
Towards a Benchmark for Traceability

Eya Ben Charrada
∗

David Caspar Cédric Jeanneret Martin Glinz
Department of Informatics, University of Zurich, Switzerland

charrada@ifi.uzh.ch, s0292538@access.uzh.ch, jeanneret@ifi.uzh.ch,
glinz@ifi.uzh.ch

ABSTRACT
Rigorously evaluating and comparing traceability link gen-
eration techniques is a challenging task. In fact, traceability
is still expensive to implement and it is therefore difficult to
find a complete case study that includes both a rich set of
artifacts and traceability links among them. Consequently,
researchers usually have to create their own case studies by
taking a number of existing artifacts and creating traceabil-
ity links for them. There are two major issues related to
the creation of one’s own example. First, creating a mean-
ingful case study is time consuming. Second, the created
case usually covers a limited set of artifacts and has a lim-
ited applicability (e.g., a case with traces from high-level
requirements to low-level requirements cannot be used to
evaluate traceability techniques that are meant to generate
links from documentation to source code). We propose a
benchmark for traceability that includes all artifacts that
are typically produced during the development of a soft-
ware system and with end-to-end traceability linking. The
benchmark is based on an irrigation system that was elab-
orated in a book about software design. The main task
considered by the benchmark is the generation of traceabil-
ity links among different types of software artifacts. Such
a traceability benchmark will help advance research in this
field because it facilitates the evaluation and comparison of
traceability techniques and makes the replication of experi-
ments an easy task. As a proof of concept we used the bench-
mark to evaluate the precision and recall of a link generation
technique based on the vector space model. Our results are
comparable to those obtained by other researchers using the
same technique.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance
and Enhancement

General Terms
Standardization

∗Author funded by the Swiss National Foundation under
Project PDFMP2-122969

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-EVOL’11, September 5–6, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0851-9/11/09...$10.00.

1. INTRODUCTION
Traceability supports to a great extent the tasks of main-
taining and evolving software systems. In fact, it allows
tracing the implementation back to the requirements and
design documents and thus facilitates the comprehension of
the code. Traceability links are also useful for analyzing the
impact of change and estimating the effort needed for im-
plementing it. Furthermore, traceability links can be used
to ensure that all new requirements are implemented and all
impacted artifacts are updated.

Although very beneficial, traceability is rarely used because
it is expensive to implement and maintain [20]. Therefore, in
the last years, several researchers have developed techniques
and tools for generating traceability links automatically [1]
[12] [13] [15] [6] or semi-automatically [9]. The rapid progress
in this field of research has increased the need for performing
easy and rigorous validations and comparisons of traceability
techniques and tools.

To satisfy this need, the traceability community is currently
working on the definition of benchmarks for traceability [5].
A benchmark is “a test or set of tests used to compare the
performance of alternative tools or techniques” [17]. It is
difficult to acquire meaningful and non-trivial data sets that
can be used to create traceability benchmarks [5] because
there are almost no publicly available projects that include
traceability links.

In this paper, we present a candidate benchmark for trace-
ability that includes a rich data set with end-to-end trace-
ability links. We developed the benchmark based on the
software for an irrigation system that is published in a book
about software design [10]. The benchmark includes all the
typical artifacts that are produced during the development
of a software system. The main feature of the proposed
benchmark is that it provides end-to-end traceability links.
As a proof of concept, we used our benchmark to evaluate
the results obtained by the RETRO traceability link gener-
ation [13], and compared these results to those obtained by
other researchers using the same tool or the same technique.
The results we obtained were comparable to those obtained
by other researchers.

Our paper is structured as follows. In Section 2 we give a
brief introduction to traceability and discuss the main chal-
lenges related to the evaluation of new traceability tech-
niques. Section 3 is about the benchmark development:

first, we present the rationale for a traceability benchmark,
then we explain our benchmark and discuss the properties
that such a benchmark should have. We present a proof
of concept in Section 4, where we explain how we used our
benchmark to evaluate the results obtained from a traceabil-
ity link generation tool. In section 5 we discuss the threats
to validity and limitations of our benchmark. The next steps
of our work are presented in Section 6. Finally we discuss
the related work in Section 7.

