
Tabular Notations for State Machine-Based Specifications

Markus Herrmannsdörfer, Dr. Sascha Konrad, and Brian Berenbach
Siemens Corporate Research

The term reactive system describes a sys-
tem that needs to continuously react

to inputs coming from the environment.
Finite state machines are a widely used
concept for specifying the behavior of
such systems. Since finite state machines
allow the rigorous capture of functional
aspects of system behavior1, they offer
several advantages over informal specifi-
cations. For example, they provide the
ability to automatically generate code or
test cases, and they enable formal verifica-
tion and validation (V&V). Generally, a
finite state machine is an appropriate rep-
resentation when a problem or solution
has the following characteristics:
• Finite and discrete set of states (e.g.,

on, off, and standby).
• Discrete and manageable set of

inputs.
• Change of state is only performed in

response to an input (e.g., if a button
is pressed, then the machine transi-
tions from state off to state on).
State machines2 are used for specifying

functional properties for a wide variety of
systems, such as control systems and user
interfaces. For example, Siemens uses
state machines to precisely specify the cir-
cuitry in mail sorting systems and the
controls in car radios. They are also the
paradigm of choice for software compiler
design and programmatic interpretation
of natural language. Numerous graphical
notations for state machines have been
developed and are commonly used today,
such as state transition diagrams, Harel
statecharts [1], and UML state machine
diagrams [2]. Graphical notations are
often preferred by developers, analysts,
and testers over textual information, since
diagrams allow the visualization of com-
plex relationships.

Tabular notations for state machines (com-
monly also referred to as state tables or state
transition tables) offer complementary
advantages to these graphical notations.
For example, the incompleteness of a
specification, i.e., the actions of the sys-

tem in a specific state in response to a
specific event that are not addressed by
the specification, can easily be identified
as empty cells in the table. In addition,
tabular notations are relatively compact
and have shown to scale well to practical
systems [3]. Due to these reasons, tabular
notations for state machines are preferred
in some domains over graphical notations
for the rigorous specification of system
behavior. For instance, Siemens Auto-
motive commonly receives system
requirements in the form of state tables,
captured in either Excel sheets or propri-
etary databases.

While a tabular representation is rela-
tively compact and the completeness of
the requirements specification can easily
be determined, it has been shown to
cause numerous difficulties. For instance,
the requirements specification for a sys-
tem of realistic size is often quite large
and of considerable complexity, consist-
ing of numerous large tables. As a result,
precisely understanding the required
behavior solely through visual inspection
is difficult. Moreover, requirements cap-
tured in simple Excel sheets are difficult
to analyze for consistency and adherence
to critical properties.

This article presents and evaluates
several state machine-based tabular nota-
tions that can address some of the afore-
mentioned problems. For instance, some
notations enhance the understandability
of the specification by offering a comple-
mentary graphical representation. In addi-
tion, hierarchical composition is used by
several notations to keep the specification
tractable and some provide tool support
for V&V. The remainder of this article is
organized as follows: the Background sec-
tion provides an overview of finite state
machines and Harel statecharts. The
Tabular Notations for State Machines sec-
tion describes five approaches using tabu-
lar notations for state machine-based
specifications. We conclude by evaluating
these notations for use in software devel-

opment with respect to several factors.

Background
This section introduces finite state
machines, including a common graphical
and tabular notation, and briefly describes
the advanced features of Harel state-
charts.

Finite State Machine
The term finite state machine describes a
class of computational models that con-
sist of a finite set of states, a start state,
a set of inputs (events), and a transition
function that determines the next state of
the finite state machine based on the cur-
rent state and input [4]. The finite state
machine starts computation in the start
state; transitions between states are per-
formed based on the transition function.
Numerous variants of this basic type of
state machine exist. For example, Moore
machines extend finite state machines
with outputs (actions) associated with
states, while Mealy machines associate
outputs with transitions [5]. For the
remainder of this article, we use Mealy
machines as the computational model.
Finite state machines may be determinis-
tic or non-deterministic. In deterministic
finite state machines for a given input,
one transition can be taken from the cur-
rent state, at most. In non-deterministic
finite state machines, however, one input
may enable several transitions of which
one is then taken.

