particularly Windows Server — there is the additional worry about

security patches. Other operating systems are not immune from security problems, it

is just that Windows has many more than any other system. So many that a special

process for finding and applying patches is necessary for any system that makes

extensive use of Windows servers or clients. The main trouble is that applying

patches takes time and effort on a regular basis.

•	 Above the operating system is the middleware — a wonderfully elastic term that

includes everything other than the operating system that is not actually part of the

system you are building. The choice of middleware has a profound influence on the

design, development, and operation of a system so it is important to get it right. The

basic purpose of the middleware is to provide common services to all the

components of your system to allow them to communicate efficiently and to make

your developers more productive. Crucially the choice of middleware product will

normally be made at the enterprise level so on an end-to-end engagement you will

probably need to use what it already in place. The architect’s job is to assess how

suitable any existing middleware might be and to ensure that it is used effectively.

•	 Strictly part of the middleware, but so important that we should mention them

separately, are the database management system and the transaction management

system. These are both areas where deep specialists make entire careers out of one

special aspect of a product, and where the architect will need assistance with the

detailed design issues. It is also an area where the choice of product will normally be

one of the ‘givens’ at the start of the design. The end-to-end architect must know

enough about the characteristics of the chosen systems, particularly the

performance characteristics, in order to oversee the detailed design effectively.

•	 All of the above items in the software stack will help to determine the choice of

software development tools. Different people prefer different tools, and often form

c	 Page 16 � IBM Corporation 2006

University Relations — What do IT architects do all day?

strong sentimental or religious attachments to them, so the architect’s job of

choosing a development environment and policing it is often not a happy one.

Beyond the hardware and the software stack, the architect-as-engineer must also think

about the management of what is being built both during development and once it is

released into production. The disciplines of system management are well developed and

widely adopted in mature IT organizations. There is a (rather dull but worthy) set of

standards called ITIL (the IT Infrastructure Library) that describes all the disciplines

involved from change management and capacity planning to instrumentation and provision

of a help desk.

IBM has developed an architectural view of these disciplines and their associated

processes known by the snappy title of the Component Business Model for the Business of

IT (CBM4BoIT). This divides the job into three layers — direction, control, and execution —

and several functional divisions. This is illustrated below.

Customer
Relations

Business
Management

Business
Resilience

Information
Management

Solution
Development

Solution
Deployment

Solution
Delivery

Direct

Control

Execute

Business
Enablement

Service
& Solution
Strategy

Technology
Strategy

Enterprise
Architecture

Portfolio
Management
Technology
Innovation

Resilience
Strategy

Regulatory
Compliance

Strategy
Integrated

Risk Strategy

Information
Management

Strategy

Knowledge
Management

Strategy

Development
Strategy

Deployment
Strategy

Services
Delivery
Strategy

IT Support
Strategy

Business
Performance

Planning
Demand

Management
Communications

Planning

Financial
Management
Technology

Performance
& Value

Personnel
Management

Continuous
Business Ops

Regulatory
Compliance

Integrated Risk
Management

Security, Privacy
& Data Protection

Information
Architecture
Information
Resource

Management
Knowledge
Resource

Management

Services and
Solutions

Lifecycle Plan

Services and
Solutions

Architecture

Change
Planning

Release
Planning

Operations
Planning

Infrastructure
Resource Plan

Support
Services Plan

Business
Performance
Management

IT Services &
Sol’ns Marketing

IT Financial
Management

Staff Admin
& Development

Supplier and
Contract Admin

Business
Resilience

Regulatory
Compliance
Remediation

Data & Content
Management

Knowledge
Capture

& Availability

Service and
Solution
Creation

Service and
Solution

Maintenance

Change
Implementation

Release
Implementation

Infrastructure
Operations

Infrastructure
Resource Mgmt

Support
Services Mgmt

The architect needs to be aware of what is going on at all levels in this model, but will

spend most of his time working in the upper level (direct), setting standards and policy.

Time spent working at the execute and control levels however provide invaluable

experience and insight into the job of managing communications and information systems.

3.5 The architect as town planner

If the architect working on a single system implementation project is like the master mason

working on a medieval cathedral, overseeing the whole conception and making a link

between the sources of funding and the actual construction work, then the IT architect

working across several projects is more like a modern town planner.

The idea of the architect as planner is written up extensively in Roy Schulte’s 1997 paper

called ‘Architecture and Planning for Modern Application Styles’ [3]. Whereas the

traditional architect will be concerned with the design of one building at a time, the planner

c Page 17 � IBM Corporation 2006

University Relations — What do IT architects do all day?

is concerned with the overall development of the whole town, and whether each proposed

new building will fit into and enhance the town’s overall environment.

The planner will do two other important things: he or she will be responsible for

determining what common services (like water, sewerage, gas, electricity, etc) the town

should provide to each individual building, and how much to charge for them; and he or she

will also set out guidelines for building design and construction and will enforce a

governance regime to ensure that all new buildings comply with the rules.

There are direct parallels to these activities in the IT world, and the IT architect as planner

— or the ‘enterprise architect’ as he or she may be known — justifies his or her existence

by the efficiency of the overall IT investment and the value it delivers to the enterprise. This

is often a surprisingly hard thing to do. On paper it may seem obvious that one

organization does not need two or more personnel management systems, but historical

issues (for example the merger history of the organization) and political considerations

(department A will not work well with department B) frequently complicate the technical

decisions that an architect must make. In the interests of keeping projects small and

manageable it may even be more efficient to allow a degree of duplication and overlap,

provided it is part of a larger design. In some cases the architect may even want to

encourage it. Provided the interfaces are clean and the different problem domains are well

understood it is possible that the organization will benefit from having two competing

solutions to the same problem. This is much more likely to be true of transactional systems

than master database systems. It may be a good idea for a phone company to have

several competing billing systems that can be used on different batches of call data

records, but it is rarely a good idea for one company to have more than one master

reference database. It is up to the enterprise architects to decide what is appropriate in

each case. This frequently involves some interaction with the financial managers of the

enterprise, or at least sufficient awareness of the business processes.

Similarly the enterprise architect should be aware of financial parameters under which a

company operates and should ensure that individual designs conform to any cost

constraints. The architect Arne Jacobsen was well-known as a perfectionist: everything in

his buildings had to be just right. He designed and specified everything down to the

furniture, the door handles, and even the shape of the bricks in some buildings. The peak

of Jacobsen’s working life was in the post war boom of the 1950s and 1960s. He died in

1971 just before the first major oil price crisis. It is perhaps unlikely that a Jacobsen could

have survived in the modern economic climate. Today architects — in information

technology and in real construction — make use of standard components as much as

possible in order to reduce cost and to promote interoperability.

3.6 The design authority

Experience gleaned from many communication and information system development and

delivery projects, shows that projects need more than just good project management in

order to succeed. They need technical governance and they need IT architects working in

a design authority to deliver it.

Projects rarely fail on unsolvable technical issues, but have often failed or faltered on poor

IT governance.

c Page 18 � IBM Corporation 2006

University Relations — What do IT architects do all day?

•	 The requirements may be incomplete, inconsistent, or incoherent (or all three), and it

is normally too late (or at least expensive) to fix them after a contract has been

signed.

•	 The planned hardware and software may not be big enough to cope with the

workload; or the actual workload may be much bigger than the business anticipated.

•	 There may be other technical risks that were not foreseen. Worse still there may be

technical risks that were foreseen but no plan was made to contain them. ‘We didn’t

design it to cope with circumstances that bad. . . ’

•	 The parts of the solution may not be fit together when it is (finally) tested as a whole.

‘We thought they were doing that part. . . ’

•	 Performance issues may not be picked up until solution is live, whereas the team

should have focussed on performance throughout design, build, and test.

•	 The availability of legacy systems may suffer because of the introduction of new

systems. ‘We didn’t realise that system interfaced to those servers as well’.

It is the core job of the IT architect to provide good IT governance, but he or she cannot act

as a one-man-band. The architecture and design principles and standards must be owned

and maintained within a single central body. This helps to ensure ongoing solution integrity

over time (and when key individuals move on), and to ensure that different projects adhere

to the business and IT strategies of the organisation. A central design authority can also

ensure that the organization makes the most of its IT investments by encouraging reuse of

whole or partial solutions.

At its simplest, the design authority exists for two reasons: (a) to carry responsibility

upwards (also known as ‘technical accountability’) and to exercise authority downwards

(‘technical control’).

The people who control the project need to have the assurance that the solution will work.

Since perfect knowledge is usually unachievable, this resolves into a tradeoff between

spending money (on designing out all the theoretical problems, on buying skilled people,

on frequent reviews, and on spending longer time on all this) versus accepting the risk that

the solution might not work and will then require a lot of money be spent on fixing the real

problems. An investment in a design authority is a sensible use of money to reduce the risk

that the solution will fail.

