

IT Architecture Module

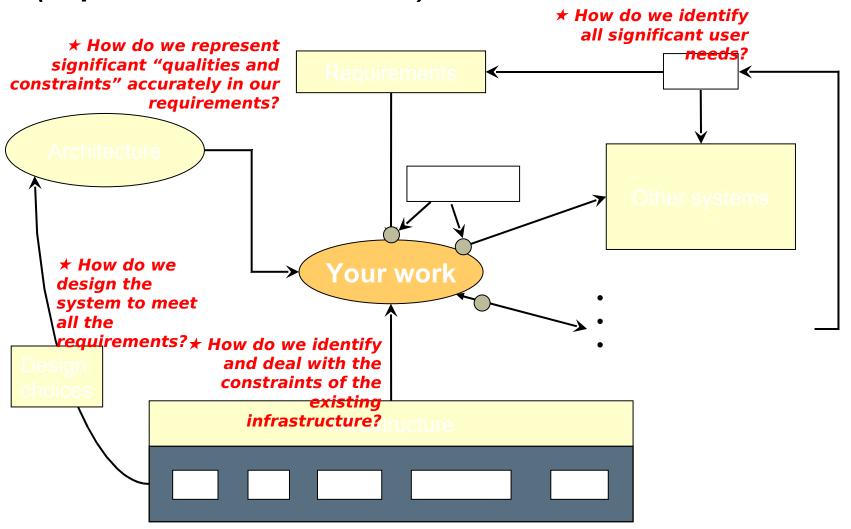
Qualities & Constraints in IT Architecture

Part II -

Security
Usability & Accessibility
Maintainability & Flexibility

Agenda (Part I - previously)

- **Qualities & Constraints in IT Architecture overview**
 - What are "qualities and constraints" in IT Architecture?
 - III Non-Functional Requirements and their quality
- Focus on Availability
 - **Availability modelling**
 - **Availability design techniques**
- **Focus on** *Performance*
 - The Performance Engineering Lifecycle
 - **Volumetrics**
 - **Estimation and Modelling**
 - **Optional exercise**



Agenda (Part II – this lecture)

- Focus on Security
- Focus on *Usability & Accessibility*
- Focus on Maintainability & Flexibility

(Reprise from 'WDITADAD?') "The wider context"

(Reprise) Constraints

The business aspects of the project, customer's business environment or IT organization that influence the architecture

The technical environment and prevailing standards that the system, and the project, need to operate within

Regulatory

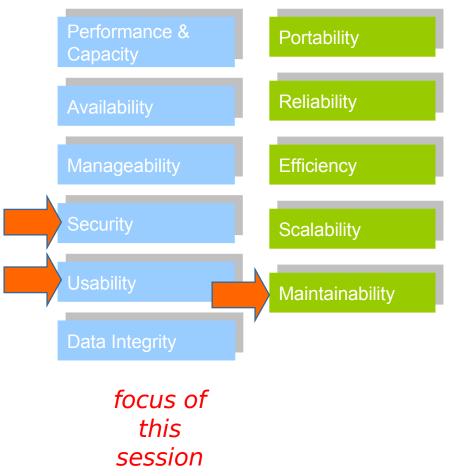
Development
Skills

Risk Willingness

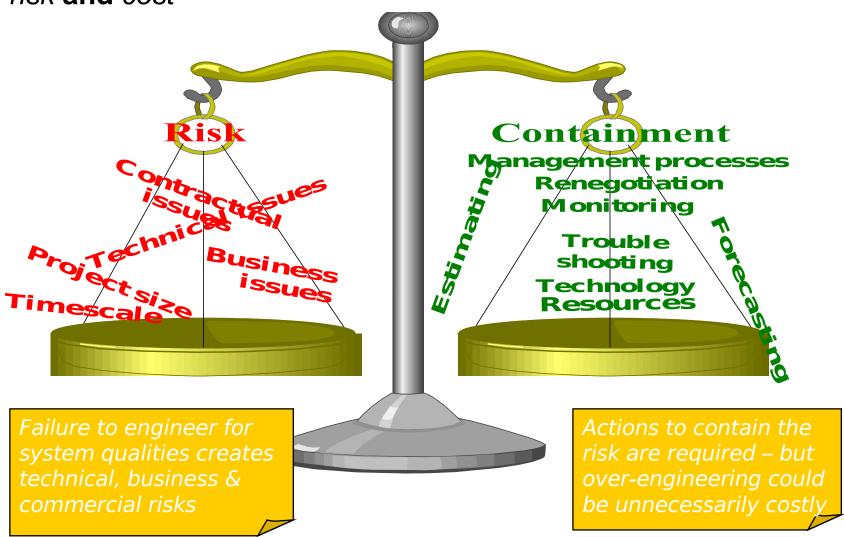
Existing
Infrastructure

Marketplace
factors

Technology State
of the art


Schedule & Budget

IT Standards


(Reprise) Qualities

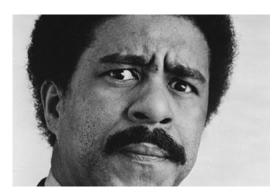
- Runtime qualities are 'measurable' properties, often expressed as "Service Level Requirements".
- Qualities might also be related to the development, maintenance, or operational concerns that are not expressed at runtime.

(Reprise) Beware: a BALANCE must be maintained between risk and cost

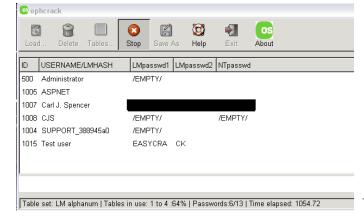
Security in IT Architecture

Defining Security

- Security is a wide and fascinating topic encompassing a vast range of issues, arenas and disciplines
 - from deep mathematics to international espionage
- In IT systems, "security" can be associated with the following qualities:
 - Not open to intentional misuse
 - Not open to accidental misuse
 - Protects the truth maintains integrity
 - Protects service in the face of attack (overlap with Availability)


Secure means SAFE:

Your data, your assets, your reputation



(Amusing?) Examples of insecure systems

- Superman III Richard Pryor's character bypasses access controls by typing:
- > override all security
 .. into the console
- In the film "War Games",
 Matthew Broderick gains
 access to the WOPR
 computer using a password
 "backdoor"
- Tools freely available to "hack" your Windows passwords (e.g. OPHCRACK)

Security is a critical concern in IT Architecture

- Wherever systems are responsible for important data and processing, there is a risk that misuse of the system leads to a negative outcome for those associated in any way with that system
 - Typically in a commercial setting, IT Architects need to think about protecting our customers (e.g. a bank)
 - ... and *their* customers (e.g. an account holder)
 - (... and both our reputations!)
- The scale of the risk depends on the nature of the organisation(s) and the nature of the purpose of the system ...

Scale of Security Risk – from war to web browsing

Arena	Sample applications	Example risks	
Military systems	Identify Friend or Foe (e.g. aircraft)	Prevent identification, present false identity (lose battle => lose war)	
	Nuclear command and control	Unauthorised use of nuclear weapon (e.g. in unstable state)	
High value	Payment instruction exchange (e.g. SWIFT), foreign exchange, stock trading	Money siphoning; value alteration	
financial systems		Lax controls (e.g. Barings back – Nick Leeson)	
Retail banking	ATMs, Online banking	Expose private data	
		Fraud – e.g. false transactions initiated (loss of money)	
Home computing	Email, word processing, web browsing, picture management	Virus attack – data corruption, loss of data,	
		Privacy invaded (files accessed)	

The business 'bottom line' can be very publicly affected

But most attacks are not external ...

UBS logic bomber jailed for eight years

By Drew Cullen in San Francisco

Published Wednesday 13th December 2006 23:11 GMT

A disaffected former sysadmin at UBS Paine Webber was sentenced today to 97months without parole for unleashing a logic bomb on the company's network and causing \$3m damage.

Roger Duronio, 64, of Bogota, NJ who was found guilty of computer fraud in July was also ordered to make \$3.1 million in restitution to UBS Paine Webber. He was sentenced to the maximum term suggested under US sentencing guidelines.

"This was a fitting, appropriately long sentence, U.S. Attorney Christopher J. Christie said. "Duronio acted out of misplaced vengeance and greed. He sought to do financial harm to a company and to profit from that, but he failed on both counts."

Duronio, who had worked at UBS for two years, was paid a salary of \$125,000 by the bank and was expecting a bonus of \$50,000. When he only got \$32,000 he resigned and decided to take revenge on the bank. He created the logic

Other well known examples


```
Enigma machine
    Pioneering British "cryptanalysts" (Alan Turing et
       al.) changed the course of the Second World War
       by breaking the Enigma code
Automatic Teller Machines (ATMs)
    the first widespread transaction processing
       systems exposed to the public (since 1968!)
    first wide scale use of modern block ciphers to
       generate and verify PINs
    tamper resistant hardware
Chip & PIN
    May 2006 – Shell garages stopped accepting Chip
       and PIN transactions at 600 petrol stations
    (amusing video from Ross Anderson on YouTube
       of a compromised PIN pad)
Your NHS record
    campaign to prevent uploading of your records to
       the central NHS database (www.TheBigOptOut.org
```


Security is an increasingly "hot topic"

- The list of stories show how 'hot' a topic it is
 - All of these headlines were between 16th and 20th Jan 2007
- Businesses and users really care about security ... especially when it is compromised
- Why do we think this is?

Security

MPs investigate school fingerprinting

System suppliers chip in too

ID - 20 Jan 09:02

Phishers haul in money from Nordic bank

Trojan hijacks log-in details

Spyware • 19 Jan 14:58

Myspace sued for failing to protect minors

Predators, phishers lurk in dark corners

Crime • 18 Jan 21:10

ID theft fears over Hampshire hospital PC theft

Patient peril ID • 18 Jan 12:04

Oracle blocks 51 security holes

Patch bandwagon heralds busy week for DBAs

Network Security • 17 Jan 14:53

Apple's iPhone: theoretical risks of unreleased handset

Symantec stokes Apple hype engine

Anti-Virus • 16 Jan 18:06

NY GPS thieves tracked and cuffed

'At the next junction, go straight to jail' Crime • 19 Jan 20:04

Inboxes battered by Trojan spam deluge

When the wind blows Sp/ware • 19 Jan 14:51

Four arrested in Japan over dating site spam blizzard

Love sick Spam + 18 Jan 18:50

AOL phishing fraudster found quilty

Of spooks, security and Vista Comment Where's my

Conman faces up to 101 years in jail

tinfoil hat? Crime • 17 Jan 10:58

ID • 17 Jan 17:26

X-ray exposes ring-swallowing thief

With this ring, I thee nick Crime • 16 Jan 17:55

Hacked to the TK Maxx

Retail chain warns of credit card security breach

Network Security • 19 Jan 16:06

Spam on IP telephony

To Spit or not to Spit Spam - 19 Jan 10:28

Cookie monster menaces Google Search giant battles

brace of bugs

Network Security • 18 Jan 15:19

Lottery fraudsters exploit 070 personal numbers

You have to be in it to win it

ID • 17 Jan 16:20

Worms own Symantec users

Punishes sys admins too lazy to apply patch Anti-Virus • 17 Jan 00:12

Cattle branding comes to the 21st Century

High-tech tattoo more than a pretty picture

Crime • 16 Jan 17:37

Impact to businesses

- Fraud and theft of data and other assets
 - Bottom line losses, e.g. 2006 CSI/FBI Computer Crime and Security Survey
 - Survey of 313 businesses of various sizes in the US
 - Average loss per respondent: \$167,713
- Loss of Reputation and trust
 - Will customers trust companies that can't look after their data?
- Disruption to operations
 - This is not about creating new value
- Cost of enforcing security ref. balancing scales
 - From the same survey: combined average annual security expenditure per employee: \$1,349 for businesses with revenues < \$10m

A good general approach to tackling IT security is to take a 'threat-based' approach

Document assets

Identify and decide what you need to protect. This could be data, intellectual capital, processes, physical resources, or any other thing of value in the organisation

