
#

IT Architecture ModuleIT Architecture Module

What do IT Architects do all day?

Roles and Responsibilities

Dr. Marcel Schlatter
IBM Distinguished Engineer
Member of the IBM Academy of Technology
marcel.schlatter@ch.ibm.com

2

IT Architecture Module2

3

IT Architecture Module3

Contents

Roles and responsibilities

Heuristics
Experience

Language
Vocabulary
Architecture Description Standard

Method
Codified experience
Process to support Architectural Thinking
Reference architectures
Patterns

Reviews

What do
architects

rely on

4

IT Architecture Module4

Types of IT architecture

5

IT Architecture Module5

Architects are technically competent system-level thinkers, guiding
planned and economically efficient design processes to bring a system into
existence.

The software architect
Matthew R. McBride
Communications of the ACM
Volume 50, Number 5 (2007), Pages 75-81

Architects proactively focus on system- and subsystem-level issues to establish a
solid foundation for detailed design, particularly for large-scale efforts.

Architects must lead multiple stakeholders in a technologically challenging and
sometimes politically charged environment.

6

IT Architecture Module6

An example of a conversation between the architect and the prospective
owner. Each question serves to pose a constraint (the lot size) or identify a
requirement (number of bedrooms) in order to establish the conditions
whithin which any design will take place.

7

IT Architecture Module7

8

IT Architecture Module8

Scope description

Model of the business

Model of the Information System

Technology model

Detailed description

Ball park view

Customer’s view

Designer’s view

Builder’s view

Out-of-context view

9

IT Architecture Module9

Views for representing Software Architecture

Logical View

End-user
Functionality

Implementation View

Programmers
Configuration management

Process View

Performance
Scalability
Throughput

System integrators

Deployment View

System engineering
System topology
Communication

Provisioning

Conceptual

Use Case View

Kruchten, “The 4+1 Model View”

Physical

10

IT Architecture Module10

The wider context

Your work
• system testing
• user testing
• performance testing

Other systems

UsersRequirements

Architecture

Infrastructure

HW OS DBMS Middleware Tools

Interfaces

Design
choices

11

IT Architecture Module11

The Role of the IT Architect

The architect should not focus on some separate part, called the
„architecture“

The architect should assume the responsibility that an engineered system is
optimally matched to the situation

The architect is the author of the solution, undeniably accountable for the
effort‘s success or failure.

Situation Diagnoses

Problems Problem
Analysis Options

Decisions System

12

IT Architecture Module12

Options: Builder Nominates, Customer decides
Prioritizing: Trade-offs, Options, and Choices

During initial requirements gathering, the
architect established important baselines.
Unstated expectations for the design must be
identified and validated.
Requirements may need to be altered, added,
or deleted to deliver an optimal solution.
The choice between architectures may well
depend upon which set of drawbacks the client
can handle best.
If trade-off results are inconclusive, then the
wrong selection criteria were used. Find out
[again] what the customer wants and why they
want it, then repeat the trade using those factors
as the [new] selection criteria.
The architect must transcend the limitations of
the builder’s state of the art, and imagine what
is possible, given time and budget
constraints.

Client

Builder

IT Architect

13

IT Architecture Module13

Common Traits of Trusted Advisors
Seen from the client’s perspective

Understand us, and like us
Don’t try to force things on us
Give us options, increase our understanding of those options, give
us their recommendations, and let us chose
Help us think things through (it’s our decision)
Help us think and separate our logic from our emotion
Give us reasoning (help us think), not just conclusions
Help us to put our issues in context, through the use of metaphors,
stories, and anecdotes (few problems are completely unique)
Challenge our assumptions (help us uncover the false assumptions
we’ve been working under)
Criticize and correct us gently, lovingly
We can rely on them to tell us the truth
Are consistent (we can depend on them)

D. Maister, C. Green, R. Galford, The
trusted Advisor, The Free Press, 2000.

You don’t get the chance to employ
advisory skills until you can get
someone to trust you enough to share
their problems with you.

14

IT Architecture Module14

Take a point of view (POV)

It is useful to our clients if we articulate a Point Of View,
even if it ends up being rejected or wrong.

