
1

IT Architecture ModuleIT Architecture ModuleIT Architecture ModuleIT Architecture Module

Qualities and Constraints in IT Architecture

Non-Functional Requirements
Examples: Availability and Performance

Dr. Marcel Schlatter
IBM Distinguished Engineer
Member of the IBM Academy of Technology
marcel.schlatter@ch.ibm.com

IT Architecture Quality of Service Engineering — Speaker notes
These speaker notes are written largely for the benefit of the presenter, however in this presentation
they also provide text which expands sometimes significantly on the content of the slides, and
therefore there is no harm in also distributing these note to students if so desired.
The seminar is planned to run for 3 hours and contains 3 in-class interactive exercises. It is also
accompanied by an optional after-class additional and larger exercise based around a case study
scenario.
Session supporting materials
There are a number of files you should have been provided with along with this presentation file
which support the materials and exercises contained within it:
1). A small simulation model demonstration in the form of a web page with an embedded Java applet.
The files necessary for running this demo will have been provided as a zip file called ‘simmodel.zip’
which you should have unzipped to a directory somewhere on your presentation PC prior to the
session.
2). The fourth Exercise in this lecture is based upon a small case Study called “AmGro-from-Home”.
This can optionally be offered to students as an assignment after the class. The case study
introduction document for distribution to students is entitled “QoS Seminar - Exercise 4 input
vn.m.doc”. There is also an accompanying ‘model’ answer (not for distribution to students) in
Microsoft Excel format entitled “QoS Seminar - Volumetric & Performance exercises full
solution.xls”
—————-

2

2

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

2

Agenda

Non-Functional Requirements
the drivers of Quality of Service (QoS) Engineering

Focus on Availability
Availability modelling
Availability design techniques

Focus on Performance
The Performance Engineering Lifecycle
Volumetrics
Estimation and Modelling
Optional exercise

Agenda
The session starts out by charting the need for quality of service engineering in IT solutions through
the consideration of the set of drivers we refer to as “non-functional requirements”. We present
typical categories of non-functional requirements which should be collected and acted upon.

As there are so many different QoS disciplines and associated requirement types which can be
considered for IT solutions, we have chosen to look at two of the most important ones – availability
and performance – in some depth. This approach gives students some ‘hands-on’ experience of what
it is like to performance QoS engineering activities in specific domains and in doing so will inform a
wider appreciation of the subject.

3

3

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

3

Quality of Service Engineering starts with the
‘Non-Functional Requirements’

Non-functional requirements (or NFRs) define the
desirable qualities of a system and the constraints within
which the system must be built

Qualities define the properties and characteristics which the
delivered system should demonstrate
Constraints are the limitations, standards and environmental
factors which must be taken into account in the solution

Qualities Constraints

NFRs

What are non-functional requirements?
Non-functional Requirements (or NFRs) describe the desirable qualities of the system under design
and the constraints within which the system should be built. (These are distinct from the functional
requirements which describe what the system should do in terms of processing inputs and giving
outputs.)

Qualities define the expectations and characteristics that the system should support whereas
constraints are limitations, prevailing truths, standards and any other relevant ‘environmental’
factors which must be taken into account in the design, build and running of the solution. Other
lectures in this course cover the overall architectural method and subdisciplines – it should be noted
that many of these disciplines take the non-functional requirements as their principle driver.

Note we can view qualities as ‘forward’ (positive) driving requirements – they describe wants or
needs, desirable outcomes and properties of the future system; whereas we can view constraints as
‘pushbacks’, or perhaps ‘negative’ influences – holding us back (constraining us) and providing
additional barriers or factors to deal with. The two categories of NFRs are intimately related of
course - constraints may make it more difficult to achieve the desirable qualities, especially when
they reduce our options.

E.g. the qualities of *this presentation* ought to be that it is clear, informative, interesting and helps
the students achieve their academic goals. The constraints are that we only have 3 hours to do this in,
and that (perhaps) the speaker is hung over, tired and has a cold (one of those usually applies to me in
any case …)

4

4

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

4

Exercise 1 – List Typical IT Project Constraints and
NFRs

Q1. Jot down 5-10 types of constraints and qualities you
would expect the typical medium to large IT project to
have defined for it

5 minutes

Exercise 1 – Students improvise types of NFRs they think are important
The purpose of this exercise is to start us thinking about the typical types or categories of NFRs IT
projects should be subject to. Note that in real projects, key categories of requirements are often
missed during requirements gathering!

It should be made clear to students that in this exercise, we do not want them to list specific
requirements (e.g. “The system must respond in less than 2 seconds”), we are seeking generic types
of requirement (e.g. “response times for online transactions”).

After 5 minutes, take a few minutes to collect suggestions of categories of requirements from the
group at random and organise them (in one of two columns – qualities or constraints) on a
whiteboard or flipchart – we will compare with them with the categories on the next two slides.

5

5

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

5

Constraints

The business aspects of the
project, customer's
business environment or IT
organization that influence
the architecture

The technical environment
and prevailing standards
that the system, and the
project, need to operate
within

RegulatoryRegulatory

OrganisationalOrganisational

Risk WillingnessRisk Willingness

Marketplace
factors

Marketplace
factors

Schedule &
Budget

Schedule &
Budget

Legacy
Integration

Legacy
Integration

Development
Skills

Development
Skills

Existing
Infrastructure

Existing
Infrastructure

Technology State
of the art

Technology State
of the art

IT StandardsIT Standards

BusinessBusiness TechnicalTechnical

Types of Constraints
Constraints are all the factors, from whatever sources, that potentially limit or constrain what we may
be able to achieve during the scope or lifetime of the project. On this slide we break these down into
business-oriented and technology-oriented constraints.
Constraints are often critical factors in making architecture decisions. For enough time and money,
almost anything can be built, however the constraints help us define what is right or feasible for a
specific client and project. Many projects that have failed have done so because they have failed to
identify, understand and manage their critical constraints. So, careful consideration of constraints
will help you deliver systems more effectively and successfully.
Technical constraints will include the existing IT infrastructure within the organisation, and the
technical standards (often including specific products and technologies) which the customer will
expect you to abide by. Often existing IT in a customer will be ageing, outdated and/or demonstrate
poor quality of service (e.g. poor performance) already. Those existing applications and systems
therefore not only constrain what technologies you can use for a new system, but also what overall
levels of service you will be able to achieve when you integrate with those existing systems.
Nevertheless, the customer may expect you as a matter of course to use the latest, greatest
technologies in the implementation of your new solution, and will of course expect the new solution
to be highly reliable and scalable – when you consider all of this alongside existing technology
constraints, you may find the is a form of contradiction in the requirements – something will have to
give.
Sp, before accepting constraints as true “givens”, they should be examined to ensure that they do not
have:

•Outdated thinking, such as “This is the way we have always done things”, “It’s impossible
to upgrade the network”
•Uninformed thinking, such as the "technology of the day"
•Biased thinking, such as "favourites” – personal and ‘political’ choices made based on what
people want to learn, or who their friends are in the industry, rather than based on an
objective view of what is good for business

Weigh constraints against qualities and requirements to clarify thinking. You should aim to
understand you understand the true “strength” of every constraint – so you know what can be
challenged and what things just have to be accepted as they are.

6

6

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

6

Qualities

Runtime qualities are
‘measurable’ properties,
often expressed as “Service
Level Requirements”.

Qualities might also be
related to the development,
maintenance, or operational
concerns that are not
expressed at runtime.

