
Science of 
Computer 

ELSEVIER Science of Computer Programming 25 (1995) 41-61 
Programming 

Functional documents for computer systems 

David Lorge Parna?* *, Jan Madeyb 

a Telecommunications Research InsMute of Ontario (TRIO) Department of Electrical and Computer 

Engineering MeMaster University, Hamilton, Ont, Canada L8S 4Kl 
b Institute of Informatics. Warsaw University Banacha 2, 02-097 Warsaw, Poland 

Received September 1993; revised May 1995 
Communicated by M. SintzotT 

Abstract 

Although software documentation standards often go into great detail about the format of 
documents, describing such details as paragraph numbering and section headings, they fail to 
give precise descriptions of the information to be contained in the documents. This paper does 
the opposite; it defines the contents of documents without specifying their format or the 
notation to be used in them. 

We describe documents such as the “System Requirements Document”, the “System Design 
Document”, the “Software Requirements Document”, the “Software Behaviour Specification”, 
the “Module Interface Specification”, and the “Module Internal Design Document” as repres- 
entations of one or more mathematical relations. By describing those relations, we specify what 
information should be contained in each document. 

Keywords: Documentation; Formal Methods; Software Engineering 

1. Introduction 

Engineers are expected to make disciplined use of science, mathematics and techno- 
logy to build useful products. Those who construct computer systems are clearly 
Engineers in that sense. However, the design process used for computer systems is 
very different from that used in developing other engineering products. Professional 
Engineers make extensive use of mathematics to provide precise descriptions of 
their products. In contrast, computer systems are usually described, inaccurately 
and imprecisely, using anthropomorphic analogies and intuitive language. When 
Engineers assemble a system, they recognise the necessity for precise interface speci- 
fications for each of the components. In contrast, computer system designers, parti- 
cularly programmers, rarely write such specifications; instead they rely on intuitive 

*Corresponding author. Email: parnas@triose.crl.mcmaster.ca. 

0167-6423/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved 
SSDI 0167-6423(95)00003-8 



42 D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 

descriptions. The result is a “cut-and-try” process in which substantial redesign must 
be done during “system integration”. 

This paper advocates making computer systems design more like other types of 
engineering. Applying a mix of standard engineering and mathematical concepts, we 
show how essential properties of computer systems, and their components, can be 
described as a set of mathematical relations. By describing these relations, computer 
systems designers can document their designs systematically, and use that documenta- 
tion to conduct thorough reviews. A project that involved the use of such documents 
in formal reviews is described in [33-351. 

This paper discusses a limited set of professional reference documents. It does not 
discuss many useful types of documents such as user-manuals or queuing-theory 
models. 

Our goal, in this paper, is to describe the contents of key computer systems 
documents-not their form. To do this we define documents in terms of the functions 
that they must describe, but we will not say much about the way those functions 
should be represented. We consider it important to agree on content before discussing 
the notation to be used. This is in sharp contrast to other papers on “formal methods”, 
which provide precise specifications of syntax but give short shrift to the question of 
what information should be provided using that syntax. Some companion reports 
discuss notations that can be used to provide more easily read representations of the 
functions [17,29,41,42,44]. 

In this paper, we discuss documentation at a high level of abstraction, dealing 
uniformly with many types of systems and documents. For a specific application, one 
must apply these concepts with a specific notation (as was done in [7]). Because of the 
breadth of this paper, discussions of case studies has been relegated to other papers 
cited throughout the text. Comparison with other notations, intended for more 
specialised applications, is best done in papers with a more limited scope. 

This paper is addressed to a mixed audience. We want it to be understood 
by Engineers educated in such fields as Chemical Engineering or Mechanical 
Engineering as well as by Computer Scientists who are interested in providing 
tools for Engineers. The first group may have no familiarity with concepts and 
notation that are standard in abstract mathematics. The second group will find 
approaches based on control theory or circuit theory to be new. To make sure that 
everyone can stay with us, we include some basic definitions that will be familiar to 
many. 

2. What should be the role of documentation in computer system design? 

The production of design documents plays a key role in engineering practice. 
Professional Engineers do not build a product without putting detailed plans on 
paper. Documents are prepared, and thoroughly analysed, before construction is 
begun and used as references throughout further design and construction. 



D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 43 

While one cannot prescribe procedures for designing [36], we can establish criteria 
to be used when evaluating designs. The validation of design documents, using 
pre-established criteria, is a major part of engineering. The inspiration that leads to 
a design may occur in a flash, but the analysis required to confirm the workability and 
safety of the approach takes much longer. That analysis is the difference between 

professional engineering and amateurish invention. 
Design validation is a technical task that can only be carried out if the design 

documentation is precise enough to permit systematic analysis. Conventional engin- 
eering documents are sufficiently detailed that one can calculate pressures, derive 
differential equations, compute load factors, and find resonant frequencies from the 
information that they contain. 

The way that computer systems, particularly the software parts, are documented 
is very different. Many of the documents produced in advance of implementation 
are not technical ones; they are narratives explaining the role of the system, scenarios 
describing how it might be used, or glowing descriptions of the attractive qualities 
it will have. Little technical evaluation can be done on the basis of such documents. 
Other documents provide precise analyses of abstract algorithms but ignore much 
of the actual code. Real evaluation of the overall design must wait until the imple- 
mentation is nearly complete. At that point, corrections are much more difficult 
(and expensive) than they would have been at an earlier date. 

In many software development organisations, documentation is not viewed as part 
of the design activity but as an additional, somewhat distasteful, task that must be 
completed because of bureaucratic regulations. Often the programs are written before 
the documentation; frequently the documentation is written by a separate group, 
one that does not include the designers. Usually, programmers consider the pre- 
implementation documentation vague and nearly useless. Consequently, computer 
system design documents are usually inaccurate when first delivered and are 
rarely kept up-to-date. The exceptions are, almost always, hardware documents. 
Hardware is designed by Engineers, who have been taught the importance of technical 
documentation. 

Inadequate documentation causes software quality to degrade over time because 
the changes are inconsistent with the original (undocumented) design concept; such 
changes result in unnecessarily complex programs [313. 

We believe that standard engineering practice can be applied in all phases of 
computer system design. Documentation can be used both as a design medium and as 
the input to subsequent analysis and testing activities [12]. We view the documenta- 
tion as being (at least) as important as the product itself; if there is good documenta- 
tion, a software product can be revised or replaced relatively quickly; without good 
documentation, software products are of questionable long-term value. 