Once the solution is designed on paper, the build teams will need to have guidance in

some areas on how to build it, In particular on how the overall solution is split into smaller

elements to facilitate coding and testing, and on what is the best sequence for building so

that tests can be done in a structured manner. The design authority is also in the best

position to see (and to explain) the technical dependencies on external or parallel activities.

The design authority team will normally be led by a chief architect, and will be made up of

several specialist architects doing one or more of these roles:

•	 Application architect — often the second most senior architect, responsible for the

overall shape of the solution or the enterprise plan. Understands and can explain

how each major subsystem fits together and what each one is supposed to do.

� IBM Corporation 2006	 Page 19 c

University Relations — What do IT architects do all day?

Designs the interfaces between different applications and parts of applications, and

governs their use. Decides on when to buy or build new applications, when to

enhance or replace existing ones. Defines the overall portfolio of business services

that the enterprise needs.

•	 Infrastructure architect — in charge of making sure that the right equipment is in the

right place at the right time, and that all the middleware is specified and works

properly. Works closely with the performance architect to do the capacity planning

and hardware sizing. Works closely with the application architect and the system

management architect to understand the availability requirements and to design

appropriate redundancy. Responsible for the operational model that maps functional

components and services to the servers and systems that actually implement them.

•	 Data architect — owns the enterprise data model and the inter-application

messaging design. Responsible for making sure that the applications use the data

base effectively. Responsible for planning for the effective use and exploitation of

information. This may include the design and supervision of an operational data

store (working copies of live data) or a data warehouse (extracts from live databases,

summarized and enhanced to help the business management understand the state

of the enterprise).

•	 Integration architect — owns the middleware design and ensures that all applications

make effective use of it. Works closely with the data architect on the messaging

design and the application architect on the application design.

•	 Security architect — responsible for the various aspects of system security:

principally user access control, user authentication, data integrity, auditing, network

intrusion prevention and detection, use of data encryption or anonymization

technologies, fraud detection and prevention, and overall system integrity (which

essentially means ensuring that the system does what it is supposed to and nothing

else).

•	 Performance architect — owns the performance model of the system, works closely

with the application architect to build the users’ use case model of the system, and

then to derive a corresponding transactional model. Works with the development

team to ensure that appropriate instrumentation is added to new applications. Works

with the infrastructure architect to ensure that the component model is sized

effectively to support the planned transaction and user volumes. Works with all the

others to ensure that the system as a whole will provide adequate performance for a

reasonable price. Works with the development teams to design, plan, and interpret

the results from performance testing.

•	 System management architect — responsible for the design of the operational

support systems including availability and performance reporting, resiliency

planning, change planning, release management, operational procedures, data back

up and recovery, metering and billing, design and planning for help desk and other

support resources.

The combined design authority team works in four related areas:

•	 Requirements management: in an ongoing project, or for an enterprise on a

continual basis, this consists of ensuring that the requirements for the business are

� IBM Corporation 2006	 Page 20 c

University Relations — What do IT architects do all day?

well understood by the development staff and working with the business to clear up

any misunderstandings (on both ‘sides’); understanding how the requirements evolve

and change over time, and managing those changes through into real systems. In

order to do this the team will establish a process to allow them to trace each

implemented function back to a particular requirement. It is important for the

business to know that it is making sensible IT investments and to be able to see that

the money spent on system X is supporting this valuable business requirement Y.

The increased level of corporate scrutiny from external industry bodies (as part of

Sarbannes-Oxley and other legislation) means that the design team have a vital role

to play in not only helping to ensure that money is spent in the right places, but also

in demonstrating this to interested outside parties.

•	 Enterprise architecture: setting out the overall technical policy and direction; making

sure the divisions between different projects or sub-projects are clear and

widely-respected; establishing and promulgating a consistent set of design methods

and tools; managing the high-level interactions of successive change programs into

a cohesive whole; avoiding unpleasant or expensive missed dependencies; and

ensuring that the interfaces between different cooperating parts work well.

•	 Solution assurance: helping to develop new proposals, overseeing project plans

(especially to coordinate changes at critical times); signing off project ‘base line’

plans and budgets; running reviews at regular milestones in individual projects;

making remedial interventions as needed.

•	 Design management: oversight of the design, development, and testing processes;

being the final ‘court of appeal’ for design issues and maintaining a set of

‘Architectural Decisions’ of global importance, that sets out each decision, the

arguments, and the rationale for the chosen option (well maintained this can save an

immense amount of futile argument over the same design choices in different

projects); responsibility for the containment of technical risk and making the financial

management team aware of the implications of the risks; control of the change

management processes across all work.

There are plenty of examples of well run projects that have had good design authority

teams; unfortunately there are rather more examples of projects that have not been able or

willing to set up a design authority team. Many of these projects struggle to contain

technical risks and issues and many of them fail to deliver all or part of their objectives.

In successful teams there is always a close working relationship with the business

leadership. Sometimes there will be a parallel business design authority team, but if this is

the case, some single person needs to be in direct control of both the technical and

business teams.

3.7 Consulting engagements
Senior IT architects, especially those working for large IT services companies, often work

as consultants, advising clients about how to set up and run their own IT architecture

departments, or about a wide range of other aspects of communications and information

systems strategy.

This work might include reviews of the effectiveness of a client’s IT organizations, or

reviews of particular projects. It might include research into different aspects of technology

c	 Page 21 � IBM Corporation 2006

University Relations — What do IT architects do all day?

futures or best practice. It might include a study of a range of options for change where an

independent voice and a fresh point of view is valued.

The senior management in many organizations, particularly in the public sector, either

cannot afford to keep their own senior technical staff or don’t trust them. In these

circumstances an external IT architect may be called in to evaluate a position, to

recommend some course of action, or to work as an agent for change. They may even be

seconded to the client organization for a period of months or years. These assignments

require a special mix of skills, experience, tact, and an ability to influence other people

without direct managerial control. It is vital to be able to establish one’s credibility and

usefulness with client staff at all levels, and to be sensitive to the local issues and political

pressures. The work can be very rewarding for the right individuals as it requires not only

technical experience but also personal skills to make a positive difference at a client. These

assignments are often done by one architect working alone, or perhaps a small team.

Senior IT architects are also often members of a professional body such as the British

Computer Society or the Institute of Electrical Engineers (IEE), or of a cross-industry

standards body or users’ group. These forums provide an important means to maintain

technical vitality for individuals and organizations, and provide opportunities for

development and career advancement. They are also often the forum for senior architects

to ‘give back’ some of their experience and insight to the rest of the community. In the large

services organizations this experience is usually distilled as a formal method. The

services part of IBM has a very large method called IBM Global Services Method. The

formal architectural deliverables and techniques are introduced below (page 38); the senior

architect’s contributions are normally in the form of short, practical technique papers.

3.8 Working with other IT professionals

The author Fred Brooks best known for his book The Mythical Man Month [9] is a rich

source of anecdotes and quotes. On the book itself Brooks once said that it’s called the

bible of software engineering because everyone knows they should read it and act upon

what it says, but nobody ever quite manages to do so. On IT architects he maintains that

they should be “protected from managers and managing”. This section examines how IT

architects work with other IT professionals, both managers, peers, and staff.

Despite Fred Brooks’ dictum it necessary for IT architects to deal with managers, especially

in a large bureaucratic firm, and also to be managers from time to time. A good technical

manager will promote the career of an IT architect, look out for suitable opportunities, and

allow time for education and personal development when setting objectives. It is also

incumbent on the IT architect to promote their own career path; setting a clear technical

direction often helps (‘I want to be a performance architect’ or ‘I want to be a data

architect’); make sure that your manager knows what you want to do, and that he or she

gets good feedback about you on jobs that are in your preferred direction.

In some organizations or on a particular project your reporting manager may also be your

task manager; if he or she is a IT architect then you should be looking to learn from them,

and to divide up the work in a way that best suits your combined talents. If you are working

for a non-technical manager, then you will need to think about your work slightly differently.

c Page 22 � IBM Corporation 2006

University Relations — What do IT architects do all day?

Most good project managers have a clear idea about what the technical architecture team

are supposed to do and will have a set of expectations that you will need to meet and to

manage. Clearly you will have to judge each project situation on its individual

characteristics, but in general it is a good idea to get ahead with a plan for your work, be

prompt in reporting your progress to the project leader, and to get yourself (or one of your

team) established as a key reviewer at any review or for approval of significant design

milestones.

The important things are that you are left to exercise technical control (as defined above in

the section on the design authority), and that the project manager relies on you for input on

technical items such as task sequencing, interlocks, issues and risks.