Performance &
Capacity

Performance &
Capacity

AvailabilityAvailability

ManageabilityManageability

SecuritySecurity

UsabilityUsability

PortabilityPortability

ReliabilityReliability

EfficiencyEfficiency

ScalabilityScalability

MaintainabilityMaintainability

Data IntegrityData Integrity

Run-timeRun-time Non-RuntimeNon-Runtime
focus of this

session

Qualities
Qualities, as already described, are the desirable, ‘positive’ properties that we want the delivered
system to exhibit. We can subdivide these further - the qualities listed in blue on the slide are what
are termed run-time qualities. Run-time qualities can be empirically tested (measured) by
appropriately observing and monitoring the system either under test conditions or in live operation.
Often prior to the running of a new system, the customer will agree with the operator of the system
(which may be their own internal IT department or, in the case of outsourced IT, an external
company providing that service) Service Level Requirements (so they become “Service Level
Agreements” - SLAs) which specify how the system should perform in terms of run-time qualities. If
the system does not meet these SLAs, their may be financial penalties which the service provider has
to pay. This of course can act as one of the most potent incentives for doing good quality of service
engineering during design and build phases!
Non-runtime qualities are more abstract properties of a system, such as its portability (ability to be
moved do a different technology platform) or maintainability (how easy it is to update, change and
maintain) and are therefore more difficult to objectively measure.
Another way of looking at NFRs is to consider whether they are quantitative or qualitative.
Quantitative NFRs express a requirement in numerical terms, such as “The user’s logon request must
be responded to in less then 15 seconds”, “The system must 8,500 concurrently logged on users”,
“The service must be available for 10 hours each day, from 8.00am to 6.00pm”. Qualitative
requirements on the other hand are those expressed in subjective terms, e.g. “The system must be
easy for new users to learn”, “The user home page must be easy to navigate”. Qualitative
requirements can be more difficult to deal with as what constitutes success or failure is open to
interpretation. Therefore, you should always attempt to establish a success criteria for any stated
requirement to that you will be able to design a test for establishing whether the delivered system
meets the requirement or not.
Qualities only become useful during architecture and design if you understand what aspect of a
solution they affect – and bear in mind a single requirement such as a performance requirement will
affect many aspects (hardware, software, runtime operations, …). It is also important to stress that
Functional and Non-Functional Requirements must be related, i.e. Use cases and other functional
statements must be associated with matching non-functional requirements, and reviewed for
architectural viability. For example, every identified Business Event and Use Case should be
associated with volumes and response time requirements (to support performance engineering); the
criticality of each identified business service should be specified (to support availability engineering),
the confidentiality of each data group should be captured (to support security design), and so on.

7

7

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

7

Quality-of-Service "metrics" have an impact on a company's
bottom line – especially in the online world

Tangible metrics are one which can be quantified as a measure of “Loss per
transaction”:

Slow sites and/or poor navigation techniques cost e-business companies
In the online world it's important to do a great job with buyers
People leave ".com" sites because of pages being unavailable or too slow

Intangible metrics are less quantifiable and require estimation:
Consider a web site to be really just an extension of a company's BRAND
Visiting a web site is the same as visiting a store with the company's logo on it
Even if the experience produces no revenue, it can have an impact on return
visits
Ideally, a customer should develop a mechanism for taking into account these
“soft” costs in order to work out their quality of service requirements

Quality of Service matters to business bottom lines
Tangible (a.k.a. our quantitative NFRs) are measurable and are the basis for the cost/benefit analysis.
The impact of performance against measurable metrics can be estimated numerically, with the
customers help or using "industry" cost metrics, to translate the impact of different qualities of
service into business terms, e.g. :
• Slow sites and/or poor navigation techniques could be costing e-business companies over $100
million per month.
• In today's Internet world, the ratio of buyers to browsers on e-commerce sites is approximately
2%......it's important to do a great job with that 2%.
• People leave ".com" sites because of pages being unavailable or downloads taking too long
• These tend to be quantifiable as a measure of “Loss per transaction”
Intangible metrics (a.k.a. our qualitative NFRs) are more difficult to perform a financial cost/benefit
analysis on, however are still critical to consider:
• Any touch-point a business has with a customer, be it a website or a call centre, are projecting a
company's brand image
• Visiting a website is no different than going into a store with the company's logo on it a site
experience affects the way people perceive the company
• A poor performing website (or one which is not there in the first place) is akin to getting bad service
in a store
• Even if the experience produces no revenue, it can have an impact on whether a customer "returns
to the store"
• The customer needs to develop a mechanism for calculating these “soft” costs
There are various techniques in the management consulting/management accounting domain for
helping the customer work these costs and benefits out. The companies shown at the bottom are ones
where IBM has had extensive involvement with the quality of service of the customer’s online brand.

8

8

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

8

The best technique for reducing the risk of poor quality of
service is to consider the qualities from the start

Build ‘quality’ into the solution starting with early
design

Understand the risks to the project

Conduct quality of service engineering from the first
elaboration of the architecture model

Set guidelines for the developers (software &
infrastructure)
Test the application/system at each major stage of
development
Make sure that the live support teams will be able to
manage quality

Fix it early, and save money and problems later …

System qualities such as performance should be considered from the start
There are alternative views as to how the ‘quality of service’ issue should be dealt with. Some organisations
take a very ‘suck-it-and-see’ approach and perform very little quality of service engineering as a rule during
system design and build – if things are bad in live then they’ll attempt to fix the problems then. However,
you can only take such an approach if you can afford the risk of a potential disaster in live – systems which
run out of capacity for example will become unusable and hence effectively unavailable. Furthermore
organisations taking this approach often find that their problems can easily be addressed in the live system
due to inherent problems in the design or the technologies they have proceeded with.
So, the recommended approach is one of engineering quality into systems from the start – because the cost of
repairing the problem, and risk to reputation will be greater the longer any problems are lefy unaddressed.
Or put another way … if it takes $1 to fix a problem in design, it may take…

…$10 to fix the problem in build
…$100 to fix the problem during testing
…$1000 to fix the problem during live operation

Early versions of the architectural models should be taking all of the non-functional requirements into
account. It is important to build both the component (application) model and operational (infrastructure)
model with requirements such as performance in mind. This is because properties such as performance are
exigent from the complex interaction of the many layers of the system – not just isolated to hardware or
software layers. Inherent application limitations such as single-threaded or single instance components fixing
the problem could mean an expensive rewrite and redelivery of the system.
Therefore, developers and system builders should be provided with guidelines to follow. These guidelines
should include both best practice approaches and wherever possible detailed targets and goals for them to
meet. These should then be measured during the development/build phase or as part of unit testing in an
attempt to discover and address any major problems at an early stage.
Such budgeting and unit testing activities are only one part of the overall testing which should be planned for
a large project – non-functional quality tests should be planned for each major phase of the project lifecycle.
Key in these are the large, scale load and technical tests of the integrated system (when all components and
interfaces are brought together in a ‘live-like’ environment)
Taking into account the needs of those who will be supporting the live operation is also a important part of
the overall approach. Care needs to be taken to ensure that systems have features built into them which make
it possible for them to be able to successfully manage the availability, performance and security of the system
in production. Always bear in mind that *real* system usage tends to vary from the “clean” and simplified
scenarios simulated in testing, and that systems need to react to changing workloads (organic growth, new
unforeseen users) and patterns of usage.