We do not suggest that the documents be completed in the order presented here. All 
documents should be revised repeatedly as the project progresses and understanding 
deepens. It is vital that documentation be kept “alive”, that is up-to-date and 
consistent with the current state of the product itself. 



44 D.L. Parnas, J. Madey J Science of Computer Programming 25 (1995) 41-61 

3. What do we mean by “functional”? 

In this paper we describe an approach that we call “functional”, although “relation- 
al” might be more accurate.’ It is important to note that we are not using “functional” 
in its vernacular sense, but with its standard mathematical meaning. In the vernacular 
“function” often means purpose, role, or activity, as in: “The function of this system is 
to control the level of water in the tank”. In mathematics,function means a mapping 
between two sets of elements (called domain and range, respectively) such that every 
element of the domain is mapped to exactly one element in the range. If the latter 
condition is not satisfied, the mapping is called a (binary) relation.’ In certain 
applications, it is useful to combine a relation with an additional set, a subset of the 
relation’s domain, known as the competence set, to form what we call a limited domain 

relation (LD-relation) [27,41,42]. We use the term functional to denote approaches 
based on any of these concepts. 

The conventions below will be used in the rest of paper. 
Let R be a (binary) relation, then: 

(1) 
(2) 

(3) 

(4) 

(5) 

“R” denotes the set of ordered pairs that constitutes the relation, 
“domain(R)” denotes the set of values that appear as the left element of a pair in 

R, 
“range(R)” denotes the set of values that appear as the right element of a pair in 

R, 
“R(x, y)” denotes a predicate, the characteristic predicate of the set R; R(a, b) is 
true if and only if (a, b) is a member of R, 
when R is a function, “R(x)” denotes y such that R(x, y). 

It is important to note that the elements in the range and domain of a relation need 
not be scalars. The universes from which these sets are drawn may include vectors of 
scalar values, functions, and vectors of functions. Of particular interest are time- 

functions, functions whose domain is a set of real numbers interpreted as representing 
time. By using time-functions in the range and domain of our functions, it is possible 
to specify critical characteristics of real-time systems. 

Specifying real-time properties by means of relations between time-functions is the 
traditional approach to dealing with time and has long been used, routinely, by 
Engineers who design electronic circuits, control systems, etc. We believe that those 
who argue that we need new kinds of logic to deal with real-time systems, should be 
explaining why they cannot use an approach that has been taught to Engineers for 
many years. As we show in Sections 4.24.5, these “classic” approaches allow us to 
talk about real-time properties in a precise way. 

’ We avoid using “relational” to prevent confusion with the database use of that term. 

* We treat a function as a special case of a relation. Alternatively, a relation can be treated as a function 
mapping elements of the relation’s domain to subsets of the relation’s range. 



D.L. Parnas. J. Madey / Science of Computer Programming 25 (1995) 41-61 45 

We can illustrate the generality of our approach using the familiar area of program 
semantics. As Mills [20] and others have pointed out, the semantics of a deterministic 
sequential program can be described by a single function. In that paper, Mills says 
little about the representation of those functions, but elsewhere (e.g. [21]) he suggests 
that we describe them using concurrent-assignment statements. However, there are 
many other ways to represent that function. Dijkstra’s weakest precondition predicate 
transformer [6], the pre-condition-post-condition pairs used by many other authors, 
and the notation introduced by Hehner [9] all provide the necessary information. 
Each of these notations has advantages and disadvantages; there is no single repres- 
entation that is ideal for the broad class of functions involved. The first step towards 
precise practical documentation must be the identification of the relations that should 
be described in those documents. Notation for the description of those relations can 
be expected to develop further as our profession matures. 

4. What information should be provided in computer system documentation? 

Because computer systems are complex products, they require a great deal of 
documentation. In Section 4.1 we describe the purpose of the most important 
documents; subsequent sections provide more detailed descriptions. The documents 
we discuss are the ones mentioned in most company and industry standards. The 
division into documents is intended to provide “separation of concerns”. Each 
document is aimed at a different audience, i.e. Engineers with specialised interests. Our 
purpose is to replace the usual vague, “common sense”, descriptions of these docu- 
ments by precise definitions. 

4.1. What documents are needed? -an overview 

The System Requirements Document treats the complete computer system (the 
computers and all associated peripheral devices) as a “black-box”. It must include 
a description of the environment that identifies a set of quantities of concern to the 
system’s users and associates each one with a mathematical variable. It must describe 
the relationships between the values of these quantities that result from physical 
(or other) constraints, as well as the additional constraints on the values of the 
environmental quantities that are to be enforced by the new system. Because this is 
a “black-box” description, any method used to document the system requirements 
should be as applicable to systems built of analogue components and relays as to 
systems using digital computers. The analysis of a network comprising computers and 
other components is much easier if the same notation and concepts are used through- 
out (cf. Section 4.2). 

The System Design Document identifies the computers within the system and 
describes how they communicate; it must also include a precise description of the 
relevant properties of the peripheral devices. The values in each computer’s input and 



46 D.L. Parnas, J. h4adey / Science of Computer Programming 25 (1995) 41-61 

output registers are denoted by mathematical variables; the system design document 
defines the relationship between these values and the values of the environmental 
quantities identified in the systems requirements document (cf. Section 4.3). 

The System Requirements Document and the System Design Document determine the 
software requirements. Together, these two documents may serve as the Software 
Requirements Document as described in [47,48]. 

It is often the case that the requirements do not fully determine the software 
behaviour. There may be many externally distinguishable software products that 
would satisfy the system requirements. In such a situation, many project managers 
may request an additional document, the Software Behaviour Specification, which 
records additional design decisions, and provides a description of the actual behaviour 
of the software. Sections 4.4 and 4.5 discuss these issues in more detail. See [lo, 1 l] for 
examples and another discussion of these documents. 

Software projects are usually organised as a set of work assignments. Each assign- 
ment is to produce a group of programs, which we call a module. The Software Module 
Guide is an informal document that describes the division of the software into modules 
by stating the responsibilities of each. Together, the modules described in the module 
guide should satisfy the stated requirements. Software module guides are described at 
length in [4,37]. 

For each module listed in the software module guide, there should be a Module 
Interface Specijication. This should treat the module as a black-box, identifying those 
programs that can be invoked from outside the module, which we call the access- 

programs, and describing the externally visible effects of using them (cf. Section 4.6). 
Software products should also be described by a Uses-relation Document. The range 

and domain of the “uses” relation are subsets of the set of access-programs of the 
modules. A pair (P,Q) is in the relation if program P uses program Q. This document, 
which often consists of a binary matrix, constrains the work of the programmers and 
determines the viable subsets of the software. This document has been discussed in 
[25,26]. 