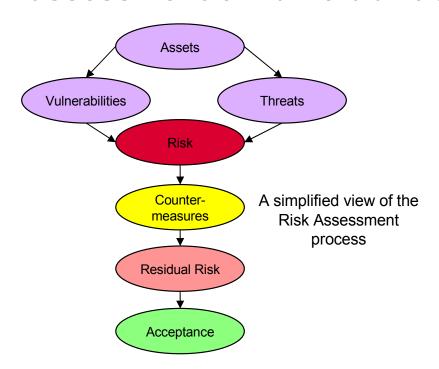
Understand threats

 Know your enemy. Determine from whom or what are you protecting your system and/or network

Define policy

 Create a comprehensive security policy and implementation plan which is appropriate to the level of threat

Implement policies


- Apply the security policies to your organisation and systems
- Update or include security elements and configurations in IT solutions

Monitor policy

 Continually monitor to detect any deviation from your policies and take actions if needed

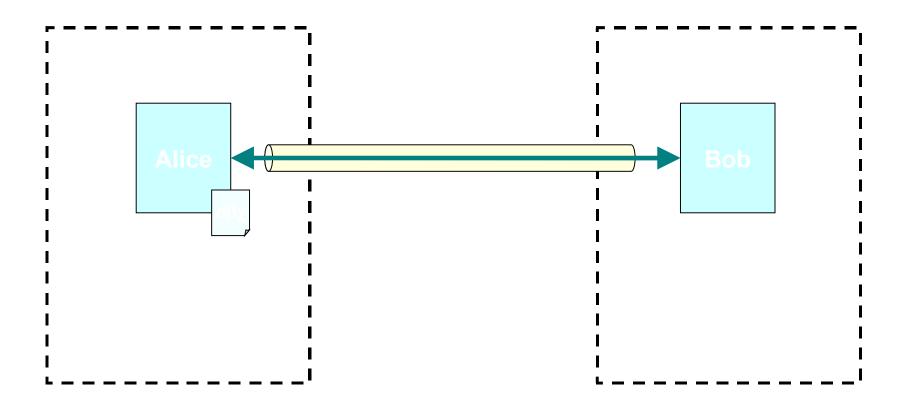
Threat assessment needs to be combined with assessment of vulnerabilities to determine risk

- Information security risk can be viewed as the cost to an organisation of compromise or damage to an information asset
- There are many ways to assess risk, some formal and quantitative, some informal and qualitative.
- In all cases, the purpose is to identify significant threats and address them through appropriate countermeasures
- In general, to assess risk it is necessary to know:
 - Threats the bad things that might happen to an information asset
 - Vulnerabilities the ways those bad things might come to pass
 - Likelihood the probability of a vulnerability being exploited to make a bad thing happen
 - The "value" or "sensitivity" of the asset the impact on the organisation if a bad thing happened

Exercise 1 – Assets and threats

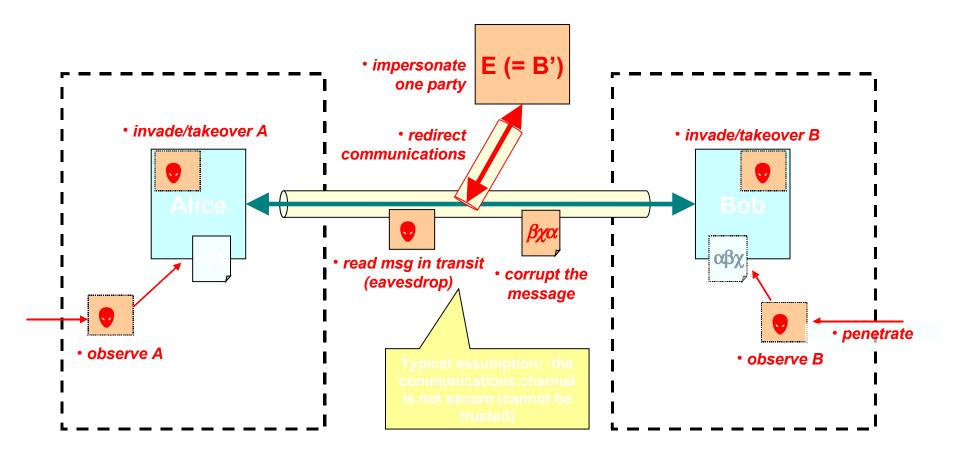
- Write down at least:
 - three assets that Ottomobil or similar organisation might want to protect
 - three threats that these might be prone to
- Bonus mark:
 - State at least policy you would implement to protect the assets you identified
- 5 minutes

A few examples of sensitive assets


```
Data
    Customer accounts
    Financial information or other critical MI
    Intellectual Capital
Processes
    Financial processes – e.g. ones with purchasing power
    Command and control processes
    Other privileged processes
Physical / infrastructure
    Equipment
    Hardcopy data
    Bandwidth
Intangible
    Reputation
```


Security: Fundamental Concepts

Consider: Alice wants to send a message to Bob (securely)



Exercise 2: In what ways can we "attack" the communications between A and B?

Consider: Alice wants to send a message to Bob (securely)

=> Threats arise at both ends and everywhere in between

Threats - Where do threats arise from in IT System? And what can they do to us?

Malicious

- third party motivated to make money or other gain
- competitor or parties acting on behalf of a competitor
- hacker seeking "kudos"
- employee seeking personal gain or to inflict damage on the corporation

Unwitting

- damage to assets through accidental action (insufficient safeguards)
- accidental sharing of confidential information
- program / system errors causing corruption or violating rules

Combinations

What can they do to us?

- Observe, capture and forward confidential data
- Alter data (to alter outcomes)
 - includes reputation damage, e.g. web site defacement
- Delete data
- Initiate unauthorised processing
- Prevent (or disrupt) authorised processing
- Deny access / service
- Reduce system security to ease other attacks
- Steal assets (physical or otherwise)
- ...

Other attack types and terms

DoS (Denial of service)

An attack on a computer system or network that causes a loss of service to users, typically the loss of network connectivity and services by consuming the bandwidth of the victim network or overloading the computational resources of the victim system

"Malware"

- A generic term given to malicious code. Can include spyware, adware, viruses, worms and other scams
- Made particularly common by the Internet and the widespread use of the Windows operating system

Beginning the fight back: IT security relies ultimately on the products of cryptography (the science of designing ciphers)

- In order to protect the communications between A and B, we can encrypt the content of messages in transit
- A system of establishing and sharing keys (which are combined with the source message at time of sending) is required
- {Plaintext}_{Kev} => Ciphertext
- There are many different forms of encryption with varying properties and levels of protection
- The most commonly used algorithms in commercial systems are "Block ciphers", which come in two flavours:
 - Symmetric key same key for encryption and decryption
 - e.g. the Data Encryption Standard (DES)
 - Asymmetric ("public") key different keys for encryption and decryption
 - e.g. RSA, used in Secure Sockets Layer (SSL) on the web
- Key management itself is obviously critical and a significant challenge
- Cryptographic principles are used to build protocols which allow us to achieve objectives such as authentication

Key objectives of Security Engineering (1/2)

Authentication – knowing who

The process of determining who users (human or otherwise) are and that they are who they claim to be. The most common technique for authenticating is by user ID and password. Others include certificate-based methods or biometrics

Authorisation – knowing what can they do

The process of establishing the 'rights' that a user has to access and to perform actions on resources. (Simple example – the permissions to read and/or write a file)

Confidentiality – protecting confidential data

- Ensuring that data classed as confidential is only seen by appropriately authorised parties
- Often achieved through cryptography i.e. encrypting data

Key objectives of Security Engineering (2/2)

- Integrity protecting the "truth"
 - The quality of a system whereby data and processing *always* conforms to the specified rules and constraints within the system
- **Auditable** what did they do?
 - The trail of evidence proving the activities that have been performed on an internal asset and attributing this to a known identity. This must be stored in a non-repudiable (tamper proof) format.
- Non-Repudiation proving what happened happened
 - The ability to prove without contradiction that a transaction or event which is recorded as having taking place did take place
 - May need to be able to prove events in a court of law

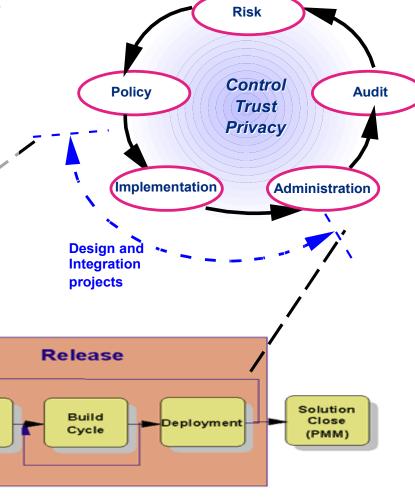
Security: Method and the Security Architect Role

The system design method should contain a riskrelated approach to security

Micro

Design

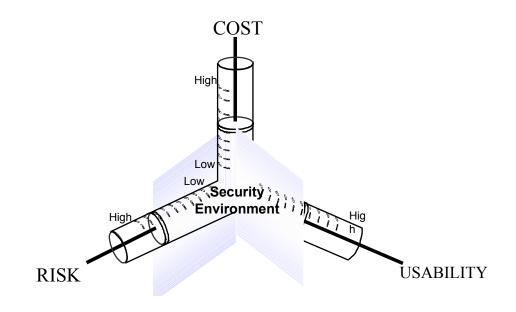
- Ensure that security is appropriately positioned in project set-up
- Develop a comprehensive view of security during solution design
- Provide traceability in the solution and the project
- Include explicit security testing in test strategy and test plans


Solution

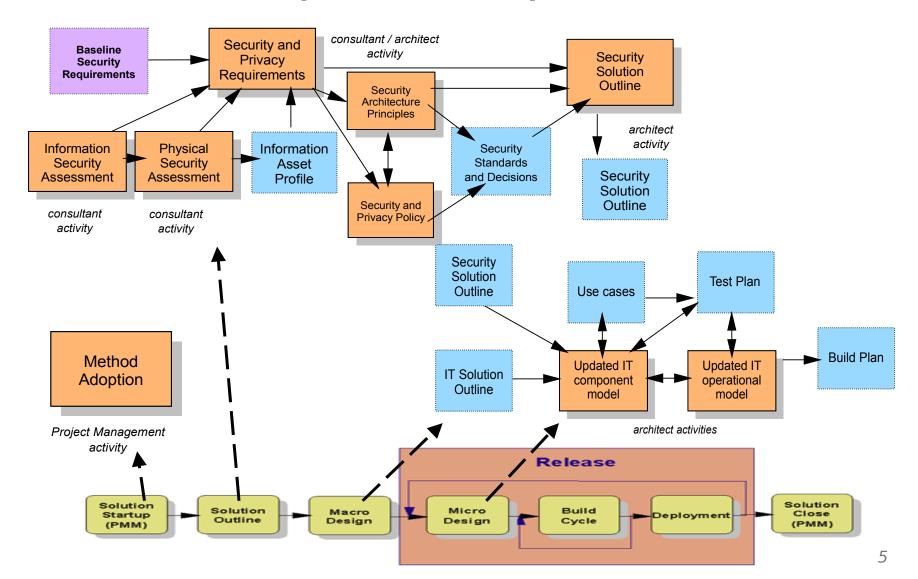
Outline

Design

Solution


Startup

At the solution outline phase, security architecture is about answering the question "how much security is enough (but not too much) security"


- From a security perspective, all IT solutions must balance three conflicting factors:
- **The risk** to the organisation
 - of operating the IT solution
- The cost of implementing and operating the security controls
 - in general, the tighter the controls the lower the risk
- The usability of the solution
 - in general, the tighter the controls, the greater the impact on the users of the system

The resulting set of controls must be, as far as possible "necessary and sufficient".