9

9

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

9

However a BALANCE must be maintained
between risk and cost

R i s k C o n t a i n m e n t
C o n t r a c t u a l

i s s u e s

B u s i n e s s i s s u e s
T e c h n i c a l i s s u e s

P r o j e c t s i z e

M a n a g e m e n t p r o c e s s e s

R e s o u r c e s
T e c h n o l o g y

Es
ti

m
at

in
g Forecasting

M o n i t o r i n g

T r o u b l e
s h o o t i n g

R e n e g o t i a t i o n

T i m e s c a l e

Over-engineering will
be costly

Failure to engineer
creates technical &
business risks

Requirements in the balance
Of course there is a balance to be struck as to amount of effort and time (= cost) to be put into your
project plans for quality of service engineering activities. The better a system is engineered, the
longer (generally) it will take to build and test and the more it will cost as a result.
That’s why it is important to understand where the main risks are in the context of each project – i.e.
where the impact of poor quality of service would have the greatest impact. Clearly the scale and
criticality of the system to the business is a major influencer of how much effort is appropriate.
Analysis of the key risks in light of this helps us focus effort in the most beneficial areas.
Let’s also, seeing as I’ve got some space left on this page, take a moment to make an important note
here about the word “requirement” (i.e. the ‘R’ in ‘NFR’) in this context. Whilst we might usually
read the word requirement as meaning “something which must be provided” in reality things which
are written into NFR documents are in fact “negotiables”, and not in fact hard and fast requirements.
The strength (forcefulness) of each documented “requirement” can vary greatly, from a “nice to
have” to “absolutely must have”. The extent to which this is acknowledged or not for each
requirement depends on the maturity of the relationship and level of openness between the IT
solution provider and the customer. We may not know which influences are the strong or the weak
ones in a given situation, but in any case it our duty to point out which influences have the greatest
impact in the inevitable trade-off between cost, quality and speed of delivery.

10

10

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

10

AvailabilityAvailability

Availability

11

11

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

11

The reality of Availability is that customers directly
relate it to the End User experience

The Availability of a system is a measure of its readiness for usage

Message: Availability is about end-user experience
Non-availability is the worst possible manifestation of poor quality of service – we can’t use an
unavailable service whatsoever. It doesn’t really matter to the end user why a service is unavailable –
just when it will be back online.
Note: in the picture, these women do at least have a fallback for the non-availability of their PCs (a
pack of cards)! Some customers don’t think about their fallback positions until it’s too late!

12

12

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

12

There are certain key terms that are used to define
Availability-related concepts

High Availability is taken to mean a requirement for a system or service to be over 99%
available – typically implies thorough design and may require redundant components
Disaster Recovery means the recovery of essential services in the event of a major
business disruption that has resulted from the occurrence of a disaster
Business Continuity means the continued operation of business processes to a
predetermined acceptable level in the event of a major business disruption
Unscheduled Outage is a time period when the system is not ready for use and the
users expect it to be. These are unplanned outages caused by ‘Random Events’
Scheduled Outage is a time period when the system is not ready for use and the users
do not expect it to be. These are planned outages driven by predefined events
Continuous Operations is the requirement for perpetual operations 365 days per year
24 hours per day with perhaps very rare scheduled outages
Fault Tolerance is that property of a component, sub-system or system that means that
normal service continues even though a fault has occurred within the system
Reliability is the probability that an item will perform its intended function for a specified
interval under stated conditions
Maintainability (or Recoverability) is the probability that using prescribed procedures
and resources, an item can be retained in, or restored to, a specific condition within a
given period

Availability terms
These definitions are used in the “Designing for Availability” Technique Paper which is a technique
contained within the IBM Global Services Method.
Customers in any given industry (e.g. banking) may prefer definitions which they feel more comfortable
with. Developing these definitions with the customer up front is worthwhile in order to ensure a common
level of understanding.
High Availability is not easy to define numerically but it is generally taken to mean a requirement for a service to be available more
then 99% of the time. This level of availability needs thorough design and may require redundant components as well as good
Systems Management, Problem & Change Management and Recovery Procedures.

Disaster Recovery means the recovery of essential services in the event of a major business disruption that has resulted from the
occurrence of a disaster. This area encompasses the ability of the total design to transfer data and workload offsite and to restart the
workload at a new site. The switch often involves a system and service outage but in the extreme the switch can be made completely
seamless to important users.

Business Continuity means the continued operation of business processes to, at least, a predetermined acceptable level in the event of
a major business disruption.

Continuous Operations is the requirement for perpetual operations 365 days per year 24 hours per day with perhaps very rare
scheduled outages. This type of availability needs an extremely thorough design that anticipates many failure scenarios and masks
these from the users through the use of very fast recovery or stand-in actions. This will almost certainly need functional as well as
operational design – i.e. such a requirement cannot necessarily be solved by technology alone.

Unscheduled Outage is a time period when the system is not ready for use and the users expect it to be. These are unplanned outages.
These are ‘Random Events’.

Scheduled Outage is a time period when the system is not ready for use and the users do not expect it to be. These are planned
outages and therefore are predefined events, often at regular intervals (for example the first Sunday in each month).

Fault Tolerance is that property of a component, sub-system or system that means that normal service continues even though a fault
has occurred within the system.

Reliability is the probability that an item will perform its intended function for a specified interval under stated conditions. Simply
stated, it is how long the system can work. (Note: in a single component system used full time, Availability = Reliability)

Maintainability (or Recoverability). is the probability that if prescribed procedures and resources are used, an item will be retained in,
or restored to, a specific condition within a given period

13

13

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

13

Key Availability terms – Mean Times …

Mean Time to Recover (MTTR) is the typical time that it takes to
recover (includes repair) a component, sub-system or a system.
Mean Time to Failure (MTTF) is the mean time between successive
failures of a given component, sub-system or system.

Mean Time between Failure (MTBF) is the average time between
successive failures of a given component, sub-system or system

Down! Up!

MTTR MTTF
MTBF

Down!

Mean Times …
Mean Time To Recover (MTTR) is the mean time that it takes to recover (and if necessary repair) a
component, system or subsystem. Usually this is measured in seconds, minutes, or hours, but
conceivably such values could be days or even months in the case of massive ‘component’ such as a
data centre.

Mean Time To Failure (MTTF) is the mean time between successive failures of a given component
or system from the point of uptime. Mean Time between Failure (MTBF) is effectively the same
however also includes the recovery time (MTTR), i.e. MTTF is MTBF plus MTTR. But since MTBF
and MTTF are usually much longer than MTTR (say months as opposed to hours) for most purposes
the distinction is often unimportant.

14

14

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

14

One of the attributes of the design that should be understood
for Availability Engineering is the effect of using components in
series

Functional Operational

Components connected is a chain, relying on the previous component for
availability
The total availability is always lower than the availability of the weakest link

Server Switch Firewall

Availability (A) = A1 x A2 x A3

1 2 3

Application Server

Product Catalogue

Database Manager

Modelling components in series
The diagram is an example of a “Reliability Block Diagram” (RBD).
Components in series rely on the whole chain to be there in order to provide the service. Therefore if
any of the components fail the service they support will be unavailable.
Note we could ask the question: what level of detail should we model to? I.e. how many components
are there in the serial chain? The level of detail to model to (as with any other QoS discipline)
depends on the risk and how much trustworthy data you have available.

