
A standard for
architecture description

A profitable information technology (IT) services
organization is dependent on widespread asset
harvesting (from previous engagements) and
scalable asset deployment (into current and
future engagements). This activity demands
consistency of terminology and notation in the
creation and use of engagement artifacts,
including work products. This paper presents a
standard for architecture description in which a
set of conventions for terminology and notation
is used to describe and to express the
organization of the architecture for an IT system.
This standard, the Architecture Description
Standard (ADS), is intended to be used by the
IBM architecture community. The emphasis is on
a minimal set of shared concepts that can be
effectively taught to a broad range of IT
architects with different skills and that is usable
in practice.

by R. Youngs
D. Redmond-Pyle
P. Spaas
E. Kahan

T his paper focuses on the conventions, terminol-
ogy, and notation that are needed to support the

harvesting and reuse of reference architectures.
(Within the context of papers in this issue, it would
be helpful to readers if this paper is read before the
papers on reference architectures and engagement
experiences that are included in this issue.)

The business background

In projects that are developing computing systems
for business solutions, it is generally recognized that
the use of predefined, reusable assets in the form of
architectural, analysis, and design patterns can en-
able large reductions in project cost, time scale, and
risk. However, effective large-scale deployment of
architectural patterns is dependent on key concepts,
terms, and notations being used consistently, and be-
ing understood and accepted across a broad com-
munity of information technology (IT) architects and
systems integrators. Without a common language,
deployment is likely to be patchy, inefficient, and er-
ror-prone and to require huge support resources.
Lack of consistency seriously inhibits scalability.

In 1996 and 1997, IBM’S Global Industries business
unit, which has the mission of developing and sup-
porting packaged industry solutions, recognized the
need to adopt an improved, asset-based approach

Wopyright 1999 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royaltyprovided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
othcr portion of this paper must be obtained from the Editor.

32 YOUNGS ET AL. 0018-8610/99/55.00 0 1999 IEM IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

to its product development. At the same time, IBM’S
Global Services business unit had independently con-
cluded that IBM and its customers, and IBM’s services
professionals worldwide, would benefit greatly from
an asset-based approach to solutions development
in which architectural and design assets would be
gathered from completed projects and redeployed
on many other, similar projects. Both business units
agreed that the increased emphasis on assets and
work products for development and for services en-
gagements necessitated a comprehensive metamodel
that would underpin the description of those assets
and work products more precisely and effectively.

Independently of the Architecture Description Stan-
dard (ADS) project, the Enterprise Solutions Struc-
ture (ESS) project had already developed a specific
metamodel used to document the (mostly technical)
frameworks that it was developing. This metamodel,
in a simplified form, was implemented in a Lotus
Notes”“-based tool, which was used to distribute
these assets to users of ESS.

The Architecture Description Standard project was
created to develop a more wide-ranging version of
this metamodel and the semantic descriptions to sup-
port it. The output from this project, ADS, provides
a common language through the definition of a for-
mal metamodel, a glossary (see the Appendix), and
a detailed semantic specification.

The primary audience for the standard consists of
IT architects working on solution development and
deployment projects. Such work might be either in
the context of a client engagement or a development
project within an IBM solution development orga-
nization. In the former context, assets in the form
of work products conforming to the standard may
be selected, customized, and used to build IT systems
for the customer. In the latter context, developers
will create work products conforming to the stan-
dard which can then be widely deployed.

Such work products will typically contain descriptions
of groups of entities from the metamodel, docu-
mented in the form prescribed by ADS. Thus, both
providers and consumers of work products will ben-
efit from a common, unambiguous definition. Within
a single project, ADS will enable more precise, un-
ambiguous, and semantically rich communication
among project personnel.

The standard is intended to be used for solution de-
velopment and deployment across the IBM Corpo-

IBM SYSTEMS JOURNAL, VOL 38. NO 1, 1999

ration worldwide. It is the foundation for the Sys-
tems IntegrationiApplication Development (SIIAD)
method and its associated work products. It will be
initially deployed to all WAD architects via WAD ed-
ucation classes. It will also be deployed to a wider
range of architects via classes that are currently un-
der development. It is also the foundation for the
structure and terminology of asset libraries (for ex-
ample, ESS).

This paper summarizes the main concepts in ADS.
A full description is available in IBM’s formal ADS
documentation.

Influences on ADS technical strategy

Several themes contributed to the technical strategy
adopted for the Architecture Description Standard.

Requirements for an ADL. As discussed previously,
there is a business requirement to be able to express
architectural work products and assets in a consis-
tent, unambiguous form. ADS is a funguuge for de-
scribing and communicating architectural concepts.
The phrase architecture description language (ADL)
is commonly used for this type of standard, and there
are an increasing number of ADLS available that
broadly address the same concerns as ADS-they are
all formal languages that can be used to describe the
architecture of an IT system. ’ They differ from mod-
eling or programming languages in that their focus
is mainly on architectural concepts-abstractions of
components, connections, protocols, and the behav-
ior of the complete system.

Because of some of I€”S unique requirements (spe-
cifically, those relating to developing asset-based ser-
vices with a multiskilled work force), no existing ADL
was identified that met all requirements and was de-
ployable to IBM’s architecture community.

Integration of application development with infra-
structure design. One of the conclusions from ear-
lier work was that the success of major solution de-
velopment projects in IBM often depended critically
on the integration of application and infrastructure.*
Therefore, one of the principles that guided the de-
velopment of ADS was the recognition that infrastruc-
ture design is a specialized skill and that its expo-
nents habitually deal with concepts, entities, and
methods that are different from those in “tradition-
al”app1ication development. This recognition led the
ADS project to divide the architectural model into

YOUNGS ET AL. 33

two parts: a functional aspect and an operational as-
pect.

The operational model, described below, is focused
specifically on aspects of architecture necessary for
the infrastructure designer to perform his or her job.
Although ADS defines these two models, in actual
fact they share many entities and can be considered
as dealing with the same material, but from differ-
ent perspectives. Hence, we use the terms “function-
al aspect” and “operational aspect,” and it is through
the formal definition of the way entities are shared
and used across these aspects that ADS contributes
to the integration.

Precision and consistency. Although it might seem
desirable to strive to achieve the highest levels of pre-
cision and consistency for a technical standard such
as this one, we do not believe that it is necessarily
the case. To assist the rapid development of asset-
based services in IBM, the emphasis in the ADS proj-
ect was to provide a practical standard that can be
readily adopted by a wide range of people in devel-
opment projects.

One objective, therefore, was to define an architec-
ture description standard sufficient to enable con-
sistent definition and use of architectural templates
by practitioners and to underpin the architectural
aspects of IBM methods (for example, the SIiAD and
IPD, or Integrated Product Development, methods).
Another, related, objective was to provide a consis-
tent base of concepts, terms, and notations for the
education and training of architects in templates and
methods.

Such a standard does not have to be comprehensive
to be effective. It only needs to cover the core areas
of architecture, which must be defined and under-
stood in a standard way to enable effective deploy-
ment of architecture templates. This set, therefore,
consists of those concepts that are regularly used in
project work products or assets and that need to be
standardized for practitioners to do their work.

Although underlying precision and consistency are
important (and will be achieved through the meta-
model), practicality, trainability, and usability as they
apply to practitioners are paramount. The critical
factor for success is whether the resulting set of con-
cepts, terms, and notations is small, simple, and ac-
cessible enough to be taught to large numbers of
practitioners in a broad spectrum of courses.