Early efforts focus on the security requirements and relationship to business processes

The "soup to nuts" view of a proactive security architect's role: addresses security issues at all phases in the lifecycle, across all the domains of the solution

		Phase						
		Solution	Macro Des	Micro Des.	Build	Deploy		
Domain	Bus	Asset Profile Risk Assess	Authorisation & Access Control Security Bus rules					
	Arch	Client IT Env Threat Analysis Security NFRs	Comp/Op Arch Security Test Strat Workstream Security	Authorised Dataflows				
	App	Security Use Case Model	Security Use Cases	Security Dev Standards	Security Testing Application Ethical Hack			
	Ops		Security Process & Delivery Orgs	Dev/Test Security Define Security Baselines	Security Procedure development & implementation Implement Security Baselines Infrastructure Ethical Hacking			

Like other branches of the IT architecture process, Security Architects rely upon patterns for the basic structure of a solution

Reference architectures

- Provide patterns for a particular class of IT solutions IBM maintains internal reference architectures for use by its architect community
- Reference architectures should include patterns for addressing security within an instantiation

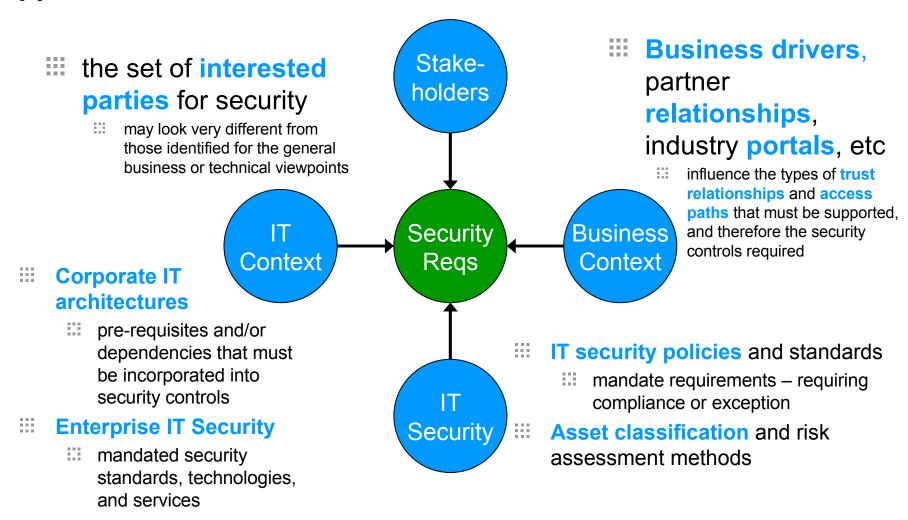
Product/Supplier-specific patterns

- Security component suppliers often provide patterns that show how their products can be deployed as part of a business system
- IBM's *Patterns for eBusiness* has several patterns that show how an ebusiness solution can address security requirements http://www.ibm.com/developerworks/patterns

Business solution level patterns

For example the SAP security concept shows how the various package security controls are used, and identifies what controls the infrastructure must provide for secure operation

Function group patterns


- It is often useful to have conceptual model for a particular grouping of security function
 - IBM's security architecture methodology includes models showing the basic components that make up a particular service, an audit service for example
- Provides a model for analysing how the function is addressed within an architecture

Security: Requirements & Functional Architecture

External to the project, security requirements come from understanding the business and technical context in which an application or service exists

Common influences in IT Security

- Conform to Corporate Security policies & standards
 - May include external and industry standards
 - Internally defined policies and procedures
 - Enforced usage of already selected technologies
- Minimising impact to users, e.g.
 - Single Sign On the ability for a user to logon just once in order to be granted access to multiple systems
- Resilience Maintain operations in the face of attack

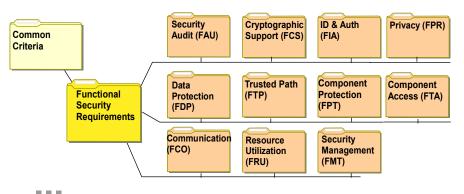
Models for Security are commonly derived from recognised Standards in the field of Information Technology Security.

Security related Standards	General Description			
National Government Standards US TCSEC (orange book), FIPS UK ITSEC CA CTCPEC	Sets of specifications and evaluation criteria for Trusted Computing products. In most cases, these have been superseded by IS 15408, Common Criteria.			
International Standard 7498-2 iii ISO/IEC 7498-2 (also ITU X.800)	System level security, to include: security services, mechanisms, management			
International Standard 17799 III ISO/IEC 17799 (also BS 7799)	Code of Practice for Information Security Management, including design and deployment of security processes, technology focus areas as well as compliance reviews`			
International Standard 15408 ISO/IEC 15408 (also Common Criteria)	Combined and updated evaluation criteria from national security standards plus a product evaluation and certification method			
Internet Reference Documents ::: RFC 2196 Site Security Handbook ::: RFC 2504 User Security Handbook ::: RFC 2828 Internet Security Glossary	General guidance for site security and user security and security terminology for the Internet environment			
Industry Group Standards ::: J2EE Security (from Sun) ::: PKIX (from Internet Mail Consortium) ::: WS-Security	J2EE – Java PKIX – Public Key Infrastructure (digital certificates) WS-Security – family of standards specifying security services to support Web Services applications			

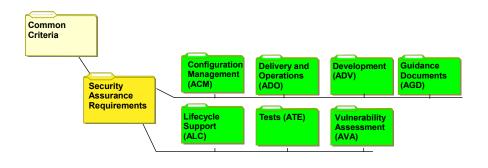
Exploring the accepted standards for IT Security Systems

- ISO 17799 Code of Practice for Information Security Management (latest version ISO 17799:2005)
 - Helps to identify, manage, and reduce the range of threats to which information is regularly subjected.
- ISO 15408 Common Criteria (ISO 15408:-3:2005)
 - Defines a taxonomy for evaluating security functionality through a set of functional and assurance requirements.
- Good guidelines for developing computer security policies and procedures for sites that are connected to the Internet are available in the following documents and Web sites:
 - The Site Security Handbook, IETF RFC2196 http://tools.ietf.org/html/rfc2196
 - National Institute of Standards and Technology, Computer Security Division http://csrc.nist.gov/policies/index.html
 - Centre for Information Technology/Security http://irm.cit.nih.gov/security/sec_policy.html

ISO/IEC 17799 Information technology – Security techniques


Code of practice for information security management

- An Information Security Management System (ISMS) is a systematic approach to managing the security of sensitive information that encompasses people, processes, IT systems, and policy.
- The code provides recommendations which form a common basis for developing organizational security standards and effective security management practice
 - Each security category contains:
 - a control objective stating what is to be achieved; and
 - one or more controls that can be applied to achieve the control objective.
 - From 2007, it is proposed to incorporate the new edition of ISO/IEC 17799 into a new family of Information Security Management System (ISMS) International Standards as ISO/IEC 27002.



ISO/IEC 15408 Common Criteria includes evaluation standards for functional requirements and assurance

- Assurance requirements are grouped into seven classes containing around 80 components
- Assurance levels define a scale for measuring the criteria for the evaluation of products and systems.
 - Evaluation Assurance Levels (EAL1-7) are constructed from the assurance components.

- Functional security requirements are grouped into 11 classes, containing over 130 components
- A Protection Profile or PP defines a standard set of requirements or 'pattern' for a particular type of system (e.g. a firewall)

From a security viewpoint, a solution has two aspects which must work together to deliver end-to-end security for a business system

Application (functional) security aspect ☐	Infrastructure security aspect

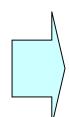
- These aspects are often built and maintained separately
 - For example an application hosting centre
- When a project encompasses both aspects it may be helpful to view them as separate mini-projects to maintain the clear distinction between application and infrastructure security controls

A conceptual model for security functions from a common set of security-related requirements

Identified security "Common Criteria" functional requirements classes:

- Security Audit (FAU)
- Communication (FCO)
- Cryptographic support (FCS)
- User data protection (FDP)
- Identification and authentication (FIA)
- Security management (FMT)
- Privacy (FPR)
- Protection of functions (FPT)
- Resource utilization (FRU)
- TOE access (FTA)
- Trusted path/channels (FTP)

Security Subsystems


Credential Subsystem

Access Control Subsystem

Information Flow Control Subsystem

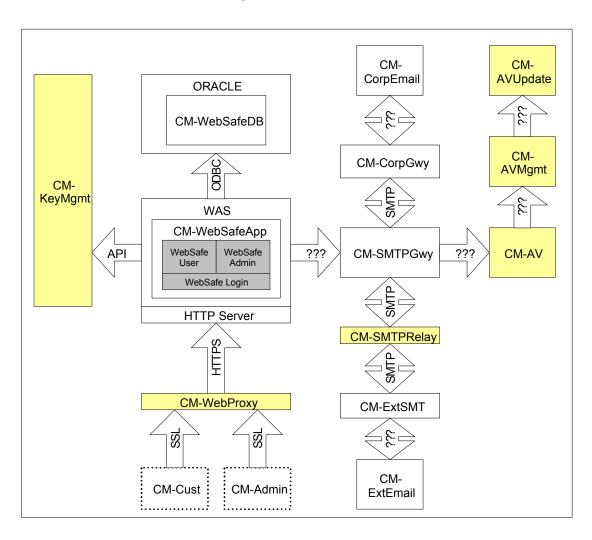
Security Audit
Subsystem

Solution Integrity
Subsystem

The Security Architect's role is to show how the solution components co-operate to address security requirements

Security requirements should be addressed throughout the solution – however there are also a few dedicated "security components"

Dedicated security components

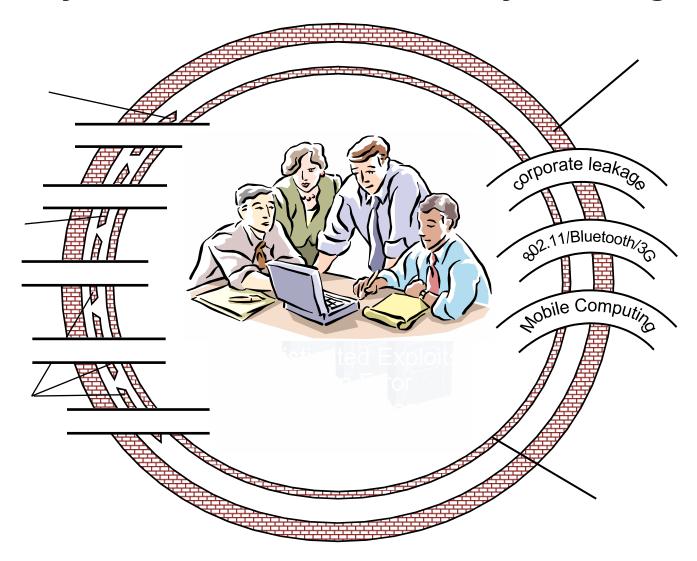

Providing services to the components that address the business requirements

Mainstream components

Working in conjunction with security components to implement security controls

Infrastructure services

Providing a secure, managed environment in which to run the application.



Security: Technology and Operational Architecture

Increasing expectations, range of channels and IT complexity has increased the Security challenge

In order to help us structure the infrastructure necessary to protect the enterprise, we employ the concept of **Zones**

Security Zones might be classified (and colour-coded) as follows:

- **Uncontrolled** anything outside of the organisation,
 - including, but not limited to the home, street etc.
 - via a wide number of channels including, but not limited to the Internet, mobile access etc.
- Controlled where access is limited, but users are allowed access on a controlled basis.
 - Public access to a DMZ.
 - Employee access to a corporate LAN

- Restricted where access is restricted to users or systems that are trusted to some degree
 - For example, a user or system in a controlled zone
- Secured where access is available to only a small group of highly trusted users or systems.
 - access to one secure area does not necessarily give you access to another secure area.

We need to elaborate the zone classification to reflect who has management control of a zone...

- Descriptors may be added to a zone classification for example:
 - **External** An external zone has the same characteristics as defined above,
 - control is in the hands of an external organisation with which this organisation has a contractual relationship,
 - The external organisation has a responsibility to operate the zone according to their own security policies.
 - This is distinct from an outsourced service provider relationship, where the security controls are operated as part of a service being provided on behalf of the Council and are consequently considered to be part of the Council's infrastructure.