Two reasons:
It stimulates reactions

It crystallizes issues

Stating a POV serves as a catalyst, a way of helping the
client think

Learn to express a POV with a simple, phrase such as:
Now let me just float a trial balloon here

Hey, who knows where this might go, but it occurs to me that ...

D. Maister, C. Green, R. Galford, The
trusted Advisor, The Free Press, 2000.

15

IT Architecture Module15

Trusted Advisor and Architect Antipatterns

Respond to the minutiae of an RFP rather than aggressively work
relationships to manage the bigger picture with clients.

Risk of missing the big picture, leaving clients unconvinced that the
architect's company has the capability to do anything other than
implementation.

Give the client a car when they needed a bike
Over-solutioning and building up complexity are a sure way to lose.

16

IT Architecture Module16

Architecting vs. Engineering
Architecting is

working for a client and with a
builder
helping determine relative
requirement priorities, acceptable
performance, cost, and schedule
taking into account such factors as
technology risk, projected market
size, likely competitive moves,
economic trends, political regulatory
requirements, project organization,
and the appropriate “illities”
(availability, operability,
manufacturability, survivability, etc.)

Engineering is
working with an architect and for
the builder
applying the best engineering
practices to assure compliance at
the system level with the
designated architecture and with
applicable specifications,
standards, and contracts.

The essence of systems is relationships, interfaces, form, fit, and function.
The essence of architecting is structuring, simplification, compromise, and balance.

The challenge is control, if not the reduction of complexity and uncertainty.

The design of complex systems must blend the art of architecture
with the science of engineering

17

IT Architecture Module17

Characteristics of the Architect’s Job
No person who is not a great sculptor or painter can be an architect. If he is
not a sculptor or painter, he can only be a builder.

John Ruskin, Lectures on Architecture and Painting (1853)

Architect is the principal IT leader
In large organizations
In large and small projects

Visioning and modeling
Bridging the Business-IT gap
Vocabulary, Language Architecture Description Standard
Method to support Architectural Thinking

Overseeing construction, to ensure actual implementation meets design

Responsibility for acceptance of built system

Multidisciplinary Synthesis
Technical, programmatic, managerial
Heuristic

18

IT Architecture Module18

Heuristics = Tool store for systems architecting
Bag of tricks and tools that are largely experience-based and form
the intellectual framework architects use to guide decisions on a day-to-
day basis

Multitask heuristics
Scoping and planning
Modeling
Prioritizing (trades, options, and choices)
Aggregating ("chunking")
Partitioning (decompositioning)
Integrating
Certifying (system integrity, quality, and vision)
Assessing performance, cost, schedule, and risk
Rearchitecting, evolving, modifying and adapting

Not all heuristics apply to all circumstances, just most to most.

The art of systems architecting / edited by
Mark W. Maier, Eberhardt Rechtin.—2nd
ed. Appendix A: Heuristics for systems-
level architecting

A heuristic is a replicable method or
approach for directing one's attention in
learning, discovery, or problem-solving.
Originally derived from the Greek "heurisko"
(εὑρίσκω), which means "I find".

19

IT Architecture Module19

Some Heuristics

Don’t assume that the original statement of the
problem is necessarily the best, or even the right,
one.

Extreme requirements, expectations, and predictions
should remain under challenge throughout system
design, implementation, and operation.

Explore the situation from more than one point of
view. A seemingly impossible situation might
suddenly become transparently simple.

Success is defined by the client, not by the architect.

The most important single element of success is to
listen closely to what the client perceives as his
requirements and to have the will and ability to be
responsive.

A heuristic is a replicable method or approach for
directing one's attention in learning, discovery, or
problem-solving. It is originally derived from the
Greek "heurisko" (εὑρίσκω), which means "I find".

The art of systems architecting / edited by Mark W.
Maier, Eberhardt Rechtin.—2nd ed. Appendix A:
Heuristics for systems-level architecting

A lot of times, people
don't know what
they want until you
show it to them.
Steve Jobs

20

IT Architecture Module20

Don’t assume that the original statement of the problem is
necessarily the best, or even the right one.