Providing this input is one of your key tasks with a non-technical manager. You must make

sure that they understand enough about the technical problems in order to make informed

decisions about the timing of the project and the allocation of resources. The ability to

explain what is important about a technical issue is one of the key attributes of a really good

IT architect. The important thing is to concentrate on the important aspects of the particular

issue and not to get bogged down in the fascinating technical details; it often helps to

imagine what the other person will be thinking and what is important to them. This applies

equally to other non-technical decision makers that you need to influence and persuade.

The second major class of colleagues that an IT architect will work with are the technical

specialists. There is a wide range of people involved in specialist technical work, not all of it

to do with communications and information systems. The specialists will include marketing

experts, business analysts, strategy and change consultants, industry specialists,

hardware specialists, and software product specialists. At their worst they will have a

narrow view of the world, blinkered as they are by the need to understand their own field

completely. Your job is to make sure that you get the right help out of them, and that you

explain enough of the ‘big picture’ context to them so that they can contribute effectively.

3.9 The architect in procurement

Procurement is the name of the process by which large organizations acquire

communications and information systems (or any other major capital outlay but it is only

the IT aspects that concern us here). Most IT architects spend a significant proportion of

their time involved in either developing procurement documents or responding to them.

This is not because it is easier to theorize about a new system than to concentrate on

running an existing one, but because the best time to apply the architect’s skills to a system

design is right at the front.

Work on bids can be done on either side of the fence between suppliers and customers.

For a customer the architect must work with the business leaders to develop an effective

set of documents to express the requirements in terms that can be understood properly by

the bidding vendors and which present the work as an attractive proposition. These

documents are generally in a formal series. The first is a ‘request for information’ (RFI) that

outlines the requirements, and asks for short responses from vendors to outline what their

products can do and how they would go about enhancing them or building a solution for

you based on them. The responses to the RFI are used to draw up a short list of serious

c Page 23 � IBM Corporation 2006

University Relations — What do IT architects do all day?

contenders. The formal document response is normally supplemented by private

conversations, presentations, and briefings. The customer IT architect would be expected

to attend to understand the technical issues involved and to ask questions that reveal

strengths and weaknesses.

The requirements may be re-evaluated based on the initial vendor responses about what is

possible and how to approach the problem. The next document is a more formal ‘request

for price quotation’ or RFP, which sets out some business objectives, an outline

specification for how to solve the problem, and requests a detailed response from the

vendor showing how they will solve the problem, and how much they will charge. This

document is sometimes also called an ‘invitation to tender’ or ITT. In the public sector,

which is subject to European procurement rules, the normal form is for this document to

take the form of an exhaustive ‘output-based specification’ (OBS) which states in great

detail what the proposed system should do, but (in theory) leaves it up to the vendor to

show how their system will do it. The IT architects in the customer and in the vendors will

be the primary authors of these documents and their responses.

On the other hand, except in a very few cases, they will not be the final evaluators or

decision makers on either side. This can lead to much creative tension during the bid cycle.

The technical team may be convinced that a solution can be done for so much, only to find

that the commercial team have sold it for 30% less. A close working relationship between

the technical and commercial teams is essential to success. This means that the IT

architects need to understand enough about the commercial aspects to know what

solutions are appropriate, and to establish a good rapport with the non-technical staff, so

that their judgement is trusted.

3.10 Skills required for architecture roles

A common theme running through this section has been the need for the architect to have

good communications skills — both oral and written — and to be able to explain complex

issues in simple, appropriate terms. They must also be able to build good relationships

with others in order to gain their trust, and to understand enough outside their own domain

to be able to make good technical judgements. For those that associate technical

architects with the narrower sense of architecture as the nuts-and-bolts of the solution, this

may be a surprisingly wide set of skills.

4 The common language of architecture

In this section we discuss some of the terms widely used in architectural discussions. You

will have had your fill of them from the pre-course reading [3, 4], and this is your

opportunity to get them clear. In the class room you should be sure to discuss terms that

you would like to understand better.

The ideas that the common vocabulary represent form a set of patterns that you can reuse

in designs and problem solving. They are a great aid to productivity, saving you from

re-inventing everything from scratch each time; but don’t rely on them too much. If you do

you might stifle your creativity and your ability to come up with new solutions to existing

c Page 24 � IBM Corporation 2006

University Relations — What do IT architects do all day?

problems. For a general introduction to this way of thinking you should try Martin Fowler’s

books Analysis Patterns [10] and Patterns of Enterprise Architecture [11].

4.1 Open systems
In the early days of computing all the vendors designed and built their own systems with

their own operating systems and their own application software. Once you had chosen a

vendor, you relied on them for more or less everything. If you wanted to move vendors you

have to start all over again. If you worked in an organization dominated by powerful,

non-technical but budget-holding groups of users, (like an investment bank), you would

acquire over time communications and information systems from a wide variety of different

vendors. All of these systems would be completely incompatible.

Then in the early 1970s two American systems programmers had a clever idea. They had

been working on a new operating system, but they had their departmental budget cut and

lost the machine that they had been working on. Forced to migrate their work to a new

machine architecture, they decided to rewrite most of it in a high level programming

language (called ‘C’, because it was a successor to ‘B’) and use the existing compiler for

the new machine. The operating system became Unix, and it sparked a revolution in

price-performance across the IT industry, as Unix could be (and was) ported to any

machine with a C-compiler.

This meant that you did not have to rely on the hardware vendor for the operating system

but you could stick with Unix. It also enabled the development of a whole new segment of

the IT industry, the major application package vendors. Companies like SAP now only had

to write their software for Unix to have it available on a dozen or more hardware platforms.

This was called portability, and a cross-industry effort was started to set out standards for

developing portable applications. Unfortunately the progress of the standards-setting

groups was slow, and meanwhile IBM went on making non-open mainframes (as well as

other systems) and a company called Intel produced the 8086 microcomputer.

Once Intel hardware running Microsoft Windows had emerged as the only choice for small

scale computing, the Gartner Group were able to write (in 1997) this about open systems.

Open systems are based on the idealistic premise that portability and

interoperability can be achieved across many different base products as long

as they all conform to the same multivendor interface and protocol

specifications. However, in many areas of IT, this premise has not been

fulfilled in practice because the standards have been slow to develop and are

incomplete, and vendors have continued to deviate from a strict

implementation of the standards. Interest in open systems peaked in about

1993, and most clients, even those that were previously the most enthusiastic

in their pursuit of this strategy, have since reduced their efforts and their

expectations in this direction. Most clients continue to pay attention to the

importance of de facto standards, but many now place relatively little reliance

on official standards unless they also happen to be (or appear likely to

become) de facto standards.

Since then the pendulum has swung back quite a long way towards the idealism of the

1980s. For one thing many of the standards about open systems are now quite mature and

c Page 25 � IBM Corporation 2006

University Relations — What do IT architects do all day?

surprisingly usable. For another the rules of open systems have moved up a level or two.

Today support for open standards is less about having software that can run on many

different platforms (although Java and many other interpreted languages coupled with

increasing hardware power have solved most of that problem) and much more about

interoperability between systems across a network. Today it is perfectly possible, or even

normal, for a distributed application to use a platform-neutral browser as the front end, a

Windows server as the web server that serves dynamically generated HTML pages, and a

Unix or mainframe server in the background to run the database. All the interfaces (well

most of them) between them will be defined according to a more or less formal

interoperability standard.

4.2 Parts of an application

In describing application systems and thinking about what architecture is suitable for a

given problem, it is convenient to split a given business application into three elements.

Presentation Application logic Data management

Presentation logic The management of the user interface: personal authentication,

presentation of information, capturing input, printing, controlling pointing devices,

managing displays, speech recognition, speech synthesis. Design in this area is a

major academic discipline involving psychology and industrial design skills. There

are many good books on the subject, but you might like two that give a slightly

broader view on the subject. The Design of Everyday Things by Donald Norman and

User-Centered Design of Systems by Noyes & Baber.

Application logic That part of the application that processes data captured from the

other parts. This is where the business rules of an organization are implemented.

The part of a billing system that works out the discounts and the product hierarchies,

or the part of a treasury management system that does the foreign exchange

risk-spreading calculations. Also known as the number crunching. In the days when

the only input device was a card punch and the only output was a line printer and

there were no databases, this part was all there was.

Data management logic The database subsystem, which maintains the persistent store

of information for an application, serializes multiple accesses to the same data by

many users, maintains the integrity and consistency of the data in the system. Since

any database also involves some amount of programming to make it work —

typically done in SQL — you will also see the term data access logic here. The

term is supposed to cover definition of data using SQL as a data definition

language (DDL) and manipulation of data using SQL as the data manipulation

language (DML). To manipulate data means to read, write or delete it.

This Caesarean division-in-three-parts provides a convenient model and in some ways is

an ideal way to organize a program, but in many real world systems, the division is not

obvious. A database may contain many stored procedures that implement business logic; a

� IBM Corporation 2006 Page 26 c

University Relations — What do IT architects do all day?