34 YOUNGS ET AL.

Exploitation of IBM’s existing best practices. In our
work developing the Architecture Description Stan-
dard, we have attempted to reconcile and synthe-
size various IBM best practices and combine them
with wider industry initiatives. The main IBM sources
we have integrated are:

WSDDM-OT (worldwide solution design and deliv-
ery method-object technology)
WSDDM-ISD (infrastructure design), which itself in-
corporates the earlier IBM End-to-End Infrastruc-
ture Design Method
ESS, a major asset base of IBM reference architec-
tures and associated architectural assets

Use of industry standards. During the 1990s, the
largest and most influential industry initiative on the
representation of software systems has been the work
undertaken by the Object Management Group3
(OMG) to produce a Unified Modeling Language
(UML). ADS decided to adopt UML (vl.1) as the ba-
sis for ADS concepts, terms, and notations because
UML is being widely adopted as a de jure and de facto
software modeling ~ t a n d a r d . ~ It represents a major
investment of intellectual effort and conceptual con-
vergence by the world’s leading software method-
ologists. Consequently, most of the major modeling
tool vendors will provide CASE (computer-assisted
software engineering) tool support for UML.

In addition, many IBM IT architects are already fa-
miliar with UML concepts and notations (indeed IBM
was closely involved in the development of UML), and
most of the key concepts in WSDDM-OT, WSDDM-ISD,
and ESS, with which they are familiar, can be mapped
to UML concepts.

During the development of ADS, we have identified
some limitations in UML for architecture description
and areas in which IBM best practice would be lost
or diluted if we conformed slavishly to UML. In these
areas we have extended UML so that valuable con-
cepts or notations are not lost. This extension has
proved to be most necessary in the area of infrastruc-
ture design, where the uML coverage of important
concepts such as connections between nodes, and
service-level requirements, is limited.

The technical strategy has therefore been to adopt
a pragmatic approach: integrating concepts from
IBM’s WSDDM-OT, WSDDM-ISD, and ESS; expressing
these concepts in UML terms and notation wherever
possible; extending UML where required while en-
suring that the concepts are usable by practitioners.

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

The authors believe that this strategy has achieved
a coherent and usable architecture description stan-
dard that carries forward the strengths of the meth-
ods and standards from which it is derived.

The architecture definition standard

This section begins with a definition of architecture
and then describes its various characteristics.

What is an architecture? The IT industry has pro-
posed numerous definitions for the concept of ar-
chitecture, widelyvarying in scope and emphasis. The
main focus of ADS is on describing the structure of
“Components,” the relationships between them, and
the way in which they interact dynamically. Hence,
ADS has adopted the following definition:

The architecture of an IT system is the structure
or structures of the system, which comprise soft-
ware and hardware components, the externallyvis-
ible properties of those components, and the
relationships among them. (Adapted from Bass
et a].’)

Note that this definition incorporates hardware com-
ponents in the scope of a systems architecture. In
practice, most project activity is concerned with soft-
ware architecture, design, and implementation.
Therefore, it might be argued that a purely software
scope is sufficient-ADS would then describe a soft-
ware architecture. Occasionally, however, it is nec-
essary to include hardware components in an archi-
tectural definition (usually where specialized or
unfamiliar hardware devices are needed). Also,
through its operational aspect, ADS brings a closer
focus on describing computer platforms and their
physical connections and on delivering service lev-
els. Therefore, it is appropriate that ADS should in-
clude hardware.

Functional and operational aspects. In the context
of a development project, a complete IT system ar-
chitecture serves multiple purposes, among them:

Breaking down the complexity of the IT system so
that developers can analyze and design compo-
nents that are relatively isolated from one another
Analyzing the functionality so that required tech-
nical components (or infrastructure) can be iden-
tified
Assisting in the analysis of service-level require-
ments so that the means of delivering them can be
designed

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Providing a basis for the specification of the phys-
ical computer systems on which the IT system will
execute and the mapping of components onto these
computer systems

In large projects, a division of responsibilities be-
comes necessary for the simple reason that a single
person cannot possibly be skilled in all the technol-
ogies, methods, tools, and techniques needed for all
these purposes. Also, the activities of any large proj-
ect need to be partitioned so that small groups (sub-
projects or work groups) can manage their own cre-
ative work, with the integration of the whole project
being performed at a higher level. In practice, large
projects include work groups concerned primarily
with application design and development. Their fo-
cus is on the first of the above purposes. Other groups
are concerned with infrastructure design and devel-
opment, and they focus on the last three purposes.
Each group has specialized techniques to address its
particular concerns.

The Architecture Description Standard reflects this
separation of concerns by identifying two main as-
pects of architecture: the functional and the oper-
ational aspect.

The focus of the functional aspect is on describing
the function of the IT system and is primarily con-
cerned with the structure and modularity of the soft-
ware components (both application and technical),
the interactions between them, their interfaces, and
their dynamic behavior (expressed as collaborations
between components).

The focus of the operational aspect is on describing
the operation of the IT system and is primarily con-
cerned with representing network organization
(hardware platforms, connections, locations, topol-
ogy, etc.), where software and data components are
“placed” on this network, how service-level require-
ments (performance, availability, security, etc.) can
be satisfied, and the management and operation of
the whole system (capacity planning, software dis-
tribution, backup, and recovery).

The aspects are summarized in Table 1.

Functional aspect concepts. The concepts and mod-
eling notations used to describe the functional as-
pect of an IT system are discussed in the following
subsections.

YOUNGS ET AL. 35

Components and relationship diagrams. The func-
tional aspect is represented in terms of components
and the relationships between components.

A component is a modular unit of software5 func-
tionality, accessed through one or more interfaces.
The functionality and state of the component are
only externally accessible by using these interfaces
(that is, they are encapsulated). Component is the
primary concept used for modular design, with the
well-established design principles of information hid-
ing and of seeking high cohesion and low coupling.

The primary notation used for components in ADS
follows the UML class diagram notation. (We rep-
resent a component by the UML class symbol-a rect-
angle, optionally with a section for operations.) Re-
lationships between components are shown in a
component relationship diagram in which we show
a usage relationship between two components if one
component uses the interface(s) of another compo-
nent. This usage can be thought of as being based
on a contract between the components; that is, there
is an agreement between the two components about
the services they can request from each other. We
use the UMLassociation notation to show this. Show-
ing such a usage relationship implies that the com-
ponents can communicate with one another. The de-
sign of the infrastructure must ensure that the
necessary physical connectivity can occur.

Figure 1 shows an example of a component relation-
ship diagram for a workflow system.

The component relationship diagram notation has
a line with an arrowhead pointing from the “using”
component to the “used” component. For example,
in Figure 1 the workflow client application uses op-
erations provided by the workflow engine compo-
nent. Where each component uses (and therefore
depends on) the other, the line can have arrows at
each end. For example, the workflow engine uses the

36 YOUNGS ET AL.

external workflow engine, and vice versa. (This in-
terpretation slightly extends the standard UML ar-
rowhead notation meaning direction of association
navigation.)

Although the line could be read as a data flow or a
message, this interpretation is not correct. A usage
relationship between two components typically re-
lies on one or more interfaces with many operations
(and corresponding message types). Some of these
messages may be passed in the opposite direction
from the arrow (for example, callback), and data
commonly flow in both directions.

The component relationship diagram can optionally
show the multiplicities of relationships. For exam-
ple, Figure 1 shows that each workflow client appli-
cation interacts with a single workflow engine and
that the workflow engine interacts with multiple cli-
ents (as shown by the 1 and * at the ends of the con-
necting arrow).

A component relationship diagram is essentially a
static specification of the usage between components.
It shows how components can use one another,
rather than actual message flow or dynamic behav-
ior (for these latter items, see the component inter-
action diagram shown later in Figure 3).

Composition of components. Complex components
are frequently composed from simpler components.
This arrangement can be visualized by showing one
component inside another.

Figure 2 shows the component relationship diagram
with the audit log encapsulated within the applica-
tion agent. When one component is composed of an-
other, the services of the contained component are
not accessible from outside the composite compo-
nent; that is, they are encapsulated. For example, in
Figure 2, the application agent uses the audit log,
but no other users or components can use the audit

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999

Figure 1 Component relationship diagram

log. Encapsulation does not imply that the audit log
is physically contained in the application agent, but
that the application agent has a private relationship
with it.

It would not be appropriate to show the Customer
Information Control System (CICS*) application en-
capsulated in Figure 2, as its external interfaces may
be used by multiple components.