15

15

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

15

Another attribute of the design that should be understood for
Availability Engineering is the effect of using components in
parallel

Functional
Application aware

Operational
Separate nodes all serving the same
IP address
Load balancer is a multiplexer

Component redundancy through duplication
Total availability is higher than the availability of the individual links

Request
Broker

Authentication
Server

3

Availability = 1-[(1-A(1))x(1- A(2))x (1-A(3))]

2

1

3

2

1

Load
Balancer

Authentication
Server

Authentication
Server

Modelling components in parallel
In the parallel model there are several routes through the system so long as the components in
parallel execute equivalent function This provides us to consider a concept of alternate routing.
Messages, transactions, files being transferred, etc. can follow different paths through the system but
still reach the same endpoint, and thereby the reliance on any one component is reduced or even
eliminated.
In systems you sometimes inherit alternate routing directly as a natural property of a component or
you sometimes inherit it as an indirect property. One example of this would be to inherit it from a
load balancing function. The prime reason for having a load balancing function is to distribute a
workload across components so that throughput can be increased. In doing this however, alternate
routes are provided.
Note that where a component (such as a Load Balancer) is providing the alternate routes, it may
become an availability concern itself – it is required to operate or no routes will be available. This is
because it has effectively become a component in a serial chain. To address this, parallel load
balancers would be required (indeed this is a common configuration today).

16

16

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

16

Exercise 2 – Serial vs. Parallel Availability

Q1. What is the overall availability of this serial structure
of nodes?

Q2. What is the overall availability of this combined
structure of nodes?

5 minutes

N1 N2 N3

A = 0.98 A = 0.98 A = 0.98

N3

N2

N1

N_Load
Balancer

A = 0.95
(N1 - 3)

A = 0.99

Exercise 2 – Series vs. Parallel Availability
The known availability of each subcomponent is given by the side of each block (A = …) – the task is
to calculate the availability of the total structure using the equations provided on the preceding slides.

17

17

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

17

Separation of Concern is a technique that can be used to enable
a loose coupling for components that provide critical services

Functional
Loose coupling of HA Components

Operational

The separation of components with regard to business importance and
their availability characteristics

Critical Non-Critical Vs Critical
Non-Critical

Product Catalogue Product Catalogue

Shopping BasketShopping Basket

Customer
Complaints

HA-focused Nodes

Non HA-focused Nodes

Part DetailsProduct
CatalogueSystem Border

vs.
Part DetailsProduct

CatalogueSystem Border

Inventory
Adder

Process
Scheduler

Separation of concern
On the Operational side, this technique manifests itself as a matter of deployment. Once it is
understood which of the key business services have to be made highly available then those key
services should be deployed specifically across the Nodes where specific attention has been focused
on High Availability.
On the Functional side, this manifests itself as ensuring that components that provide the HA required
services are coupled correctly such that they do not depend on components that are not providing HA
services.
Other related techniques in this space include:
• Functional Isolation - Through careful separation of business function (functional decomposition)
it is possible to create application components within an application that although they rely on each
other can still continue to function (perhaps with reduced function) even without a connection.
• Technical Isolation – the technical design can be configured so as to ensure that components to not
put each other at risk through sharing of resources (connections, data, caches, middleware
components, queues, etc.). This means instantiating resources separately, which is an overhead, but
one which may be worthwhile in order to provide necessary degrees of protection.

18

18

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

18

Fault Tolerance is a technique that can be used to enable the
detection and correction of latent errors before they become
effective

Functional
Use try and catch blocks throughout
code
Consider the case when “Bad Data”
arrives and how to continue. E.g. put
“Bad Data” in repair queues

Operational
Achieved through duplications. For
examples: Disk Mirroring, e.g. RAID
Specialised operations staff
Autonomic Computing mechanisms

Error Processing - Error processing is aimed at handling errors and
exceptions, wherever possible, before the occurrence of a true failure.
Error Treatment - Fault treatment is aimed at preventing previously
activated faults from being reactivated.

Vs
Error Error

Total Service

No Service

Total Service
Degraded Service

Fault tolerance
There are many different types of faults and exceptional conditions which our system components
may encounter. The more comprehensively we design our system to gracefully and intelligently
handle these possibilities, the more reliable and available our system will be.
On the left diagram, if we have an outage we still retain a degree of (degraded) service. Functionally
we might achieve this by making sure we always catch and handle (as best we can) all possible
exceptions within our applications. This is “Error Processing” – capturing errors and making them
non-fatal to the system.
Error Treatment – having identified previous errors, this technique asks “What can we do to prevent
their reoccurrence?” This could take many shapes – e.g. switch offending functions or components
off until a proper fix available, or initiating a more full diagnosis of the root cause.

19

19

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

19

Availability – a final word

It is estimated that
~20% of your total availability is a function of your use of
technology
~80% is a function of your people and processes

E.g. someone says the:
Root cause was that firewall logs were full
The real reason was there was insufficient process in place to
monitor the logs and clear them down

Technology and design is important, however don’t
assume that is your only challenge

Availability – final words
This has been a relatively brief look at the subject of high availability – there are many aspects,
angles and techniques which can be explored further.
We make the point on this slide however that total system/service availability is a function of both
the technology solution and the people and processes which support systems in live. These two
aspects of the total solution should of course be synergistic – the technology solution should support
efficient and effective processes.

20

20

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

20

PerformancePerformance

Performance

21

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

21

What is Performance?

Definition
“Performance. The degree to which a system or component
accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage.” [IEEE-610.12]

In general
Timeliness of response, and predictability, are the two main
goals
“Faster” is not always enough, as in for example, a real time
system requires extremely consistent performance

An (old) quote:
“A manager's goal should always be to strike the right balance
between system function, processing costs, people costs, and
performance. This is why the technical aspects of performance
can never be entirely divorced from organizational politics”

Definitions in performance
In simple terms, we associate performance with speed – how quick something is. “High performance”
means rapid response times and high throughput capabilities. A “high performance car” for example is
one that can accelerate very fast (akin to response time) and achieve impressive top speeds (which is
akin to throughput).
The definitions on the slide remind us that predictability, or constancy, is also a desirable feature of a
system’s performance. In real time applications (such as military systems) extremely consistent
performance is demanded, but even in commercial IT, applications that have a consistent performance
behaviour are much more acceptable to users than those whose performance varies greatly from one
moment to the next.
When specifying response time requirements, we should make sure we understand the workload which
the system will be expected to process whilst delivering that response time. A system may perform
very acceptably under low load, but may begin to perform very poorly once the load in the system
increases – ideally we will need to know what are the highest workloads the systems should be
engineered to cope with. Only if we fully understand this will we be able to set and meet specific
service level targets for the system once live.
Discussion points for the ICCM quote:
• Institute of Computer Capacity Management (ICCM), no longer in existence
• The statement talks about making sure that all aspects of performance are taken into account, not just
the technical solutions - we could extend this to highlight the risk to the business of poor performance.
This could well be the major factor in the justification of the effort we will require to deliver good
performance.

22

22

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

22

There are three main, heavily inter-related aspects of
Performance to be considered

Response Times
On-line response times
Batch run times

Throughput
Transactions per second
Records processed per hour

Capacity
Component sizing to handle load
Contingency and Scalability

Sufficient capacity is
required to meet
throughput
requirements

Must have adequate
throughput to avoid
poor response times

The three main “pillars” of performance
These three terms and their interrelationships are fundamental to our understanding of performance.
In one sentence, the performance challenge is to achieve satisfactory response times whilst
supporting the necessary throughput without requiring excessive capacity.