2. BACKGROUND AND MOTIVATION
2.1 Traceability
Software traceability is defined as ”the ability to relate arte-
facts created during the development of a software system to
describe the system from different perspectives and levels of
abstraction with each other, the stakeholders that have con-
tributed to the creation of the artefacts, and the rationale
that explains the form of the artefacts” [21].

Traceability is used to support different maintenance activ-
ities [21]. It is useful for change impact analysis as it allows
identifying the parts affected by a change and thus estimat-
ing the effort needed for applying the change. It also sup-
ports software verification and validation as it allows check-
ing that all requirements have been implemented in the sys-
tem and that the system satisfies its specification. Program
comprehension can be much easier when traceability links
are available because developers can easily trace code ele-
ments back to the original requirements, which give the ra-
tionale behind the implementation. They can also trace code
elements back to the design and architecture documents to
get a more abstract view of the system.

Much research has been conducted to support the gener-
ation, the maintenance and the use of traceability links.
Among these three subjects, the generation of links is cur-
rently the most active one. The reason is that defining trace-
ability links is still the most important and the most chal-
lenging task. Additionally, maintaining and using traceabil-
ity links only make sense if the traceability links are defined.
Therefore, we focus our work on the generation of links.

Various approaches have been developed to generate trace-
ability links among different types of software artifacts auto-
matically. Most of these approaches are based on Informa-
tion Retrieval (IR) models such as the probabilistic IR model
or the vector space model. The probabilistic IR model com-
putes the probability that two documents are related and
uses the calculated probability to rank generated links [1].
In the Vector Space IR model, the similarity between two
documents is calculated as the cosine of the angle between
two vectors D1 and D2, where the elements of D1 are the
weights of the vocabulary terms in the first document and
D2 the weights of the terms in the second document [12].

Generated links are usually evaluated in terms of precision
(”the number of correct retrieved links (C) divided by C plus
the number of retrieved false positives” [11]) and recall (”The
number of correct retrieved links (C) divided by C plus the
number of correct missed links” [11]).

In order to improve the quality of the generated links, many
researchers combined IR techniques with other methods such

as analyst feedback [12], machine learning [6] or execution
tracing [8]. These methods improved the quality of gener-
ated links. However, the precision of generated links is still
low when the recall is high.

2.2 Evaluating traceability link generation
techniques: The Challenge

As more and more effort is spent to enhance and improve
traceability link generation techniques, the need for a rigor-
ous evaluation of these techniques is increasing. However, it
is difficult to find a project that includes a rich set of artifacts
and the traceability links among them so that it can be used
to evaluate link generation techniques. Indeed, as traceabil-
ity is expensive to implement, almost all publicly available
projects have either no or only partial traceability. Projects
that do have traceability links are in most cases confidential
and cannot be published. Hence, researchers usually develop
their own examples to evaluate their approaches. There are
two main problems related to developing one’s own example.
First, the development of a meaningful and large enough
example takes time. This distracts researchers from their
original goal, namely elaborating effective traceability tech-
niques. Second, the cases are constructed specifically for one
particular method or technique; therefore they are not nec-
essarily usable by other researchers in the field. For example,
if a researcher develops an example that includes the trace-
ability links between requirements and design documents,
the example can only be used for generating links between
these two types of artifacts. Whoever would like to evaluate
a technique for generating links between design documents
and code will have to develop a new example.

Comparing traceability techniques is also an important chal-
lenge. The quality of generated links depends considerably
on the used example. In [16], the authors obtained 90%
recall for a precision of 17% when using the vector space
model on the EasyClinic project, while they got 47% recall
for the same precision value when applying the same tech-
nique on the eTour project. Therefore, the effectiveness of
link generation techniques can only be compared when they
are applied on the same case.

Consequently, there is an urgent need for developing a case
that is both complete and publicly available to the commu-
nity. The case should include all artifacts that are produced
during the development of a software system, as well as the
traceability links among these artifacts. Such a case can
then serve as a benchmark for traceability. This can be done
by defining the tasks that should be performed on the case
and the measures that are used to evaluate the effectiveness
of the method used to perform the tasks. Constructing a
benchmark for traceability will not only solve the problems
mentioned above, it will also support advancing the research
in the field of traceability because it facilitates the replica-
tion of experiments and the comparison of results to each
other [17] [19].