Windows application may embed business rules in the presentation and capture of the

data from the user. However this three-layer model is universally understood and helps us

to discuss and design client/server systems.

4.3 Clients and servers

In the strict software design sense, a server is a program that provides a service, and a

client is a program that uses that service. A system composed of clients and servers is

generally known as a client/server system. It’s really that simple.

You can implement such a system on any hardware platform you like, it is a good way of

organizing most systems. It is how many modern large mainframe systems, such as the

one that runs your bank’s cash machine service, are designed. However in many cases the

server part of the system runs on a centrally managed, fairly large, multi-user platform,

while the client parts run on workstations or PCs. This has led to the confusing, but

widespread, usage of “client” as a synonym for PC, and “server” to refer to any

departmental or larger computer (of any type). Following the strict sense above, you will

note that the same system can be both a client and a server at the same time.

System A System B

Server 1

Server 2 Client 2

Client 1

Could you describe how to implement a client/server system from scratch? If so you may

get called on to do so in class. Here is a handy crib. A client/server system needs two

pieces of matching code. The server-piece will look a little like this:

import java.net.*;

public class Server {

public static void main(String[] args) {

ServerSocket listener = new ServerSocket(4444);

Socket connection = listener.accept();

/* read from and write to connection */

connection.close();

listener.close();

}

}

This is a very minimal Java class implementing the fundamental client/server pattern. The

server sets up a listener and then waits for connections. Note that accept() will block until a

client connects to it.

The minimal client code might look like this:

(For a proper introduction try the online networking tutorial at Sun’s java.sun.com site).

import java.net.*;

public class Client {

� IBM Corporation 2006 Page 27 c

java.sun.com

University Relations — What do IT architects do all day?

public static void main (String[] args) {
Socket connection = new Socket("some_host", 4444);
/* read from and write to connection */
connection.close();

}

}

4.4 Distribution architecture

If we draw a picture of the three layers discussed above, copy it five times from left to right,

and then draw a line diagonally from bottom-left to top-right through all five stacks of layers,

we get an approximation to another Gartner group model: The five types of distribution

architecture.

1 2 3 4 5

Logic Logic Logic

Logic LogicLogic

Middleware and network

You need to imagine that above the diagonal division, everything is running on a central

machine — a server if you like — and below it everything is running on several, distributed

machines — probably PCs, but we can call them clients. For fairly obvious reasons the five

types of architecture are known as

1. distributed presentation

2. remote presentation

3. distributed logic (they mean “distributed application logic”)

4. remote data management

5. distributed data management

In the middle, connecting the upper and lower parts we have middleware and network

software. All of these architectures are ‘two tier’ architectures. Over on the left we have

thin client solutions, over on the right fat client.

� Take a moment to characterize some systems you have worked with in terms of this model.

This neat, symmetrical view of the world is much too simple of course, and you may have

found that you have worked on systems that did not fit into any of the boxes very well. The

most glaring simplification is that in the real world there is often more than one horizontal

division. Consider a typical SAP system: the SAP client software runs on a Windows PC

and talks to the application server that might run on a big Windows PC or more often a

� IBM Corporation 2006 Page 28 c

University Relations — What do IT architects do all day?

Unix system, meanwhile the database is running on a third platform, perhaps a mainframe

system. This is called a ‘three tier’ system, and was the dominant model for Enterprise

Resource Planning (ERP) and Customer Relationship Management (CRM) packages

throughout the 1990s (and is still widely used).

The reach of the Internet has encouraged some package vendors to take this even further

and to provide another layer that interfaces to the application server layer, and represents

information to Web based or other remote presentation devices. This would be ‘four tier’,

although the designers often get carried away and go for the term ‘n-tier’ when they get this

far.

4.5 Object-oriented terms

The concept of the system as ‘black box’ is an important one in the architecture of complex

systems. As we discovered in the ‘what happens next’ exercise we deal with complexity by

hiding it behind interfaces: we don’t have to program to understand the electrical signals

from the mouse, we merely capture events provided by the operating system that represent

mouse movements and clicks.

In object-oriented programming systems (OOPS) this is called encapsulation and it refers

to the definition of an object by its interfaces. More than that encapsulation also protects

the data within an object from unexpected change. The idea is that if we can break a

programming task down into small pieces with well defined inputs and output, then we can

solve it more quickly and our solution will be more robust. The same idea works equally

well in large-scale system designs. However you should note that the use of encapsulation

implies that your design is conceived in terms of objects that exist both as an ideal

definition of a business ‘thing’ and as instances of the ideal definition. For more details of

this idea, see Plato The Republic. In practical terms this means that your design will allow

for the passing of messages from one instance of an object to another. Other OOPS terms,

such as ‘inheritance’ or ‘polymorphism’ do not obviously scale up in the same way.

4.6 Transaction processing

An important subclass of applications are known as transaction processing systems. In

these system each interaction, or related set of interactions, with a user can be defined as

a transaction: from the system point of view either the whole transaction should complete

or none of it. The most obvious example is the withdrawal of money from your bank

account using a cash machine. There are several steps to such a transaction:

1. Insert card

2. Key in your password or number

3. Select withdraw cash option

4. Enter amount to withdraw

5. Check available funds in account

6. Return card

7. Update account balance

8. Dispense cash

c Page 29 � IBM Corporation 2006

University Relations — What do IT architects do all day?

Not only is the order of these steps important (some machines dispense cash before they

return the card — not a very good design), but it is important that they are all completed.

You would not feel very happy if the system updated your account, but then did not give

you the cash.

Note that this example implies two parties to the transaction: there are always at least two

(can anyone give a counter example of a transaction with only one party?), and often more

in complex transactions. Transaction processing systems manage all the parties to a

transaction and make sure that all the steps complete. Another way of thinking about this is

that they make sure that any partial changes are removed if the whole series of steps fails

to complete, for any reason.

To help understand the nature of transaction processing designs, the jargon is that

transactions have ACID properties. This is not a reference to hallucinogenics, but yet

another acronym. It stands for atomic, consistent, isolated, and durable, as follows:

•	 Atomic: Each transaction executes completely or not at all—and leaves no partial

results. This is true even after a system crash and recovery (part of the durability

requirement). It also is true for concurrent transactions.

•	 Consistent: Each completed transaction moves the system from one consistent

state to another. For example, consider a financial system with a consistency

requirement that at all times assets must equal liabilities plus equity. Executing a

transaction that records the purchase of a computer using a purchase order would

violate the consistency requirement if only the increase in assets was recorded. To

guarantee consistency of the database, the corresponding increase in liabilities must

be recorded. If the liabilities cannot be increased for any reason then the increase in

assets ‘rolled back’.

•	 Isolated: Each transaction executes as if it were running alone, even though

transactions may run concurrently to improve performance. For example, if a

transaction transfers money from one account to another, a different transaction is

not allowed to view an intermediate result, where one of the balances has changed

but not the other. If a transaction were able to read such a result that was never true

in fact, it might make an improper decision. It might refuse credit to the account

holder, or even make a change to the data by fining the account holder for falling

under a minimum balance.

•	 Durable: After a transaction is complete, the results that have been committed will

not be lost because of a system or storage failure (processor or disk crash). If a

system is to provide durable transactions, then as the system makes updates to its

database, it must write a transaction log (to a different storage medium than the

database itself). The log will allow it to undo those changes if the transaction should

later fail for some reason (possibly because of a system crash), or redo the changes

in case the transaction succeeded without all the updates getting saved prior to the

crash.

4.7 Design style

Application designers building complex systems will naturally split them up into many

component parts. Making this division requires the designer to choose an appropriate style

c	 Page 30 � IBM Corporation 2006

University Relations — What do IT architects do all day?

for dividing the application. The fundamental two choices are tight-coupling or

loose-coupling; both have advantages, which is better depends on the problem that the

designer is trying to solve.

When two systems are “tightly coupled” they communicate at the application and/or data

level. Interactions between components are normally synchronous and real time; that is the

calling component will wait for the called component to complete processing and return

control. This is sometimes conceptually simpler for the designer than periodically checking

to see if a result is available yet, but it can lead to large and complex systems with many

dependencies. On the positive side it also means that it is impossible for one part of the

system to get out of step with other parts. No special design is required to maintain

synchronization.

Data flows in both directions as function parameters and return values. Calling programs

must know the right parameters to pass and know what values to expect in return. Called

programs must know how to signal abnormal conditions and errors.

The availability of the overall system depends on all the component systems: if any one

component fails then the whole system fails. A tightly coupled system is like a chain: it is

only as strong as its weakest link.

Tightly coupled systems can also be hard to enhance and maintain. Adding new

components may mean updating many unrelated interfaces, and it may be hard to extract

functions and routines that could be used elsewhere.