A common way of representing finite
state machines is the use of state transition
diagrams (commonly also referred to as
state diagrams). State transition diagrams
are directed graphs in which states are
depicted as nodes and transitions are rep-
resented by directed edges. Transitions
are commonly labeled with the triggering
events and actions, using the following
general syntax: trigger/action(s). Figure 1
contains a sample state transition dia-
gram showing the simple behavior of a
door: The door can be opened or closed.

Finite state machines are a widely used concept for specifying the behavior of reactive systems. Numerous graphical notations
based on finite state machines have been developed and are commonly used today, such as state transition diagrams, Harel
statecharts, and Unified Modeling Language (UML) state machine diagrams. While not as widely used, tabular notations
for state machine-based specifications offer complementary advantages to diagrammatic notations. In this article, we describe
five approaches using tabular notations for state machine-based specifications and evaluate these approaches for use in soft-
ware development.

18 CROSSTALK The Journal of Defense Software Engineering March 2008

 



March 2008 www.stsc.hill.af.mil 19

If the door is closed, then it can be
locked or unlocked. The door can only
be opened when it is unlocked. If the
door is closed (irrespective of being
locked or unlocked), then it can be
pushed in. Because of this event, an
alarm will sound and the door will then
be permanently in the state Broken.

In addition to the graphical represen-
tation, finite state machines may be spec-
ified using state transition tables. A state
transition table denotes the action per-
formed by the automaton and the next
state based on the current state (row) and
event that occurred (column). A dash
denotes that no such transition exists. A
state transition table representing the
automaton specified in Figure 1 can be
seen in Table 1. Using this tabular nota-
tion, completeness of the specification
can be readily established. Since a cell
needs to be labeled explicitly with a dash
if no such transition exists, a cell that
does not contain a destination state or a
dash renders the specification incom-
plete. Using a graphical notation, deter-
mining the completeness of the specifi-
cation is more difficult, since a missing
arrow in a diagram could potentially be
the result of an omission, but could also
mean that no such transition exists.

Harel Statecharts
While finite state machines have shown to
be useful for modeling reactive systems,
their representation as state transition dia-
grams does not scale well to large-scale
systems and may become unstructured, unre-
alistic, and chaotic. To address this problem,
David Harel developed statecharts that
extend state transition diagrams with the
following concepts [1]:
1. Depth. Commonly also referred to as

XOR (eXclusive OR) decomposition or
state nesting. Using state nesting, a state
may be a composite state that con-
tains exactly one region serving as a
container for sub states. To be in the
composite state, the system must be
in exactly one of its sub states (which
itself may be composite states again).

2. Orthogonality. Also known as AND
decomposition. Using AND decompo-
sition, a state may be a composite state
comprising two or more orthogonal
regions executing independently and
concurrently. Therefore, to be in the
composite state, the system must be
in a state of all of its orthogonal
regions at the same time. Each
orthogonal region may itself contain
additional composite states.

3. Broadcast communication. Since
orthogonal regions are independent

and execute concurrently, the compu-
tational model of statecharts uses
broadcast communication. As a
result, each orthogonal region
receives occurring events and may
take transitions that had become
enabled.
In addition to these basic extensions,