(This is a standard UML class diagram notation for
composition. If available tools do not support it, an
alternative UML notation is the diamond symbol for
aggregation.)

Describingcomponent behaviors. We describe the re-
quired externally observable behavior of an IT sys-
tem in terms of the widely used concepts of use cases
and use case scenarios. For example, the statement
“Withdraw Funds from ATM” is a use case, and “Suc-
cessfully withdraw $100 from account 12345 at mid-
night” is a scenario of this use case (that is, one par-
ticular path through the use case).

In creating the architecture of a system, we need to
allocate the responsibilities of the system as a whole
to the components of the system. For each scenario,
we divide up the system responsibilities among a
number of components (e.g., one component might

Figure 2 Component relationship diagram showing
~~~~~ 

component  composition 

r 

I 

I 

run  the user  interface, a second might manage work- 
flow, a third  might store  data). To model how the 
components work together to process a scenario  at 
run time, we have the  concept of a  collaboration. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 YOUNGS ET AL. 37 



Figure 3 Component  interaction  diagram 

A  collaboration  (among  components) is a  sequence 
of operations, identifying which components  perform 
operations  and which request  operations, reflecting 
the time  sequence.  Collaborations  are  the  primary 
way  of modeling the dynamic  behavior of compo- 
nents. 

Collaborations  are visually represented using com- 
ponent  interaction diagrams (using standard UML no- 
tation).  An  interaction  diagram shows the messages 
exchanged  between  components  during  a single col- 
laboration;  that is, it is an execution  trace. 

Figure 3 shows a  component  interaction  diagram  for 
the workflow system above.  Each  vertical  line (col- 
umn)  represents a  component  that  participates in 
the collaboration (e.g., workflow client, workflow en- 
gine). Each  horizontal line  represents  a  request, in 
the direction of the arrow,  from one  component  to 
another.  The  name of the  request (= invoked op- 
eration) is shown on  the line  (e.g., get-work-list). 
The names, types, and  values of parameters  can  also 
be shown if required  (but  are  omitted in Figure 3). 

38 YOUNGS ET AL. 

We use the  standard UML sequence  diagram  nota- 
tion to  model  component  collaboration. UML also 
defines  a  semantically  equivalent  notation,  the col- 
laboration  diagram, which can be  used if required. 
(The collaboration  diagram  format shows the com- 
ponent topology more clearly but  tends  to  make  the 
time  sequence of messages harder  to  see.) 

Structuring of components. One of the most  impor- 
tant  architectural design processes consists of struc- 
turing the system as a  whole into a  suitable  struc- 
ture of components  and  relationships  between 
components.  This  structuring  addresses  a  number 
of concerns, including: 

Allocation of responsibilities to components, in 
such  a way that  each  component  has a cohesive 
set of responsibilities and  redundancy is avoided 
Partitioning of components  to  take  into  account 
distribution  requirements (For example, an initial 
component may have to  be split  into  a client and 
a server  component.) 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Figure 4 Component diagram showing  subsystems as collections of components 
~ ~~~ 

Optimizing the  component  structure  to satisfy ser- 
vice-level requirements  such  as  performance 
Incorporation of reusable  components in the  de- 
sign, accommodation of  legacy systems, or  other 
constraints 

The notations  illustrated in Figures 1 to 3 are used 
to represent possible component  structures  and col- 
laborations  during this structuring process. It is com- 
mon  for the  structuring  to evolve through several 
elaboration  points. 

Subsystems. When  describing an IT system, we often 
need  to talk about  some  part of the system. Sub- 
systems may be  defined  and  used  for  several  pur- 
poses, for  example, to organize  a large IT system into 
smaller  “chunks”  and to make it more  comprehen- 
sible or  manageable (e.g., accounts subsystem, in- 
ventory subsystem, system management  subsystem) 
so that it can  be  more easily described to  other  peo- 
ple. It is also necessary to divide the system so that 
work can be allocated to  development  teams (e.g., 
one subsystem per  team). 

A subsystem is a subset of the  components in an IT 
system. It can be defined by drawing an irregular line 
around  some of the  components (see  Figure 4). For 
example, in Figure 4, the accounts subsystem con- 
sists of components C4,  C5,  C6, and C7. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 

Subsystems may overlap, e.g., component C6 is part 
of the accounts subsystem and  also part of the im- 
age subsystem. 

A subsystem may span  platforms, i.e., the compo- 
nents in a single subsystem can  be  placed on several 
platforms. For example, a data access subsystem may 
have a  database  server  component,  a  data access 
gateway, and  a  client data access port,  each  running 
on a separate  platform (similarly for  an Object Re- 
quest  Broker [ORB], a workflow subsystem, an ac- 
counts subsystem, or a systems management  sub- 
system). 

Domains  and architectural templates. In addition to 
describing  actual  architectural  components,  it is im- 
portant  to  be  able  to describe the way in which they 
interact  and  collaborate.  The  Architecture  Descrip- 
tion Standard  Semantic Specification defines the 
concept of a  domain, which  is a  set of structural  and 
behavioral patterns  that describe  some part of the 
architecture of an IT system (e.g., workflow, trans- 
actionality, user interface, network communications). 
The description of a  domain is expressed  as  a  set of 
collaborations  between  components  and the  inter- 
faces  (defining  component  roles) used by these col- 
laborations. 

One of the  prime motivations  for  domains is reuse- 
domains  can  represent  architectural  patterns  (or 

YOUNGS ET AL. 39 



templates)6  that occur across many components  and 
may be observed  (and  therefore  reused) in many IT 
systems. Since better  reuse of assets is an expected 
benefit of ADS, the alternative  terminology of “ar- 
chitectural  template” is used in this paper  and else- 
where.  This  emphasizes  the  reuse  aspect  and is con- 
sistent with the definition of the  architectural 
template  work  product type, described in the IBM 
WAD method. 

There  are several well-known examples of architec- 
tural  templates,  often described by related  terms such 
as  reference  model,  reference  architecture,  domain 
description, or even  industry standard. 

Widely known examples of architectural  templates 
include: 

The Smalltalk  Model-View-Controller pattern: A 
standard  set of component  roles  (model, view, and 
controller)  for  user  interface  management,  the in- 
terfaces  each  role  must  support,  and  the collab- 
orations which ensure  that  the user interface (view) 
is coordinated with the model. 
The  Web  architecture: A template in which the 
browser  and  server  collaborate in well-understood 
ways (defined by HnP-HyperText  Transfer  Pro- 
tocol) to  present  information  across  the  Internet. 
The Workflow Reference  Model  from  the Work- 
flow Management  Coalition: A set of patterns of 
collaboration  between  standard  component roles 
(invoking application, workflow enactment service, 
invoked application,  monitoring  application)  and 
a  detailed workflow application  programming in- 
terface  supported by each  role  for  a  component 
to  be “workflow-aware.” 
The OMG Object  Transaction Services (OTS) spec- 
ification: A standard  set of component roles (trans- 
action  manager,  resource  manager,  resource)  and 
required  interfaces  for  transaction  management in 
a  distributed  object  environment. 
The International  Organization  for  Standardiza- 
tion-Open Systems Interconnection (rso-osr) sev- 
en-layer  model: An architectural  template  for  net- 
work communications with well-defined layer 
responsibilities  and  interfaces. 

The same  diagrams  used  for  describing  component 
structure  and  component  interactions  are also  used 
in architectural  templates. 

Operational aspect concepts. This section introduces 
the  concepts  and  notations used in the  operational 

40 YOUNGS ET AL. 

model, which describes the  operational  aspect of IT 
system architecture. 

Network diagram. The network  diagram  represents 
network topology and shows where  software  com- 
ponents  are placed on  the nodes in the  network (Fig- 
ure 5) .  

The central  concept is node. A node is a  platform 
on which software  executes.  During  early  stages of 
the design process, a  node  represents  a  potential plat- 
form  before  decisions have been  made  about how 
to map it to  actual platforms. 

The network  diagram in Figure 5 shows nodes  as 
rectangles (ideally, where  diagramming  tools  permit, 