In the next section, we present the basic components of
a traceability benchmark that includes many artifacts pro-
duced during the development of a software system and pro-
vides end-to-end traceability links among these artifacts.

Syntax: create(allocation:int, zones:Collection)
Pre: 0 < allocation and no irrigation cycle is in progress.
Post: A new automatic irrigation cycle is created and

immediately starts.
Syntax: create(zones : Collection)

Pre: No irrigation cycle is in progress.
Post: A new manual irrigation cycle is created.

Syntax: tick()
Pre: None.

Time dependent actions are completed:
AutoCycle ticks the current zone and checks if zone
irrigation is complete.
ManualCycle ticks all zones.
Zone ticks its valves and then updates water used.
Valve (if open) updates minutes open.

Post:

Create an automatic
irrigation cycle
(AutoCycle)

Create a manual
irrigation cycle
(ManualCycle)
One minute passes
(IrrigationCycle, Zone,
Valve)

(a) Statechart (b) Functional requirements

(c) Pre and Post conditions (d) AquaLush layers

2.3 Manual-Mode Operation
2.3.1 In manual-mode operation, AquaLush must allow users to select non-empty sets of
(working) valves and direct that they be opened or closed.
2.3.2 AquaLush must display the following data for each manually opened valve while it is
open:
(a) Its identifier
(b) Its location
(c) How long it has been open
(d) How much water it has used
(e) The moisture level reported by its associated sensor
2.3.3 AquaLush must display the total water used in manual irrigation.
2.3.3.1 AquaLush must set the total water used in manual irrigation to zero when it starts up
in manual mode or when it is switched to manual mode from automatic mode.
2.3.3.2 When no valve is open in manual irrigation mode, AquaLush must set the total water
used in manual irrigation to zero.

Figure 1: Examples of AquaLush Artifacts

3. THE BENCHMARK

3.1 Is it The Right Time for it?
Sim et al. [17] mention two conditions that need to be sat-
isfied before making attempts for constructing a benchmark
for traceability. First, the field of research needs to be ma-
ture enough so that the benchmark does not hold back the
progress in the community. Second, there must be a will-
ingness for collaboration within the community because this
facilitates the acceptance of the benchmark and its use.

Attempts to compare traceability approaches indicates that
the field is mature enough for the development of a bench-
mark. In the last years, there have been several studies com-
paring automated link generation approaches based on dif-
ferent information retrieval techniques [12] [1] [15] [16]. Re-
cently, researchers began to use data and cases developed by
other laboratories to evaluate their traceability techniques
(e.g., in [15], the authors evaluated their approach using the
data that were developed by other researchers in [2]). This
facilitates the comparison of these techniques to a great ex-
tent.

Many events for traceability illustrate the willingness for
collaboration within the community (e.g., the workshop on
Traceability in Emerging Forms of Software Engineering and
the International Symposium on Grand Challenges in Trace-
ability).

An exploration of the state of research in the field of trace-
ability shows that the discipline is beyond the cited pre-
conditions. In fact, the community is already aware that
a benchmark for traceability is needed. Indeed, this need
has been explicitly mentioned and discussed by a number of
researchers in the field [4] [7]. The traceability community
is also engaged in establishing a research infrastructure that
facilitates the running of traceability experiments [5]. This
infrastructure is expected to include a number of traceability
benchmarks.

3.2 Creating the Benchmark
3.2.1 AquaLush

We constructed the data of our benchmark based on an ex-
isting case study: AquaLush [10]. AquaLush is an irrigation
system that uses soil moisture sensors to control the irriga-
tion of the soil. The AquaLush case study is an illustra-
tive example from a book about software design. We chose
AquaLush because it includes a rich set of documents that
covers several artifacts produced during different develop-
ment stages. The AquaLush artifacts that we included in
our benchmark are the user-level requirements, the use case
model, the software requirements specification, the software
architecture document, the detailed design document and
the source code. The documents are written in natural lan-
guage and the source code is written in Java. The documents
contain a number of diagrams (e.g. class diagrams or state-
charts), tables and GUI screenshots. Figure 1 presents some
examples of the AquaLush artifacts.