Security is limited by the weakest link

21

IT Architecture Module21

More Heuristics

Ask early about how you will evaluate the success of your efforts.
For a system to meet its acceptance criteria to the satisfaction of all parties, it must
be architected, designed, and built to do so — no more and no less.
Define how an acceptance criterion is to be certified at the same time the criterion is
established.
Regardless of what has gone before, the acceptance criteria determine what is
actually built.
If there are things a successful system or architecture cannot do, or at least not do
well -- don’t force it!
The strengths of a system or architecture in one context can be its weaknesses in
another. Know when and where.
An element “good enough” in a small system is unlikely to be good enough in a more
complex one.
A system is successful when the natural intersection of technology, politics, and
economics is found.
High quality, reliable systems are produced by high quality architecting, engineering,
design, and manufacture, not by inspection, test, and rework.

A heuristic is a replicable method or approach for
directing one's attention in learning, discovery, or
problem-solving. It is originally derived from the
Greek "heurisko" (εὑρίσκω), which means "I find".

Adapted from: The art of systems architecting / edited by
Mark W. Maier, Eberhardt Rechtin.—2nd ed. Appendix A:
Heuristics for systems-level architecting

22

IT Architecture Module22

Partitioning (decompositioning)
and Integrating

Do not slice through regions where high rates of information exchange are
required.

The principles of minimum communications and proper partitioning are
key to system testability and fault isolation.

To be tested, a system must be architected and designed to be tested.

The greatest leverage in architecting is at the interfaces.

The greatest dangers are also at the interfaces.

Logical layering and careful interface definition improve the overall design.

Guidelines for a good quality interface specification: they must be simple,
unambiguous, complete, concise, and focus on substance.

It is inadequate to architect up to the boundaries or interfaces of a system;
one must architect across them.

Relationships among the elements are what give systems their added
value.

Be sure to ask the question: “What is the worst thing that other elements
could do to you across the interface?

The art of systems architecting / edited by Mark W.
Maier, Eberhardt Rechtin.—2nd ed. Appendix A:
Heuristics for systems-level architecting

A heuristic is a replicable method or approach for
directing one's attention in learning, discovery, or
problem-solving. It is originally derived from the
Greek "heurisko" (εὑρίσκω), which means "I find".

23

IT Architecture Module23

Front and Rear Wheel Drive Architectures
Same elements, arranged differently

24

IT Architecture Module24

Aggregating (“chunking”)

Group elements that are strongly related to each other, separate elements
that are unrelated.
Subsystem interfaces should be drawn so that each subsystem can be
implemented independently of the specific implementation of the
subsystems to which it interfaces.
Choose a configuration with minimal communications between the
subsystems.
Choose the elements so that they are as independent as possible; that is,
elements with low external complexity (low coupling) and high internal
complexity (high cohesion). (Christopher Alexander, 1964 modified by Jeff
Gold, 1991)
Never aggregate systems that have a conflict of interest; partition them to
ensure checks and balances.
Aggregate around “testable” subunits of the product; partition around logical
subassemblies.
Iterate the partition/aggregation procedure until a model consisting of 7 ± 2
chunks emerge.
System structure should resemble functional structure.

A heuristic is a replicable method or approach for
directing one's attention in learning, discovery, or
problem-solving. It is originally derived from the
Greek "heurisko" (εὑρίσκω), which means "I find".

The art of systems architecting / edited by
Mark W. Maier, Eberhardt Rechtin.—2nd ed.
Appendix A: Heuristics for systems-level
architecting

25

IT Architecture Module25
Th

es
e

ar
e

cr
iti

ca
l!!

Things to keep in mind: Partitioning and Aggregating
Why architects do it

To simplify - break a complex problem into smaller ones that are more easily
solved
For speed - the sub-problems can be solved in parallel

The challenges
finding the most suitable set of sub-problems
combining the separate subsystems into an overall solution may be difficult.

Basic approach
Decompose the problem into basic elements
Analyze the interactions between the elements
Aggregate the elements into logical groups or partitions

Considerations
Use and Re-use

Commercial software packages
Re-use libraries

Organizational
End-user oriented
Development & delivery oriented

Integration & certification approach
Plan for subsystem and system integration & test
Qualification and required supporting environment

Examples:
• In partitioning, choose elements so

that they are as independent as
possible; that is, elements with low
external complexity and high
internal complexity (or cohesion).