as UML cuboids). Each  node has  a  name  and  (op- 
tionally) the  number of instances  (in  parentheses). 
Connections  represent physical data  paths between 
nodes  (e.g., by local area network-LAN, wide area 
network-WAN, dial-up, wireless) and show the 
shape of the network. 

Deployment  units are placed on  the nodes. A de- 
ployment  unit is the  smallest  unit of software or  data 
about which an architect  makes  a  placement  deci- 
sion.  Deployment  units are shown as  named items 
on each node.  In practice, only the most significant 
units are shown in this diagram; otherwise it becomes 
too cluttered. 

A deployment  unit  consists of one  or  more  compo- 
nents. In practice, we often  need  to  regard  the  data 
aspect  (or state) of a  component  as  being in one  de- 
ployment  unit  and the execution of a  component  as 
being in another deployment unit. Sometimes we also 
need to distinguish the installation  aspect of a  com- 
ponent  as  being in a  third  deployment  unit.  Deploy- 
ment  units may be  named to reflect this  need (e.g., 
in Figure 5,  E1-E14 are execution deployment units, 
D8 is a data deployment  unit) or they may be  an- 
notated (e.g., component  name  [E],  CName [D, I]). 

Nodes are  grouped  together in locations. A location 
is a  geographical  entity (e.g., a  zone or building type) 
and is shown by a  dashed  line  around  one  or  more 
nodes. Several network  diagrams may be used to rep- 
resent  different  aspects of a single IT system (e.g., 
operational system, systems management,  develop- 
mental  environment). 

The network  diagram is based on the UML deploy- 
ment  diagram  notation with some  extensions.  Nodes 
correspond  to  the UML concept of node. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Figure 5 Network  diagram 

Walkthrough. One of the main ways  of confirming 
that  the  operational aspect of a system is feasible and 
acceptable is to perform  end-to-end  walkthroughs 
of collaborations. A walkthrough is a  narrative  de- 
scription of how the IT system processes  a use case 
scenario,  tracing the collaboration around  the sys- 
tem.  It is used to assess the  operational  behavior of 
the system, specifically whether  the system will be 
able  to satisfy service-level requirements  such  as se- 
curity  and availability. 

Walkthroughs are usually documented in text (as  a 
sequence of paragraphs)  and cross-referenced to sce- 
narios  or collaborations.  They can be documented 
using component  sequence  diagrams if required. 

Placement. A key concern in the design of the  op- 
erational  model is placement-deciding how to 
group  components  into  deployment  units  and  on 
which nodes  to place  them.  Placement is influenced 
mainly by what data  the users are  operating  on,  to- 
gether with where  the system users are  and what ac- 
tivities the  users  perform.  It is also influenced by non- 
functional  requirements  (see next subsection). 

When implementing a commercial software package, 
the deployment units to  be placed are predefined. In 
contrast, when a solution is being designed and devel- 
oped,  the placement process determines  the grouping 
of components  into deployment units and influences 
the partitioning of components. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 YOUNGS ET  AL. 41 



Nonfunctional requirements. The  other key influences 
on  placement  are  the nonfunctional  requirements, 
for  example: 

Performance  (end-to-end  response  time  for  spec- 

Availability (e.g., 8.00-20.00 weekdays, 24 X 7, 

Security policies, etc. 

A nonfunctional  requirement is a quality require- 
ment  or  constraint  that an IT system must satisfy. 

Service-level requirements  (such  as  those listed 
above) are  an  important type of nonfunctional  re- 
quirement.  Nonfunctional  requirements also include 
system qualities such as maintainability, even  though 
these  relate to attributes of the  development  pro- 
cess, rather  than  to  attributes of the  operational sys- 
tem  (like service levels). 

All kinds of constraints  on  an IT system are also  rep- 
resented using this construct, including business con- 
straints (e.g., geography of locations), IT standards 
(e.g., CORBA**"Common Object Request  Broker 
Architecture-compliance), and  current  infrastruc- 
ture  constraints (must  run on specified existing 
middleware). 

In ADS, nonfunctional  requirements may be  attached 
to any component or node,  and  the  operational 
model is developed by placing components  onto 
nodes according to their  nonfunctional  requirements 
and  then successively refining placement decisions. 
Although  nodes  themselves  should strictly be mod- 
eled  as  sets of (hardware)  components,  it is normally 
sufficient to regard  the  node  hardware  and  operat- 
ing system as a  simple  container  for  software  com- 
ponents, with the interfaces to  the  hardware com- 
ponents  being  provided by the  operating system. 

Integration of functional and  operational  aspects. As 
noted  earlier,  one of the  major challenges in devel- 
oping systems is achieving more effective integration 
between  what  has  traditionally  been  application  de- 
velopment  and  infrastructure design areas of work. 
ADS separates  the  concerns of the  functional aspect 
(collaborating  components)  and the  operational as- 
pect (satisfying service requirements). At times it is 
important to be  able  to  work  on  one  aspect  without 
considering the  other. 

ADS facilitates the  integration of functional  and op- 
erational  aspects in  five main ways: 

ified services) 

etc.) 

42 YOUNGS ET AL. 

A. Component placement-Components (function- 
al)  are placed on  nodes  (operational) in order 
to  meet  the service-level requirements  and  other 
quality requirements of the IT system such  as 
manageability.  Co-located  components are 
grouped  into  deployment  units  to  ease place- 
ment.  Where  required,  the  stored  data of the 
component  can  be  placed  on  a  separate  node 
from where the  data execute. Interactions (func- 
tional) are  mapped to connections (operational). 

B. Component structuring-Operational  concerns 
influence component  structuring.  Operational is- 
sues  are  frequently  neglected  during  application 
development. ADS shows the concepts  and issues 
in the  operational  model  that have a  direct  ef- 
fect on  the  component model.  Components  are 
(re)structured  to  take  into  account  distribution 
requirements,  operational  constraints,  and  the 
need  to achieve service-level requirements.  For 
example,  a  component may be split into a  client 
component  and  a  server-based  component, with 
a  usage  relationship  between  them, to achieve  a 
response  time  objective  on  the  client. 

C. Scenarios-ADS provides use case  scenarios as a 
unifying theme  that  runs  through  both  functional 
and  operational  models.  A  use  case  scenario is 
realized in the functional  model  as  a  collabora- 
tion  between  components, with a  sequence of op- 
erations  executed.  This  collaboration  (based on 
the  same  scenario) can be  represented as  a walk- 
through in the  operational  model  to  validate  that 
the placed  components can achieve required  ser- 
vice levels. 

D. Use case service-level requirements-ADS en- 
ables effective integration of service-level re- 
quirements (SLRS) between  functional  and 
operational  aspects. ADS recommends  the spec- 
ification of SLRS for use cases, which are  then  car- 
ried  over to  their associated  collaborations  as 
component  collaborations. SLRS in this  form are 
a  valuable  input to validate that  the  operational 
model will satisfy requirements.  However, SLRs 
are also  attached to many other entities,  includ- 
ing the IT system itself. 

E. Technical components-Last but  not least, ADS 
facilitates  integration by treating  the technical 
components  as  part of the functional  aspect. 
Technical  components  are  components  repre- 
sented in a  component  model with component 
sequence  diagrams in exactly the  same way as  ap- 

IBM SYSTEMS JOURNAL, VOL 38, NO 1,  1999 



Figure 6 Integration of functional  and  operational  aspects 

plication  components.  This  treatment  enables 
standard  component  modeling  techniques  to  be 
used to represent  application or technical  inte- 
gration. 

These five forms of integration are illustrated in Fig- 
ure 6. 

Elaboration points. As  the  development of an IT sys- 
tem  proceeds,  the  nature of the  material  that devel- 
opers  deal with changes. At  the  start of a project, 

abstract  concepts such as requirements, use cases, 
and principles are  the primary concern of project per- 
sonnel.  Toward  the  end of a project,  different,  more 
concrete  concepts  dominate;  executable  code,  hard- 
ware specifications, and  test  cases are  some of the 
major  concerns. 

However, during  the  development of an  architecture, 
some  entities  retain  the  same basic concept  but  be- 
come progressively more refined  and  detailed.  This 