Harel statecharts provide additional con-
structs such as entry and exit actions for
states, conditionals, and history states
(see [1] for more details). The UML nota-
tion for state machines is based on Harel
statecharts and uses a number of these
extensions. (For a detailed comparison of
the syntax and semantics of UML state
machine diagrams and Harel statecharts,
please refer to [6].) Figure 2 (see page 20)
shows how statecharts provide more
structure and reduce the perceived com-

plexity of the diagrammatic representa-
tion of the door example in comparison
to the state transition diagram in Figure
1. For instance, after the introduction of
a composite state Closed in Figure 2,
describing the behavior of the door
when it is pushed in requires only one
transition, which makes the diagram
appear cleaner and less cluttered. In gen-
eral, the extensions provided by Harel
statecharts and UML state machine dia-
grams have shown to be an effective
means to reduce the perceived complexi-
ty of state machine representations for
reactive systems. For example, the
authors in [7] performed some studies
with university students and concluded
that the use of composite states in UML
state machine diagrams improves under-
standability.

close_door/

open_door/ Transition

Start
State

State

unlock/

lock/

push_in/
sound_alarm

push_in/
sound_alarm

Action

Event

close_door/

open_door/

unlock/

lock/

Closed

push_in/
sound_alarm

Opened

Closed, Unlocked Closed, Locked

Broken

Opened

LockedUnlocked

Broken

Figure 1: Sample State Transition Diagram

Event
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

Table 1: State Transition Table Corresponding to Figure 1

Tabular Notations for State Machine-Based Specifications



Tabular Notations for State
Machines
This section describes five approaches that
use tabular notations for state machine-
based models, namely Virtual Finite State
Machines (VFSM) [8], Software through
Pictures (StP) [9], Parnas Tables [10],
Software Cost Reduction (SCR) [3], and

the Requirements State Machine Language
(RSML) [11].

VFSMs
The VFSM is a concept for the specifica-
tion of control systems in a virtual envi-
ronment. The environment is termed vir-
tual since events and actions of the envi-
ronment are represented by abstract

names for inputs and outputs in the state
machine [8]. The behavior of the system
may be specified as a state table that shows
actions and transitions performed in a cer-
tain state based on specific conditions.
Table 2 shows a sample state table for
State1. Upon entering the state, Output1 is
always produced and upon exiting the
state, Output2 is always produced. If
Condition1 is satisfied, then Output3 is pro-
duced without causing a state change
(internal transition). However, if Condition2

is satisfied, then Output4 is produced and
the state machine transitions to State2

(external transition).
While VFSMs support entry and exit

actions, they do not support state nesting
or orthogonality. However, different sets
of concurrent high-level and low-level
finite state machines can be created and
connected to achieve structuring through
hierarchical decomposition [12].

The application of VFSMs is facilitat-
ed by StateWORKS Studio, a tool suite for
creating specifications using VFSMs [13].
The tool suite offers an editor that com-
bines and synchronizes diagrammatic and
tabular views of VFSMs. In addition, a
simulator and an executor are provided
that can be used to validate and execute
VFSM specifications.

StP
StP Structured Environment (SE) is a tool-
supported approach for specifying a system
using diagrammatic notation complement-
ed with tabular notation [9]. The behavior
of a system is specified in terms of control
flow diagrams and state transition dia-
grams. Complementary to state transition
diagrams, two tabular notations are provid-
ed: state event matrix and state transition table.

A state event matrix shows all transi-
tions of the state machine in a grid of
source states and triggering events. Similar
to the state transition table shown in Table
1, a transition is entered into the cell at the
intersection of its source state (row) and
its triggering event (column). The cell con-
tains the list of actions to perform and the
target state of the transition. Table 3
shows an example state event matrix, in
which the state machine transitions from
State1 to State2 upon occurrence of Event1,
producing Action1, and it transitions back
to State1 upon occurrence of Event2, pro-
ducing Action2. If Event3 occurs in State1,
then the state machine performs Action3

but remains in the current state.
A state transition table shows all tran-

sitions of a state machine in a list (refer to
Table 4). The tabular layout provides a
column for the source state, the triggering
event, the action, and the target state.