• Group elements that are strongly
related to one another, separate
elements that are unrelated.

Examples:
• In partitioning, choose elements so

that they are as independent as
possible; that is, elements with low
external complexity and high
internal complexity (or cohesion).

• Group elements that are strongly
related to one another, separate
elements that are unrelated.

26

IT Architecture Module26

Partitioning focus: Developing and Integrating the System

Developing:
Consider who will be developing each piece
of the system

Design the partitions such that each
developing organization is supplying a
whole, separate, testable piece.

Minimize the number of “hops” any piece of
the system takes before it reaches you

Any piece of software should go through
only one or two other organizations
before it reaches final integration.

As you refine the requirements for each
piece, note how each should be tested for
compliance and acceptance.

Is special test data or equipment needed
by that development organization? Who
will provide it?

Integrating (Assembling):
Consider how the components and elements
of the system will be integrated

Staged integration

Big Bang

What requirements will that integration
approach drive?

Test hooks/modes in the software

Integration environments

Test environments

Special test equipment or test data

Interface drivers

How will the system be deployed and
activated?

Any requirements driven by deployment
plans?

If replacing legacy system, do you need a
special mode for parallel operations?

27

IT Architecture Module27

Pay attention to nonfunctional requirements

Nonfunctional requirements are observable characteristics of the
system as a whole

While functional requirements are primarily concerned with the stated
needs of the problem domain, nonfunctional requirements represent
capabilities that are orthogonal to domain requirements

The architect is accountable for ensuring that system performance,
i.e. availability, throughput, security and scalability meet user
expectations

If the architect does not actively address them early on, they could be
forgotten or ignored until significant rework must be performed to
address them

28

IT Architecture Module28

Murphy’s Law: “If anything can go wrong, it will.”

Simplify. Simplify. Simplify.
The first line of defense against complexity is simplicity design.
Simplify, combine, and eliminate.
Simplify with smarter elements.
The most reliable part on an airplane is the one that isn’t —
because it isn’t needed. [DC-9 Chief Engineer, 1989]
If you can’t explain it in five minutes, either you don’t understand it
or it doesn’t work.
Next to interfaces, the greatest leverage in architecting is in aiding
the recovery from, or exploitation of, deviations in system
performance, cost, or schedule.

There is a class of problems better avoided than solved
Prevention is better than cure, in particular if the illness is

unmastered complexity, for which no cure exists.

E. W. Dijkstra, „The Tide, not the Waves“, in „Beyond Calculation“, P.J. Denning, R.M. Metcalfe (ed.), Springer, 1997.

29

IT Architecture Module29

The Architect’s Job: Visioning and
Separating Concerns Amid Complexity

Managing complexity is a key role of the architect

30

IT Architecture Module30

Take a fresh look -- Sometimes, complexity is just a
point of view.

The solar system became no less complex when
Copernicus proclaimed that the Earth revolved around
the Sun, rather than the reverse.

But this description made it easier to explain natural
phenomena and make predictions.

This eliminated barriers to imagination and creativity that
had stood for most of history.

Objectively, there is no right or wrong view, but simpler
models tend to be more useful.

31

IT Architecture Module31

Architect Job Roles The design authority team

Performance
Architect

Security
Architect

Integration
Architect

Data
Architect

System
Management

Architect

Infrastructure
Architect

Application
Architect

Chief
Architect

32

IT Architecture Module32

Design Authority – Two basic roles

Technical Accountability

Technical Control

What do
we do?

Will it
work?