progressive refinement  takes two forms: 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 YOUNGS ET AL. 43 



As more information becomes  available, and as the 
project gains a  better understanding of the  nature 
of the problem, more detail is added so that, fi- 
nally, enough detail is  available for  a designer or 
implementor to  take over. There is a sense of con- 
tinuous progression in this refinement. 
At certain points in the process, structural changes 
have to be made, again reflecting better  under- 
standing of the problem, the environment, and the 
technology  available. For example, it  may be nec- 
essary to divide and merge components to handle 
nonfunctional requirements such as availability or 
performance. At this point there is a discontinuity 
in the development of the  structure of the archi- 
tecture. 

Furthermore, in  any  complex project, the division 
of responsibilities means that each subproject will 
need to make its own structural changes, and those 
changes will need to be synchronized among sub- 
projects. These points, therefore,  are obvious  places 
to produce major work products. Where predefined 
work products are used in a project, it  is imperative 
that both the creator and the user of each work prod- 
uct agree on these key points in the development 
process. 

Elaboration points are places at which major struc- 
tural changes are made in all relevant parts of the 
project. (Entities may be split, merged, or regrouped; 
some may be deemed to be no longer needed, and 
some new ones may be introduced.) Often, unusu- 
ally large quantities of information are exchanged 
between subprojects so that  a uniform and coordi- 
nated design  can be achieved. At  the same time, ma- 
jor work products may be exploited or created, and 
formal reviews of work products may be held. 
Elaboration points are sometimes equivalent to 
checkpoints or  to  the transition between “stages” or 
“phases” in development methods. 

In the  current version of ADS, exact elaboration 
points are not defined.* However, the initial and fi- 
nal elaboration points in  any project will generally 
be the same, even though the number and  nature of 
intermediate ones may differ. For example, ADS rec- 
ommends the following: 

Initial elaboration point: unconstrained by the lim- 
itations of technology, geographical distribution, 
and the customer’s environment. At this stage, rel- 
atively coarse-grained and undetailed models and 
specifications are produced. 
Intermediate elaboration point: one, for example, 

44 YOUNGS ET AL. 

in  which the distribution of users and locations is 
taken into account so that components are geo- 
graphically distributed, or when new technologi- 
cal components may be identified to support  the 
component distribution. 
Physical elaboration point: fully constrained by the 
limitations of the technology  available,  geography, 
and the environment. Fine-grained and detailed 
models and specifications are produced. The work 
products at this point are  a complete architectural 
specification of the IT system,  including  specifica- 
tions of hardware and software products so that 
they may be ordered. This work  may include up- 
grades to installed products or connections. A spec- 
ification of the  operational aspect is produced so 
that nodes and connections can be configured and 
components deployed and brought into operation. 
If any  new functionality needs to  be  created, mod- 
ule specifications are  created  that can be taken by 
a developer or programmer to be developed and 
unit-tested. 

Not  every aspect need have the same elaboration 
points. The functional aspect may have an initial 
elaboration point (usually the first elaboration point 
encountered in a project), but the  operational as- 
pect will  usually not. Each aspect may  have  differing 
intermediate elaboration points, reflecting the dif- 
ferent concerns of each aspect. However, all aspects 
should have a physical elaboration point. 

Readers familiar with the wSDDM infrastructure de- 
sign (ISD) method will recognize that  the  end stages 
of ISD closely correspond to elaboration points. 

The concepts are summarized in Figure 7. This fig- 
ure shows the IT system  with its two aspects, func- 
tional and  operational. Within each aspect, the ma- 
jor concepts are shown, separated by a dashed line. 

Notation. ADS defines several standard notations. 
Wherever possible, these use the OMG UML nota- 
tions. Table 2 summarizes the notations used  in ADS. 

Relationship with existing terminology and roles. 
This section positions some commonly  used termi- 
nology and roles with ADS concepts. None of the 
terms in the following subsections is defined in ADS. 

Application  architecture. An application architecture 
view emphasizes those components and their inter- 
relationships that provide the application-dependent 
behavior of the IT system.  As  such it is a view  of a 
part of the functional aspect of the IT system. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Figure 7 Summary of basic ADS concepts 

Table 2 Notations in ADS 

I Notation Name  Where DefinedfComments 

Component relatianship diagram 

. ,  r 

'~~~~~~~~ interaction diagram 

~ o ~ ~ ~ ~ n ~  coilaboration diagram 

Network  diagram 

UML class  diagram,  with components in place of classes 
Any extensionsiinterpretations defined in a component model 
Static representation of component usage relationships and  composition 

UML sequence diagram, with components in place of objecrs 

UML collaboration diagram,  with components in place of objects 

Defined in the operational model 
Based on UML deployment  diagram,  with  extensions 

Technical architecture. A  technical  architecture view 
emphasizes  those  components  and  their  interrela- 
tionships that provide the  application-independent 
behavior of the IT system. As such it is also  a view 
of a part of the functional  aspect of the IT system. 

It is important  to  understand  that ADS does not dis- 
tinguish between  a  technical  architecture  and  an  ap- 
plication architecture. Any such division is somewhat 
arbitrary, so that no formal  distinction is possible. 
For example,  a workflow manager  run-time  server 
(a  component in ADS terminology)  can be  thought 
of as a technical  component  (part of a  workflow 
manager  product), yet  it contains  business  process 
definitions  and  information  about  the  business 
organization-clearly application  concepts.  This 
component,  therefore,  has  both application and tech- 
nical responsibilities. 

For this  reason,  the ADS functional  aspect  encom- 
passes  components  present in both  application  and 
technical  architectures,  and uses the  same concepts 
and  notations  for  them. 

The application  development  and infrastructure devel- 
opment roles. Application  development  methods  and 
practitioners  concentrate  on  the  functional  aspects 
of an IT system. Their main  concern is, on the  one 
hand, to partition  the work in such  a way that it  can 
be allocated to development  groups  and,  on  the  other 
hand,  to build new components in such  a way that 
they  support  the  functional  requirements. Service- 
level requirements  (such  as availability and  perfor- 
mance,  etc.)  are not the primary  concern of the  ap- 
plication developer,  although  they may greatly 
influence the design of their  components  (though 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 YOUNGS ET AL. 45 



other nonfunctional  requirements  such as maintain- 
ability may be a major  concern). 

The infrastructure  designer  forms  clusters of bus- 
iness and  technical  components to populate  nodes 
in locations. The formation of these  clusters is based 
on analysis of service-level requirements.  This ac- 
tivity results in specifications being  drawn up  both 
for  nodes  and new components.  Some of the  latter 
are  then passed to the  application  developers  for  de- 
velopment,  others  are  acquired  from vendors. 

This  simple  approach may ignore the essential  feed- 
back that  the  placement process  generates  and  that 
should  be used to  further influence the design of the 
components.  Furthermore, technical  components 
(for  example, messaging) may end up in a gray area 
between the application  developers  and  infrastruc- 
ture designers,  depending on whether  they  are to  be 
acquired or custom-built. The  more rigorous  ap- 
proach  and  the  emphasis on formal,  complete  com- 
ponent  models in ADS will help to eliminate such ten- 
dencies. 

Enterprise  architect role. Enterprise architects  (for- 
merly IT architects) build architectural  models to  de- 
scribe  the  functional  requirements of the infrastruc- 
ture based on business objectives, the IT vision, and 
principles. The enterprise  architecture  method is a 
guide  for IT architects  and  consultants involved in 
defining enterprise-wide  architectures  for clients. It 
provides specific guidance on the  steps  required  to 
develop  an  enterprise  architecture and  general 
guidelines  for sizing and  estimating, report writing, 
and quality assurance. 