The Beginning

20 CROSSTALK The Journal of Defense Software Engineering March 2008

close_door/

open_door/

unlock/

lock/

Closed

push_in/
sound_alarm

Broken

Opened

LockedUnlocked

Broken

Figure 2: Sample StatechartEvent
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

Table 3: StP SE State Event Matrix

Event
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

Table 2: VFSM State Table



Tabular Notations for State Machine-Based Specifications

March 2008 www.stsc.hill.af.mil 21

The tabular notations provided by StP
SE are compact and readable. However,
diagrams and tables of StP SE provide
neither state nesting nor orthogonal
regions. Similar to VFSMs, structuring is
possible using hierarchical decomposition.
In order to facilitate the implementation
phase, the StP SE tool suite provides code
generation and reverse engineering capa-
bilities for the C programming language.

Parnas Tables
Parnas and Madey developed the four-
variable model as an underlying state
machine model to formally specify system
requirements [14]. The name of the model
arises from the fact that a specification
contains four distinct sets of variables:
• Variables monitored by the system

(MON).
• Variables controlled by the system

(CON).
• Variables that the input devices of the

system read from (INPUT).
• Variables that the output devices of

the system write to (OUTPUT).
The relations between the variable sets of
the four-variable model are illustrated in
Figure 3.

Specifically, the variables are linked by
the following five relations:
• Natural constraints on the monitored

and controlled variables (NAT).
• Expected change of controlled vari-

ables in response to changes in moni-
tored variables, i.e., the actual system
requirements (REQ).

• Relation of monitored variables to
input variables (IN).

• Relation of controlled variables to out-
put variables (OUT).

• Relation between input and output
variables, realized by software (SOFT).
A possible notation for expressing

these relations are Parnas Tables [10].
Parnas Tables are a collection of 10 table
types for capturing functional and rela-
tional expressions, each having a distinct
syntax and semantics. A developer should
choose the table format that produces a
simple, compact representation for
expressing the relation at hand. For each
table type, rules exist for identifying
incompleteness and inconsistency.

Table 5 (see page 22) contains a sam-
ple Parnas Table of type decision table. A
decision table can represent a function or
relation where the domain is an ordered
set of potentially distinct types. One
dimension of the table itemizes the ele-
ments of the domain. Table 5 shows the
syntax of a decision table representing the
relation between two variables, A and B,
and a decision that is made based on the

values of these variables. For instance,
Table 5 states that if A = A2 and B = B2

then make Decision2.
Parnas Tables do not support nesting

or orthogonality, but allow the developer
to reference a function that is defined in a
different table. Since Parnas Tables have
completely formal semantics, tool support
can be developed to check the tables auto-
matically. However, to the best of our
knowledge, such tool support is not cur-
rently available.

SCR
SCR is a set of formal methods for the
design of software systems [3]. Similar to
Parnas tables, SCR also uses the four-vari-
able model as its underlying abstraction, and
the relationships between monitored and
controlled variables are captured in tables
[10, 14].

In order to capture the relations con-
cisely, SCR defines modes. A mode
describes a set of system states in which
the system exhibits equivalent behavior in
response to events and conditions. Mode
classes then describe the relationships
between these modes and are modeled in
terms of mode transition tables. In order
to model complex systems with indepen-
dent components, several mode classes
may be constructed to capture concurren-
cy. The occurrence of an event is denoted
by a value change of a condition. @T is
used to specify that a condition becomes
true, while @F specifies that a condition
becomes false.

SCR uses three different types of
tables to specify a system: condition tables,
event tables, and mode transition tables.

A condition table defines the value of
a variable depending on the mode and a
condition. For example, in Table 6, the
variable var3 is assigned the value greater,
equal, or less in the modes M1 and M2 of
mode class MC1, depending on the values
of variables var1 and var2.

An event table defines the value of a
variable as a function of the mode and a
(possibly conditioned) event. For example,
Table 7 (see page 22) assigns variable var4 a
true or false value in the modes M1 and M2

of mode class MC1 based on a change in
value of the variable var3.