Common Security related infrastructure components

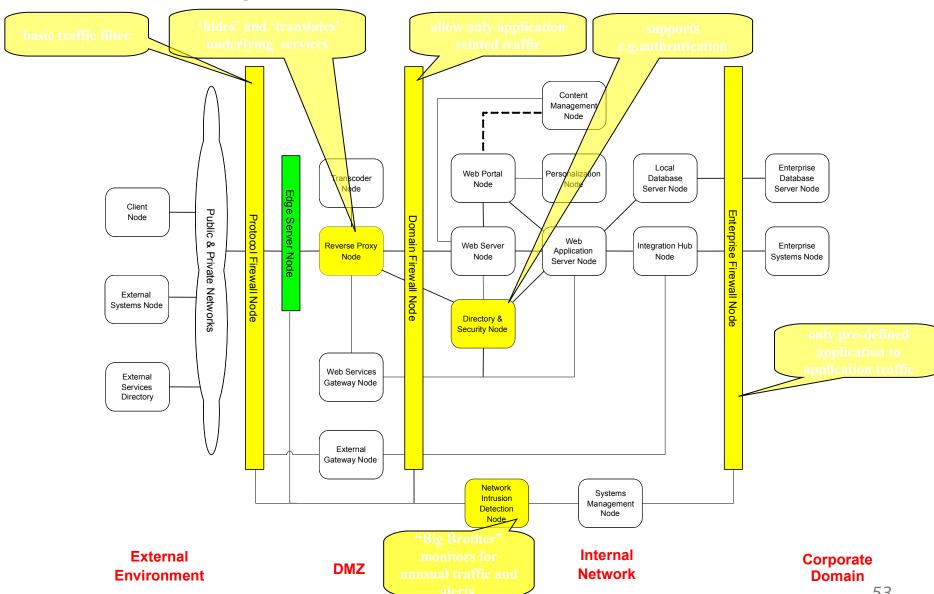
Firewall

- A hardware or software component which protects against unauthorised network access into or out of a particular zone
- Firewalls aim to filter unwanted traffic out by observing packet contents and applying rules

Security & directory servers

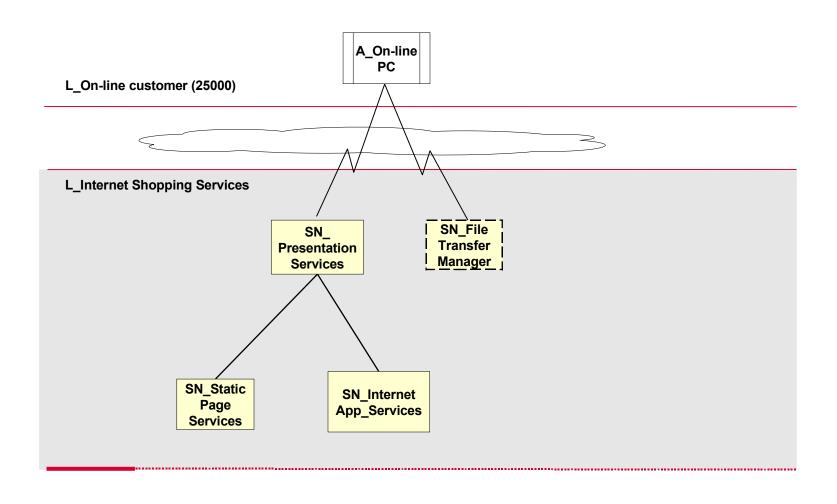
Dedicated servers hosting components managing user databases including user credential and profile data

Intrusion detection systems

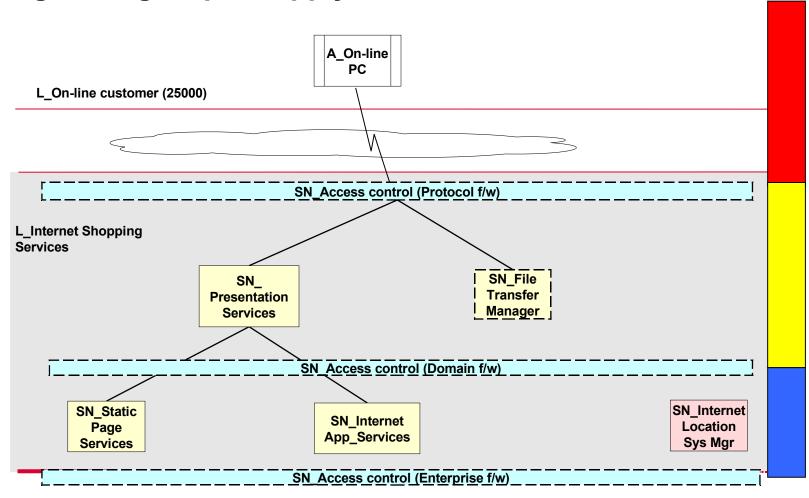

Components placed within the architecture with the explicit role of detecting intrusions

Cryptographic hardware components

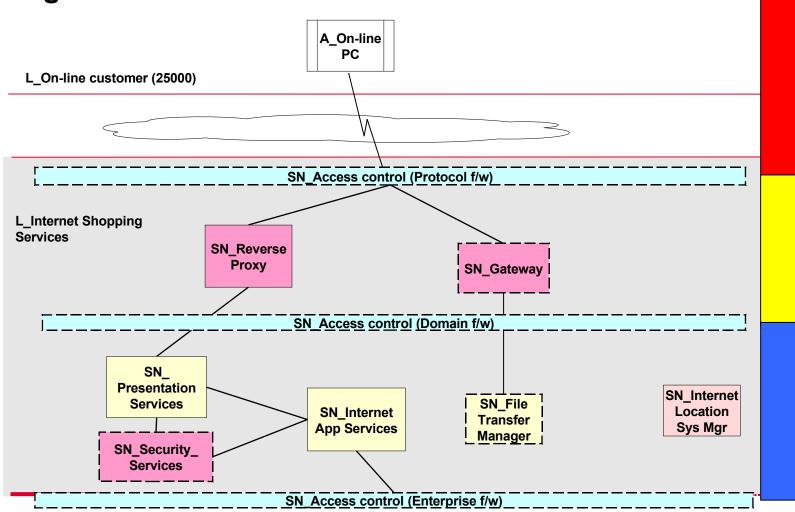
- Cryptographic operations in software can be very time consuming
- For secure systems, it is common to implement specialised hardware to perform necessary cryptographic functions quickly



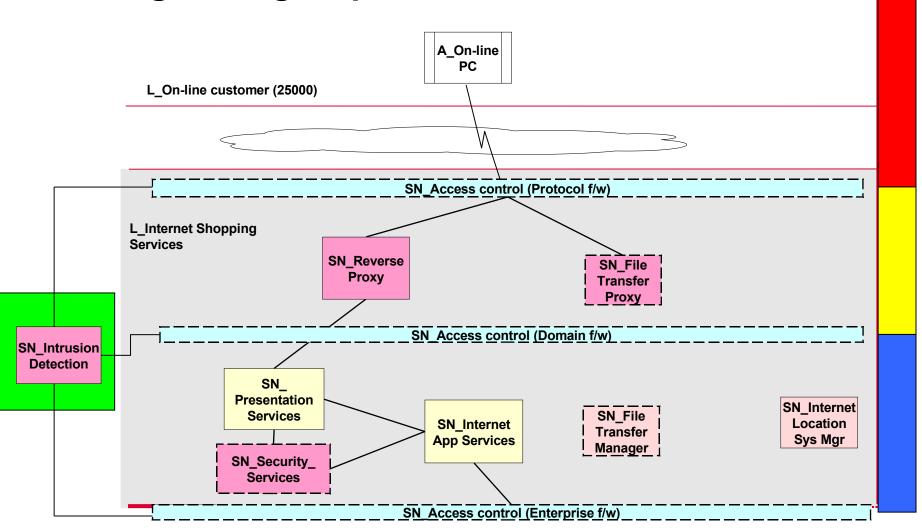
Security and access related Nodes in the IBM e-Business Reference **Architecture Logical Operational Model (v2.3)**



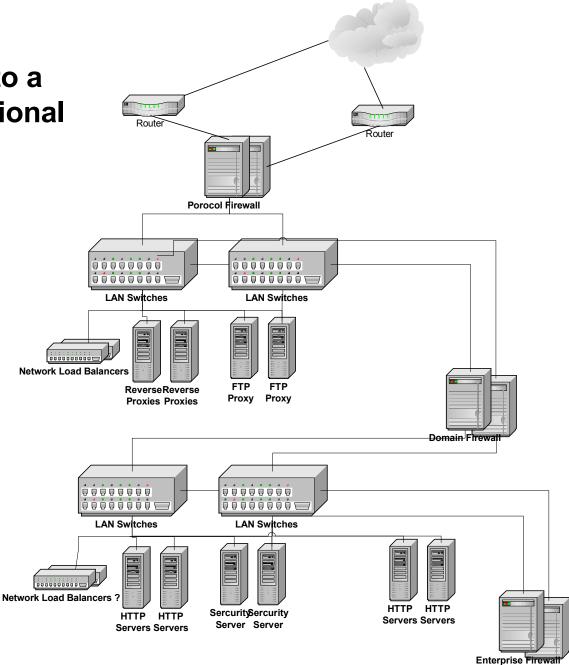
We can use the concepts of Zones and the Reference Architecture to strengthen an Operational Model Starting point – simple (and insecure!) architecture



Strengthening step 1: Apply firewall and zone model



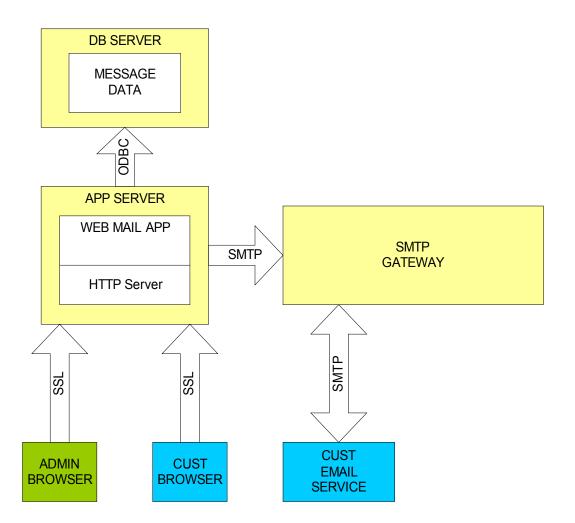
Strengthening step 2: Add security nodes and replace existing nodes


Strengthening step 3: Add intrusion detection

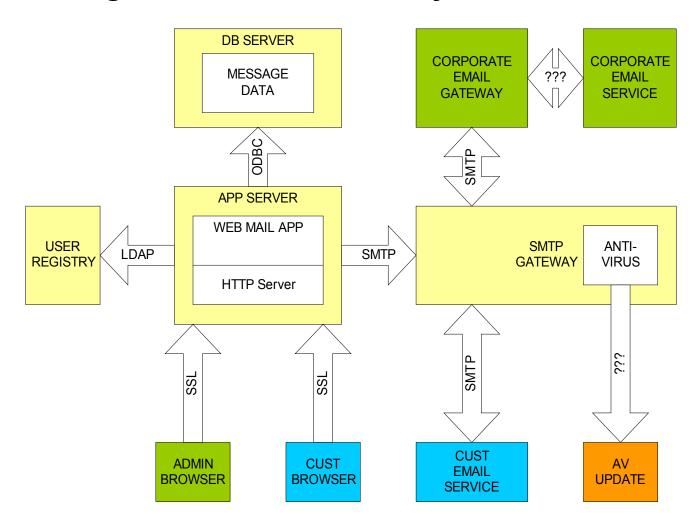

Example transformation to a Physical Operational Model

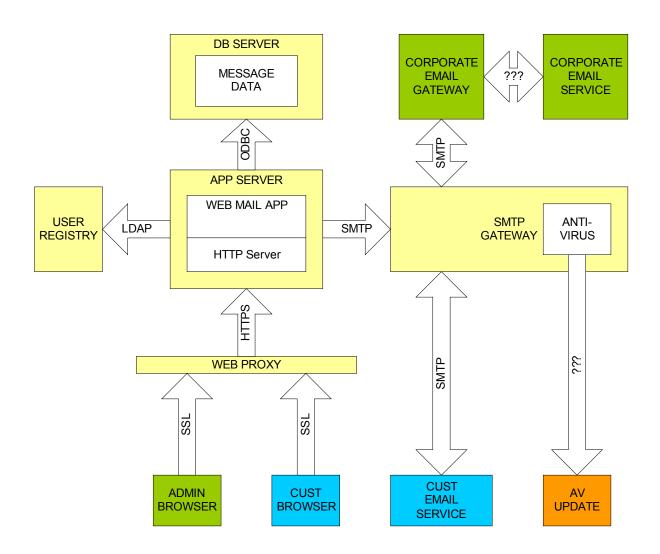
- 100Mbps LAN chosen for cost effectiveness
- Cisco 3550 Switches used for LAN infrastructure
- Cisco PIX Firewalls