For each implementation of a module specification there should be a Module 
Internal Design Document. This document must be sufficiently precise that one can use 
it, together with the module interface specification, to verify the workability of the 
design. It should describe the module’s data structure, state the intended interpreta- 
tion of that data structure (in terms of the external interface), and specify the effect of 
each access-program on the module’s data structure (cf. Sections 4.7 and 4.8). This is 
sometimes called a “clear-box” description [22]. 

A different overview of a system can be obtained by documenting the “data flow” 
between variables or between communicating sequential processes. This can be 
included in a Data-flow Document (cf. Section 4.9). 

Communication between computers requires the establishment of communications 
protocols. It is absolutely essential that the communications services provided by 
these protocols be completely defined and that the protocols themselves are 
documented with a precision that allows testing and verification. This can be done 



D.L. Parnas, J. Ma&y / Science of Computer Programming 25 (19%) 41-61 47 

with two documents, the Service Specification and the Protocol Design Document 
(cf. Section 4.10). 

At the lowest level of a computer system we find the hardware chips. Unlike the 
simple devices used in early computers, modern chips can include substantial amounts 
of memory and complex decision-making logic. A black-box description of the 
behaviour of these chips, the Chip Behauiour Specijkation, would serve to define the 
interface for both the chip designers and those who integrate the chip into the rest of 
the system (cf. Section 4.11). 

Earlier discussions of these documents were contained in [38-401. 

4.2. How can we document system requirements? 

A critical step in documenting the requirements of a computer system is the 
identification of the environmental quantities to be measured or controlled and the 
representation of those quantities by mathematical variables. The environmental 
quantities include: physical properties (such as temperatures and pressures), the 
readings on user-visible displays, administrative information (such as the number of 
people assigned to a given task), and even the wishes of a human user. These quantities 
must be denoted by mathematical variables and, as is usual in engineering, that 
association must be carefully defined, coordinate systems, signs, etc., must be unam- 
biguously stated. Often diagrams are essential to clarify the correspondence between 
physical quantities and mathematical variables. 

It is useful to characterise each environmental quantity as either monitored, 
controlled, or both. Monitored quantities are those that the user wants the system to 
measure. Controlled quantities are those whose values the system is intended to 
control.3 For real-time systems, time can be treated as a monitored quantity. In the 

rest of the paper, we will use ml, m2, . . . , q, to denote the monitored quantities, and 

Cl, c2, .*. , cq to denote the controlled ones. If the same quantity is to be both 
monitored and controlled, the corresponding values must be specified to be equal by 
relation NAT (cf. Section 4.2.1). Note too that some systems are expected to monitor 
the status of their own (internal) hardware components. Since these are often deter- 
mined later in the design process, we may add to the set of monitored variables long 
after design has begun. 

Each of these environmental quantities has a value that can be recorded as 
a function of time. When we denote a given environmental quantity by u, we will 
denote the time-function describing its value by v’. Note that v’ is a mathematical 
function whose domain consists of real numbers; its value at time t is denoted by v’(t). 

s Frequently, it is not possible to monitor or control exactly the variables of interest to the user. Instead 
one must monitor or control other variables whose values are related to the variables of real interest. 
Usually, one obtains the clearest and simplest documents by writing them in terms of the variables of 
interest to the user in spite of the fact that the system will monitor other variables in order to determine the 
value of those mentioned in the document. 



48 D. L. Parnas. J. Madey / Science of Computer Programming 25 (I 995) 41-61 

The vector of time-function (WI;, rn:, . . , , mi) containing one element for each of the 
monitored quantities, will be denoted by E’; similarly (c:, c\, . . . , ct) will be denoted 
by cf. 

4.2.1. The relation NAT 

The environment, i.e. nature and previously installed systems, place constraints on 
the values of environmental quantities. These restrictions must be documented in the 
Requirements Document and may be described by means of a relation, which we call 
NAT (for nature), defined as follows: 
- domain(NAT) is a set of vectors of time-functions containing exactly the instances 

of m’ allowed by the environmental constraints, 
_ range(NAT) is a set of vectors of time-functions containing exactly the instances of 

c’ allowed by the environmental constraints, 
- (m’, c’) E NAT if and only if the environmental constraints allow the controlled 

quantities to take on the values described by ct, if the values of the monitored 
quantities are described by nj. 
NAT is not usually a function; if NAT were a function the computer system would 

not be able to vary the values of the controlled quantities without effecting changes in 
the monitored quantities. Note that if any values of m’ are not included in the domain 
of NAT, the system designers may assume that these values will never occur. 

4.2.2. The relation REQ 

The computer system is expected to impose further constraints on the environ- 
mental quantities. The permitted behaviour may be documented by describing a rela- 
tion, which we call REQ. REQ is defined as follows: 
- domain(REQ) is a set of vectors of time-functions containing those instances of 

m’ allowed by environmental constraints, 
- range(REQ) is a set of vectors of time-functions containing only those instances of 

c’ considered permissible, i.e. values that would be allowed by a correctly function- 
ing system, 

- (m’, c’) E REQ if and only if the computer system should permit the controlled 
quantities to take on the values described by c’ when the values of the monitored 
quantities are described by m’. 
REQ is usually not a function because one can tolerate “small” errors in the values 

of controlled quantities. 

4.2.3. Requirements feasibility 

Because the requirements should specify behaviour for all cases that can arise, it 
should be true that 

domain(REQ) 2 domain(NAT) (1) 

The relation REQ can be considered feasible with respect to NAT if (1) holds and 

domain(REQnNAT) = (domain(REQ)ndomain(NAT)) (2) 



D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 49 

Feasibility, in the above sense, means that natural environment (as described by 
NAT) will allow the required behaviour (as described by REQ); it does not mean that 
the functions involved are computable or that an implementation is practical. 

Note that (1) and (2) imply that 

domain(REQnNAT) = domain(NAT) (3) 

Discussions of the use of this model in practice can be found in [l,lO-12,33-351. 
Further examples and discussion can be found in [47,48]. 

4.3. How can we document system design? 

During the system design two additional sets of variables are introduced: one 
represents the inputs, the values actually stored in the input registers of the computers 
in the system; the other represents the outputs, the contents of the output registers of 
those computers. Their values will also be described by time-functions. Note that 
WJ’ and c’ are defined as in Section 4.2. Below we describe how to document the 
meaning of these new variables by giving the relation between their values and those 
previously introduced. 