Requirements Documents Design and Architecture Documents

Tests
User-Level

Requirements

Software Requirements
Specification

Use Cases

Software Architecture
Document

Detailed Design
Document

Source Code Unit Tests

High-level Tests

UML
Diagrams

62

52

375

168

263

1803

1566

81

150

177

108

151

Implemented
Partially implemented

Figure 2: The data set and answer set of the benchmark

The AquaLush project was developed for pedagogical pur-
poses, therefore it includes documents that reflect the prac-
tices lectured in software engineering courses. We found a
few inconsistencies among some of the artifacts (e.g. meth-
ods mentioned in the design document but not implemented
in the code) and a number of bugs in the implementation,
but these are typical problems that are likely to be found in
any software project. We did not fix these problems as we
did not want to alter any of the project data.

3.2.2 Benchmark Components
The design of our benchmark was inspired by the work of
Dekhtyar et al. [7] who decompose a benchmark for trace-
ability into five components: data set, tasks, answer set,
measures and software/data format. We detail each of these
components in the following paragraphs.

Data Set. Our goal was to develop a complete data set that
covers the main artifacts produced during the development
of a software system. We developed the data set based on the
AquaLush case study. We took the existing AquaLush docu-
ments, which already cover artifacts from the requirements,
design and implementation stages and added tests in order
to cover the testing stage. We developed two types of tests:
unit tests and high-level tests. Both kinds of tests are auto-
mated and implemented using JUnit1. We used the follow-
ing testing techniques to develop the unit tests [3]: equiva-
lence partitioning, boundary-value analysis and branch cov-
erage. We also considered the Liskov Substitution Princi-
ple [14] which states that if a type B is a subtype of another

1http://www.junit.org/

type A in an object-oriented program, then it should be pos-
sible to replace objects of type A with objects of type B each
time an object of type A is used without having to change
the rest of the program. The unit tests cover all classes
except those in the user interface layer and in the start-up
layer. The high-level tests have been developed according
to the use cases available in the requirements documents.
They cover both the basic and alternative flows of the use
cases. Table 1 lists the documents in the data set.

Table 1: Size estimation of the benchmark data set

Document

User-level requirements 49 statements 599 words

Use Cases (one use case includes

several extensions) 8 use cases 2075 words

Software requirements specification 372 statements 7370 words

Software architecture document 109 statements 5497 words

Detailed design document 64 statements 3803 words

Diagrams

Source code 75 classes 11 KLOC

Tests 93 classes 15 KLOC

Size

23 diagrams

To manage the artifacts, we used two tools: DOORS2 and
Rhapsody3. Textual documents, tables and screenshots were
entered in DOORS. Each message is entered as one element
in DOORS. If a title (or a subtitle) has only one message
below it then the title and the message are merged in one

2http://www.telelogic.com/products/doors/
3http://www-01.ibm.com/software/awdtools/rhapsody/

element. In the opposite case, the title is considered as one
element. The UML diagrams were extracted from the ar-
chitecture and design documents and were entered in Rhap-
sody.

Tasks. There are various traceability related tasks that can
be performed using the AquaLush data set, including the
use of traceability links among the artifacts for identifying
the impact of a change or for propagating changes among
the artifacts. In this work, we focus on defining traceability
links.

We intend to evaluate and compare the effectiveness of meth-
ods and tools in generating complete and correct traceability
links among different types of artifacts. We are especially in-
terested in the generation of end-to-end vertical traceability
linking (1) the requirements to the design and architecture
documents and(2) the architecture documents to the source
code and tests (Figure 2). We also consider the generation
of links between high-level tests and requirements because
this high-level tests are meant to check that the require-
ments are satisfied and are therefore related to them. The
resulting links allow tracing any artifact to any other either
directly or by going through an intermediate artifact. For
example, it is possible to trace elements from the require-
ments specification to elements in the code by first finding
elements in the software architecture document related to
the requirements and the finding elements related to these
architectural elements. The proposed tasks do not depend
on any specific traceability tool or technique and they can
be achieved manually or automatically.