Exercise 3. In this exercise we use a logical component module for a hosted web mail service offered by a bank to its customers

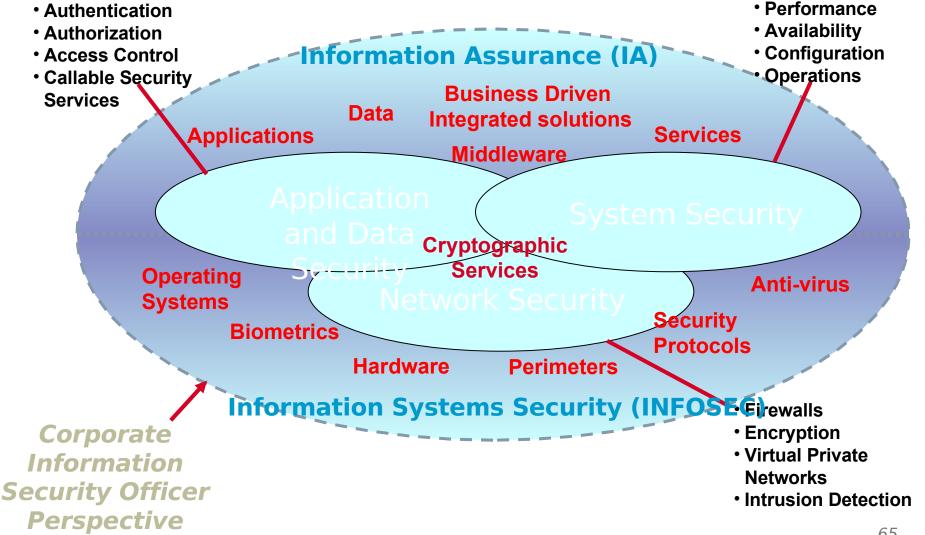

Exercise 3.1: Define a policy for flows between the different zone classifications – this is the basis for placing components

From / To	U	С	R	S
Uncontrolled				
Controlled				
Restricted				
Secure				

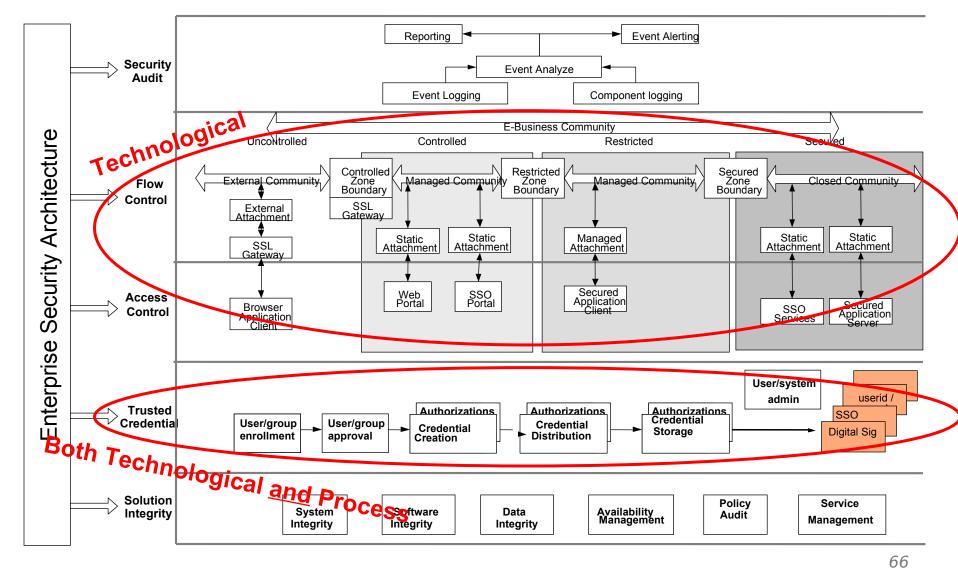

Exercise 3.2: Starting with the core application – draw some security zones onto the diagram to show how the components should be secured with a network architecture


Exercise 3.3: Now add additional security zones to address the full application function and connections – using the external designation where necessary

Exercise 3.4: How do the zones change when we add in proxy/relay servers to protect the application?



Security: Summary



The 'big picture' – security policy and architecture must include logical and physical protection to counteract the threats

In implementing the defined policy in an IT Architecture, both process and technological elements must be considered

Accessibility, Usability & People Centred Design

Accessibility, Usability and People Centred Design

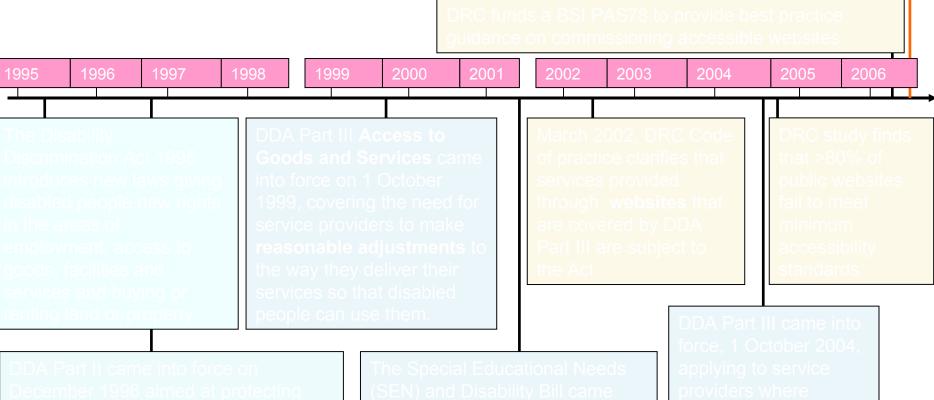
Consider:

- Accessibility making systems available to as wide a range of people as possible
- Usability making systems easy to use
- Both of these elements are complex topics in their own right, and though they have some similarities, they have a different focus
- The slides give an overview of a process that can be used
 the work is specialised, but it is useful for the IT
 Architect to have some understanding of the challenge

Accessibility & Usability: Background and Drivers

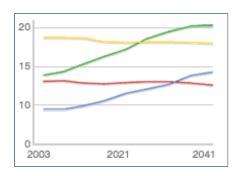
Why bother with making technology accessible?

The key drivers:


```
Inclusion ... in the UK:
  Over 10 million people are registered with a disability
  Over 2 million people are blind or partially sighted
  Over 9 million people are affected by deafness and hearing loss
  Over 7 million people have literacy problems
  Over 1 million have learning difficulties
Legislation
  UK The Disability Discrimination Act 1995, Part II Employment 1996, Part III
     Goods & services (1999), DRC Code of practice (2002), Disability Equality duty
     (2006)
  The Employment Equality (Age) Regulations 2006
Employment
  Ageing workforce: Adapting to the physiological and cognitive needs of an older
     workforce
  Labour engagement: Lowering the skill required to use technology in the
     workplace
```


Legislation

Disability Equality duty (December 2006) Covers the duty of care of public sector organisations to include equality for disabled people in the culture of the organisation


DDA Part II came into force on December 1996 aimed at protecting disabled people from discrimination in the field of **employment**. The code of practice covers companies making "reasonable adjustments" to computers systems to allow access.

The Special Educational Needs (SEN) and Disability Bill came into force May 2001 making it unlawful for education providers to discriminate against disabled pupils, students and adult learners.

force, 1 October 2004, applying to service providers where physical features make access to their services impossible or unreasonably difficult for disabled people.

Ageing workforce

"the reality is that, as older people become an ever more significant proportion of the population, society will increasingly depend upon the contribution they can make."

- By 2025, more than a third of the UK's population will be over 55.
- There is a trend of extended working life. The long term aspiration is:
 - To achieve an employment rate equivalent to 80% of the adult population, including:
 - One million older workers into employment
 - One million people moving from Incapacity
 Benefits into employment
- An ageing population will require accessible technologies:
 - With age, people develop new physiological and cognitive impairments.
 - With age, mild difficulties and impairments become more severe.
 - In our society, the total number of people with difficulties and impairments will increase.

Why bother with making technology <u>usable</u>?

The key drivers:

III Increase sales

- For each \$1 spent on improving the visual design or style of your site, there will be virtually no improvement in sales.
- The same \$1 spent on improving core behavioral interactions with a site's critical way-finding and form-filling functions, will however, return \$50-\$100 if done professionally and rigorously.
- For each \$1 spent acquiring a customer, it will cost \$100 to re-acquiring them after they leave because of poor usability or bad customer service.

Reduce costs

- The single largest predictor of call center volume is web site's usability. Calls average \$22-\$30 per call.
- For every \$10 spent defining and solving critical usability problems early in development using professional usability disciplines, saves about \$100 in development costs.

Other business drivers

Safety, efficiency, adoption, satisfaction, effectiveness, flexibility, inclusion

Usability is an example of a run-time quality

- Usability is defined as "the design of interactive systems used by people to satisfy personal and organisational goals."
- Interactive systems
 - Any technology, any platform
 - Desktop, thin-client, intranet or Internet, mobile, and so on

People

- Any direct or indirect user of a system
- Staff, managers, customers, citizens, learners, and so on

Goals

- Make money, save money, time, and lives and so on
- Communicate, engage, persuade, retain, and so on
- Find, buy, learn, grow, progress, and so on

Today's picture: the majority of technology is not even technically accessible

Only 3% of the 436 online Public Service websites in EU were considered to meet minimum accessibility standards

Source: Cabinet Office report November 2005

81% of UK websites failed to satisfy basic accessibility criteria

Source: Disability Rights Commission Study 2004

Few designers seem to care that they are excluding millions of people from seeing or using the sites they are building

And many interfaces have usability problems

A study from Zona Research found that:

- 62% of online shoppers gave up at least once while looking for the item they wanted
- 20% of online shoppers gave up more than three times during a two-month period
- 42% turned to traditional channels to make their purchase

A study by research group Creative Good found that:

- 39% of the customers who tested the sites for the study could not figure out how to buy
- More than 50% of search attempts failed to find something relevant.

A study cited in "Build a Site, Not A Labyrinth" (Jefferey, G.) stated that:

33% of online banking customers closed their accounts within a year. 50% said it was because the site was too difficult to navigate

A study by Jared Spool's found that:

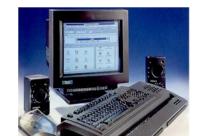
Users could only find information 42% of the time even though they were taken to the correct home page before they were given the test tasks

And some real examples of usability failures

 London Ambulance service implemented a new dispatching system.

Severe delays in ambulance arrivals

caused by technology and user interface design errors.


• "A financial services company had to scrap an application it had developed, when, shortly before implementation, developers doing a User Acceptance test found a fatal flaw in their assumptions about how data would be entered. By

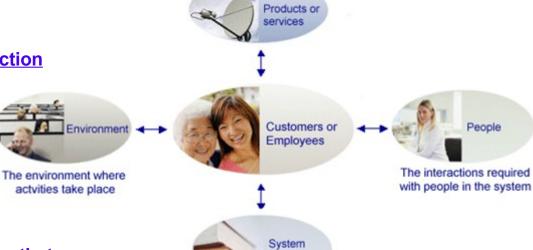
application was never implemented."