Design
Authority

33

IT Architecture Module33

The design authority role

Requirements Management

Change control — Clarification — Decomposition — Trace back

Solution Assurance

Proposal — Project plans — Baselines — Sign off deliverables

Solution Outline
Enterprise Architecture

High level policies
Decomposition into sub-projects

Definition of method
Development of top-level plan

Dependencies
Interfaces

Consistent business processes

Design Management

Design, develop, test control
Resolution of design issues

Management of technical risks
Management of changes

Technical control of interfaces
Oversight of technical governance

34

IT Architecture Module34

Chief Architect Role

Carries technical responsibility
Maintains overall vision
Needs to carry the whole scope and solution in his/her head

Leads DA staff from technical perspective
Key roles:

Explaining technical issues to management
Technical management of Requirements, Issues, Risks & Changes
Definition of the Architectural Principles
Ownership of Architecture Overview Work Product
Managing reviews

Work products and deliverables
Co-ordinating external reviewers, QA

Developing relationships with stakeholders

35

IT Architecture Module35

Application Architect Role

Defines what the solution does
Responsible for the Functional Aspects of the system
Key responsibilities

Understands how the business requirements can be met using application
software, and defines what application software packages and / or
bespoke code is needed

It is likely that the main application software will be existing or chosen early
on, but the full application picture is often complex

Understands the business applications, their capabilities and limitations
Develops and maintains application architectures and strategies and to
ensure the design integrity of the application subsystem and that it meets
the agreed requirements
Defines high level data flows between applications
Leads any bespoke application development
Leads the configuration of the application software

36

IT Architecture Module36

Infrastructure (or Technical) Architect Role

Defines the overall system shape
What the building blocks are from which the solution will be made
How the data and functionality will be placed

Responsible for the Operational Aspects of the system

Key responsibilities
Establishes non-functional and technical infrastructure requirements
Defines the infrastructure solution

Networking, hardware configurations, system software, middleware
Performance, Capacity, Scalability
Availability, Recoverability
Systems Management, Service Levels

Non-Functional
Requirements

37

IT Architecture Module37

Characteristics of the Architect’s Job
No person who is not a great sculptor or painter can be an architect. If he is
not a sculptor or painter, he can only be a builder.

John Ruskin, Lectures on Architecture and Painting (1853)

Architect is the principal IT leader
In large organizations
In large and small projects

Visioning and modeling
Bridging the Business-IT gap
Vocabulary, Language Architecture Description Standard
Method to support Architectural Thinking

Overseeing construction, to ensure actual implementation meets design

Responsibility for acceptance of built system

Multidisciplinary Synthesis
Technical, programmatic, managerial
Artistic, Heuristic

38

IT Architecture Module38

Functional OperationalIT-System

Component Node

consists of is distributed to

is placed on

Application
Architect

Infrastructure
(or Technical)

Architect

39

IT Architecture Module39

The Application Architect is responsible for the Functional Aspects,
which include these key concepts:

Component
modular unit of functionality which makes this functionality available
through an interface

Subsystem
any grouping of components in IT system

Interaction and Collaboration
collaboration between components
sequence of component operations
exchanges between two components
interface usage contract / protocol

Data

40

IT Architecture Module40

The Application Architect is responsible for the Functional
Aspects, which include these key concepts:

Goal: Define Responsibility for Development, Reuse, Enhancements, etc.

Functional
Requirements

OperationExecution

Zone

Location
*

*

*

*

consists of

*

*

*

borders *

Node
* **

composed of

*

*
*

*
*

located at

Operation Signature

Message*

1

*

1
maps onto

Connection

*

*

*

*

provided connectivity by

Non-functional Requirement

User*

*
+actor

*

* is workplace for

Use Case

** *

extends

*

*

*

*

uses

*

*

*

*

+actor*initiated by

IT System
*

*

* +actor

*

initiated by

Applicable to all
model elements.Subsystem

*
*

* contains
*

Interface

*

*

*

*

specifies

Data

Deployment Unit

* ** *
grouped as * ** *

deployed on

Scenario

1

*

1

*

instantiated by

Interaction

* ** *

/involved in

*

1..*

*

1..*
involves

*

*

*

*

supported by

Walkthrough

Collaboration

* ** *

realizes
1..*

1
1..*

1

part of

*

1..*

*

1..* is involved in

Component
** *

composed of

*

*

1..*

*

1..*

aggregates

1..*

*

1..*

*
offers

1..*

*

1..*

*
uses

*

*

*

*

uses

*

*

*

*

grouped as

*

*

*

*

participates in

*

1..*

*

1..*

participates in

IT System The system being
modeled.