Answer Set. The answer set (or ground truth) is the set
of correct traceability links that relate the AquaLush arti-
facts to each other. We defined these links manually among
the main AquaLush artifacts as presented in Figure 2. The
arcs in Figure 2 are labeled with the numbers of traceabil-
ity links that we have defined. We used DOORS to define
links among all the textual artifacts, tables and pictures.
For UML diagrams, we used Rhapsody, which allows us to
link internal elements of the diagrams (e.g. link a class or
a method). We also used DOORS and Rhapsody to define
links pointing to the source code. Links to the source code
point either to a class or to a package.

We defined our links according to the following rule: an
element B is related to another element A if B is derived from
A or if B gives additional and useful information about A.

There are a few elements (methods, constructors and classes)
that are mentioned in the architecture and design documents
but which are not implemented in the code. As we did not
want to modify any of the existing AquaLush artifacts, we
did not link these elements to the code.

Measures. To evaluate the effectiveness and efficiency of
a traceability techniques, we use three measures: precision,
recall and time. Precision and recall (see Section 2.1) are
frequently used to evaluate link generation techniques. The
time measure is meant to quantify the time needed by a
given technique for generating the traceability links.

Software/Data Format. The format of the benchmark data
should be easy to use and also be independent of any specific
tool. As DOORS and Rhapsody documents do not satisfy
this property, we exported all textual data into HTML doc-
uments and all UML diagrams into XMI documents. There
are two advantages for using HTML. First, it allows brows-
ing the documents easily and navigating among related ar-
tifacts using simple clicks. Second, HTML documents are
well structured and any specific information can easily be
extracted from them. For example, it is possible to extract
the traceability links and create a traceability matrix out of
them using a small piece of code. We used XMI for UML di-
agrams because it is a standard format for exchanging UML
diagrams. UML diagrams are available as images too. We
also provide the Doors and Rhapsody documents for those
who prefer to use these tools.

3.3 Desiderata for a Benchmark
To be successful, a benchmark should satisfy some proper-
ties. Sim et al. [17] identified seven desiderata for a bench-
mark in the field of software engineering: accessibility, af-
fordability, clarity, relevance, solvability, portability and scal-
ability. Dekhtyar et al. [7] identified five additional require-
ments for a traceability benchmark: support for traceabil-
ity in multiple software engineering fields, independence of
methodology, ground truth, accuracy testing and scalabil-
ity testing. In this section, we discuss to which extent our
benchmark meets these characteristics.

Accessibility. The benchmark data need to be easy to ob-
tain and easy to use. To satisfy this property, we made the
benchmark public4. The data includes all the AquaLush
artifacts mentioned in the previous section and the trace-
ability links relating the artifacts to each other. Anyone can
get the data, use it and eventually extend it to meet other
requirements.

Relevance. The benchmark tasks should be representative
of the typical traceability operations that are performed in
real life. This condition is satisfied because the AquaLush
artifacts are representative of the main artifacts produced
during the development of a software system. The task of
generating traceability links is also a typical operation that
has been addressed by many researchers in the traceability
field.

Clarity. AquaLush is an illustrative example from a book
about software design. Therefore, it easy to understand and
self-contained. The benchmark task (generate traceability
links among various artifacts) is a classical and clear task
that has already been performed by many researchers. The
benchmark measures (precision, recall and time) are also
simple and classical measures that have been used by re-
searchers in the field.

4The benchmark is published at:
http://www.ifi.uzh.ch/rerg/research/aqualush/

Affordability. The benchmark must not be difficult or ex-
pensive to run, because otherwise researchers will not use it.
The AquaLush project is not large and the link generation
task is clear, therefore the benchmark is easy to use. Before
using the benchmark, people may need to modify the format
of the artifacts and the traceability links in such a way that
they can be used by the tools or approaches they are using.
This task can easily be automated in most of the cases.

Solvability. It should be possible to produce a good solu-
tion for the benchmark task. Our traceability benchmark
is solvable and the solution, which is the set of traceability
links among the different artifacts, is provided within the
benchmark.