The concepts  present in these  models reflect the key 
building blocks of the  architecture  and  the  interfaces 
between  them. These building blocks are  further re- 
fined to represent  a  reusable  set of specifications for 
which evaluation  criteria  and  standards  can be  de- 
veloped,  and eventually product  selection  can be 
done. 

Work is in progress to  map  enterprise  architecture 
concepts to ADS concepts. 

Concluding remarks 

The Architecture  Description  Standard is a key part 
of the  foundation for an asset-based  business in IBM. 
It  contains  a  metamodel of an IT system, a  semantic 
description,  and  a glossary that  are designed to  be 
sufficiently comprehensive  for the  target  user com- 

46 YOUNGS ET AL. 

munity. It is also  designed to  be simple  enough to 
be deployed to a  user with a wide range of skills. 

In this paper we have described how ADS was based 
on  the  use of industry  standards,  particularly UML. 
We have shown how these  standards have been ex- 
tended in particular  areas,  such  as  the  operational 
aspect of architecture, in order  to highlight areas  that 
IBM has  learned in practice are crucial in the design 
of large-scale enterprise systems. 

We  anticipate that through facilitating asset  creation 
and  reuse,  widespread  use of ADS in IBM will deliver 
considerable  benefits,  measured in financial terms, 
as reductions in cost, risk, and  time in development 
projects.  Less  tangible  benefits will be a more  con- 
cise and  precise  means of communication  between 
different  parts of development  teams  and  between 
IBM and  its  clients. In  other  papers in this issue (on 
reference  architectures  and  engagement  experi- 
ences) it can be  seen how early  versions of ADS have 
already been successful in helping IBM to  structure 
assets  and then  reuse  them in architecture  projects 
to  the benefit of both IBM and its clients. 

Acknowledgments 

In  addition to  the  authors of this paper,  the Archi- 
tecture  Description  Standard  project  team consisted 
of John  Cameron,  Ian  Charters,  Martin  Cooke,  and 
Dave  Vanberg (with Ed Kahan  as  project  leader). 
The following also contributed  to  the  development 
of  ADS, either directly or through its predecessors: 
John Black, Steve  Cook,  Paul  Fertig, George  Ga- 
lambos, Ralph  Hodgson,  Deborah Leishman, Tim 
Lloyd, and  John Rothwell. 

Appendix: Glossary of ADS terms 

The main  terms in the  Architectural  Description 
Standard  are defined below. Entries  that  are con- 
sidered  to  be  “core”  to ADS are  represented in a 
large-size boldface type. General industry  terms, or 
minor ADS terms, are  regarded as “noncore”  terms 
and  are shown in regular-size  boldface type. 

Actor An actor is a  human user or external system that  interacts 
with the system being built, by executing use cases. An actor  rep- 
resents a  coherent set of roles. Several users can play the  same 
role,  and one user can perform several roles. 

Examples of actor could include customer service representative 
or credit authorization service (an external system). 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 



Architecture “The architecture of an IT system is the struc- 
ture or structures of the system,  which comprisc software and hard- 
ware components,  the externally visible properties of those com- 
ponents, and the relationships among them.”  (Adapted from Bass 
et al. I )  

Architectural template An architectural  template is a set of 
structural  and behavioral patterns  that describe some part of the 
architecture of  an ITsystem (e.&., workflow, transactionality, user 
interface, or network communications). It describes component 
roles, the interfaces that components playing these roles must pro- 
vide, and  a  set of standard  collaborations. 

Familiar examples of architectural  templates are: 

The Web architecture, in which the browser and server roles 
collaborate in well-understood ways (defined by HTTP)  to 
present information across the  Internet 
The Workflow Reference Model, which defines the  standard 
collaborations  and interfaces by which a workflow  system can 
interoperate with both client applications and invoked appli- 
cations 
The ISO-OS1 seven-layer model, which constitutes an archi- 
tectural template  for network communications with well-de- 
fined layer responsibilities and interfaces 

Architectural templates  are useful for promoting standardization 
and  reuse of architectural assets. They can also be  used on a  proj- 
ect by architects to communicate standard mechanisms to design- 
ers. 

Collaboration A collaboration is  an occurrence of a  sequence 
of operations  that realizes a use case scenario. It typically  involves 
collaboration between two o r  more  components. 

Collaborations are visualized in collaboration diagrams or se- 
quence diagrams (as defined in UML). As an example, consider 
the  scenario of updating customer  details in a clientiserver sys- 
tem. There is a  sequence of operations in which the graphical 
user interface (GUI) component displays a window, calls a  data 
server component with a request for data, displays the  customer 
details  (and  amends  them), calls the data server to perform an 
update, etc. This whole pattern of component  operations  and ex- 
changes between components is a collaboration that  “realizes” 
the scenario. Once  components have been placed on nodes, the 
end-to-end behavior of a collaboration may be assessed and doc- 
umented using a walkthrough. 

Component A component is a  modular unit of functionality, 
accessed through one  or more interfaces. A  component offers a 
set of interfaces to the  outside world, while encapsulating its own 
state  and behavior. A  component should implement a cohesive 
set of functionality. Acomponent may be composed of other com- 
ponents, which are encapsulated within it. 

Components normally represent software (including operating 
systems) but can also represent firmware (e.&., PC BIOS) or hard- 
ware (e.&., encryption device, interactive voice response units). 

The functional aspect of an IT system is described by groups of 
interacting components, ranging from the very large to  the very 
small. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 

Examples of components include a  customer business object, do- 
main name server, an Open  Database Connectivitydriver (small), 
database management system (large component),  a  spreadsheet 
dynamic link library to be used imbedded in other applications, 
and  a JavaBean”*. 

Many definitions of component are currently in use. Some of these 
restrict use of the  term  component  to software implemented in 
specific technologies such as  CORBA, JavaBeans, or ActiveX** 
that  enable self-descriptive interfaccs. Our use of component in- 
cludes these technologies but is not restricted to them. 

Connection A connection joins two or more nodes in order 
to support interactions between components that have been placed 
on those nodes. A connection may consist of  a simple cable be- 
tween nodes, but it is typically used to  represent various kinds 
of network connections  (e.&., LAN, WAN) or communications 
types (e.&., dial-up, infrared, wireless, satellite). 

Connections are used to model network topology, where they show 
which nodes can communicate.  Connection characteristics (e.g., 
bandwidth, latency, availability, security) are  important in assess- 
ing whether a network can satisfy service-level requirements of 
the various interactions  carried. 

Data group An old term,  interpreted  as  a deployment unit that 
contains  the state of one  or more  components. 

Deployment  unit A deployment unit describes one  or more 
components  grouped  together  for deployment purposes. It is in- 
tended to simplify the activity  of placement since a deployment 
unit represents  grouped  components being considered for place- 
ment. A deployment unit has no effect on  the  structure, behav- 
ior, or performance  of  the software. During placement, deploy- 
ment units are placed on nodes. 

In practice it is often necessary to regard the execution aspect 
of a  component (the placewhere  the  component executes) as  be- 
ing in a different deployment unit from the  data  storage aspect. 
In some  environments (e.&., Java*” applets), it is also important 
to distinguish between the deployment unit where the  code of a 
component is installed and  the deployment unit (on a different 
node) where the  component executes. 

Design  pattern Adesign pattern systematically names, motivates, 
and explains a general design that addresses a  recurring design 
problem in object-oriented systems. It describes the  problem,  the 
solution, when to apply the solution,  and its consequences. It also 
gives implementation hints and examples. The solution is a  gen- 
eral  arrangement of objects and classes that solve the problem. 
The solution is customized and  implemented to solve the  prob- 
lem in a  particular  context.6 

Domain A domain is a subject area that defines a context for 
analysis and description of some aspect of an  ITsystem. Domains 