4.3.1. The relation IN 
Let 1’ denote the vector (ii, ii, . . . , i:) containing one element for each of the input 

registers. The physical interpretation of the inputs can be described by a relation, IN, 
defined as follows: 
- domain is a set of vectors of time-functions containing the possible instances of 

5’; it must include domain(NAT), 
- range(IN) is a set of vectors of time-functions containing possible instances of <, 
- (F’, jr) E IN if and only if j’ describes values of the input registers that are possible if 

r$ describes the values of the monitored quantities. 
IN describes the behaviour of the input devices. IN is a relation rather than 

a function as a result of imprecision in the measurement and transducer devices. 

4.3.2. The relation OUT 
Let 0’ denote the vector (o:, o\, . . . ,oL) containing one element for each of the 

output registers. The effects of the output devices can be described by a relation, OUT, 
defined as follows: 
- domain(OUT) is a set of vectors of time-functions containing the possible instances 

of of, 
_ range(OUT) is a set of vectors of time-functions containing possible instances of E’, 
- (e’, & E OUT if and only if E’ describes values of the controlled quantities that are 

possible when 0’ describes the values of the output quantities when the output 
device(s) are functioning correctly. 
OUT describes the behaviour of the output devices. It is a relation rather than 

a function because of unavoidable device imperfections. 



50 D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 

4.4. How can we document software requirements? 

The software requirements are determined by the System Requirements Document 
and System Design Documents. As mentioned earlier, the Software Requirements 

Document can be seen as a combination of those two documents. It must describe the 
relations NAT, REQ, IN, and OUT. 

In the sequel we assume that REQ is feasible with respect to NAT. 

4.4.1. The relation SOF 

The software will provide a system with input-output behaviour that can be 
described by a relation, which we call SOF. It is defined as follows: 
- domain(SOF) is a set of vectors of time-functions containing all possible instances 

of i’, 
- range(SOF) is a set of vectors of time-functions containing possible instances of $, 
- G’, 0’) E SOF if and only if the software could produce values described by 0’ when 

the inputs are described by I’. 
SOF will be function if the software is deterministic. 

4.4.2. Software acceptability 

For the software to be acceptable, SOF must satisfy:4 

V~~_+V~‘VCJV~‘[IN(~‘, I’) A SOFti”, 0’) A OUT@, c’) A NAT&‘, E’) 

=, REQ(m’, E’)I (44 

Note, that whenever one (or more) of the predicates IN(F’, i’), OUT@‘, c’), or 
NAT@, c’) is false, any software behaviour will be considered acceptable. For 
example were a given value of m’ to be outside the domain of IN, the behaviour of 
acceptable software would not be constrained by the above. Whenever the relations 
describing device behaviour do not hold, it means that a device is broken and the 
software cannot be required to satisfy system requirements under such conditions. 
However, it is possible to provide several different versions of the relations in order to 
describe “fail-soft” behaviour. The “fail-soft” specifications would have weaker predi- 
cates, and the software would be expected to satisfy the conjunction of all require- 
ments expressed in the form above. For example, one of these “fail-soft” specifications 
might describe a broken device using weaker IN or OUT predicates and a weaker 
REQ. 

If we treat relations REQ,IN,OUT, and SOF as functions, we can use functional 
notation to rewrite the implication above as follows: 

V~‘[tg’ E domain(NAT) + (REQ(& = OUT(SOF(IN(&))))] (4b) 

4 In the following the universes from which r#, E’, j’ and Q' are drawn can be assumed to include vectors of 
time-functions with the appropriate types in the ranges of those functions. 



D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 51 

Using relational composition,5 and recalling that the domain of SOF will include 
all possible values of it, the above formula can be expressed in a more concise way: 

(NATn(IN . SOF - OUT)) c REQ (4c) 

The authors of the requirements document must describe the relations NAT, 
REQ, IN, OUT. The software designers determine SOF and verify (4a), (4b), or (4~). 

A document of this type may require natural language and physical diagrams for 
the description of the environmental quantities, but can otherwise be precise and 
mathematical. The use of natural language in the definition of the physical interpreta- 
tion of mathematical variables is both unavoidable and usual in engineering. 

4.5. How can we document sojiiare behaviour? 

Even when the software requirements document fully represents the requirements 
that the software must meet, it may allow observable differences in behaviour. 
Frequently, designers chose to implement a subset of the behaviour@ that are allowed 
by the requirements document. In this way designers will make some decisions that 
might otherwise have been left for the programmers. The relation SOF, describing the 
behaviour of the actual implementation, can be described in a separate document 
known as the Software Behaviour Specification. This document is especially important 
for multiple-computer systems because it will define the allocation of tasks to the 
individual computers in the system. For computer networks, or multi-processor 
architectures one may see a hierarchy of software behaviour specifications with an 
upper-level document assigning duties to a group of computers, and the lower-level 
documents detailing the responsibilities of individual computers or groups of com- 
puters. 

4.6. How can we document black-box module interfaces? 

Most computer systems require software that cannot be completed by a single 
person in a few weeks. For such products, it is desirable to decompose the software 
construction task into a set of smaller programming assignments. Each assignment is 
to produce a group of programs (cf. Section 4.8), which we call a module. In this 
section, we assume that the modules have been designed using the information hiding 
principle [23,24]. The division of the software into modules is described informally in 
a Software Module Guide, which states the responsibilities of each module [4,37]. 
However, one must specify the behaviour of these modules precisely to allow the 
module implementors to work independently with a reasonable likelihood that the 
separately written modules will function correctly when combined. 

5 Given two relations R E A x B, and S c B x C, relational composition, R .S, can be defined by: 
R-S = {(a, c) E A x C 136 E B[R(a, b) A S(b, c)]}. 

6 “Behaviours” are (m’, E’) pairs. 



52 D.L. Parnas, J. Madey J Science of Computer Programming 25 (1995) 41-61 

We view each module as implementing one or more finite state machines, frequently 
called objects or uariables. A description of the module interface is a black-box 
description of these objects. Every program in the system belongs to exactly one 
module. These programs use the objects created by other modules as components of 
their data structure. 

Writing software module interface specifications is, in principal, similar to 
documenting software requirements but some simplifications are possible. Many 
software modules are entirely internal; there are no environmental quantities to 
monitor or control and all communication can be performed through external 
invocation of the module’s programs. Moreover, the state set of a software module is 
finite, and state transitions can be treated as discrete events. For most such modules, 
real-time can be neglected because only the sequence of events matters. This allows us 
to replace the concept of time-function by a sequence describing the history in terms of 
discrete events; we call these sequences traces. 