41

IT Architecture Module41

The Application Architect is responsible for the Functional
Aspects, which include these key concepts:

42

IT Architecture Module42

The Application Architect is responsible for the Functional
Aspects, which include these key concepts:

43

IT Architecture Module43

The Infrastructure Architect is responsible for the Operational
Aspects, which include these key concepts:

Node
platform on which software executes

Location
type of geographical area or position

Zone
an area for which a common set of non-functional requirements can be defined

Connection
physical data path between nodes (LAN, WAN, dial-up etc)

Deployment Unit
one or more components placed together on a node

Non-functional Requirements (NFRs)
Service Level Requirement (SLR) like performance, availability, etc.
Constraints: business / geography, IT Standards, current Infrastructure, etc.

Walkthrough
description of the flow of a scenario starting from a user all the way through the system
and back to the user

44

IT Architecture Module44

The Infrastructure Architect is responsible for the
Operational Aspects, which include these key concepts:

Goal: Fulfill Non-functional Requirements (Service-Level, Manageability, etc.)

Operat ionExecution

Zone

Location
*

*

*

*

consists of

*

*

*

borders *

Node
* **

composed of

*

*
*

*
*

located at

Operation Signature

Message*

1

*

1
maps onto

Connection

*

*

*

*

provided connectivity by

Non-functional Requirement

User*

*
+actor

*

* is workplace for

Use Case

** *

extends

*

*

*

*

uses

*

*

*

*

+actor*initiated by

IT System
*

*

* +actor

*

initiated by

Applicable to all
model elements.Subsystem

*
*

* contains
*

Interface

*

*

*

*

specifies

Data

Deployment Unit

* ** *
grouped as * ** *

deployed on

Scenario

1

*

1

*

instantiated by

Interaction

* ** *

/involved in

*

1..*

*

1..*
involves

*

*

*

*

supported by

Walkthrough

Collaboration

* ** *

realizes
1..*

1
1..*

1

part of

*

1..*

*

1..* is involved in

Component
** *

composed of

*

*

1..*

*

1..*

aggregates

1..*

*

1..*

*
offers

1..*

*

1..*

*
uses

*

*

*

*

uses

*

*

*

*

grouped as

*

*

*

*

participates in

*

1..*

*

1..*

participates in

IT System The system being
modeled.

45

IT Architecture Module45

The Infrastructure Architect is responsible for the Operational
Aspects, which include these key concepts:

46

IT Architecture Module46

IT With Future Virtualization And Mgmt. Software

A new era is dawning in which virtualization technologies with new management
software will significantly reduce IT costs and fulfill “on demand” / SOA needs.
This will play out via incremental enhancements to existing data centers.

47

IT Architecture Module47

Architected
Fishing

Interface

Virtualization Gives Users Idealized Resources

From the Merriam-Webster Online Dictionary:
Main Entry: vir·tu·al
Function: adjective
Etymology: Middle English, possessed of certain physical virtues, from Medieval Latin virtualis,

from Latin virtus strength, virtue
1 : being such in essence or effect though not formally recognized or admitted <a virtual dictator>

Virtual Ice
Has better RAS

than real ice

48

IT Architecture Module48

Characteristics of the Architect’s Job
No person who is not a great sculptor or painter can be an architect. If he is not a
sculptor or painter, he can only be a builder.

John Ruskin, Lectures on Architecture and Painting (1853)

Architect is the principal IT leader
In large organizations
In large and small projects

Visioning and modeling
Bridging the Business-IT gap
Vocabulary, Language Architecture Description Standard
Method to support Architectural Thinking

Overseeing construction, to ensure actual implementation meets design

Responsibility for acceptance of built system

Multidisciplinary Synthesis
Technical, programmatic, managerial
Artistic, Heuristic

49

IT Architecture Module49

Method to support Architectural Thinking
Work Product Descriptions and Templates
Technique Papers, WBS Guidance for various project types

Reference
Architecture

Fit/Gap
Analysis

Reference
Architecture

Fit/Gap
Analysis

dependencies to
and from most
other WPs

Use Case
Model

UI Design
GuidelinesUI

Conceptual
Model

Class
Diagram

Architecture
Overview
Diagram

Architectural
Decisions

Architectural
Template

Architectural
Template

Component
Model

System
Context

Technical
Transaction

Map

Parametric
Costs

Non-functional
Requirements

IT Services
Strategy

Deployment
Units

Viability
Assessment

Technical
Prototype

Service
Level Char.