In contrast a “loosely coupled” system must have clearly define interfaces between

components, and each component is typically a small self contained, reusable block of

function. Components communicate with asynchronous messages. Component A sends a

message (via some medium); some time later component B receives it and may reply.

Each component needs a way to send messages and a loop that sits waiting for replies.

However each of the components is independent, and a well-designed loosely coupled

system is resilient to the failure of a single part.

The trouble with keeping each part isolated from the other is that they may need to be

resynchronized from time to time, which can complicate error handling. It is also possible

for one part to generate so many messages that the other parts cannot keep up and work

in process is lost. Handling these classes of errors can be difficult.

The great strength however is that small, well tried components can easily be reused in

other systems, and additional interfaces can often be added without affecting the whole

system.

5 Applying the vocabulary of architecture

This section summarizes some of the key points made in the middle sections of the main

reading material article [3]. With some simple examples, we discuss how you can apply the

vocabulary that we have just covered. The aim is to help you develop your own conceptual

model of how the system that you are working with hangs together: this will help you make

sense of and assimilate the details in the rest of the course.

� IBM Corporation 2006 Page 31 c

University Relations — What do IT architects do all day?

5.1 Internal application architecture

Using the diagram above of two tier topologies, we can identify some common, perhaps

‘traditional’ application styles in terms of the girth of the processes on the workstations, or

end-user devices.

•	 The classic two tier, thin-client applications are the old green screen mainframe

applications, still in widespread use in the banking, insurance and airline reservation

industries. This is not just because these industries are old fashioned, for some

applications — such as support to bank clerks or running ATMs — this is still the

best way of doing things. Your data and business logic is safe in a well-managed,

secure core, and your needs for presentation are well-defined, and your user

interface is deliberately tightly-controlled.

•	 Two tier fat-client applications were what first began replacing the old mainframe

applications, and they are themselves becoming dated nowadays. Typically built with

an all encompassing development environment and tied to a particular database

system, like PowerBuilder and Oracle. All the presentation and application logic is on

the PC, while the database sits on a central system, probably connected to the PCs

on a local-area network.

•	 Many two tier environments especially where there is a strong database vendor

involved have now evolved into what Gartner like to call ‘plump-client’ environments,

where large parts of the business logic is moved into programs stored in the

database itself (‘stored procedures’), leaving the client thinner, but not that thin.

•	 Still more two tier environments have acquired an extra middle tier. This middle tier

will be running on a system similar to the one running the database, or often on the

same system. To the database server it will look like another client, but it will be

handling the requests for service from many PCs. There are many advantages to

this design: the number of idle connections to the database is reduced, which means

the database system will use less memory; the design works better where many of

the PCs wanting access to the database are a long way away (why?); you can apply

more computing power to solving your business problems, without either having

everything on the PC or in the database as a stored procedure; it provides a

convenient way to take advantage of other standard software — such as Tuxedo —

which does a good job at the hard things like transaction management, messaging

and communications.

•	 Beefing up the middle tier also enables us to use more generic client devices. There

is an irony in modern n-tier application designs that as the PCs have got ever more

powerful and capable, the applications need a smaller and smaller footprint on them.

There are two trends at work here, both to do with the increasing reach of computer

systems: one is the need to solve certain problems of presentation in more than one

language, these techniques are known as internationalization (I18N) and localization

(L10N); the second is the need to support more portable and simple user devices.

The simpler you keep your client system the easier it is to take advantage of

standard solutions, and the less work you have to maintain your system.

5.2 Architecture of complex systems

Moving beyond the confines of a single application package, the architects’ task is to define

how all the packages and existing systems should best work together. The solutions, or at

c	 Page 32 � IBM Corporation 2006

University Relations — What do IT architects do all day?

least pragmatic, working parts of them, usually involve defining the systems as

components in an overall whole. The architect will need to determine the interfaces

between the component parts. The problem is not confined to data in and data out, but

also needs to include the practical problems of running the whole system. For each

interface the architect needs to understand the volumes of data, the frequency and timing

of the interfaces, the availability of them, the need for auditing and reconciliation, the need

to buffer data between interfaces on different systems, the need to extract performance

metrics, the performance characteristics and requirements, and so on. In addition each

system needs to fit into the systems management framework of the whole installation.

Given a free hand in redeveloping parts of a system, the architect may also wish to

consider which subsystems can be abstracted from the individual components and made

into common shared services. Faced with the often overwhelming challenge of managing

customer data across three (or more) different systems with different data models, some

architects have decided to create a new, single customer data store and adapt the existing

systems to use this instead of their own application-specific version.

The architect also needs to consider application topology in a physical, geographical

sense; to understand the capacity of the network connections between an organization’s

locations; and to understand where all the users are and what they do. The task revolves

around the eternal triangle of users, processes and data. On the one hand it may be best

to keep a central tightly-managed master copy of key customer data, on the other hand it

may be necessary to replicate this data around the world to provide the immediate access

and speed of response that the users need.

Processes

Users Data

Availability

Performance Authorization

Authentication

Location

Type

Numbers Archive

Back up

Recovery

Volumes

Timing

Here are a selection of topics that the technical architect needs to consider when

developing an architecture for a complex system. These topics are centred on the users,

processes, and data. The architect also looks at interfaces between systems and how data

and messages should flow around an organization. The output of the architects work will

be a definition that can be used to build the technical infrastructure. This typically

encompasses everything from the physical hardware and network facilities required,

through the development and system management tools, and the middleware products to

be used. It can also include all the processes required to operate the infrastructure, such

as performance and capacity management. Beyond this in some projects, the technical

architect’s may also help to determine which services should be abstracted from the

� IBM Corporation 2006 Page 33 c

University Relations — What do IT architects do all day?

different applications and implemented as shared services.

5.3 Coordination of many applications
To complete this section, we now consider the main challenge for modern sites with many

applications – how to coordinate the many different applications that need to communicate

with each other. Whatever decisions the architect has made about division of presentation,

application and data logic, and what ever considerations of topology have been discussed,

the architect always has to consider the practical issues of how data from system A is

going to get to system B. As you consider these different approaches, keep in mind a

complex set of applications that you have worked on and think about how your architects

have solved these problems, and perhaps some that they have not solved.

Direct data sharing

The simplest approach to the problem is to directly share a common database that

holds all the necessary information. The trouble with this is that it doesn’t scale well

— everyone needs a connection to the same database, every time we add a

customer all the different systems need to read the data to find out what was added

— and worse, it becomes rapidly very inflexible — if we need to add a new attribute

to our product table, then all the systems that read that data may have to change.

Beyond a very few systems, with very similar data models, connected on a local

network, direct sharing just does not work.

Data integration

Integration layer

Gartner describe installations which have attempted to provide an application

independent layer of software that integrates data across different data stores and

applications. The idea is to have this middleware translate each data request into an

appropriate format and route it to the appropriate data store. Systems like this were

the forerunners of modern enterprise application integration systems. The problem

— and it’s still one even with modern solutions — is that it’s easy to create more

problems that you are solving by creating a monster in the middle.

Data warehouse

Extraction & Transformation

Data Warehouse

� IBM Corporation 2006 Page 34 c

University Relations — What do IT architects do all day?

Where the communication needed between applications is not immediate, a data

warehouse is a very attractive, if expensive solution. The idea is to take extracts from

all the operational systems, summarize them, clean them up, reformat them into a

consistent central model and then make them available to the business. The original

purpose of a data warehouse is normally to support ad-hoc user enquiries: “how

many widgets did we sell in Stockport last Thursday?”, but there is no reason why

operational systems should not also use the data stored in them directly. The down

side is that to make the data general purpose, you have to invest time and resources

to clean it up and map it to a common data model. This is expensive to design and

build and also expensive to run everyday. It also means — by definition — that the

data is ‘out of date’; while this is not necessarily a bad thing, often other operational

systems need up-to-the-minute feeds of data. Finally the data in a warehouse should

always be read-only. This means that this approach is not suitable where mutual

updates are required.

Operational data store

Operational Data Store

The ODS is occasionally taken to be another sort of data warehouse. This is an

unfortunate misconception, and it is a good idea to get the differences firmly in your

mind. An operational data store is meant to support some particular business

operation, typically it will be a direct copy of production data kept up-to-date within

minutes or hours. It may be gathered from several sources. It will be used for a

strictly defined set of queries that directly relate to the needs of another system or

some aspect of someone’s job. It will never be used for ad hoc, interactive queries. It

will not hold historical or summarized data. An ODS can do a very effective job of

coordinating data across systems in certain situations. An ODS can also make a

good staging post for data that will be further processed and summarized for a data

warehouse. Like a data warehouse the data in an ODS should generally be

read-only.