23

23

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

23

Major activities a Performance Engineer executes across
the project lifecycle

Manage the Solution

Solution Macro Micro Build Deploy-

Solution Delivery

Manage the Solution
Solution
Start-up

Close the
SolutionSolution

Outline
High Level

Design
Detailed
Design

Build Cycle Deployment

Design, Development & Tracking

Reqmnts & Early Design

Test Planning & Execution

Estimation & Modelling

Volumetrics

Technology Research

Risk & Performance Management

Live Monitoring & Capacity Mgmt

The Performance Engineering Lifecycle
This picture is taken from the IBM Performance Engineering and Management Method manual.
Regardless of the formal work products that any method will lead you to produce, there are a number
of key threads, or groupings, of activity that need to be carried out across the phases of a project.
These we will refer to as the performance engineering 'Themes' and they are shown in outline in the
ellipses that overlay the solution phases diagram in the slide. We could relate the 'themes' to musical,
architectural or decorative themes as the underlying flavour that gives a consistency to your
combination of activities.
Keeping these conceptual threads in mind will help you to move the project steadily forward towards
the achievement of your Performance Engineering objective – i.e. that of getting the performance of
the solution 'right'. Each of these themes will be discussed in more detail later in this presentation
material, however at this stage let us note they aim to be comprehensive encompassing everything
from early requirements gathering to live monitoring and capacity management.

24

24

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

24

Technology research is a vital part of performance
engineering

Purpose: to determine sufficient
information about components to
be able to build an effective
Performance Model
Can we reduce risks by
researching?

Has this been done before?
Are there any relevant
benchmarks?
Is there a recognised Centre of
Competence?
Have any prototypes been built?
Is one required?
Is there an accessible reference
site?

For each key component and
transaction type, identify and seek
required information, e.g.

Structural understanding and
behaviour of components
Parametric cost of operation (CPU
required, number of I/Os, …)

Focus deep technology research on
the key components

New technology
New usage of existing technology
Unknown performance characteristics
Early performance and capacity
estimates indicate component is
performance critical

Treat all sources of data with great
care

Especially benchmarks
What was their exact configuration?
How relevant is the data for YOUR
system?

Technology Research

Technology Research theme
A key aim of technology research is to understand the proposed technology set and establish from this
where the large risks might be. One of the main ways this can be done is by asking: “Is this solution
similar to a previous implementation which can be used as a reference?”
If a particular technology has been used before, there may be existing benchmarks providing information
about its performance (sizings, test results, etc.). N.B. We treat commercial benchmarks with a great
deal of care – even scepticism – as a rule. Common commercial benchmarks and metrics, such as TPC-C
and SpecInt can give an indication of the power of a system, but the transaction rates which are achieved
in such benchmarks are typically heavily inflated. This is because the systems under test have been very
heavily tuned by the vendors specifically for the benchmarks, and only the best results are published.
Other sources of information on technology can be very varied, and you should think laterally and be
imaginative in searching for relevant data:
• Does anyone within your project have relevant experience?
• Seek out vendor technical manuals and reference books (IBM Redbooks are a good example)
• Communities and Knowledge Networks within your own organisation
You will find that for most products and technologies, if you search hard enough you will find there are
highly experienced individuals within organisations who are usually only too happy to share their in-
depth experience and expertise with you. (N.B. They may have beards and sandals.)
Also bear in mind, many technologies can be tuned, tweaked and configured to improve performance in
different situations. Part of your technology research should be to understand the different ways in which
the technologies can be deployed and configured for different goals.
A small example – the Nagle algorithm: TCP/IP has a feature which stops networks being flooded with lots of small packets. These
are stored until an acknowledgement has been received, and then transmitted. If, however, there is an infrequent request with a
small size which must have reliable and speedy performance, this option can be disabled. (Real life example – LDAP requests in an
intranet system). The option is TCP_NODELAY.

25

25

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

25

A range of Performance Test types are used for
different purposes Test Planning & Execution

Positioning volume tests

Transaction Volume or Load

R
es

po
ns

e
tim

e

Volume for:
Single thread test

Volume for:
Target volume test
Acceptance test
Soak test
Response profiling test

Volume for:
Stress test

Target
response

time

Volume at which
system fails or

goes into serial
execution

Response time
at which system

is unusable

Performance Testing
The chart presents a lot of information overlaid together. Firstly, the underlying graph (blue line) depicts
how a typical system behaves as transaction volumes increase – response times rise in a “knee curve”
fashion above a certain workload. Secondly, we indicate (for an imagined system) the target response time
and target load point. Finally, in the yellow coloured boxes, the types of tests which we may employ
throughout the performance engineering lifecycle are positioned with respect to the load that they at are
performed at. Note that the chart in fact shows a ‘successful’ case – where target volumes are reached
before the response time begins to increase unacceptably.
With respect to types of tests, the system is tested at different levels of intensity, at different times of the
project, for different reasons:
• Single thread tests typically take specific functions and execute them serially to understand the base
response time with no load - if this isn’t good enough, it’s not going to get any better under load! This is a
good way of tracking performance budget compliance during development (unit test time). Useful metrics
for use in performance models can be gained from these tests.
• Load/Volume tests. Time permitting, volume tests should be run as many times, increasing this load
gradually, so that the full performance profile of the system can be observed, and to discover at what
points bottlenecks (which may be numerous) occur. For load tests, the workload mixture should be as
realistic as possible / practicable – this need to be driven by the business volumes requirements
• The Soak Test is a special case, in that it runs as the full load for a long period of time (unlike the load
tests, which may only focus on the peak hour) in order to identify any problems which may occur in live
system operation. A good example of this is memory leaks in code – these usually only appear once a fair
volume of traffic has passed the system, but the impact can be spectacular!
• The Response Profiling test looks more specifically at the way the response time of specific transactions
change
• The Stress Test aims to break the system – it finds the point at which it stops becoming usable. This
helps us understand how much headroom there is over and above the target load, to take account of
unexpected peaks and future expansion.

26

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

26

Live Monitoring and Capacity Planning activities aim to ensure that
the system continues to meet its performance targets once in live

Once in live, there is the possibility of collecting real performance data, such as:
Real business volumetrics (volumes of events, business entity volumes)
Technical volumetrics (transaction volumes, data sizes, …)
Response times (at various tiers of the system)
Traffic profile information (peaks, distributions)

Systems are subject to change from many perspectives:
Future business demand
Changes in user behavior (e.g. affecting workload mix)
Infrastructure change (network upgrade, hardware platform change, consolidations, …)
Application change (product upgrades, replacement of middleware, new functional
requirements …)

As with initial performance modelling, the capacity plan needs cover all resources
which could cause a system to perform poorly

Performance bottlenecks can occur at any part of the chain
Incentives to ensure the system makes optimum use of the available resources

This process starts at the design phase
Capacity planning will likely be the responsibility of a different group
The ability to record and report performance data must be considered during the design
phase
Systems management design needs to support the capacity planning processes
Applications may have to be explicitly instrumented to record response time data

Live Monitoring & Capacity Mgmt

Live Monitoring and Capacity Planning
One of the key points from this slide is that during system design and implementation we must consider
what mechanisms need to be implemented within the applications and infrastructure to allow successful
monitoring and management of the system once live.
The mechanisms for capacity planning for future loads can be based on simple projections from standardly
observable resource utilisation (cpu, memory, disk, etc) – such an approach is relatively straightforward
and offered by many capacity planning tools, but it inevitably over-simplifies the picture. A fuller, more
complete and more useful picture can be achieved if the application components of the system also provide
data (response times, transaction counts, resource accesses, …) in support of capacity planning.
Whatever the mechanism of future systems capacity prediction, there should be an accurate model for
prediction of future business demands and application of this to the capacity model. That way, the cost of
meeting future business demands can be predicted.
The important thing is to take a complete, end-to-end view of capacity planning, as (for example)
responses times can be affected by any ‘link in the chain’, from the user’s workstation, to the networks
over which they connect, to application servers and the back-end and external systems they access.
It is important to realise that capacity planning needs to be implemented in conjunction with the Service
Delivery / Service Operator organisation. They will probably have existing Systems Management
processes and standards within which the system being architected has to fit into. This should be
considered throughout the lifecycle of the project. Conversely, you may actually have to challenge the
Systems Management “standards” if it can be shown they will not be up to the task of managing the new
system which you are implementing. Such step changes in capability can be difficult for Service Delivery
organisations to justify so you may have your work cut out …

27

27

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

27

Performance ::
Volumetrics

Performance ::
Volumetrics

Volumetrics

Volumetrics
Ok, we’ve whistled through a few of the Performance Engineering themes – now we will
concentrate on one of the key ones, Volumetrics, in a little more detail.