AnalysisCurrent IT
Environment

Standards

Software
Distribution

Plan

Change
Cases

Performance
Model

Operational
Model

KEY Design

Operations

Usability

Architecture

Vital
Architecture

50

IT Architecture Module50

Technique papers

Written by practitioners for
practitioners

Method organizes your work —
TPs actually help you to do it

Balance of theory and practical
advice

51

IT Architecture Module51

Method Process of architecture

Information Systems Architecture

Information Technology Architecture

Mission

Business Model

Business Architecture

Information
Needs

Application /
Functional

Requirements

Organization
Roles and

ResponsibilitiesDocumentation

Architecture
OverviewL0

Standards
GuidelinesL1

L2 Detailed designs and projects

As-Is

To-Be

Transition
Projects

52

IT Architecture Module52

http://www.research.ibm.com/journal/

IT architecture proved to be successful in providing an analytical and
decision-making framework for a sequence of new initiatives or
changes, at the same time ensuring design integrity and stability

53

IT Architecture Module53

To-Be

As-Is
Transition
Projects

Transition
Projects

Transition
Projects

Transition
Projects

Decision making

Business
development

pressure

Operational
stability

Analysis

Change

Design integrity

54

IT Architecture Module54

Once again: As the author of the solution, the architect
is undeniably accountable for the effort‘s success or
failure.

Reviews cannot take that responsibility away from the
architect, but reviews can help to identify risks that the
architect may have overlooked, things that may be
missing, or bad architectural decisions.

Topics that the Lead Architect typically covers in a
presentation at the beginning of a review

Qualities that are typically reviewed

Areas of risk that are typically investigated in a review

55

IT Architecture Module55

Topics that the lead architect typically covers in a
presentation at the beginning of the review (1 of 3)

Driving architectural requirements
Measurable quantities associated with these requirements
Any existing standards / models associated with these requirements
Any existing standards / models / approaches for meeting these requirements

High-level architectural views
Other systems with which the system must interact
Key events which the architecture must enable
System overview
Inter-dependencies of the sub-systems
Technical constraints such as an operating system, hardware, or middleware prescribed for
use
Architectural approaches used to meet quality attribute requirements
Key workproducts, covering requirements, performance, availability, capacity, security,
manageability, development, testing, and implementation

Architectural issues / risks with respect to meeting the driving architectural
requirements

Functional view: Functions, Business Rules, Data Flows

56

IT Architecture Module56

Topics that the lead architect typically covers in a
presentation at the beginning of the review (2 of 3)

Service Model
Service Identification: Online requests, non-interactive requests, Batch “Mass Requests”
Relationship between business processes and services
Service specification: Service Versioning, Message Versioning and Schema Validation
Service catalog
Service Hierarchy
End-to-end view: showing how information flows from system border (service interface) to
the backend and vice versa – bridgin all system, layer, protocol, technology, etc. borders

Code: describe the system’s decomposition of functionality
Subsystems
Layers
Components
Modules (Objects, procedures, and functions that populate the modules)
Relationships among modules (procedure call, method invocation, callback, containment)
Concurrency (Processes, thresds, synchronizatoin, dataflow, events that connect processes
and threads)

Physical: CPU’s, Storage, Networks and communication devices that connect them

Architectural approaches, styles, patterns, or mechanisms employed
What quality attributes are addressed by these approaches, styles and patterns
Description of how the approaches address those attributes

57

IT Architecture Module57

Topics that the lead architect typically covers in a
presentation at the beginning of the review (3 of 3)

Trace of 1 – 3 of the most important use case scenarios
including the run-time resources consumed for each scenario

Trace of 1 – 3 of the most important growth or other change scenarios, describing the
change impact

estimated size / difficulty of the change in terms of the changed components, connectors,
services, and interfaces

Process description
Problem management
Change management
Operational change control
Defect management
Release management
Test and integration
Deployment
Acceptance
Document management

Assessment of the lead architect: challenges, issues, and areas of concern
Technical risk register and technical roadmap
Is the system architecture documentation fit for the purpose in terms of completeness, level
of detail, currency and structure?