Batch reconciliation

The to the problem is to take a regular extract of what has changed in your source

system, and then apply those changes to your target systems. The advantages of

doing this are that there is less to maintain — you can normally use standard (and

therefore fast) database extract and load tools — and the networking is simple — all

you do is transfer a file. If the contents of the transferred file are well understood,

then it’s also straight forward to apply different filter programs to it, in order to select

records for each target system, merge data from more than one source system or

reformat the data to make it easier to use a standard database load tool on the target

system. If the systems are running under a transaction manager you could even use

the transaction logs (or ‘journals’) as the source of the changes for the target

systems. In general this sort of interface is one way. It’s possible to do this in two

� IBM Corporation 2006 Page 35 c

University Relations — What do IT architects do all day?

directions provided the frequency of updates on each side is not high and there is an

easy way to reconcile changes if the same data has changed in both places.

With large numbers of systems to reconcile, the best approach is to build a central

hub where all the filtering and transformation is done. This makes for more

controlled implementation of the business rules and means that the feed to the target

systems is more consistent. The main disadvantage of this approach is that data is

not up-to-the-minute consistent across all systems.

Message broker

Message Broker

The high-tech solution evolved from batch reconciliation — if the only problem was

speed, now we can do it immediately instead of waiting for a batch. This class of

application integration system has become very popular. The general idea is that the

architect designs a series of messages that encapsulate all the information that

needs to flow between each application, and the sequences in which these

messages will be sent — the work flow. Two ‘adapters’ or ‘connectors’ are then

written for each application: one is a publishing adapter, the other a subscribing

adapter. The job of the publishing adapter is to identify when an application has

done something that should trigger one of the architect’s messages (for example: a

new customer has been added), and then create the appropriate message with all

the correct data fields. The job of the subscribing adapter is to listen for messages

from the message broker, and then to take the appropriate action in the target

system (for example: create details for new customer). The extra layer allows the

participating applications to be independent of each other, and this has proved to be

very beneficial. They can be maintained on separate tracks, by separate teams. A

second application in the same functional area can be added without changing the

others. And so on. In other words, a message broker allows us to design and

implement clean interfaces between large, complex application systems.

5.4 Service Oriented Architecture

Roy Schulte’s 1997 article [3] also defines and expands on service oriented architecture. In

the decade since he wrote about it SOA has become one of the trendiest approaches to

organizing large systems. In some ways this is unfortunate as it has inevitably led to a wide

range of interpretations of the idea of service orientation (because everyone wants to label

their own peculiar approach with a popular buzzword).

To some people SOA means using web services to connect different applications together.

Assuming an application provides some programmable interfaces (APIs), then web

services are a way to make them available over an Internet connection. The idea is that

you build an adapter for each API that can create and parse SOAP messages, that you

write a description of the service using WSDL (you have to guess what these acronyms

stand for), and you store these descriptions in a publicly available directory in UDDI form.

When an application wants to use a particular service, it finds a UDDI directory, searches

c Page 36 � IBM Corporation 2006

University Relations — What do IT architects do all day?

for a suitable service, and then sets up a contract with it, and starts sending SOAP

messages to it, generally expecting some similar messages in reply.

If this all sounds a little impractical or far-fetched that is because it is. The idea is a cute

one, but the world is not yet ready for dynamically invoked services available in public

directories. One good sign of the maturing of the SOA market is that SAP, IBM, and

Microsoft announced the closure of their public UDDI service towards the end of 2005,

citing the ‘lack of need’ for a public business register. One useful thing that has come out of

the joint industry work on UDDI is a realisation that no-one wants to do business entirely

automatically, but that UDDI has some useful features for managing a private (but generally

open-ended) network of services. The UDDI protocols have been changed substantially in

this direction, and have become a useful mature standard for managing information about

services (the metadata).

Long before web services protocols got in on the act, SOA was conceived as an evolution

of an architectural approach to managing evolutionary change across an enterprise. This is

in line with the idea of the IT architect as town planner explored above; SOA provides a

methodical approach to identifying, specifying, and using shared services across an

enterprise (and outside it in a trading community or similar structure).

SOA can be seen as a response to the failure of many IT software systems to cope with

changing business requirements. The service oriented approach to architecture is to

consider the business as a set of collaborating components that work together in various,

often-changing ways (business processes). Information systems are then planned to

support each component and allow flexibility and agility in the way that each component

works with others. The information systems themselves are built as a set of

business-related services that each provide a well-defined, coherent set of operations. For

example a personnel management service might provide a set of operations relating

managing staff. The important thing for the organisation as a whole is that all other

information systems make use of the common personnel service instead of trying to

maintain their own databases of information. Using SOA techniques it is possible to build

systems that can be adapted and changed without a major re-procurement or

redevelopment exercise.

The ability to provide for change — known variously as ‘flexibility’ or ‘agility’ — is generally

thought to be a ‘Good Thing’. According to the Gartner Group [12], the whole software

market is shifting to start providing smaller service-orientated components instead of large

monolithic ‘do-it-all’ systems.

Experience in industry suggests that the organisations that have adopted SOA

successfully have also invested in centrally-funded infrastructure to support common

services for all systems and applications to use, and in a senior group of technical and

business staff who can oversee the process of adoption of SOA and set clear technical

direction for diverse application development teams. In other words to do SOA you have to

excel at managing your infrastructure (how else are you going to do metering and billing at

the service transaction level?) and you have to have a team of IT architects in control of the

technical direction of the enterprise.

� IBM Corporation 2006 Page 37 c

University Relations — What do IT architects do all day?

6 Techniques and Method

This section looks forward to further seminars about the techniques and methods used by

IT architects; it is based on the IBM Global Services Method, so while most of this section

is generally applicable to all IT architects, there is a bias towards how architects work in an

IT services company, running projects for customers.

6.1 Why do architects need a method?

A good method is designed to enable a common language among all practitioners

delivering business solutions. This clearly also includes many people who are not

architects. The common language of a method enhances the communication between

them.

For architects in a services delivery organization like IBM Global Services or Accenture, a

method is a fundamental part of shifting the business to repeatable, asset-based services.

It provides a mechanism for practitioners to reuse knowledge and assets using a

consistent, integrated approach. This is generally better than making it up as you go along.

This common language across all communities and teams to describe planning and

delivery of projects is one of the key sources of value from any investment in methods. A

method also allows projects to be started more quickly by using project templates and

checklists. If the templates also include a set of well-defined work product descriptions,

then the method provides a framework for educating the different parts of a large

organization to a common standard, and helps people from different parts of the world

collaborate.

At the most basic level using a method improves the quality of an architect’s work and

reduces the risks of omitting some vital step or spending too long in unimportant areas.

One of the key attributes of good architects is their willingness to learn from other peoples

mistakes and successes. Part of the method will be a set of anti-patterns to avoid, and a

set of patterns to reuse, based on good work in the past. In some cases this can even

extend to reusing (at least the structure) of whole deliverables.

6.2 What does a method include?

The core of the method will be a set of descriptions of different work products, some blank

templates to get you started (and to keep you consistent with an overall style), and some

suggestions of how the individual work products might be combined into client deliverables.

A deliverable, in case you ask, is something that you can deliver. It normally takes the form

of a document or a presentation produced for and approved by the senior manager at the

client who is paying for your work. The formal acceptance of a deliverable is often

associated with a payment as part of the overall work. Even when the deliverable is less

tangible (like a successful conclusion to system testing) there is generally a document

associated with it (for example a test results report) that can physically be signed off.

To give you an idea of what each work product consists of, here is a list selected at random

from the IBM Global Services Method, in the Architecture section.

c Page 38 � IBM Corporation 2006

University Relations — What do IT architects do all day?

ARC 115 : Software Distribution Plan •

• ARC 117 : Viability Assessment

• ARC 118 : Change Cases

• ARC 119 : Non-Functional Requirements

• ARC 300 : Feasibility Study

ARC 301 : Current IT Environment •

• ARC 302 : Application Function Model

ARC 303 : Business Roles and Locations •

ARC 304 : Current IT Assessment •

ARC 305 : Data and Function Access and Placement •

ARC 306 : Data Stores •

• ARC 307 : Enterprise Information Model

• ARC 308 : Enterprise Technology Framework

• ARC 309 : Principles - Policies and Guidelines

ARC 310 : Standards •

Each one of these will have a supporting document that describes what it is about, why you

might add it to your plan, when you can leave it out (and what might happen if you do),

some examples from completed work products, and some considerations for estimating

how much effort will be involved.

Here for example is part of the description from ARC304:

The Current IT Assessment work product provides an assessment of the

current IT environment. This assessment can take many forms: an

assessment of the functional and technical quality of a client’s installed

applications, databases and/or infrastructure.

With respect to the applications, the assessment is focused on two

complimentary views of functional and technical quality (FQ / TQ as it is

sometimes called). The former is concerned with both the extent to which the

applications support the critical business functions and the quality of that

support. The latter is concerned with their technical efficiency, (e.g. their age,

stability, accessibility, reliability, maintainability) and the longer term technical

potential.