We identify a finite subset of the (infinite) set of possible traces as canonical truces. 
Every trace is equivalent’ to exactly one canonical trace. Trace assertion speciJcations 

comprise three groups of relations: 
(1) Functions, whose domain is a set of pairs (canonical trace, event) and whose 

range is a set of canonical traces. The pair ((T,, e), T2) is in the function if and 
only if the canonical trace T2 is equivalent to the (canonical) trace T1 extended 
by the event e. These functions are known as trace extension functions.8 

(2) Relations, whose domain contains all the canonical traces and associate each 
canonical trace with a set of values of output variables. 

(3) Functions, whose domain is the set of values of the output variables and whose 
values define the information returned by the module to the user of the module. 

Sometimes a single module will be used to implement many objects of a given class 
or type. For example, a single module can be used to implement many stacks. In this 
case, we may choose to design our module so that the objects are completely 
independent and then describe the behaviour of a typical object of the class. 

Reports [17,18,44,49] describe this method in more detail and show how the set of 
functions can provide a precise but readable description of the externally visible 
behaviour of a module. Older discussions of this approach can be found in [2,14,15]. 

4.7. How can we document internal module design? 

Each module has a private data structure and one or more programs. We propose 
to document the design sufficiently precisely that its correctness can be verified 

’ Two traces are equioalent if they have the same effect on future behaviour of the object. More precise 
definitions can be found in [2, 17, 18,44,45,49]. 

s A trace extension function is sometimes called a reduction function. An alternate model, using an 
extension relation, is also possible. 



D.L. Pamas. J. Madq / Science of Computer Programming 25 (1995) 41-61 53 

d;, program function for event e 

Fig. 1 

-d;, 

without reference to the code. The internal documentation of a module should contain 

three 

(1) 

(2) 

(3) 

types of information: 
A complete description of the data structure, which may include objects 
(variables) implemented by other modules. 
A function, known as the abstractionfunction [13,21],’ whose domain is a set of 
pairs (object name, data state), and whose range is the set of canonical traces for 
objects created by the module. The pair ((0, d), T) is included in this function if 
and only if one of the traces equivalent to T describes a sequence of events 
affecting the object named o that could have resulted in the data state d. 
An LD-relation, often referred to as the program function [18,21] specifying 
the behaviour of each of the module’s programs in terms of mappings 
from data states before the program execution to data states after the execution 
(cf. Section 4.8). 

As has been shown by Hoare [13] and others, (e.g. [8,21]), this information allows 
the design to be verified and may subsequently be used to check on the implementa- 
tion of the module interface. If we view the module as creating a single object, (which 
simplifies the discussion by eliminating object names) and consider only deterministic 
programs, design verification is illustrated by Fig. 1. The lower level represents 
changes in the module’s data structure caused by a program invocation (or other 
event). The upper level represents the external view of those changes. A canonical 
trace, T1, extended by a single event, e, is mapped by the trace extension function 
(cf. Section 4.6, item (1)) to a canonical trace, T2. The program function for the event 
e maps the old data state, dsl, to a new data state, ds2. The abstraction function maps 
data states to canonical traces. If the design is correct, the diagram “commutes” for all 
possible events. 

If we view the module as producing a set of (named) objects, the diagram becomes 
slightly more complex (because the domains of the functions must be modified to 
include the names of the objects), but the principle remains the same. If the program is 
non-deterministic, the program function would be an LD-relation, (cf. Section 4.8); all 
of the possible next data states must be mapped to the same canonical trace by the 
abstraction function. 

9 Mills et al. [Zl] use the term “representation mapping” where we use “abstraction function” (p. 502). 



54 D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 

4.8. How can we document the eflect of individual programs? 

We use the term program to denote a text describing a set of state sequences in 
a digital (finite state) machine. Each of those state sequences will be called an execution 
of the program. 

When an execution begins, the machine is in a particular state, called the starting 

state. A sequence of state changes, which may or may not terminate, will then 
commence. If the sequence does terminate, its last state is called thejnal state and we 
say that the program’s execution terminates or, more simply, that the program 
terminates. 

In many situations, we do not want to document the intermediate states in the 
sequence. For each starting state, s, we want to know only: 

(1) is termination possible, i.e. are there finite executions beginning in s? 
(2) is termination guaranteed, i.e. are all executions that begin in s finite? 
(3) if termination is possible, what are the possible final states? 
All of this information can be described by an LD-relation [27,41,42]. An LD- 

relation comprises a relation and a subset of the domain of that relation, called the 
competence set. In a description of a program, the set of starting states for which 
termination is guaranteed is the competence set. The set of starting states for which 
termination is possible is the domain of the relation. An ordered pair (x, y) is in the 
relation if it is possible that the program’s execution would terminate in state y after 
being started in state x. 

We can document the effects of executing a program by describing an LD-rela- 
tion.” If the competence set is identical to the domain of the relation, we, by 
convention, omit it. If the program is deterministic this yields exactly the function used 
by Mills [20]. The fact that the LD-relation can be reduced to Mills’ function (when 
the program is deterministic) means that these concepts provide a set of upward 
compatible notations; one may omit information when it is redundant, and mix the 
notations, because all are special cases of the most general concept. 

LD-relations can be used either a specifications for programs (stating the behaviour 
required of those programs) or as complete descriptions of the actual behaviour of 
a program. Longer programs should be presented as a self-documenting set of 
understandable short programs with each program presented in a display. A display 
comprises (a) the specification of the program, (b) the program itself (possibly contain- 
ing names of other programs), and (c) specifications of those named programs. It 
should be possible to understand and verify each display using only the information in 
the display, supplemented by the dictionary definitions, without any reference to other 
displays. This aspect of documentation is discussed in more detail in [41,42]. 

lo The texts called “procedures with parameters” are not programs (according to the definition given in 
this section). Their behaviour can be described by a more general concept, the so-called “parametrised 
program functions” (cf. [ 171). 



D.L. Parnas, J. Madey 1 Science of Computer Programming 25 (1995) 41-61 55 

4.9. How can we document data Jrow? 

There are two interpretations of “data flow” in computer systems. One is a descrip- 
tion of the way that information “flows” from one variable to another. After each 
execution of a program, or after each execution of the outer loop of a program that 
controls a periodic process, there will be constraints relating the values of the 
variables in the programs. These constraints can be described by relations. There 
will be one relation for each variable in the program. The range will be the set 
of possible values for that variable. The domain of each relation will be the set 
of possible values for the other variables in the program. Such documentation 
often helps when debugging a program. It describes constraints that can be checked at 
run-time. 