are described by architectural  templates, consisting of a set of 
CokIbordtionS (and  their associated component roles or inter- 
faces). See also architectural  template. 

Elaboration  point An elaboration point is a milestone in the 
development of an artifact at which significant decisions are doc- 
umented.  Elaboration  points are often used: 

YOUNGS ET AL. 47 



As  formal review points  for  an artifact 
As points at which different artifacts  are synchronized 

Many elaboration  points are possible depending on the artifact 
and the problem at hand,  for example: 

1. An initial elaboration point is the initial and most abstract elab- 
oration point, not reflecting technology and  other constraints. 

2. Intermediate  elaboration  points are where selection criteria 
for  products have been defined, and fully specified operations 
have been defined for interfaces. 

3. A physical elaboration point is where actual products  and fi- 
nal hardware topology have been selected and placed, and to 
which compilers, languages, and libraries have been  commit- 
ted. 

The elaboration points for different artifacts do not necessarily 
correspond. 

Framework A  set of cooperating classes that makes up a  reus- 
able design for  a specific class of software. A framework provides 
architectural guidance by partitioning  the design into  abstract 
classes and defining their responsibilities and  collaborations.  A 
developer customizes the framework to a  particular application 
by subclassing and composing instances of framework classes.‘ 

Functional aspect The functional aspect of an IT system is 
concerned with the functionality of collaborating software com- 
ponents. The functional  aspect is expressed as one  or  more com- 
ponent models, which represent  the  static  structure and dynamic 
behavior of the components in the system. 

Components are defined in terms of interfaces and operation sig- 
natures.  Structure is defined in terms of component composition 
and component usage relationships. Behavior is defined in terms 
of component collaborations, expressed as  sequence diagrams. 

The component models reflect the  need to satisfy service-level 
characteristics. 

Interaction An  interaction specifies the  details of the commu- 
nications that should  take place between two components in ac- 
complishing a  particular  scenario.  An  interaction is defined in 
the context of a collaboration and describes which requests should 
be sent  and  their  sequence. An interaction  can be thought of  in 
terms of a  contract between two components  and is often spec- 
ified in terms of a  protocol. 

Interactions may have service-level requirements (e.g., data flow 
rates, availability) various types of the  interaction  mode (e.g., 
synchronouslasynchronousl batch, client-serveripeer-to-peer), and 
order of requests defined in protocols like the Transmission Con- 
trol  ProtocoliInternet  Protocol (TCPIIP). 

Examples of interactions include: a clientiserver interaction  be- 
tween a GUI on a client workstation and a relational database 
on  a server through aTCP/IP socket, the communication between 
a shallow proxy and the underlying (remote) object. 

Interface An  interface specifies a  set of operation  signatures 
that are made externally available by a  component to  other com- 
ponents. The  state  and functionality of a  component is hidden, 
and is only made externally accessible through the interfaces of 

48 YOUNGS ET AL. 

the  components. The interfaces are the only “public” or “visible” 
part of the  component. 

An interface may be provided by several components and used 
by several components.  Interfaces are sometimes  referred to by 
the  related term  API (application programming interface). 

IT system An IT system is a combination of hardware, software, 
and  documentation  that  implements and describes a business so- 
lution. 

Location A location is a type of geographical area  or position. 
Strictly speaking, it would be  more accurate to call it “location 
type,” as each location in the operational model (e.g., regional 
oWce)  is not a specific grid reference, but a type of location, of 
which there may be several instances. Locations can be broad  ar- 
eas and  contain  more specific (sub) locations. For example, a lo- 
cation may represent azone (e.g., central),  a building (e.g., store, 
regional office), or a  room within a building (e.g., server room). 

Locations are used to  represent  the positioning of nodes and guide 
component and  data placement decisions, as well as overall de- 
ployment considerations. 

Network See  connection. 

Node A  node  represents  a  hardware platform (at  some level of 
abstraction) onto which deployment units can be placed. Nodes 
are used to define required processing capabilities at locations, 
and (eventually) become detailed specifications for processors, 
memory, etc. A node may have characteristics such as memory, 
clock speed,  and secondary storage capacity. 

Nodes are commonly visualized in terms of diagrams showing net- 
work topology. Each  node is at a location. 

Operation  signature An  operation  signature is a specifica- 
tion of a service offered by a  component, i.e., a specific kind of 
request  that  can be made to a  component. 

An operation  signature typically includes a description of the in- 
formation that is passed along with the operation  request  and 
the  information  returned,  together with any possible error sit- 
uations that occurred while executing the request. For example, 
a  TCPiIP  connection  operation can be represented by the fol- 
lowing operation specification: 

integer tcpip-accept-connection(s, &ns, wait-flag,  timeout-value) 

An interface consists of a set of operation signatures that are likely 
to be used in the same context. 

Operational aspect The operational  aspect of an IT system 
is concerned with the distribution of components across the geog- 
raphy of the organization in order  to achieve the  required service- 
level characteristics (performance, availability, etc.). It is also con- 
cerned with the necessary systems management functions and 
activities needed to maintain components (software distribution, 
responding to alerts,  etc.). 

The operational aspect is represented by one  or more  operational 
models, which show the type and location of hardware nodes, con- 

IBM SYSTEMS JOURNAL, VOL 38, NO i, 1999 



nections, network topology, and placement of components or  de- 
ployment units. 

In order  to emphasize spatial organization, the  operational model 
does not show details of functional issues such as how software 
components  collaborate. 

Organizational  unit An organizational unit is a  group of people 
and resources with a specific business goal, which  is related to 
other such groups via the organizational structure of a company. 

Placement Placement refers to the activity of placing deploy- 
ment units (and components) onto the network topology of nodes 
and connections in order to make functionality available at re- 
quired locations and  to satisfy service-level requirements.  Where 
nodes are not predefined, the placement exercise leads to  the iden- 
tification and design of nodes and connections. 

For example, a “clerk GUI” deployment unit may be placed on 
the clerk workstation, and an account data deployment unit may 
be placed with the  DB2*  (DATABASE 2*) deployment unit on 
the regional oflice data server RS/6000*. 

The operational model is used to  support  and  document  the place- 
ment process. 

Process  group An old term  interpreted as the execution role 
of one  or more  components  mapped  into  a deployment unit. 

Protocol A protocol extends the concept of an interface to in- 
clude the allowable sequences of requests, possibly across many 
interfaces. It is defined in terms of interactions. 

Reference architecture A  reference  architecture is one that 
has already been  created for a particular domain of interest. It 
typically includes many different architecture styles, applied in 
different areas of its structure. See also architectural  template. 

Scenario A  scenario is an instance of a use case. That is, a sce- 
nario is an execution of a use case  under well-specified assump- 
tions. A  scenario is realized in the  IT system by a collaboration. 
An example of a  scenario is: “Use ATM 1234 to draw $100 from 
checking account 987654, where the account has  no  overdraft  fa- 
cility and has a previous balance of $105, and  the transaction is 
successful.” 

Scenarios are used for: 

Validating and enriching the use case model 
Designing collaborations 
Prototyping (Scenarios can drive prototyping and are a useful 

Test cases (Scenarios make good system and  integration test 

User  acceptance testing 

way  of defining prototype scope.) 

cases.) 

Structuring In this context, structuring refers to the architec- 
tural activity of organizing the IT system into  a  set of interacting 
software components. Structuring addresses several consider- 
ations, including: 

IBM SYSTEMS JOURNAL,  VOL 38, NO 1 ,  1999 