Portability. The benchmark should be portable to different
tools and techniques. Both the AquaLush artifacts and the
traceability links among the artifacts do not depend on any
specific tool or technique. The data is available in a stan-
dard format (HTML and XMI). Therfore, it can be used to
evaluate any tracing tool or technique.

Scalability. Scalability might be the major limitation of
this benchmark. While the AquaLush project includes many
types of artifacts, it is not a large project and thus it is not
representative of large systems. To improve the scalability
of the benchmark, AquaLush may be extended with new
features. This extension is left for future work.

Support of multiple SE fields. The benchmark should be
rich enough to support various tasks related to tracing. Cur-
rently, we only consider the generation of links among vari-
ous types of artifacts. However, as our benchmark includes
a complete data set with end-to-end traceability, it can be
used for evaluating tasks from other software engineering
processes such as verification and validation or maintenance
and evolution. For example, analyzing the impact of chang-
ing one requirement on the rest of the artifacts is a task in
software maintenance that can be evaluated with our bench-
mark.

Independence of methodology. The benchmark should
not depend on any specific tracing tool or technique. This re-
quirement is satisfied by our benchmark. In fact, all tracing
methods, whether manual, semi-automated or automated,
can be used to solve the task of defining traceability links
among the AquaLush artifacts.

Ground truth. The true answer for each of the benchmark
tasks should be provided. In our case, the true answer is the
set of traceability links that relate the AquaLush artifacts
to each other. We have defined these traceability links and
we provide them with the benchmark.

Accuracy testing. The benchmark should allow evaluating
the accuracy of tracing techniques. In our benchmark, we
assess the accuracy through the precision and recall mea-
sures.

4. PROOF OF CONCEPT
4.1 Experiment
As a first application of our benchmark, we used an informa-
tion retrieval tool to generate traceability links among some
artifacts in the benchmark and then compared the generated
links with the ground truth (that is, the traceability links
we defined manually). We then compared the results we
obtained in term of precision and recall to the results pub-
lished by other researchers who used the same traceability
technique on other case studies. We considered two tasks:
generating links from the user-level requirements (ULR) to
the software requirements specification (SRS) and generat-
ing links from the software architecture document (SArch)
to the code.

The goal of this experiment is to answer the following ques-
tions:

Q1: Are the results (precision/recall) obtained when gener-
ating traceability links for the AquaLush project sim-
ilar to those obtained by other researchers using the
same techniques on other cases? What conclusion can
we derive from these results concerning the relevance
of our benchmark?

Q2: Do we get similar results when we use the same trace-
ability tool to extract links (1) between two documents
written in natural language and (2) between a docu-
ment written in natural language and source code?

To run our experiment we used a research tool for gener-
ating traceability links: RETRO (REquirements TRacing
On target) [13]. RETRO provides a number of IR methods
that can be used for recovering links. It also allows filter-
ing candidate links by specifying a threshold value for the
traces that should be considered: if the threshold is 0.15,
then only the links having relevance greater than 0.15 are
kept. Analysts can enter feedback into RETRO to improve
the quality of generated links, but in our experiment we did
not use the feedback feature.

RETRO takes two lists of textual files as input: the high-
level documents and the low-level documents. Therefore,
we had to split the documents (ULR, SRS and SArch) into
small subdocuments, where each subdocument contains one
element that should be traced. For the source code, we
considered each class as a single document. As RETRO
only considers textual documents, we removed all pictures
and diagrams from the document. We also extracted the
content of all tables into text files.

We generated links using the default tracing method in
RETRO, which is the vector space retrieval with tf-idf (term
frequency - inverse document frequency) term weighting.
Then we filtered links with different threshold values and
observed the effect of the filtering on precision and recall.

A 1
A 1.1

A 1.2

B 1
B 1.1

B 1.2

Original answer set

A 1
A 1.1

A 1.2

B 1
B 1.1

B 1.2

Altered answer set

Figure 3: Splitting traceability links through the hi-
erarchy

The resulting links were compared with the ground truth of
our benchmark automatically.