Finally, the mode transition table

defines how the mode of a mode class
changes in response to events. A sample
mode transition table for the mode class
MC1 is given in Table 8. Specifically, the
system changes from mode M1 to mode M2

upon variable var4 becoming true, and
switches back to mode M1 if the variable
becomes false. Commonly, a mode transi-
tion table contains only events that change
the mode; events that do not cause mode
changes are omitted to increase readability.

The SCR notation is rigorous and com-
pact, but purely tabular. Nesting and
orthogonality are not supported by the
notation, but hierarchical decomposition
can be used to structure complex systems.
Tools to support various V&V approaches
have been developed [3]. Once the system
model is complete, the model can be
checked for different types of errors, such
as incompleteness or ambiguities. In addi-
tion, a simulator can be used to run sce-
narios and inspect whether the results are
as expected.

RSML
The RSML was originally developed to
write requirements specifications for
process-control systems such as a collision
avoidance system for a commercial airlin-
er [11]. RSML combines a graphical nota-
tion based on Harel statecharts with a tab-
ular notation for specifying transition con-
ditions. As such, RSML retains most of
the advanced features of statecharts, such
as depth and orthogonality, while using
tables to facilitate the readability of condi-
tions associated with transitions.

RSML specifications generally consist
of state diagrams with unlabeled transi-
tions. Transitions are not labeled in order
to increase the readability of a state dia-
gram when enabling conditions of transi-
tions are complex. Instead of using labels,

MON

TUPTUOTUPNI

CON

OUTIN

REQ

SOFT

NAT

Figure 3: Four-Variable Model [14]

State1

Current State Event Action Next State

State1 Event1 Action1 State2

State1 Event3 Action3 State1

State2 Event2 Action2 State1

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

1

Table 4: StP SE State Transition Table



22 CROSSTALK The Journal of Defense Software Engineering March 2008

properties of transitions are defined sepa-
rately from the diagrams in transition def-
initions. A transition definition contains
the source and destination of the transi-
tion, the state machine where the transi-
tion is located, the triggering event, the
guarding condition, and the output action.
The guarding condition of a transition is
defined in terms of AND/OR tables. A
sample AND/OR table can be seen in
Table 9, which describes that the associat-
ed transition is enabled (after the trigger-
ing event has occurred) when Expression1 is
true AND Expression2 is false at the same
time, OR Expression3 is found to be true.
The period denotes that the truth value of
the expression is irrelevant for the current
evaluation.

The final RSML specification can
then be checked for consistency and
completeness. In addition, techniques

have been developed that allow the analy-
sis of RSML specifications using theorem
proving and model checking techniques
[15]. As such, the correctness of an
RSML specification can be rigorously
established. Similar to SCR, tools sup-
porting the simulation of RSML specifi-
cations also exist.

Conclusions
Due to advanced syntactical and semanti-
cal features, Harel statecharts and UML
state machine diagrams are better suited
than the basic state transition diagram
notation to handle complex systems.
Similarly, the five presented approaches
use advanced features that make them
better suited for complex systems than
basic state transition tables. Analysts or
developers that need to determine which
approach to use in their development
processes should consider several factors.
If the main goal is to facilitate the imple-
mentation phase and reduce coding
efforts, then the VFSMs and StP
approaches seem preferable, since they
offer commercially available tool support
that allows executing or generating code
from the specifications.