28

28

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

28

The Importance of Numbers

Performance Architects rely on
VOLUMETRIC DATA and
ASSUMPTIONS in order to ….

Feed performance and
capacity models, in
order to ….

Predict system performance
• online and batch
Size systems
Evaluate & improve designs
Plan capacity
Plan testing

Or difficult to map
down to the technical
level?

What do you do
when these are
vague or difficult
to get?

The Importance of Numbers
It’s perhaps obvious to state that we rely on volume data in order to inform our analysis of likely
system performance, but in fact the task of gathering sufficient and reliable volumetric data and
assumptions often proves difficult for the reasons identified on the slide:
• Customer often find it difficult to actually predict or state their own future business volumes (in
spite of the fact you would have thought they had a sound business case for doing what they are
doing …)
• Seeking volumes in sensitive business areas can be subject to organisational and political barriers
• Even when business volumes are forthcoming, it can be difficult to translate, or map, these down to
appropriate system level volumes. We will need a thorough understanding of the application and
how it relates to business events and user activities in order to perform this mapping.

29

29

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

29

Enterprises often cannot provide detailed volumetric
information – often, it has to be derived (or guessed!)
Real questions IBM Performance Engineers have been asked by customers

“We’re just about to spend £20m on advertising our
new brand. How many web servers do we need?” -
Insurance company

“Will this new digital audio broadcasting solution
perform OK, given we don’t know how we are going to
use it yet?” – Public service radio broadcaster

“How fast is the Internet?” – Offshore bank

‘Challenging’ questions
IBM Performance architects were asked these questions by real customers !! These real examples
are used to demonstrate that customer often ask difficult, impossible or (dare I say) stupid questions!
In class, time permitting, students could suggest ways in which they would approach responding to
these questions (take 5-10 minutes).

30

30

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

30

BUSINESS VOLUMETRICS

SITE MAP

USE CASES

SCENARIOS

MARKETING &
ADVERTISING
PLANS AND
FORECASTS

TECHNICAL
INFRASTRUCTURE

DESIGN

TECHNICAL TXN
MAP

ORDER
HARDWARE

CAPACITY MODEL

PERFORMANCE
TEST PLAN

USER ACTIVITY
MODEL

HISTORICAL
FIGURES

VOLUME &
BEHAVIOUR

ASSUMPTIONS

PERFORMANCE
REQ’TS

RISK
ASSESSMENT

Volumetric data can be traced from various sources
An example “volumes map” used on an engagement

Volumetric data
This data flow map was used in a customer engagement. Note how there are two paths to getting at
the Technical Txn Map volumes – either via high level business volume assumptions or the User
Activity Model. Whatever route is taken, the important thing is to be able to drive down to technical
transaction volumes which can then be used within a performance and capacity model (and inform
performance testing).

31

31

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

31

Performance ::
Estimation and Modelling

Performance ::
Estimation and Modelling

Estimation & Modelling

Performance Estimation and Modelling

32

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

32

Cost /
Effort

Accuracy / Benefit

Rules of
thumb

Analytical
Modelling

Utility tools

Simulation

Prototyping

Modelling Tools

Queueing Theory
Statistical Techniques

Spreadsheets

Performance characteristics of a system can be
investigated in more detail by creating a model

Different techniques are available different levels of effort to provide
answers with different levels of reliability

Performance modelling techniques
The key point from this slide is to establish the trade-off between effort and accuracy in performance
prediction.
If the risk is low, simple estimation based on existing practice or experience may be sufficient to indicate
that you can meet the objectives with ease. However, if the risk is higher and the performance target is
more challenging you will have to put in more effort.
Rules of Thumb – a.k.a. folk tales: People who work with a particular solution all the time usually have an idea of
some heuristic which can be applied. Solution vendors (say, if you are implementing a common package) will have
rules of thumb also.
Hand calculation: Useful for ‘quick and dirty’ estimations of things like utilisation, response time for simple cases.
Such calculations can be built up into complex cases, but takes a lot of data management. There may be, in this case, a
utility tool to capture this.
Analytical modelling / Utility tools - Effectively a way of organising your data in a meaningful way, and performing
operations on it. ‘Simplest’, and most accessible is a model based on a spreadsheet Management can become complex,
and predictions may be inaccurate depending on the complexity of the system you are modelling.
Simulation tools – simulation is a technique whereby the transaction, resources and interactions within a system are
dynamically modelled. Some simulation tools will have limited domains in which they specialise (such as networks,
web based systems) whereas others (e.g. HyPerformix tools) allow modelling of arbitrarily complex applications and
infrastructure. Such tools do not use explicit queuing theory, rather they simulate the real systems which behave like
queuing networks and the results are exigent from the simulation.
Prototyping – a technique whereby a prototype of the actual system is tested. Prototypes typically focus on specific
areas and can produce accurate inputs for other models, which can then be used to perform ‘what-if’ analysis.
Prototyping is important when it would otherwise be difficult to obtain useful assumptions to use for modelling, e.g. if
performance atomics (path lengths for unit operations) are not be known.
You could treat Testing as an additional way of understanding the system. Testing results are extremely useful for
validating models, both in terms of atomic assumptions and overall predictions.
Garbage in, garbage out! Always remember that, regardless of the chosen technique, the input data is often the most
inaccurate part of the estimation process. If you are going into a more refined estimation process you also need to
refine the input data until you have at least the same confidence level in your input data as you want from your estimate.

33

33

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

33

Analytical performance model typical structure
This is a outline (simplified) view of the relationships of the data sets and
analysis steps required to build a analytic model

Business
Volumes

User activity
volumes

Business
assumptions

This is often
the ‘Use Case’

level

User activity
assumptions

Technical transaction
volumes

Includes peak-
time assumptions

Technical
transaction map

Resources model
(hardware, etc.)Parametric

costs Resource utilisation
predictions

Response time
predictions

Queuing model
& assumptions

Analytical performance models
Note how volumes (taken from business to technical) are required to drive out utilisation
predictions, and from there response time predictions are possible as we move down this chain. On
the right and left around the central ‘column’ are all the input pieces of data which are required to
build an accurate model.

34

34

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

34

The ‘hotspot' concept is a good way of understanding
where to conduct detailed performance analysis

Typical questions you should
seek the answers to …

Where are important functions
(s/w execution) and data going to
be located?
What rate of transactions will be
required?
Are there any large volumes of
data being sent over low
bandwidth links?
What is the impact of multiple
instances?

e.g. many branches to one
data-centre

Which parts of the architecture
may prove to be ‘bottlenecks’?