A second interpretation of data flow is particularly convenient for concurrent 
real-time programs. We often view software as consisting of a set of processes, each of 
which is considered to be a device that transforms a sequence of input values to 
a sequence of output values. The data flow between these transducers can be described 
using the same approach that we propose for the description of system requirements. 
If real-time is not a concern, the trace assertion method can then be applied to 
document the behavior of each process. 

We have no experience with either approach but suggest that they are worthy of 
further study. 

4.10. How can we document commumcation services and protocols? 

Modern communications systems are often implemented as a hierarchy of 
services, each service using the one below it in the hierarchy. Each level in a 
hierarchical communications system can be viewed as a module; the service of- 
fered can be specified by means of the trace assertion method. This document 
corresponds to what is usually called a service specification. An implementation 
of a given service by the use of lower-level services and local data structures can 
be (partially) described using the program functions and abstraction functions 
mentioned in Section 4.7. These functions correspond to what is often called a 
protocol design. This is discussed in more detail in [3,5,14,15,28]. Most com- 
munication protocols have a relatively small number of states. Consequently, 
enumerative analysis techniques, which would not be practical in many other ap- 
plications, can be used in verification of protocols. In the past decade, work on 
the use of “formal methods” for protocol description and analysis has diverged from 
work on verification of other types of programs. We believe that, in spite of the fact 
that different analysis techniques are available, the notation used in protocol work 
can be the same as that used elsewhere in computer systems. We would hope to see 
a merging of the work from these two communities by using the concepts applied in 
this paper. 



56 D.L. Parnas. J. Madey / Science of Computer Programming 25 (I 995) 41-61 

4.11 How can we document chip design? 

Current technology allows us to fabricate chips that perform tasks so complex that 
they would have been implemented in software a few years ago. The externally visible 
behaviour of these chips can be described using the techniques from Sections 4.2 and 
4.6. A specification written in this way could be called a Chip Behauiour Specijication. 

If we make the usual discrete state assumptions, their behaviour can be approximated 
using the trace assertion method. It may also prove useful to document the internal 
structure of the chips by means of abstraction functions and functions that describe 
the change in the internal state that result from external events. 

Except for memories (which can be described simply because of their regularity), 
digital hardware components usually have much smaller state spaces than software 
systems. Often the state spaces are small enough that enumerative design, and 
design-validation techniques can be used. We believe that the concepts discussed in 
this paper are applicable to hardware as well as to software, and that the small state 
space makes it possible to perform some analyses that would not be practical for 
software systems. 

5. How can we represent functions in computer systems engineering? 

While the above definitions are precise, they are not sufficient to allow practical 
work, because we have not agreed upon a notation that can be used to provide 
definitions of the functions and relations involved. Turning the abstract ideas into 
a method that can be applied in a project, requires that we define a syntax for 
expressions and explain how those expressions are to be interpreted as functions or 
relations. 

A trap, into which some “formal methods” groups have fallen is to attempt to define 
a universal notation for the definition of functions. It is tempting to define languages 
such as VDM or Z, in the hope that doing so would give us a universal specification 
language. Unfortunately, as centuries of research in applied mathematics has shown, 
there is no one representation that is best for all classes of functions. For example, 
there are functions that are easily expressed as polynomials, but many functions that 
can only be approximated, often in a clumsy way, by that class of expressions. If 
history is a good predictor of the future, we will continue to invent improved forms of 
expressions as we discover new classes of functions to be of interest. 

Our experience with these methods has revealed that the relations of interest 
in computer system design are often well represented by tables whose entries 
are expressions, possibly other such tables. In practice, the functions that we want 
to describe have a great many points of discontinuity and the conditional expressions 
that describe those functions are lengthy and difficult to parse. A tabular form 
of expression parses the information for the reader and factors out many of the 
common subexpressions. We define the semantics of tables by giving a translation 



D.L. Parnas, .I. Madey / Science of Computer Programming 25 (1995) 41-61 57 

of a table to a boolean expression, which can be interpreted as the characteristic 
predicate of the relation viewed as a set of ordered pairs. A companion paper gives the 
semantics of a variety of table formats [29]. A more recent paper Cl93 provides 
a systematic definition of a much larger class of table formats. The interpretation of 
predicate expressions that we use in these tables is discussed in [30]. 

6. Final remarks 

This section presents some thoughts on the soundness, practically, and value of 
these ideas. 

6.1. Do we have evidence that the theory is sound? 

Many of the ideas presented in this paper are old by computer science standards. 
They are like the wheel, which is often reinvented because it is a good idea. The system 
requirements model is essentially that used in control theory; we have made some 
minor adjustments to accommodate current computer terminology. An early version 
of the software requirements model was first used in 1977 (to produce [ll]); the 
approach seems quite obvious to those who have some background in control theory. 
The trace assertion model has been in use since 1978 [2] and is very close to certain 
algebraic theories. Its main advantage is that it evades several difficult issues by using 
functions on a domain consisting of strings rather than function compositions. 
Relational semantics has been thoroughly explored by many authors. An excellent 
text on relational methods is [46]. More discussion of our particular version can be 
found in [32,42]. The internal module documentation model is more than 20 years old 
and has been reinvented by several researchers. Our effort has been to show how these 
well-understood theories can be applied to the problem of documentation. Because 
these approaches have been thoroughly studied by many others, we are confident that 
there will be few unpleasant surprises in our use of this model for documentation. 

6.2. Do we have evidence that the theory scales up? 

Many theories prove impractical when applied to realistic applications. However, 
the original aspects of the ideas presented in this paper grew out of practical 
applications and experience has shown them to be usable. The systems and software 
requirements models evolved out of work at the United States Naval Research 
Laboratory on the US Navy’s A-7 aircraft [10,11,37]. The ideas have since been used 
by a variety of organisations including Bell Laboratories [ 121, AECL (Atomic Energy 
Canada Limited) [33,35], and the US Air Force. An early version of the trace model 
[2] has been used successfully by PROSYS GmbH in Darmstadt, Germany. The 
internal documentation approach was used for a disciplined verification of safety- 
critical software by Ontario Hydro [1,33,35]. 



58 D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 

All of these experiences, although they were successful, demonstrated that func- 
tional methods, using tabular representations, are useful but very time consuming. 
The methods demand precision and care similar to that required in programming or 
mathematics. On the basis of observations about how the Engineer’s time was spent 
on the projects mentioned, we believe that the production of these documents will not 
be fully practical until we have new tools available. One class of tool would reduce the 
time and effort required to write these documents by automating some of the dreariest 
work. More advanced tools would increase the value of these documents by 
(a) checking the validity of the tables, (b) simulating designs based on specifications, 
(c) generating test cases from these specifications, and (d) inserting run-time checks 
and diagnostic programs based on the specifications. Some such work is now in 
progress (e.g. [16,43,45]) but there is a great deal more that could be done. 