Some definitions...

alternative adaptations

Interfaces are optimised

percentages of a population can use motivated to use



Some more definitions...

The extent to which a product can be used:

- By specified users
- To achieve specified goals
- with <u>effectiveness</u>, <u>efficiency</u> and <u>satisfaction</u>
- In a specified context of use

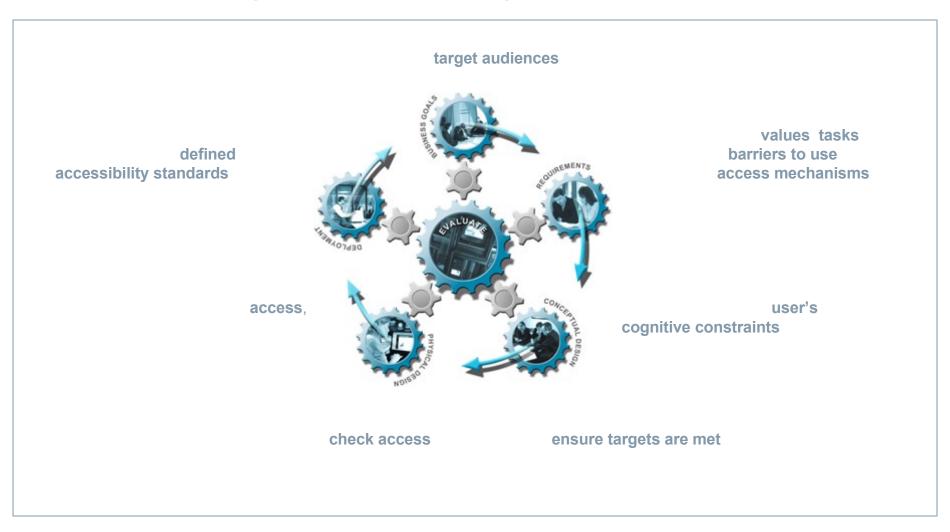
[ISO 9241-11]

The products and services that people use

is about designing processes and interfaces that:

- Improve the way customers interact with a company
- Improve the way employees do their job
- It covers products and services, environment, system policies and human interactions

The system policies that people have to understand and abide by


policies

Accessibility & Usability: Method and Approach

Inclusive design relies on a rigorous process

(P.S. Many standard work products exist within the IBM GS Method to help the Usability and Accessibility design processes)

Usability

APP 129 Usability Requirements

APP 130 Use Case Model

APP 142 Current Solution Evaluation

APP 143 Early Usability Evaluation

APP 145 Use Case Validation Report

APP 146 User Interface Conceptual Model

APP 146 User Interface Design Guidelines

APP 146 User Interface Design Specifications

APP 146 User Interface Prototype

APP 146 User Profiles

Business

BUS 320 Customer Needs and Wants

BUS 411 Business Direction

Organization

ORG 017 User Support Specifications

ORG 153 User Support Materials

ORG 307 Current Organization Assessment

ORG 308 Human Capability Assessment

Understand the business opportunity

Understanding the business context, goals and vision for the project, such that the User Experience Design team are properly focused.

This will include defining and prioritising:

- Business goals:
 - E.g. Make money, save money, communicate, engage, persuade, retain, find, buy, progress...
- Target audience:
 - E.g. Claims handlers, Supervisors
- Measures:
 - E.g. % task success through claims process, Reduction of call centre queries about a claim
- **User experience goals**
 - E.g. Efficiency, effectiveness, satisfaction. Ease of Learning, credibility, compliance

And understanding

- **Current application/process/website:**
 - E.g. current task support, design innovations, usability barriers
- **Current customer/employee data:**
 - E.g. Customer or employee feedback, survey results, queries

	Economic	Time
		Money
		Resource
		Knowledge
	4	Risk
SS	Social	Collaboration
ine		Communication
snq		Cohesion
hek		Privacy
it for t	Strategic	Control
		Differentiation
in		Influence
at's in		Influence Leadership
What's in it for the business?		
What's in	Subjective	Leadership
What's in	Subjective	Leadership Perception
What's in	Subjective	Leadership Perception Emotional
What's in	Subjective	Leadership Perception Emotional Experiential

Understanding users

Gathering data about the target audience is critical to success

```
Who and how many need to be included in the study:

User profiles are created to capture

Target user characteristics (Age, gender, experience),

Social and Environmental context of use,

Language,

Usability factors (that drive the design).

Representative users are then invited to participate in user research studies.
```

What **data** needs to be collected:

User researchers design the study to collect necessary data such as user goals, tasks, barriers to use, terminology, classification, mental models.

How the data will be gathered:

Study methods are selected such as
Field studies (ethnographic studies; contextual enquiry),
Workshops (short on time),
Focus groups (well defined audiences; easy to get),
Interviews (often used in combinations with another method),
Surveys (large statistical sample; difficult to get to see the users)

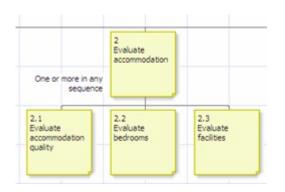
	Economic	Time
		Money
		Resource
		Knowledge
		Risk
S :	Social	Collaboration
ser		Communication
e C		Cohesion
the		Privacy
What's in it for the users?	Strategic	Control
<u>=</u> .		Differentiation
t s		Influence
/hai		Leadership
\$		Perception
	Subjective	Emotional
		Experiential
		Existential
		Autonomy
		Effort

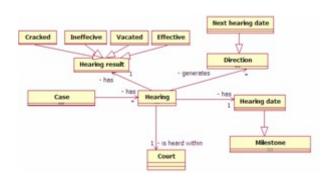
Define and agree critical requirements

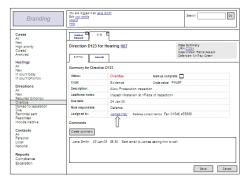
Provides an opportunity for the User experience design team to **feedback** to the business and the technical implementation team about the the **key findings** from the stakeholder and user research studies.

- Enables the group to collectively identify any business or technical constraints that could impact the design direction.
- Provides a forum to **reassess** business, design and development **priorities** as a result of the user research findings.

Conceptual design


In general, 70% of usability problems are as a results of errors within the conceptual model


Many problems relate to a poor information architecture


- It is not clear to users where the information is
- Users are unsure of specialist terminology

Conceptual design involves:

- Modelling human activity using task models
- Modelling objects, labels and relationships using information modelling
- State modelling is also used to capture the lifecycle of complex objects
- Creating a wire frame to test with users
- Reworking the design to remove usability errors

Physical design

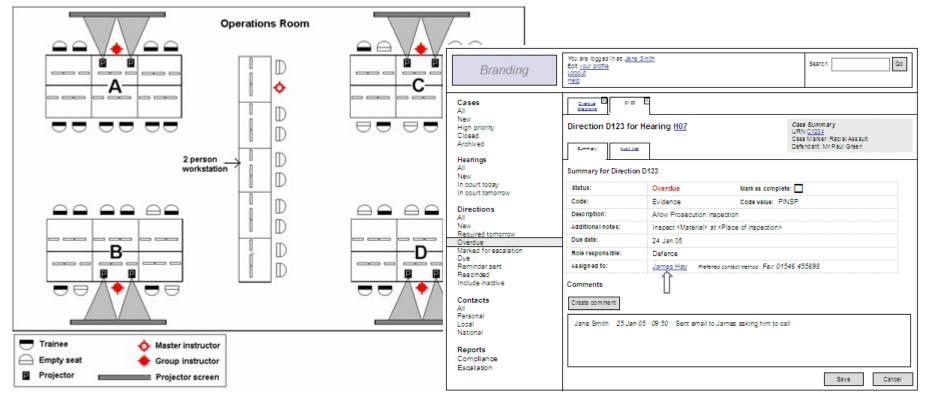
Applies branded look and feel

- Finishes the design by defining and applying system 'look and feel'
- Produces a user interface specification derived from the style guide
- Generates high-fidelity graphical and sometimes interactive prototypes

Documents agreed UI elements

- Ensures key elements are identified and documented as part of a style guide to
 - Protect critical assets
 - Assist future designers/developers to apply the correct design

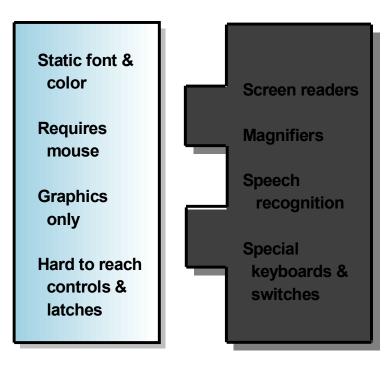
Evaluation

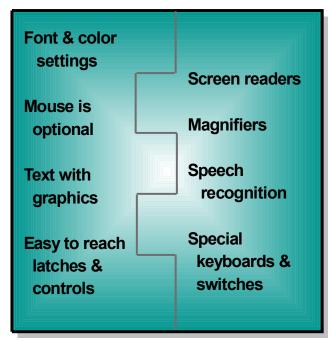

Evaluation tests designs in context:

By observing representative users attempting typical tasks

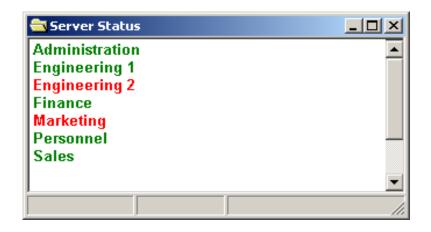
By eliciting users' opinions

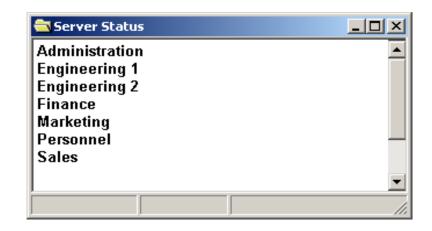
Through structured analysis by user interface specialists and ergonomists


Accessibility & Usability: Solutions


"Accessibility" is both a quality and a constraint, for which however there is technology to assist us

Assistive Technology: Specialised IT that allows a user with a disability to access Information Technology




Standards and APIs: MSAA, JAAPI, standard windows controls

What are some examples of systems that comply with IBM and Government accessibility guidelines?

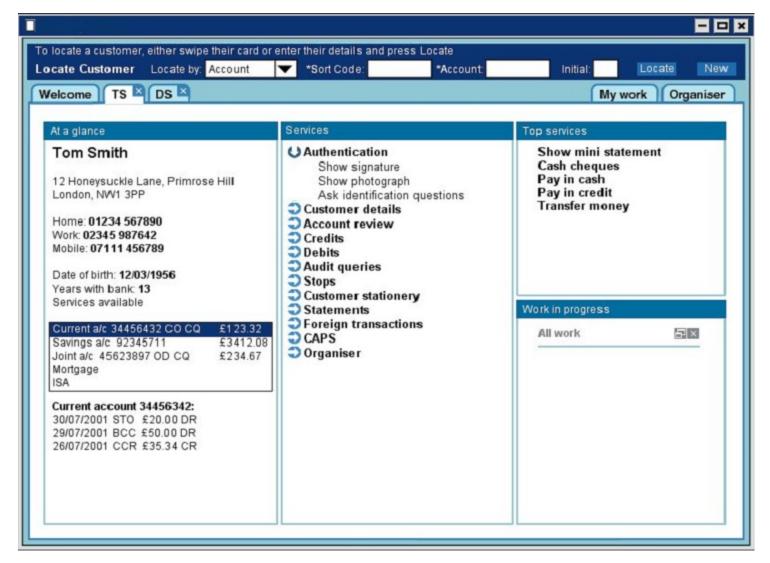
- Users with low vision need enlargeable fonts and high contrast settings.
- Users who are colour blind need more than colour differences to communicate information.
- Users who are blind must use a screen reader and the keyboard.
- Deaf users need captions and visual equivalents for audio alerts
- Hard of hearing users need to increase the volume.
- Users with limited or no use of their hands need keyboard accessibility features and alternative input methods.
- Users with attention or reading disabilities need speech synthesis, speech input, word prediction, highlighting tools, and so on.