Allocation of responsibilities to components in such a way that 
each component has a cohesive set of responsibilities and re- 
dundancy is avoided 
The partitioning of components to take  into account distribu- 
tion requirements 
Optimizing the  component  structure  to satisfy service-level re- 
quirements such as performance 
The incorporation of reusable components or legacy systems 
into the design 

Structuring plays a role in most of the design activities concerned 
with the functional aspect of an IT system. The component model 
supports  and  documents  the  structuring process. 

Subsystem A subsystem is a grouping of components in an IT 
system. 

A subsystem can be thought of as defined by an irregular line 
(e.g., a string) drawn around  a subset of the components in a sys- 
tem. There  are no restrictions on  the subset. 

Subsystems may overlap, Le., a single component may be in two 
or more subsystems. A subsystem may contain other subsystems. 
A subsystem may span across nodes. A subsystem allows us to 
group  a  number of components for various reasons: 

Allocation of work to a development group:  a development 
group is assigned one subsystem comprisedof one o r  more com- 
ponents. 
Labeling major parts of an IT system on the  grounds of the 
functionality offered by all of them: e.g., the imaging subsystem, 
the document-handling subsystem 

This concept allows us to consider groupings of componentswith- 
out implying that these  components  are part of a larger compo- 
nent  that offers services based on the services offered by the in- 
dividual components  contained in the  set.  A subsystem does not 
have any notion of encapsulation. 

Technical reference architecture A technical reference archi- 
tecture is a type of reference  architecture  that  does not directly 
include structures of application (business) behavior. In  other 
words, it can be used as  a base architecture  for several different 
application types. It nevertheless still applies only to a specific 
technical domain. For example, technical reference  architectures 
or fragments of technical reference  architectures exist today in 
the domains of distributed object systems (CORBA), compiler 
development,  and the  Internet (Web browser or server). 

Use  case A use case is an identifiable and externally observ- 
able behavior of the IT system. It is a  pattern of  usage that is 
initiated by an actor and that  performs or aims to perform some 
useful work. A use case represents  a dialog between an actor  and 
the system. For example, “Draw  funds  from checking account” 
is a use case. 

A  template with standard sections (e.g., actors, preconditions, 
steps) is used to structure  the description of a use case. During 
the definition of components, use cases are also used to describe 
behaviors that are internal  to  the IT system but are externally 
observable behaviors of the  component. 

YOUNGS ET AL. 49 



Walkthrough Awalkthrough is a description of the flow of a sce- 
nario  starting from a user all the way through the system and back 
to  the user. It corresponds to a collaboration between placed com- 
ponents.  These textual descriptions may be augmented by se- 
quence diagrams, which show the flow  of messages between de- 
ployment units. An example of a walkthrough is the handling of 
a phone call in a call center  application. 

Walkthroughs are used to validate the operational  model  and to 
ensure  that service-level requirements  are satisfied. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Lotus Development Cor- 
poration, Object Management Group, Sun Microsystems, Inc., 
or Microsoft Corporation. 

Cited references  and  notes 

1. L. Bass, P. Clements, and R. Kazman, Software Architecture 
in Practice, Addison-Wesley Publishing Co., Reading, MA 
(1998). 

2. In this context,  infrastructure consists of those  components 
(usually, but not exclusively, application-independent services) 
that may be used by many applications. 

3. The Object Management Group, http://www.omg.orgi. The 
UML notation and semantics guides are available from this 
site. 

4. M. Fowler, K. Scott, and  G. Booch, UML Distilled: Applying 
the Standard Object Modeling Language, Addison-Wesley Pub- 
lishing Co., Reading,  MA (1997). 

5. Although the majority of components will be software, it is 
sometimes necessary to  model hardware as components.  This 
will generally be the case if software components use special- 
ized hardware interfaces directly (for example, an encryption 
device, a pager, or an interactive voice response unit). 

6. E. Gamma, R. Helm, R. Johnson,  and J. Vlissides, Design Pat- 
terns: Elements  ofReusahle Object-Oriented Software, Addison- 
Wesley Publishing Co., Reading,  MA (1995). 

7. The Workflow Management Coalition is a nonprofit, inter- 
national organization of workflow vendors, users, analysts, and 
university or research groups.  Its mission is to promote  and 
develop the use of workflow through the establishment of stan- 
dards  for software terminology, interoperability, and connec- 
tivity amongworkflow products. See http://www.aiim.ordwfmc/ 
for more information. 

8. It is expected that  these  elaboration  points will be identified 
in a  later version. 

Accepted  for  publication October 4, 1998. 

Robert Youngs IBM United Kingdom Ltd., 1  New Square, Bed- 
font  Lakes, Feltham, 7W14 8HB England (electronic mail: 
robert@uk.ibm.com). Mr. Youngs is a Consulting IT Architect in 
the IBM United Kingdom Object Technology Practice. He has 
been  a  member of the ESS Technical Architecture  team since 
1996, and now works on the ESS Operations  team. He was a mem- 
ber of the  SIiAD  Architecture Description Standard project and 
is the architect of the ESS tool. He has worked as an enterprise 
systems engineer and a technical consultant for large IBM en- 
terprise clients in the banking, government, and utilities indus- 
tries, as a specialist in enterprise systems software and hardware, 

50 YOUNGS ET AL. 

and  as  a project manager.  Mr. Youngs was a  member of the proj- 
ect that  created IBM’s first infrastructure design method (End- 
to-End Design). He holds an M.A. in mathematics from Cam- 
bridge University. 

David Redmond-Pyle PostModern Solutions Ltd., Sunny Croft, 
Tawin Road, Manley,  Cheshire, WA6 9E WEngland (electronic mail: 
david@postmod.com). Mr.  Redmond-Pyle is Technical Director 
of PostModern Solutions, and is currently working with the IBM 
United Kingdom Object Technology Practice as  a  consultant  on 
method development. He was a  core  member of the WAD Ar- 
chitecture Description Standard project and  contributed to the 
development of architecture work product descriptions for the 
new SI/AD  method and to  methods  related  to ESS. He previ- 
ously worked as Chief Methodologist at CASE and as method- 
ology specialist at LBMS, Inc., where he was responsible for de- 
veloping LBMS’s client/server development  method. At LBMS 
he worked on a wide variety of methods and tools, including 
DSDMiInternet, software reuse  methods,  formal specification in 
Z, designing parts of the Systems Engineer  CASE tool, and work- 
ing  with the OMG and  the Workflow Management Coalition. He 
has also collaborated with Hewlett-Packard Company on their 
Fusion2 00 method.  Mr.  Redmond-Pyle has published numer- 
ous articles and  an influential book on the design of graphical 
user interfaces (the  GUIDE method). 

Philippe Spaas IBM United Kingdom Ltd., 1  New Square, Bed- 
font  Lakes, Feltham, TW14 8HB England (electronic mail: 
philippe-spaas@uk.ibm.com). Mr. Spaas is an ITArchitect in the 
IBM United Kingdom Object Technology Practice. He has 
worked as  an application architect on various projects in the fi- 
nancial sector. He was a  member of the ESS Application Archi- 
tecture  team in 1997 and participated in the Architecture De- 
scription Standard project in 1998. He also made contributions 
to the  SI/AD  methods initiative. Mr.  Spaas holds a  degree in ap- 
plied economics from the Katholieke Universiteit Leuven (Bel- 
gium) and  an M.B.A. from Cornell University. 

Ed Kahan IBM Global Services W A D  National Practice, 315 
East Robinson Street, Orlando, Florida 32801 (electronic mail: 
Ekahan@us.ibm.com). Mr. Kahan is a certified  Executive  Consultant 
and a  member of the  national Systems IntegrationiApplication 
Development (WAD) practice. Mr. Kahan is the  team leader 
for  the  Architecture  Description  Standard  development and the 
infrastructure  architecture  and design methods used by IBM. He 
is also working on ESS and architectures  for asset harvesting and 
reuse.  Prior to his current assignment in the  national practice, 
he consulted with IBM clients in the telecommunications, trans- 
portation, banking, utilities, and petrochemical industries in ap- 
plication and IT  architectures development. Mr.  Kahan was a 
founding member of the  consultinggroup in Florida.  Prior to join- 
ing IBM, Mr. Kahan worked in signal analysis, acoustics, and vi- 
bration  instrumentation research at Bruel & Kjaer Instruments, 
Denmark. 

Reprint Order No. G321-5696. 

IBM SYSTEMS JOURNAL, VOL 38, NO 1, 1999 