However, if the focus is the formal

analysis of the system specification for
various completeness and correctness
properties, Parnas Tables, SCR, and
RSML are better suited. Since Parnas
Tables do not offer tool support and
require the user to understand the syntax
and semantics of each possible table type,
they can only be recommended to devel-
opers with a solid understanding of for-
mal methods that do not need automated
support for formal analysis. In contrast to
Parnas Tables, SCR and RSML offer
mature tool support for V&V. When
deciding between SCR and RSML, an
important factor may be the availability of
a graphical representation. While SCR is
purely tabular, RSML uses the tabular rep-
resentation only for capturing the guard-
ing conditions of transitions, while states
and unlabeled transitions are captured in
terms of diagrams. We believe that such a
combination of diagrammatic and tabular
views combines the specific advantages
each of these views offer. In addition to
combining graphical and tabular views,
RSML also supports the concepts of nest-
ing and orthogonality of Harel statecharts.
These concepts have shown to be effec-
tive means to reduce the perceived com-
plexity of models. Dutertre and Stavridou
have examined the use of SCR and RSML
for an avionic storage management system
specification and concluded that RSML
specifications are commonly easier to
understand than SCR specifications due to
these structuring features [16].

In conclusion, we believe that while
tabular notations for state machines are
not a silver bullet solution, they may greatly
facilitate the specification and analysis of
systems in specific domains. Tabular nota-
tions seem to be explicitly useful for sys-
tems with a large number of transitions
between states or rather complex enabling
conditions of transitions. In order to
retain the advantage of having a graphical
view, the presented VFSM, StP SE, and
RSML approaches use tables and dia-
grams. As such, they attempt to combine
the complementary advantages of dia-
grammatic and tabular notations. In addi-
tion, if the system under design is rather
complex (i.e., having a large number of
states and transitions), notations support-
ing nesting and orthogonality may provide
a significant reduction in specification
complexity. The mature V&V tool sup-
port offered by some of the presented
approaches also offers significant advan-
tages over specifications using Excel
tables or proprietary databases, where
often the only available means of analysis
is visual inspection.u

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

Table 5: Parnas Decision Table

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 6: SCR Condition Table for Variable Var3

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 7: SCR Event Table for Variable Var4

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 8: SCR Mode Transition Table for Mode Class MC1

Class
1

Conditions

M2 var1 < var2 var1 = var2 var1 > var2

3 greater equal less

ass Events

2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

true false

Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 9: RSML AND/OR Table

The Beginning



Tabular Notations for State Machine-Based Specifications

March 2008 www.stsc.hill.af.mil 23

Notes
1. Non-functional aspects, such as per-

formance and reliability, are usually
captured by different means.

2. For the remainder of this article, we
assume that the system being specified
has a finite set of states and we use the
terms finite state machine and state
machine interchangeably.

References
1. Harel, D. “Statecharts: A Visual

Formalism for Complex Systems.”
Science of Computer Programming
8.3 (1987).

2. Object Management Group. “UML
2.0 Superstructure Specification.”
2004 <www.omg.org/cgi-bin/doc?
formal/05-07-04>.

3. Heitmeyer, D. “Tools for Constructing
Requirements Specifications: The SCR
Toolset at the Age of Ten.”
International Journal of Computer
Systems Science and Engineering 20.1
(2005) <http://chacs.nrl.navy.mil/
p u b l i c a t i o n s / C H AC S / 2 0 0 5 /
2005heitmeyer-finalJCSSE.pdf>.

4. National Institute of Standards and
Technology (NIST). “Finite State
Machine.” Dictionary of Algorithms
and Data Structures. NIST 2006
<www.nist.gov/dads/HTML/finite
StateMachine.html>.

5. Hopcroft, J., and J.D. Ullman. Intro-
duction to Automata Theory, Lan-
guage, and Computation. Reading,
MA: Addison-Wesley, 1979.

6. Crane, M., and J. Dingel. “UML vs.
Classical vs. Rhapsody Statecharts:
Not All Models are Created Equal.”
Lecture Notes in Computer Science
2005 <www.cs.queensu.ca/~stl/papers/
MoDELS2005.pdf>.

7. Cruz-Lemus, J.A., M. Genero, M.
Esperanza Manso, and M. Piattini.
“Evaluating the Effect of Composite
States on the Understandability of
UML Statechart Diagrams.” Lecture
Notes in Computer Science 3713
(2005) <www.giro.infor.uva.es/Publi
cations/2005/CGMP05/CruzLemus
GeneroMansoPiattini-Models05.pdf>.