Accessibility tools

Disability Assistive te	echnologies can help many people with physiological disabilities	Example Assistive technologies
Vision	Includes: iii people who have a registered disability such as those who are blind, or have limited vision iii people who are not registered but still have a visual impairment such as colour blindness	Screen readers Magnification software Braille displays and printers Visual adaptation software (WAT)
Hearing	Includes: iii people who have developed audio impairments over time, with some level of hearing loss to those who are now deaf iii people who were born deaf and where English is their second language	Captioning software Universal messaging Signing avatars
Dexterity	Includes: iii people with a registered disability such as those who have lost limbs, and those with conditions such cerebral palsy and spinal cord injuries iii people who may be temporarily disabled, for example people recovering from injuries that affect their ability to use computers	Mouse smoothing software Speech recognition software Eye tracking software Head sticks Sticky keys (OS settings) Alternative mice and keyboards

Inclusive design can help with some cognitive impairments

Cognitive impairment		Design approaches
Intelligence Defined as the ability to solve problems through reasoning and experience	Includes: People whose ability to complete tasks is compromised by a lack of understanding and reasoning.	Design for ease of learning, simplified task models, structured and consistent use of concepts and language
Memory Defined as the ability to encode, store and recall information	Includes: People who have difficulty learning new concepts and terminology People who have difficulty completing tasks that rely on remembering names, objects and processes	Design to reduce memory load, information in context, persistent data, feedback on progress and actions, consistent concepts and language
Attention Defined as the ability to concentrate on one thing whilst ignoring others	Includes: People who have difficulty reading instructions and are distracted when completing tasks resulting in careless mistakes	Design for efficiency and Appeal. Reduce task completion time and increase the use of novel methods to convey familiar concepts. Defensive design.
Perception Defined as the ability to acquire, interpret, select and organise information	Includes: People who have difficulty understanding and interpreting textual, visual or numerical data, for example people with dyslexia and dyscalculia	Designs can be optimized for good information and visual design, symbology and clear writing style (Easy to read)


Inclusive design can help with some adoption issues

Common barriers to technology adoption		Is affected by
Motivation	Where people do not perceive sufficient or indeed any value in the system to invest the effort in learning something new.	Poor research and communication of user goals and value models
Confidence	Where people are not confident in their ability to make the right decision or to complete tasks without error. Confidence may be related to a previous bad experience or an inability to accurately remember data required by a system.	Poor information architectures, complex language and task models, technology mismatch
Knowledge and learning	Where people do not believe they have sufficient domain or computing experience to use the system effectively. Where people perceive that the system will require an inappropriate amount of time to learn	Unfamiliar concepts, language and metaphors
Trust	Where people may not trust the organization and therefore the services provided by the organization. Issues may include data security, communication ethics, level and quality of service.	Poor craftsmanship, communication and writing style
Autonomy	Where people perceive an inappropriate level of control and influence is being exerted by the system	Inflexible interaction styles, mismatch with user's conceptual model
Privacy	Where people perceive an inappropriate intimacy as a result of intrusive questioning or persistent communication.	Conflicting business goals, poor user value communication

An Example Interface from a Large UK Retail Bank

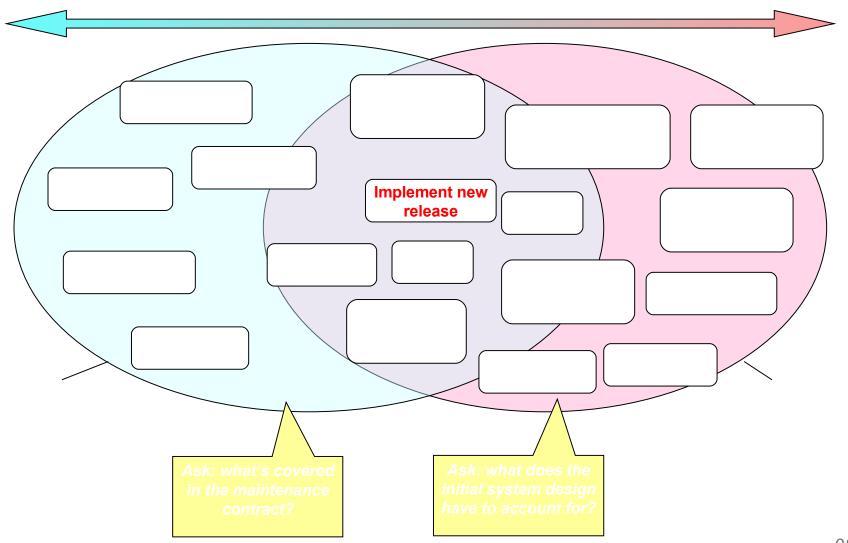
Summary: how do Usability and Accessibility themes impact our requirements, solutions and testing plans?

Area	Impact	Examples
Requirements	Include Usability & Accessibility Goals and standards	"Delivered systems must meet DDA guidelines"
Functional & Content Model	Include components which are required to delivery Usability & Accessibility requirementsDesign components to meet restrictions implied by requirements	 Transcoding components for different device formats Limit front end UI to HTML only (no custom applets, etc.)
Operational Model	Infrastructure nodes and deployment design to support accessibility and usability oriented components	 Transcoding node (performance critical) Client-side deployment of assistive technologies
Testing	Ensure additional time is budgeted for to create and test content delivery alternatives Test plans and environment must include appropriate elements	User acceptance test must include usability & accessibility phase and test cases

Maintainability & Flexibility in IT Systems

Definitions of two related but identifiably different things

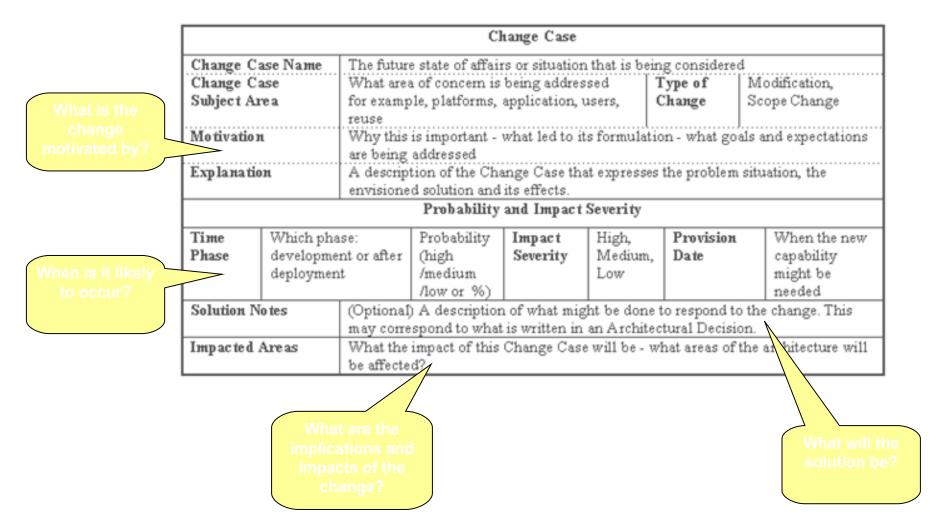
Maintainability:


- The degree to which a delivered system can be (costeffectively) maintained in live operations whilst still meeting all business objectives
- Includes the capacity to apply fixes safely, alter functionality in live, upgrade software, etc.

Flexibility:

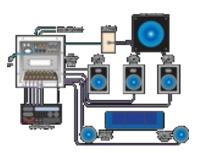
- The degree to which a system can be changed or extended to meet new or altered business requirements with minimum cost, effort and impact to operations
- Includes the capacity to change or extend functionality, repurpose for different needs, or scale to different volumes and usage scenarios

Overlap of Maintainability & Flexibility objectives

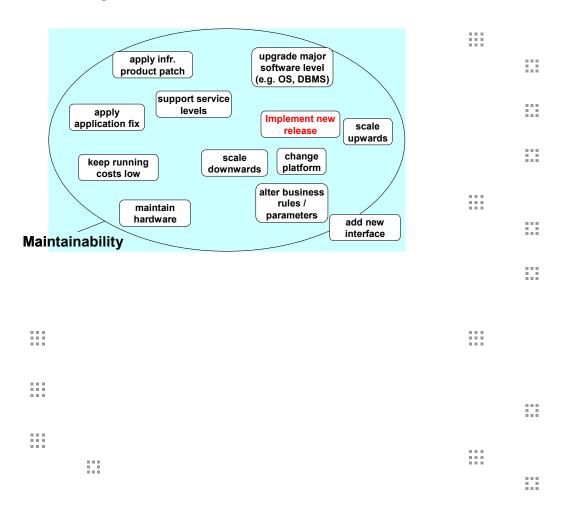


Method Work Product – the Change Case

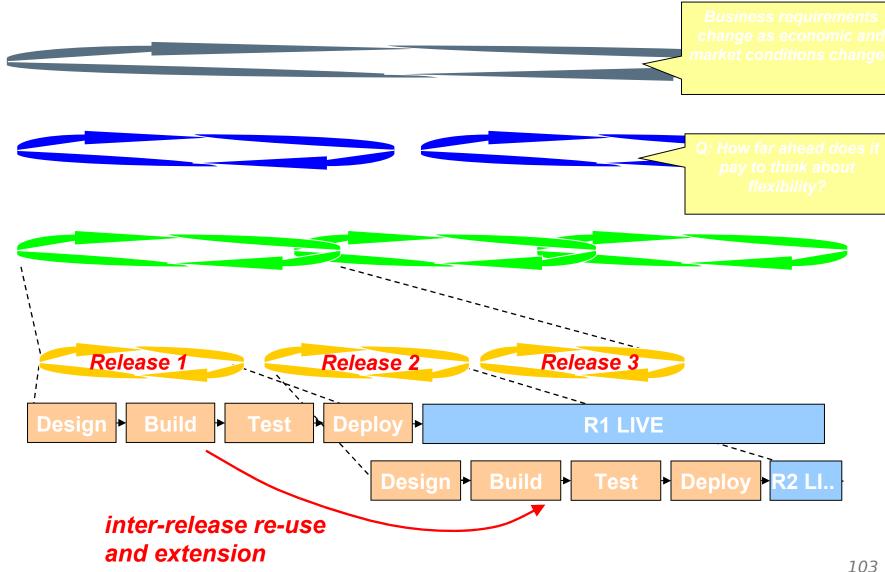
7.	
• • •	
Changes are relevant and deserve to be included if they affect the architecture and design now.	
•	
•	
•	
	0.0


Change Case Template

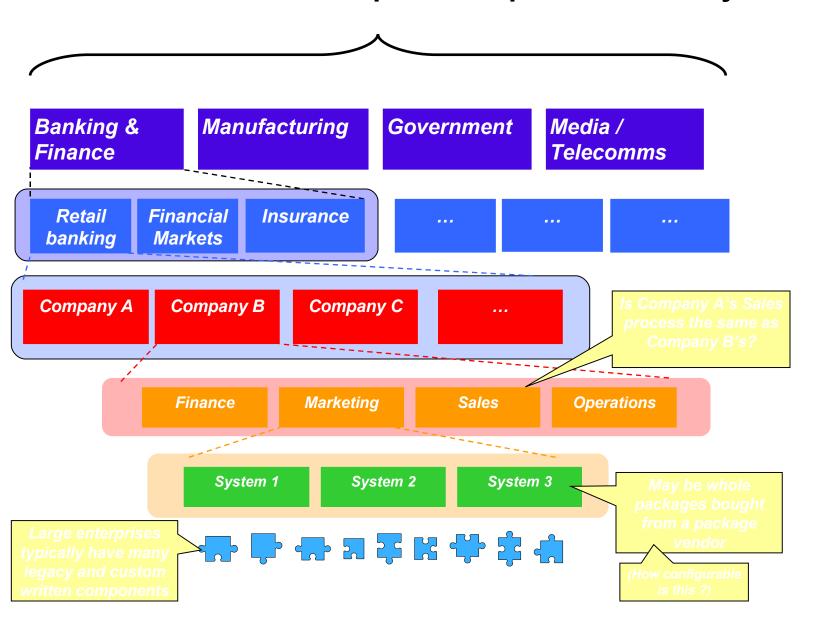
An example from everyday life


- Change Cases I want to:
 - create arbitrary playlists and listen to them in any room of the house
 - play my newly created collection of MP3s as well as CDs
 - record from the radio / TV (whilst playing another source)
 - be able to search a catalogue of all my music
 - expand my music collection through online purchases
 - be protected from the failure of any single devices
 - ...