4.3. What can we gain by using these concepts? 

We believe that there is much to be gained by using these concepts for documenta- 
tion. The primary advantage would be an increase in the quality of the documenta- 
tion; mathematical documentation is far more likely to be complete and correct than 
informally written documentation. This, rigidly organised, documentation is advant- 
ageous as a reference work when one must find specific information. It is not 
particularly suitable as an introduction to the software. 

We see very great advantages in having a common set of notations to be used 
through the computer system design process. Having a common set of concepts will 
allow a set of basic tools that can be used throughout the whole process, from systems 
design to software design, and even into chip design. Our approach, in which the 
interpretation of tables can be defined by translating the table into a conventional 
expression, is extensible. New table formats can be introduced as needed because our 
basic model is completely independent of the representation of the functions. 

Acknowledgements 

We are grateful for the comments by many people, including N.S. Erskine, 
D.M. Hoffman, M. Iglewski, P. Kelly, A. Malton, R. Milner, J.C. Muzio, A.P. Ravn, 
K.A. Schneider, M. Serra, M. Sintzoff, R. Taylor, W.M. Turski, A.J. van Schouwen, 
D. Weiss, Y. Wang and some of the anonymous referees. 

H.D. Mills and N.G. de Bruijn, inspired the senior author to think in functional 
terms. 

This work was supported by the Province of Ontario through Telecommunications 
Research Institute of Ontario (TRIO), by the Atomic Energy Control Board (AECB), 
by the Natural Sciences and Engineering Research Council of Canada (NSERC), by 
the State Committee for Scientific Research in Poland (KBN), and by Digital Equip- 
ment’s External Research Programme. 



D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 59 

References 

[1] G.H. Archinoff, R.J. Hohendorf, A. Wassyng, B. Quigley and M.R. Borsch, Verification of the 
shutdown system software at the Darlington Nuclear Generating Station, in: Proceedings of the 
International Conference on Control and instrumentation in Nuclear Insrallations, The Institution of 
Nuclear Engineers, Glasgow, UK (May 1990) No. 4.3, ‘23 pp. 

[Z] W. Bartussek and D.L. Parnas, Using assertions about traces to write abstract specifications for 
software modules, in: Proceedings of 2nd Conference of European Cooperation in Informatics, Venice, 
1978, Lecture Notes in Computer Science, Vol. 65 (Springer, Berlin, 1978) 211-236; Reprinted in: 
N. Gehani, A.D. MC Gettrick, eds., Software Specification Techniques, AT&T Bell Telephone Laborat- 
ories (1985) 111-130. 

[3] J. Bojanowski, M. Iglewski, J. Madey and A. Obaid, Functional approach to protocols specification, 
in: Proceedings of the 14th International IFIP Symposium on Protocol Specification, Testing & VeriJ- 
cation (PSTV’ 94), Vancouver, B.C, Canada (June 7-10, 1994) 371-378. 

[4] K.H. B&ton and D.L. Parnas, A-7E Software Module Guide, NRL Memorandum Report 4702, 
United States Naval Research Laboratory, Washington DC, December 1981, 35 pp. 

153 F. Courtois and D.L. Parnas, Formally Specifying A Communications Protocol Using the Trace 
Assertion Method, CRL Report 269, McMaster University, CRL, Telecommunications Research 
Institute of Ontario (TRIO), Hamilton, Ontario, Canada, July 1993, 19 pp. 

[6] E.W. Dijkstra, Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976). 
[7] M. Engel, M. Kubica, J. Madey, D.L. Parnas, A.P. Ravn and A.J. van Schouwen, A formal approach 

to computer systems requirements documentation, in: R.L. Grossman, A. Nerode, A.P. Ravn and 
H. Rischel, eds., Hybrid Systems, Lecture Notes in Computer Science, Vol. 736 (Springer, Berlin, 1993) 
452-474. 

[S] J.D. Gannon, R.G. Hamlet and H.D. Mills, Theory of modules, IEEE Trans. Software Eng. SE-13 (7) 
(1987) 820-829. 

[9] E.C.R. Hehner, Predicative programming, Comm. ACM 27 (2) (1984) 134-151. 
[lo] K.L. Heninger, Specifying software requirements for complex systems: new techniques and their 

application, IEEE Trans. Software Eng. SE-6 (1) (1980) 2-13. 
[ll] K.L. Heninger, J. Kallander, D.L. Pamas and J.E. Shore, Software requirements for the A-7E aircraft, 

NRL Memorandum Report 3876, United States Naval Research Laboratory, Washington DC, 
November 1978,523 pp. 

[12] S.D. Hester, D.L. Parnas and D.F. Utter, Using documentation as a software design medium, Bell 
System Techn. J. 60 (8) (1981) 1941-1977. 

[13] C.A.R. Hoare, Proof of correctness of data representations, Acta Inform. 1 (19) (1972) 
271-281. 

[14] D.M. Hoffman, Trace specification of communications protocols, Ph.D. Thesis, Univ. of North 
Carolina, Chapel Hill, 1984. 

[IS] D.M. Hoffman, The trace specification of communications protocols, IEEE Trans. Comp. C-34 (12) 
(1985) 1102-1113. 

[16] M. Iglewski, M. Kubica and J. Madey, Editor for the trace association method, in: M. Zaremba, ed., 
Proceedings of the I&h International Conference of CAD/CAM, Robotics and Factories of the Future: 
CARS & FOF’94, OCRI, Ottawa, Ontario, Canada (1994) 876-881. 

[17] M. Iglewski, J. Madey and D.L. Parnas, Documentation Paradigms, CRL Report 270, McMaster 
University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, Ontario, 
Canada, July 1993,45 pp. 

[lS] M. Iglewski, J. Madey and K. Stencel, On Fundamentals of the Trace Assertion Method, Techn. 
Report TR 94-09 (198), Warsaw University, Institute of Informatics, Warsaw 1994, 8 pp. Also 
published by the University of Quebec in Hull, Department of Computer Science, Canada, as a Tech. 
Report RR 94109-6. 

Cl93 R. Janicki, Towards a Formal Semantics of Tables, CRL Report 264, McMaster University, CRL, 
Telecommunications Research Institute of Ontario, (TRIO), Hamilton, Ontario, Canada, September 
1993, 18 pp (A revised version of this will appear in the Proceedings of the 17th International 
Conference on Software Engineering). 