8. Wagner, F. VFSM Executable Speci-
fication. Proc. of the International
Conference on Computer Systems and
Software Engineering. The Hague,
Netherlands, 1992 <www.stateworks.
com/active/download/wagf92-soft
ware-engineer ing.pdf>.

9. Aonix. “Software Through Pictures.”
2006 <www.aonix.com/stp.html>.

10. Parnas, D.L. “Tabular Representation
of Relations.” CRL Report 260.
Ontario, Canada: McMaster University,
1992.

11. Leveson, N., M.P. Heimdahl, H.
Hildreth, and J. Reese. “Requirements

Specification for Process-Control
Systems.” IEEE Transactions on
Software Engineering 20.9 (1994)
<sunnyday.mit.edu/papers/tcas-tse.
pdf>.

12. Wagner, F., and P. Wolstenholme.
“Modeling and Building Reliable, Re-
Useable Software.” Workshop on
Model-Based Development of Com-
puter Based Systems. Huntsville, AL,
2003 <www.stateworks.com/active/
download/wagf03-2-modeling-reli
able-software.pdf>.

13. StateWORKS Software. “State-
WORKS Studio.” 2006 <www.state
works.com>.

14. Parnas, D.L., and J. Madey. “Functional
Documentation for Computer Sys-
tems Engineering.” Science of Com-
puter Programming 25.1 (1995).

15. Choi, Y., and M.P. Heimdahl. “Model
Checking RSML-e Requirements.”
Proc. of the 7th IEEE international
Symposium on High Assurance
Systems Engineering (HASE ’02).
2002 <www.umsec.umn.edu/files/
47.73.model-checking-rsml.pdf>.

16. Dutertre, B., and V. Stavridou.
“Avionics Systems Requirements: A
Comparison of RSML and SCR.”
Proc. of the 16th International System
Safety Conference, Seattle, WA, 2002
<www.csl.sri.com/papers/issc98/issc
98.ps>.

About the Authors

Markus Herrmanns-
dörfer is a Ph.D. student
at the Chair of Software
and System Engineering
at Technische Universität
Munchen, Germany.

During his master-level studies, he
worked on the subject of this publica-
tion as an intern at Siemens Corporate
Research in Princeton, New Jersey. His
current focus is on metamodeling, espe-
cially on the problem of metamodel evo-
lution.

Technische Universität München
Institut für Informatik
Boltzmannstr. 3
85748 Garching bei München
Germany
Phone: +49 (89) 289-17336
E-mail: herrmama@in.tum.de

Sascha Konrad, Ph.D.,
is a consultant at Siemens
Corporate Research. He
received his intermediate
diploma from the Uni-
versity of Kaiserslautern,

Germany, and his master’s and doctorate
degrees in computer science and engi-
neering from Michigan State University.
Konrad’s research interests include
requirements engineering and automated
analysis of software specifications,
including software patterns, the Unified
Modeling Language, agile and model-dri-
ven software development, formal meth-
ods and computer-aided verification, and
distributed and embedded systems.

Siemens Corporate Research
755 College RD East 
Princeton, NJ 08540
Phone: (609) 734-6500
E-mail: sascha.konrad

@siemens.com

Brian Berenbach is the
technical program man-
ager for requirements
engineering at Siemens
Corporate Research. He
has been working in the

field of requirements engineering for
more than 15 years, first as a consultant,
and then as a senior member of the
technical staff at Siemens. Recently, his
program has been involved with require-
ments definition for such diverse prod-
ucts as medical systems, baggage han-
dling, mail sorting, automated warehous-
es, and embedded automotive systems.

Siemens Corporate Research
755 College RD East 
Princeton, NJ 08540
Phone: (609) 734-6500
E-mail: brian.berenbach

@siemens.com