58

IT Architecture Module58

Qualities that are typically reviewed (1 of 2)

Functionality: Ability of the system to do the work for which it is intended
Requires that the system’s components work in a coordinated manner to
complete the job

Performance: Responsiveness of the system
Time required to respond to stimuli (events)
Number of events processed in some interval of time

Reliability: Ability of the system to keep operating over time
Measured by mean time to failure

Availability: Proportion of time the system is up and running
Measured by the length of time between failures, and how quickly the system is
able to resume operation in the event of failure

Security: Ability to resist unauthorized attempts at usage and denial of
service while still providing its services to legitimate users

Categorized in terms of the types of threat that might be made to the system

59

IT Architecture Module59

Qualities that are typically reviewed (2 of 2)

Modifiability: Ability to make changes to a system quickly and cost
effectively

Ability to make isolated changes
Measured by using specific changes as benchmarks and recording how
expensive those changes are to make

Conceptual integrity: underlying theme or vision that unifies the design of
the system at all levels

The architecture should do similar things in similar ways
The architecture should exhibit consistency
The architecture should have a small number of data and control mechanisms
The architecture should use a small number of patterns to get the job done

Operation of technical management across the system life-cycle
Requirements traceability (functional and nonfunctional)
Architectural governance
Implementation governance

60

IT Architecture Module60
Areas of risk that are typically investigated in a review (1 of 3)
If the answer to any of the questions is „no“ then this indicates an
area of risk which needs to be mitigated

Requirements
Have likely changes been identified and recorded?

Architecture
Is it possible to map, or decompose, requirements to individual elements in the
architecture Functional requirements, and Quality attributes: Modifiability,
Performance, Security, Availability, Reliability
Can the architecture accommodate the identified changes?

Detailed design and implementation
Are notations and programming systems used which facilitate verification that
the software meets its requirements?

61

IT Architecture Module61
Areas of risk that are typically investigated in a review (2 of 3)
If the answer to any of the questions is „no“ then this indicates an
area of risk which needs to be mitigated

Verification
Are all specifications, items of software, test scripts, etc. reviewed by people
other than their authors?
Have the designs and items of software been analysed by tools that can detect
errors and inconsistencies?
Are individual software components tested by people other than their authors?
Is there a systematic way of ensuring that all the software in individual
components is thoroughly tested?
Is there a way of systematically testing the software as it is progressively
integrated to produce the complete system?
Is there a means of regression testing following changes (to ensure that
changes have not caused unintended changes in system behavior)?

Traceability
Is all software traceable to a top-level requirement?
Are all requirements traceable to the software which implements them?

62

IT Architecture Module62
Areas of risk that are typically investigated in a review (3 of 3)
If the answer to any of the questions is „no“ then this indicates an
area of risk which needs to be mitigated

Configuration management
Is it possible to identify every software item in a particular build, or release, of
the software system?
Is it possible to re-build any previous release of a software system?
Is it possible to know to which item of software a user problem report relates?

Change management
Is it possible to determine the impact on the software and all associated
information (requirements, architecture, tests) of any proposed change before
implementing it?
Are changes grouped to minimise their impact and to ease their verification?

Things missing (NFR)
Plausibility checks?
Dealing with unexpected input, unexpected return codes from the infrastructure,
etc.?
Application monitoring instrumentation?
Queue monitoring?
etc.

63

IT Architecture Module63

Exercises on Heuristics

Choose a system, software product, or software development
process with which you are familiar and assess it using heuristics

What was the result?
Which heuristics are or were particularly applicable?
What further heuristics were suggested by the system chosen?
Were any of the heuristics clearly incorrect for this system?
If so, why?

Try to spot heuristics and insights in the technical literature.
Some are easy; they are often listed as principles or rules.
The more difficult ones are buried in the text but contain the essence of
the article or state something of far broader application

Try to create a heuristic of your own — a guide to action, decision
making, or to instruction of others.