Hotspots
Regardless of your modelling technique, one of the major purposes of the exercise is to discover
bottlenecks – the points in the system which will constrain performance. This is not a formal technique
within the method, however, it is a useful way of thinking about the system as a whole. Experienced
Performance Architects tend to develop a good ‘nose’ for sensing out where bottlenecks are likely to arise
and can often jump quickly to the key parts of system either during development or when problems have
arisen in live.
Starting with a design view of the system, such as the Component Model or Operational Model, think
about how interactions travel around the architecture, including both online and batch data transfers (e.g.
file extract and transfer, replication, backup, synchronisation). Analysing just the application model can be
rewarding in itself – helping to uncover logical bottlenecks such as, for example, single instances of
components, or serialised queuing mechanisms. Also bear in mind that in some projects the application
model will be developed much earlier than the infrastructure model, and fixing problems here will make
building a successful infrastructure much easier.
The Operational (infrastructure) model can be analysed for physical bottlenecks – e.g. all traffic to a single
central server travels down a shared connection of limited bandwidth. Physical bottlenecks can be
anything in the end-to-end path of transactions – network connections, network components, application
servers, database servers, external systems interfaces.

35

35

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

35

We need to sum response times for all components an
end-to-end transaction relies on

Utilisation of each resource based on the total workload and
workmix
End-to-end response times based on multiple steps in the
end-to-end transaction path

Response times end-to-end
The example is simplistic – the Application Server tier itself may break down into many parts.
Furthermore a single ‘user-level’ transaction may lead to many technical transactions which operate
serially and/or in parallel.

36

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

36

Response times degrade severely at high
utilisations

Effect of service time on expected response time with c=1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Utilization

R
es

po
ns

e
tim

e

ts=0.03
ts=0.02
ts=0.01
ts=0.005

Shorter service time
flattens the curve

Response time vs. utilisation curve
A ‘server’ in both this and the previous slide need not be a piece of hardware; it could also be:

A single threaded software process serving a queue of requests
A logical resource such as a database lock
A network resource, such as a shared line

This chart shows that as the utilisation of any resource increases, the overall response time increases. This is
because of a longer time spent waiting (queuing) for the server at high utilisations, not because the
processing in the server is any slower. As a rule of thumb: for a single server, if utilisation begins to exceed
70%, then response times may start to increase sharply.
This is intuitive, if compared with the very human example of waiting at an cashpoint … As the server (i.e.
cashpoint machine) utilisation increases (i.e. more people in a given time period use the ATM), the average
time that you will need to wait will increase. Of course, during periods of high utilisation, it would still be
possible by chance to experience a fast response, if you happened to arrive at one of the few periods when
the ‘server’ was not actually busy.
So it is logical to conclude that overall response time for access to a server can be improved by:
• Reducing ‘server’ utilisation (e.g. by scaling horizontally by adding more ‘servers’)
• Reducing service time (i.e. using a faster ‘server’ or reducing path length)
In terms of relating this to specific modelling techniques, in analytical models we need to include formulae
to account for queuing factors if attempting response time predictions. In simulation models or in the
measurement of real systems, the queuing effects will arise naturally.
Simple queuing formulae take no account of different priorities of workloads. In sophisticated operating
systems (e.g. for many years in mainframe operating system) highly effective priority mechanisms are built
into the o/s scheduling algorithms so that good response can be retained for high priority workloads even
though the overall system may be very highly (or even 100%) utilised.

37

37

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

37

Exercise 3 - Volumetric estimation
Shop

In the peak hour, on the average, every 60
seconds a new shopper arrives (random
arrivals, generated by a Poisson process)
Average shopping time: 10 minutes (random
distribution)
Average time at the cashier: 2 minutes
(random distribution)

Estimate the minimum number of carts the shop
must have to make sure that customers almost
never have to wait for a cart

Estimate the minimum number of cashiers
required to make sure that the number of
customers that must wait for a cashier is almost
always at most 3

The demo uses the Ptolemy II simulation
modelling tool

Open Source simulation toolkit written in Java
available from
http://ptolemy.eecs.berkeley.edu/ptolemyII

The model is a Discrete Event simulator. It has
been extended with some custom actors (in
porkbench.jar)

25 Carts and 5 Cashiers are roughly sufficient; 6 Cashiers is safe.

The graphs are:

Queue Length for Carts and Tills. Realtime display of number of shoppers waiting
for the respective resources.

Resources - carts. How many carts are left in the trolley park

Utilisation - average and realtime utilisation of the tills. You can never use half a
till at any given point in time, so (for example) a utilisation of 75% when there
are only two shop assistants is impossible. The utilisation, which we are used
to dealing, is an average over a period of time.

Time to complete shop - this is a combination of a couple of exponential
distributions and some queueing. Not surprisingly it's a bit busy. The average
is ot easy to see, unfortunately

38

38

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

38

Simulation modelling has significant advantages …
but beware …

Provides a safe environment in which
to understand the effects of change
(an environment for experimentation)

Parameterise models to ask any
number of "what-if" questions
E.g. Test out different placement and
configuration options

Powerful and flexible modelling
capabilities

Model complex interactions between
layers, components, subsystems, etc.
Use probability distributions for
service times, arrival rates, etc.
Model different queue servicing
disciplines (fcfs, round robin, priority
...)
Analyse time-dependent variations in
incoming workloads

Modeller does not need to know or
use complex formulae

Promotes real understanding of the
system through visualisation and / or
animation

See peaks, troughs, start-up, cool
down periods
See times of specific events

Promotes real understanding of end-
to-end behaviour

model complex interactions between
components, subsystems, etc.
model interaction between human and
IT domains

However:
has high start-up cost in both skills
and resource
can be costly
requires detailed system knowledge
and/or access to subject matter
experts
is only as accurate as inputs
has a danger of false confidence
is only as good as the model

Simulation modelling advantages and disadvantages
Like the other performance modelling techniques, simulation modelling has its strengths and
weaknesses. In terms of a design-time approach (i.e. as a technique to use before any code has been
written, any hardware purchased or anything installed), it remains the most powerful technique for
predicting system performance, but this power comes at a cost. Professional simulation modelling
tools are typically very expensive (tens of thousands of $/K and upwards for single licenses) and to
extract the maximum value, significant time and effort has to be put into model construction by
relatively highly skilled individuals.
A side effect of simulation modelling exercises however is that the process of building the model
often causes questions to be asked which otherwise would not be (as the modeller needs to pry into
system components and their dynamic behaviour). The impact of this process can be just as
illuminating as the model results themselves …

39

39

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

39

Characteristics and principles of Queuing Systems

Queuing System

Server(s)

...Queue

Queue length

Arriving units of work:
- How many tasks enter the

queue per unit of time?
- What is the interarrival time

distribution?
- From finite or infinite

population?

Servers and Service time:
- How many servers?
- What is the ‘service time’ – i.e.

average to processing time for one
work unit?

- What is the service time distribution?

Dispatching policy:
- FCFS – standard queue
- LCFS – ‘stack’
- Priorities
- ‘Round robin’ or straight

through?

dispatch
-ing

Time
Wait time (Tw) Service time (Ts)

Response time, Tr = Tw + Ts

Rate of arrival (λ)

Queueing systems
The schematic in the slide demonstrates the features of any queue for service. It should be emphasised that
for accurate queueing analysis, it is important to understand not just averages but the distributions of key
parameters such as interarrival times and service times. If interarrival times are highly regular, then the
workload is generally easier to deal with, whereas if the input workloads are very ‘bursty‘ (highly variable
interarrival times) then it is more challenging to build a system which can guarantee to meet a particular
performance level due to the queueing effects. The distribution for user-driven IT system input workloads
is often assumed to be based on the Poisson distribution, as this is the classic statistical distribution used
for representing inputs where events occur with a known average rate, and are independent of the time
since the last event.
Note that queuing systems arise in many walks of life. Common on-the-streets examples include queues in
shops and supermarkets, queues at cashpoint machines, and call queues in Call Centres. Regardless of the
scale or nature of queues, the mathematics around them remains essentially the same.
Note that the population of a queueing system is defined as the number of requests (transactions) either
queueing or being processed at a given time.