For database assessment, this work product is focused on data quality,

(i.e. currency, redundancy, accuracy) and the potential to support the future

business strategies.

With respect to the current infrastructure, the assessment is focused on

technical efficiency, e.g. stability, reliability, maintainability, age of installed

base, support for critical business functions e.g. availability, performance,

accessibility, anticipated business growth and the longer term technical

potential.

The scope of this type of assessment is usually limited to a subset of the

application / database portfolio that is judged to be the most important in terms

of their support for the current business operations and their future potential.

� IBM Corporation 2006 Page 39 c

University Relations — What do IT architects do all day?

Any specific problems and opportunities associated with these

applications, databases and infrastructure are captured and documented as

input to subsequent activities and work products

Most of the work products will be accompanied by template documents that can be used

as a starting point for collecting the results or information gathers as part of doing the work

product. Some work products, may also be accompanied by detailed technique papers.

For the architect these are the crown jewels of a method, the most useful parts.

A technique paper is normally written by one or more very experienced senior architects

and represents their combined wisdom distilled from the painful experience of many

different projects and client engagements. While most of the method is essentially book

keeping (making sure that you don’t forget things and that your documents look

consistent), the technique papers actually help the architect to do his or her job. They

explain the background to a given area, and provide extensive practical help about how to

approach and manage a given task. For example, one of the best papers currently in the

IBM method is called ‘Designing for Availability’. This document contains a number of

chapters and appendices, that each provides a different approach to thinking about high

availability solutions. These include: one on ‘Practice & Process’ that provides a high level

process to define the scope of the high availability (HA) work; another on ‘High Availability

Patterns’ that provides more detail through a core set of reusable HA patterns across the

areas of application, data, network and infrastructure; and others on the of key tools and

techniques that can be used to assist in the capture of HA requirements, and the analysis

and design of a system for HA, and how to use them with the rest of the method.

As well as specific subject-oriented guidance on using work products together, a method

may also include high level patterns that show how to group work products together and

how they relate to each other. These capability patterns will include logical maps that

shows what input is needed for each work product and where the output that it produces

should be used. The patterns also include definitions of the roles that will be needed to

deliver the particular project, and a suggested break down of all the work involved. In

simple cases, these workload breakdown structures (WBS) can be loaded directly into a

project planning tool, although this is rarely a prime responsibility of the IT architect.

In large organizations, a global method will tend to grow over time and become unwieldy

and full of duplication. Even in a smaller organization the same drift is often apparent, so it

is vital to be professional about managing the method content. This normally means using

a proper document management system that publishes each part of the method to a

structured web site. A good search engine to index all the content is also invaluable.

Managing all the content on a given project can also be a daunting task, and while many of

us manage with large collections of word processor documents and presentations, a formal

project support tool is included in some methods to provide a structured database to

produce and manage the various written deliverables.

Typical use of all these different parts is generally quite simple, once enough practitioners

are familiar with it.

1. Identify the deliverables and associated work products

� IBM Corporation 2006 Page 40 c

University Relations — What do IT architects do all day?

2. Create or reuse a plan with tasks to build these work products

3. Estimate effort and risk, and refine the plan accordingly

4. Create a statement of work as a summary of the plan

5. Execute the plan, monitoring and modifying as usual

6.3 Architectural Thinking

Architectural Thinking is the name of IBM’s education class that introduces architects to

using the method to do architecture. It introduces some key artefacts and provides some

insight into the core techniques of architectural practice. The artefacts are the ‘Architecture

Overview Document’ and the supporting models that show how the business functions are

delivered (the Component Model) and how the actual systems will be run (the Operational

Model).

Before introducing these it is helpful to consider the normal context. Architecture is part of

a process, part of managing communications and information systems. Every time that we

design a new system we need to consider the architecture of the whole enterprise. This is

shown in the following diagram.

Mission

Business Model

Business Architecture

Application
and functional
requirements

Organization,
Roles and

Responsibilities
Information

needs

Information Systems Architecture

Information Technology Architecture

Level 0

Level 1

Level 2 Detailed designs and projects

The upper part of the pyramid (above the line of three boxes) is the domain of the business

architects. The mission of a business is what it does, what it wants to do, what it is for. The

business model describes how it does these things, how it ‘goes to market’. The business

architecture defines how it is structured to achieve its goals: the business architecture

consists of (at least) the three boxes below it: a set of functional requirements, flanked by a

set of information requirements, and a general organizational plan.

The job of the IT architect is to support this business architecture from below (as it were).

At the highest level is the Information Systems Architecture, this is normally documented

with an Architectural Overview. The highest level of technical architecture document,

deliberately kept short (perhaps 20 pages) and comprehensible (good illustrations). It

should have the widest possible readership within an organization.

� IBM Corporation 2006 Page 41 c

University Relations — What do IT architects do all day?

The level below this is the Information Technology Architecture which sets out how the

communications and information systems will be used to deliver what the business need.

At this level of documentation there are two complementary aspects, which IBM calls the

component model and the operational model.

The component model defines the overall structure of the IT systems, how they are broken

down into autonomous areas, what common services they will use, the interfaces between

them, the design standards they should use, the policies for storing and reading data, the

information design, and so on.

The operational model is more concerned with the systems as they will run in production. It

includes guidelines for physical designs and types of hardware, for availability and

performance, for business resilience, and so on.

Beneath this level we find detailed designs for individual projects: each of these will also

have an architectural overview supported by a component model and an operational

model, but at this level they focus on how this particular system works, and they refer

upwards to the higher level architectures in order to show how they implement the policy

and guidance set out there.

How these elements of architectural method are used and combined will be the subject of

a much more detailed seminar later in this series. The main aim of them is to provide a

structured approach to making decisions about the communications and information

systems architecture. Decisions with a project scope are made (and documented) at level

2, while decisions that affect several projects are incorporated in the level 0 documentation

and form a key part of the Architecture Overview.

7 Retrospect and prospect

This introductory module has attempted to cover the wide sweep of activities that make up

IT architecture. We have reviewed the basic ideas and concepts of the IT architect as the

custodian of the ‘big picture’ and the universal communicator, able to explain what is going

on in a variety of ways to the different teams that are involved in creating a large IT system.

For each team the architect draws up a view that provides enough context for the team to

work effectively, but filters out irrelevant details.

We have looked at the different roles that an IT architect can play and the range of talents

and knowledge needed to succeed. Good architects combine an ability to understand deep

complex technical issues with an enthusiasm and ability to communicate in many different

ways. Working in teams is not just something IT architects do, it is something that they

fundamentally enable.

We have also reviewed the terms and vocabulary of modern IT architecture, and briefly

examined how some of them are applied to contemporary practice. We have concluded

our introduction by looking at why architects need a method to guide them through their

work and how such methods work.

The final remaining part of this introduction is to look forward to what is coming next; not

just in this series of classes but in your future careers.

� IBM Corporation 2006 Page 42 c

University Relations — What do IT architects do all day?

� Before that let’s just examine some misconceptions about architecture, and some positive

definitions. . . (These are from [13]).

7.1 What architecture is not
•	 Architecture is just paper

•	 Architecture and design are the same things

•	 Architecture and infrastructure are the same things

•	 <my favourite technology> is the architecture

•	 A good architecture is the work of a single architect

•	 Architecture is simply structure

•	 Architecture can be represented in a single blueprint

•	 System architecture precedes software architecture

Architecture cannot be measured or validated •

Architecture is a science •

Architecture is an art •

7.2 What architecture is
•	 Architecture defines major components

•	 Architecture defines component relationships (structures) and interactions

•	 Behaviour of components is a part of architecture insofar as it can be discerned from

the point of view of another component

•	 Every system has an architecture (even a system composed of one component)

•	 Architecture defines the rationale behind the components and the structure

•	 Architecture definitions do not define what a component is

•	 Architecture is not a single structure — no single structure is the architecture

7.3 Career paths
In the IT industry the ‘shape’ of an IT architect is often discussed. This is nothing to do with

the physical condition of aging technical staff. It is to do with breadth and depth of technical

knowledge. Deep technical specialists tend to know one area in great detail; such people

are very valuable and some of them have very satisfying careers. These people are

sometimes called I-shaped. Other people have a superficial knowledge across the whole

range of communications and information technology, but no deep specialist knowledge of

anything. These people are generally called salesmen. People who make good architects

are a mixture of these two types. They have deep specialist skills in at least one area, and

they have a broad understanding of the whole field of IT. They are often called T-shaped,

although you might be able to think of some better names.

In planning your career you will find it helpful to decide what shape you want to be. You will

note that if you want to be an architect it is necessary to develop a deep understanding of

one particular area (at least one), if you pick your area at the right stage in your career it

can often be very helpful in shaping the opportunities you get and getting your name widely

known.