[ZO] H.D. Mills, The New Math of Computer Programming, Comm. ACM, 18 (1) (1975) 43-48. 



60 D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 

[21] H.D. Mills, V.R. Basih, J.D. Gannon and R.G. Hamlet, Principles of Computer Programming: 
A Mathematical Approach (Allyn & Bacon, Newton, MA, 1987). 

[22] H.D. Mills, R.C. Linger and A.R. Hevner, Box structured information systems, IBM Systems J. 26 (4) 
(1987) 395-413. 

[23] D.L. Parnas, Information distributions aspects of design methodology, in: Proceedings of the 1FlP 
Congress ‘71, Booklet TA-3 (1971) 26-30. 

[24] D.L. Parnas, On the criteria to be used in decomposing systems into modules, Comm. ACM 15 (12) 
(1972) 1053- 1058. 

[25] D.L. Parnas, On a “buzzword” hierarchical structure, in: Proceedings of the 1FlP Congress ‘74 
(North-Holland, Amsterdam, 1974) 336-339. 

[26] D.L. Parnas, Designing software for ease of extension and contraction, IEEE Trans. Software Eng. 

~271 

C281 

c291 

c301 

c311 

~321 

c331 

c341 

c351 

C361 

c371 

C381 

c391 

c401 

[411 

~421 

c431 

SE-5 (2) (1979) 128-138. 
D.L. Parnas, A generalized control structure and Its formal definition, Comm. ACM 26 (8) (1983) 
572-581. 

D.L. Parnas, Documentation of communications services and protocols, Techn. Report 90-272, 
Queen’s University, C&IS, Telecommunications Research Institute of Ontario (TRIO), Kingston, 
Ontario, Canada, February 1990,4 pp. 
D.L. Parnas, Tabular representation of relations, CRL Report 260, McMaster University, CRL, 
Telecommunications Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada, October 
1992, 17 pp. 
D.L. Parnas, Predicate logic for software engineering, IEEE Trans. Software Eng. 19 (9) (1993) 
856-862. 
D.L. Parnas, Software Aging, in: Proceedings of the 16th International Conference on Software 
Engineering, Sorento Italy, May 16-21 1994 (IEEE Press, New York 1994) 279-287. 
D.L. Parnas, Mathematical descriptions and specification of software, in: Proceedings ofIFIP World 
Congress 1994, Vol I (August 1994) 354-359. 
D.L. Parnas, G.J.K. Asmis and J.D. Kendall, Reviewable development of safety critical software, in: 
Proceedings ofthe International Conference on Control & instrumentation in Nuclear Installations, The 
Institution of Nuclear Engineers, Glasgow, United Kingdom (May 1990) No. 4.2, 17 pp. 
D.L. Parnas, G.J.K. Asmis and J. Madey, Assessment of safety-critical software, Techn. Report 
90-295, Queen’s University, C&IS, Telecommunications Research Institute of Ontario (TRIO), 
Kingston, Ontario, Canada, December 1990, 13 pp. 
D.L. Parnas, G.J.K. Asmis and J. Madey, Assessment of safety-critical software in nuclear power 
plants, Nuclear Safety 32 (2) (1991) 189-198. 
D.L. Parnas and P.C. Clements, A rational design process: how any why to fake it, IEEE Trans. 
Software Eng. SE-12 (2) (1986) 251-257. 
D.L. Parnas, P.C. Clements and D.M. Weiss, The modular structure of complex systems, IEEE Trans. 
Software Eng. SE-1 1 (1985) 259-266. 
D.L. Parnas and J. Madey, Functional documentation for computer systems engineering, Techn. 
Report 90-287, Queen’s University, C&IS, Telecommunications Research Institute of Ontario 
(TRIO), Kingston, Ontario, Canada, September 1990, 14 pp. 
D.L. Parnas and J. Madey, Functional documentation for computer systems engineering. (Version 2), 
CRL Report 237 McMaster University, CRL, Telecommunications Research Institute of Ontario 
(TRIO), Hamilton, Ontario, Canada, September 1991, 14 pp. 
D.L. Parnas and J. Madey, Documentation of real-time requirements, in: K.M. Kavi, ed., Real-time 
Systems. Abstraction, Languages and Design Methodologies (IEEE Computer Sot. Press, Silver Spring, 
MD, 1992) 48-56. 
D.L. Parnas, J. Madey and M. Iglewski, Formal documentation of well-structured programs, CRL 
Report 259, McMaster University, CRL, Telecommunication Research Institute of Ontario (TRIO), 
Hamilton, Ontario, Canada, September 1992, 37 pp. 
D.L. Parnas, J. Madey and M. Iglewski., Precise documentation of well-structured programs, IEEE 
Trans. Software Eng. 20 (12) (1994) 948-976. 
D. Peters and D.L. Parnas, Generating a test oracle from program documentation, in: Proceedings of 
the I994 International Symposium on Software Testing and Analysis (ISSTA) (August 17-19, 1994) 
58-65. 



D.L. Parnas, J. Madey / Science of Computer Programming 25 (1995) 41-61 61 

[44] D.L. Parnas and Y. Wang, The trace assertion method of module interface specification, Tech. Report 
89-261, Queen’s, C&IS, Telecommunications Research Institute of Ontario (TRIO), Kingston, On- 
tario, Canada, October 1989, 39 pp. 

[45] D.L. Parnas and Y. Wang, Simulating the behaviour of software modules by trace rewriting systems, 
IEEE Trans. Software Eng. 20 (10) (1994) 750-759. 

[46] G. Schmidt and T. Strohlein, Relations and Graphs- Discrete Mathematics for Computer Scientists 
(Springer, Berlin, 1993) 301 pp. 

[47] A.J. van Schouwen, The A-7 requirements model: re-examination for real-time systems and an 
application to monitoring systems, Tech. Report g&276, Queen’s, C&IS, Telecommunications Re- 
search Institute of Ontario (TRIO), Kingston, Ontario, Canada, May 1990,93 pp. 

[48] A.J. van Schouwen, D.L. Parnas and J. Madey, Documentation of requirements for computer 
systems, in: Proceedings of the IEEE International Symposium on Requirements Engineering, San 
Diego, California, USA (January 4-6, 1993) 198-207. 

[49] Y. Wang, Specifying and simulating the externally observable behavior of modules, Ph.D. Thesis, 
CRL Report 292, McMaster University, CRL, Telecommunication Research Insitute of Ontario 
(TRIO), Hamilton, Ontario, Canada, 1994. 