40

40

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

40

Notation for major types of queues

α Type of probability distribution that represents the periods between arrivals into the
queue (M = Exponential, D = Deterministic, G = General)

σ Type of probability distribution that represents the periods required to service each
request in the queue (values as above)

m Number of servers at the queuing center

Note: Other factors can be specified which define more advanced queue types, including:
Buffer Size or storage capacity in the queue
The allowed population size, which may be finite or infinite
The type of service policy e.g. FIFO, LIFO, RR, PS

Formal notation for queues: α/σ/m, where:

 Μ/Μ/1
Known as the 'Poisson process'
Exponentially distributed
interarrival and service times
around known averages; single
server
Reasonable approximation to
most single server queues
Mathematics are manageable

 Μ/Μ/k
Exponentially distributed
interarrival and service times
around known averages
Multiple servers
Mathematics more
complicated

 Others, e.g. M/G/k
Generalised distributions of
either interarrival and service
times
Multiple servers
Mathematics beyond most of us
If important, consider specialist
tooling or simulation

α
σ

m

Notation for major queue types
It should be noted that the mathematics of anything but simple queues rapidly become challenging
to most non-mathematicians. In fact, whole degree level modules can be and are taught on queuing
theory alone – it is not our intention to give you such a course – however it is useful for IT
Architects to be aware of the different types of queues which can be modelled, and the limitations
of standard formulae.

41

41

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

41

Utilization Throughput
(tps)

Average
service
time (s)

10% 0.5 0.2

Queue i's
throughput

Average #
of visits to

queue i

System
throughput

12 3 4

Service
demand at
resource i

Resource
i's

utilization

System
Throughput

0.2 0.4 2

Average #
in the Node

Throughput
of the node

(tps)

Average
time in the

node (s)

3 10 0.3

Utilization Law: Ui = Xi * Si Forced Flow Law: Xi = Vi * Xo

Service Demand Law: Di = Ui / Xo Little's Law: N = X * R

Even some simple equations can provide some
useful results

Simple laws
These simple laws relate average / macro level properties of systems such as throughput, average service
time and utilisation. An example using these laws follows right on the next page…

42

42

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

42

Example M/M/1 queue calculation

Requests arrive at the rate of λ
per second

Average service time is Ts

Server utilisation U

Average queuing time formula
for M/M/1 queues: Tw = Ts *
U / (1-U)

Average Response time
Tr = Ts + Tw

Average population in the
system (Little's Law), N

λ = 10 / s

Ts = 0.08s

U = 10 * 0.08 = 0.8 (or 80%)

Tw = 0.08 * (0.8 / (1 - 0.8))
= 0.08 * 4 = 0.32s

Tr = 0.08 + 0.32 = 0.40s

N = 10 * 0.40 = 4.0

Example M/M/1 queue calculation
The steps in the slide should be self explanatory. In the 4th step, we are using the equation for
calculating average wait times for single-server M/M/1 queues where exponentially distributed
interarrival times are assumed. Because of the high utilisation in this particular example, the wait
time (0.32s) ends up being significant with respect to the service time (0.08s).

43

43

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

43

Assumptions traceability
The Technical Assumptions and Metrics 'Lifecycle'

Solution Outline Macro Design Micro Design Build

Requirements
& Early Design

Estimation
& Modelling

Design, Devel.
& Tracking Testing

Live Monitoring
& Cap.Planning

Initial
assumption

'Educated'
assumption

'Validated'
assumption

'Tested'
assumption Actual

Published
benchmarks

Technical
Research

Rules of
Thumb

Specialist
Advice

Purpose
built-benchmarks Prototypes

early / unit
test

detailed test
measurements

live
measurements

The Assumptions Lifecycle
This reflective slide brings together a number of themes from the session and is provided at no extra
cost.
In Quality of Service Engineering we rely heavily on assumptions and data which we use to feed
our models, inform our engineering strategies and guide our testing and planning for live
operations. It is a truism of all complex endeavours that we know more as time proceeds however
so does the impact of discovering an unpleasant fact. Therefore the quality, or correctness, of the
assumptions we are working with is paramount to the success of our engineering activities.
Taking “assumption’s eye view” of the world, the slide shows how we can use different techniques
and activities through the phases of a project to iteratively improve our assumptions and hence our
models. It might seem of little value to have a ‘perfect’ model of a system just before or after it
goes live, however bear in mind that future business volumes are still unknown; that change the
infrastructure is evitable; and that’s there generally a Release 2.0 round the corner ….

44

44

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

44

SummarySummary

Summary

45

45

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

45

Summary of Topic
Despite continuing advances in technology, IT Architects spend
significant amounts of time engineering systems to account for Quality of
Service requirements

In the context of often significant constraints
Software and infrastructure designs need to be iterated together to achieve goals

Non-functional requirements & service levels may be contractually
binding

Failure to achieve targets may result in financial penalties for the IT provider,
and/or lost business for the customer
If a design cannot be established which meets requirements, this is top severity
project issue

Modelling theory, techniques and tools are available to assist with
evaluating design alternatives

Employing them successfully requires understanding of the systems elements,
management of assumptions and appropriate modelling skills

Regardless of the quality of design, the quality of implementation must
be validated through testing

QoS design should inform test strategy and test planning

The effort expended should always be proportionate to the risk involved

Seminar Summary Points
The final slide makes the point that technology advances at a tremendous pace (standard
components become more reliable; processors and networks become faster; disks increase in
capacity, …) however to date this has not put Availability, Security, Performance and Systems
Management Architects out of business yet. In fact, technology complexity and the ever
increasing demands and expectations of businesses and indeed the general public of IT systems
and technology means the quality of service engineering disciplines are just as relevant as when
whole bank used to be run on 2 MHz processors accessing 4MB of RAM.
Ultimately, it should be pointed out that all of our efforts should always be aimed at implementing
successful systems and supporting the delivery of successful projects. The tools and techniques we
have briefly touched upon in this seminar are means to an end and we must always bear in mind
that the effort we expend should be proportionate to the value and risk of the project with which
we are involved.

46

46

IT Architecture ModuleIT Architecture ModuleIT Architecture Module

46

Exercise 4 - Estimating system performance

Inputs:
Home Shopping Case Study document (handout)
Consider the ‘Year 2’ Scenario only

Q1: Calculate the likely rate of the technical transaction “Serve HTTP
request” in the peak period
Q2: Estimate the utilisation of the web (‘Presentation’) server node (PN5)

How many such nodes will be required?
Q3: Estimate the end-to-end response time for the user ‘Search/Browse for
Item’ transaction

Complete the response time breakdown table at the end of the document
Q4: Given your results, what recommendations would you make for the
design of either the infrastructure or the Home Shopping Order
Management Application?

45-60 minutes

Exercise 4 – Estimating System Performance
Exercise 4 is based upon a cut-down case study document which is separately provided as the Word
document “QoS Seminar - Exercise 4 input vn.m.doc” and this should be distributed to students if
Exercise 4 is going to be attempted. Our experience of teaching this seminar to date is that 3 hours
is only just sufficient for giving the presentation materials we have covered so far and conducting
the 3 previous in-class exercises. Therefore it is recommended that Exercise 4 be given as an after-
class assignment.
A sample answer is also provided in the form of an Excel spreadsheet – the name of this file is
“QoS Seminar - Volumetric & Performance exercises full solution.xls”. This is for the teacher’s
reference for both Exercise 3 and Exercise 4.

Basis: Slides 39 – 42.