- Example constraints / issues:
 - I bought an expensive amplifier and don't want to have to replace it
 - I currently only have speakers in one room
 - Difficult to wire through to other rooms
 - Wireless signals may not pass through walls / wireless transmission may not be of sufficient quality
 - Amplifier not connected to the computer
 - Devices cannot play and record simultaneously
 - Computer has run out of disk space ...



What can the IT Architect do to help those who <u>maintain</u> and IT system? Examples



Taking the Long View – Business vs. Project Cycles

What is a sensible scope of component flexibility & re-use?

Challenges from the definition of 'Flexibility'

Flexibility:

"The degree to which ...

- ... a system can be changed or extended ...
- ... to meet new or altered business requirements ...
- ... with minimum cost, effort and impact to operations."

Implications

Need to be able to measure flexibility in some way (or at least define "success")

Requires change mechanisms, identification of roles, and a extension/reuse framework

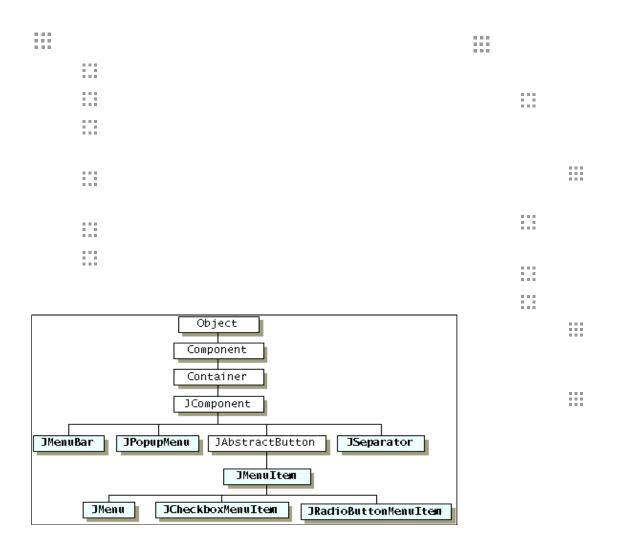
What is the conceivable scope of changing requirements?

Design and infrastructure needs to aim to support change efficiently

Sources of Flexibility & Extensibility constraints

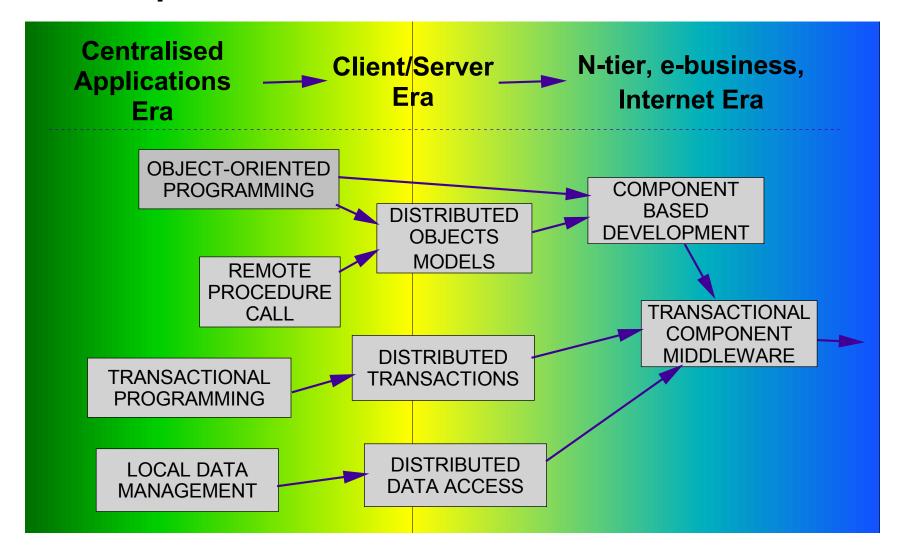
- Architectural & Technical constraints
 - Out of date technology base cannot be migrated forward
 - Subsystems and components are tightly coupled
 - Can't replace one without replacing the other
 - Functional components not suitable for reuse
 - e.g. wrong level of granularity
 - Business rules hard coded
 - Scalability constraint (e.g. due to logical bottleneck)
 - Skills to modify systems are in low supply

- Constraints not directly caused by system design
 - Business organisation and processes are not flexible
 - No overall Enterprise
 Architecture or architectural
 governance
 - replicated functions and data
 - low degree of commonality
 - Client is not prepared to pay for flexibility during solution design and implementation
 - Impossible to see direction of change (!/?)

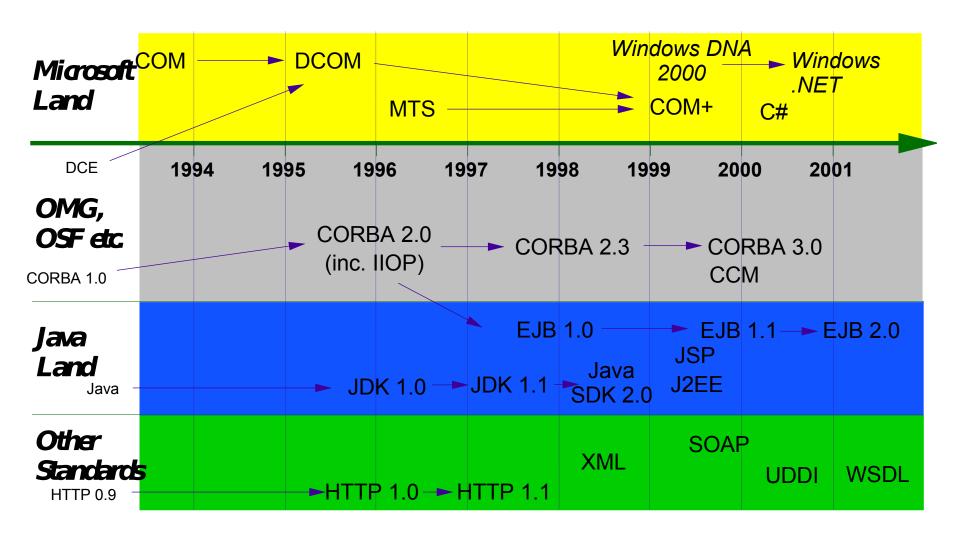


Exercise 1: who should be able make what changes to IT system?

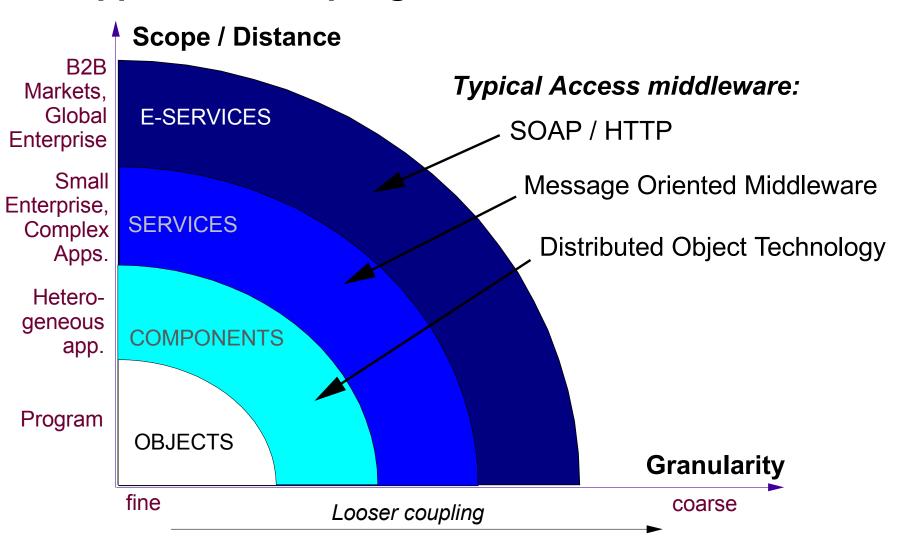
- In order to support flexibility and extensibility objectives, wouldn't it be better if business people (for whom the system was invented), could directly alter the capabilities (functionality and rules) within the system?
- What are the pros of this idea?
- What are the cons of this idea?
- How do you believe this scheme could be implemented?
- 5-8 minutes



Object Orientated Programming – the original (?) solution to "reuse" and flexibility



Sidestep 1: Evolution of Middleware



Sidestep 2: A timeline of Distributed Applications Technologies (1994 – 2001)

Application coupling – Gartner view

Three design flexibility watchwords to dance by

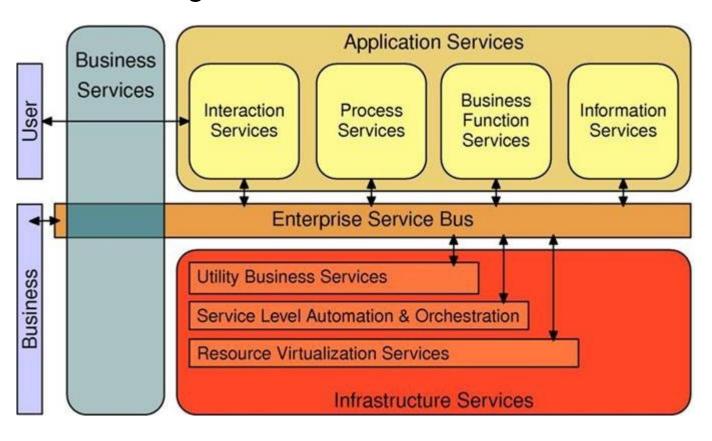
- Objectives in flexible system design

Loose coupling (arms out!)

- Meaning components are not tightly bound together (either logically or technically), giving freedom to alter component internals and implementations
- The 'interface' or 'service definition' needs to stay the same in order to have zero impact on other components

High cohesion (*elbows together!*)

- Despite being loosely coupled, we still want components to 'fit' and work well together
- The component model must still 'make sense', be logical


Encapsulation (arms above your head!)

Components encapsulate ('contain', 'capture', 'own') a logical and consistent piece of functionality and/or data

(Semi-reprise from WDITADAD?) "Service Oriented Architecture"

Shared logic & data, common services

What's really new?:

- service definition technology independent (excepting XML!)
- possible (if not always desirable) to perform runtime binding

The 'Buy' vs. 'Build' vs. 'Construct' debate

Strategy	Benefits (theoretical)	Implications and risks
Custom application	Applications can be built to meet exact requirements	Need to be able to capture requirements and develop efficiently
development	Retain control of all technical standards, products and overall	 Require significant body of in-house or contracted skilled resource
	architecture	Requires strong governance
	Flexibility is as good as your architecture	
Packages	Exploit 'best of breed' functionality	Must accept vendor 'view of the world'
		(e.g. data model, business process)
	(N.B. may be expensive to maintain)	 Need to integrate packages together
	Fewer in-house skills required	 Flexibility dependent on vendor's architecture
		Can become reliant on vendor
Frameworks &	Construct applications flexibly from	Still reliance on vendor
toolkits	frameworks to achieve high flexibility	Flexibility limited by scope of vision of
	 Potentially lower cost and risk then 	the framework / toolkit
	custom application development	More complicated than straight package implementation

Trends to watch in flexible business application construction

Summary

Summary of Topics

** May your systems be <u>secure</u>, <u>easy to use</u>, and <u>flexible in the face of change</u> **