A thorough grounding in the processes of software development is often helpful, as is

experience with the physical end of installing and operating machines. A general

enthusiasm for technology while not essential is also often a great help.

c	 Page 43 � IBM Corporation 2006

University Relations — What do IT architects do all day?

7.4 Suggestions for further work

Finally here are some suggestions and possibilities for further work to follow up the topics

we have explored in this session.

•	 Take one of the technical discussion topics listed below, and research it. Write up

your findings in various forms: a single page of A4 with high level discussion points

that succinctly explain the technical area and highlight some architectural issues and

decision points; a 10 minute presentation with annotations; a 2000 word essay; a

policy statement for the manifesto of a political party (you’ll struggle to do this for

some of them); a fact sheet for 14–16 year olds; a Wikipedia entry (don’t cheat! write

one first then compare it to what Wikipedia actually says).

•	 Working in small groups take one of the technical discussion topics or some other

burning technical issue, and present to the seminar group for five minutes about it.

•	 Re-read the Roy Schulte article [3] and write a 3000 word review and critique of it

given the benefit of 10 years of hindsight. Highlight which trends are likely to

continue and which predictions have failed to materialize.

•	 Lead a 30 minute discussion group about the misconceptions and definitions about

architecture from [13] stated above.

•	 Read a different book from the bibliography to this paper every month for a whole

year. Record your thoughts and insights in a blog.

The “References” section at the end includes all the books cited in this introduction plus

several others that are recommended for useful background.

7.5 Technical discussion topics

These topics are intended for general discussion and for practice in explaining a new

technical area to various audiences.

1. What’s wrong with the QWERTY keyboard? Describe some developments in

computer input devices?

2. What is quantum cryptography?

3. Describe some potential applications for smart cards. What implementation

challenges might they face?

4. What is the size of the system management market? Who are the major players?

5. Describe some technologies to help disabled people use the Internet.

6. Give an overview of Unicode.

7. Will future changes to user interface technology change any fundamental

architectural disciplines?

8. What is ‘push technology’? What is it good for? What are the limits?

9. Describe recent developments in display technology.

10. Compare the advantages and disadvantages of copper versus optical fibre for

transmitting telecommunications.

11. What is fibre channel arbitrated loop?

12. Give a short analysis of Cisco’s performance in the market since 1995. What do they

do and where they are heading?

c	 Page 44 � IBM Corporation 2006

University Relations — What do IT architects do all day?

13. What’s the difference between an Application Service Provider (ASP) and an Active

Server Page (ASP)?

14. What are the main graphics formats used on the Web?

15. What is a storage area network (SAN)?

16. Where does the term RAID come from? Describe some uses of RAID storage.

17. Describe the advances in Intel’s new IA-64 processor family.

18. What are PostScript, PCL and AFP?

19. Describe the business threats posed by three different types of computer ‘malware’.

20. Compare the strengths of a traditional UNIX shell as an IDE (integrated development

environment) with any GUI development tool set.

21. Can AMD’s market share ever overtake Intel’s?

22. Describe the difference between Macromedia Flash, Director and Shockwave.

23. What is the market for speech recognition products?

24. How does speech recognition actually work?

25. What is electronic ink, what can you do with it, when do you expect it to be widely

available?

26. Set out the strengths and weaknesses of Bluetooth.

27. For how long can you run a PC on batteries? What technologies are used in modern

batteries?

28. Other than Unicode, what are the technical architecture issues about

Internationalization (I18N) and Localization (L10N)?

29. Describe the major implementation approaches for VPNs.

30. Why is software configuration management important in development?

31. How does satellite data transmission work?

32. Give a short overview of the document management marketplace.

33. Tell us all about WAP. Why do the Americans think it won’t work? What’s the problem

with it?

34. What is SET? How is it related to C/SET?

35. Compare Windows CE, EPOC and PalmOS.

36. Describe the leading back up and recovery systems for UNIX.

37. Explain how ADSL works.

38. Use examples to show how vertical market applications differ from horizontal market

applications.

39. What is an enterprise information portal?

40. Give a short overview of the iSeries platform (what used to be called the AS/400).

41. What is ATM networking? What inhibits its rapid market acceptance?

42. Why did Psion withdraw from the PDA market place?

43. What does work flow mean? What are the major work flow products?

44. Explain what makes Internet telephony possible.

45. What is meant by pervasive computing? How might is affect your daily life?

46. Give a technical appreciation of Mac OS X.

� IBM Corporation 2006 Page 45 c

University Relations — What do IT architects do all day?

References

[1] Richard Scarry. What do people do all day? Picture Lions, 1976. ISBN 0007111584.

[2] L. Cherbakov et al. Impact of service orientation at the business level. IBM Systems

Journal, 44(4):653–668, 2005.

[3] Roy Schulte. Architecture and Planning for Modern Application Styles. Technical

Report R-ARCH-104, Gartner Group, 1997. The original paper naming Service

Oriented Architecture, and defining the role of the architect as the ‘city planner’ who

determines what common services a ‘city’ should invest in, and polices new

developments to make sure that they use the services appropriately.

[4] Roy Schulte. Clarifying the terms ‘Event Driven’ and ‘Service-Oriented Architecture’.

Technical Report G00126127, Gartner Group, 2005. The term ‘service-oriented

architecture’ has evolved in several directions. Developers should understand its

multiple meanings and appreciate the distinction between ‘service-oriented’ and

‘event-driven’. These two design models are key to effective distributed architecture.

[5] John Henessey and David Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 1996. ISBN 1558603298.

[6] Alistair Cockburn. Writing Effective Use Cases. Addison Wesley, October 2000.

ISBN 0201702258.

[7] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Robert Nord, and Judith Stafford. Documenting Software Architectures.

Addison-Wesley, 2002. ISBN 0201703726. A complete Users’ Guide that explains not

only the ‘4+1 views’ from the Rational Unified Process, but other approaches as well.

[8] Philippe Kruchten. Book Review — Documenting Software Architectures, August

2002. http:

//www-128.ibm.com/developerworks/rational/library/2868.html.

[9] Fred Brooks. The Mythical Man-Month. Addison-Wesley, 1995. ISBN 0201835959.

[10] Martin Fowler. Analysis Patterns — Reusable Object Models. Addison Wesley,

November 1996. ISBN 0201895420.

[11] Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley,

November 2002. ISBN 0321127420. A handbook for enterprise system developers

guiding them through the intricacies and lessons learned in enterprise application

development.

[12] Simon Hayward. Positions 2005: Service-Oriented Architecture Adds Flexibility to

Business Processes. Technical Report G00126409, Gartner Group, 2005. SOA will

transform software from inhibitor to enabler of business change, but requires new

investments; subscription software and composite applications will replace packages

and monolithic suites.

[13] Philippe Kruchten. Software Architecture and Iterative Development. Benjamin

Cummings, 2004. ISBN 0805305963.

� IBM Corporation 2006 Page 46 c

http://www.amazon.co.uk/exec/obidos/ASIN/0007111584
http://www.amazon.co.uk/exec/obidos/ASIN/1558603298
http://www.amazon.co.uk/exec/obidos/ASIN/0201702258
http://www.amazon.co.uk/exec/obidos/ASIN/0201703726
http://www-128.ibm.com/developerworks/rational/library/2868.html
http://www-128.ibm.com/developerworks/rational/library/2868.html
http://www.amazon.co.uk/exec/obidos/ASIN/0201835959
http://www.amazon.co.uk/exec/obidos/ASIN/0201895420
http://www.amazon.co.uk/exec/obidos/ASIN/0321127420
http://www.amazon.co.uk/exec/obidos/ASIN/0805305963

	 Introduction
	 Concepts and ideas
	 The idea of architecture in IT
	 The wider context
	 What happens next?
	 Standards
	 Views

	 Roles and Responsibilities
	 The architect as technical pre-sales support
	 The architect in the software development life cycle
	 The architect on an end-to-end implementation project
	 Managing the software stack
	 The architect as town planner
	 The design authority
	 Consulting engagements
	 Working with other IT professionals
	 The architect in procurement
	 Skills required for architecture roles

	 The common language of architecture
	 Open systems
	 Parts of an application
	 Clients and servers
	 Distribution architecture
	 Object-oriented terms
	 Transaction processing
	 Design style

	 Applying the vocabulary of architecture
	 Internal application architecture
	 Architecture of complex systems
	 Coordination of many applications
	 Service Oriented Architecture

	 Techniques and Method
	 Why do architects need a method?
	 What does a method include?
	 Architectural Thinking

	 Retrospect and prospect
	 What architecture is not
	 What architecture is
	 Career paths
	 Suggestions for further work
	 Technical discussion topics