When evaluating the links generated between the architec-
ture document and the code, we were forced to alter our
manual traceability links (i.e., the answer set). The reason
is that RETRO does not consider the hierarchical struc-
ture of documents; so it only generates links pointing to
classes. However, in AquaLush, 32 of our manual links point
to whole packages instead of individual classes. For exam-
ple, we linked general statements about the GUI to the UI
package. To make the comparison of links possible, we split
the links pointing to a package into several links pointing
to each of the classes within the package as illustrated in
Figure 3. We call the experiment we ran with these links
AquaLush (+). We also ran a second experiment (AquaLush
(-)) where we neglected all the links pointing to packages.

Managing the titles and subtitles was also a challenge. Titles
contain relevant keywords related to the statements under
them. But existing traceability tools do not take the struc-
ture and titles of documents into consideration. Therefore,
in this experiment, we deleted all the elements that contain
a title only. We ran an additional experiment, which we do
not report in this paper, while keeping the titles in the soft-
ware architecture document. The results were very similar
to those obtained from the experiment with no titles.

4.2 Results
In this section, we compare the precision and recall we ob-
tained with AquaLush to those published in [16] and in [18].
We also compare the results obtained in the two link gener-
ation tasks.

In [18], Sundaram et al. used RETRO to generate trace-
ability links between high and low-level requirements for two
data sets: MODIS and CM-1. MODIS contains 19 high-level
requirements and 49 low-level requirements. There are 41
links between high-level and low-level requirements. CM-1
has 220 high-level requirements, 235 low-level requirements
and there are 361 links among these requirements.

We took the results they obtained using tf-idf and no ana-
lyst feedback and compared them to the precision and re-

Figure 4: Precision and Recall for traceability links
generated from the user-level requirements (ULR)
to the software requirements specification (SRS)

call we obtained when generating links from the user-level
requirements to the software requirements specification of
AquaLush. As we used the same IR method, the same tool
and similar types of artifacts as in [18], we expected to ob-
tain results that are comparable to each other. The results
are reported in Figure 4. The precision and recall obtained
for CM-1 and for AquaLush are very similar.

Comparing the results obtained from generating links be-
tween source code and architecture documents with results
obtained by other researchers was more challenging. In fact
we could not find results for these types of documents, but
we found results for using IR methods to get links between
code and other types of artifacts.

In [16], Oliveto et al. compared different IR techniques for
generating links between use cases and source code for two
data sets: EasyClinic and eTour. EasyClinic has 30 use
cases, 47 classes and 93 correct links while eTour has 58 use
cases, 116 classes and 336 correct links. Among the various
results presented in the paper, we considered those obtained
with the Vector Space Model. These results are reported in
Figure 5.

The recall obtained with both AquaLush experiments is
lower than the one obtained with EasyClinic and eTour for
precision values that are over 17% (no recall values were re-
ported in [16] for lower precision). However, the difference
is not huge for the case of AquaLush (-) and eTour.

In Figure 6, we report the results we obtained for both link
generation tasks. Globally, the results we obtained when
generating links from ULR (user-level requirements) to the
SRS (software requirements specification) are comparable to
those obtained when generating links between SArch (soft-
ware architecture document) and code.

Answering Q1. The results we obtained when generating
traceability links between ULR and SRS are very similar
to those obtained by Sundaram et al. [18] when using the

Figure 5: Precision and Recall for traceability links
generated from the software architecture document
(SArch) to the source code

same tool on similar types of artifacts from the project CM-
1. This similarity is a positive indicator for the fitness of
our benchmark for evaluating traceability generation tech-
niques, because the developers of the RETRO tool could
have obtained similar results if they used our benchmark for
validation.

The precision we obtained for generating links between SArch
and code are not as good as those obtained by Oliveto et
al. in [16]. There are various explanations for the lower
precision we obtained in this experiment. First, the use of
different cases with different types of documents (use cases
in [16] vs. architecture document in our experiment) is likely
to give different results. Second, we did not use the same
tool (no tool was mentioned in [16]), so the technique they
used for generating links may be different from ours. More-
over, they do not mention which term weighting was used,
so it is possible that it is not the one we used (tf-idf). The
text normalization may also be different, as code and tex-
tual documents can be normalized in different ways. Finally,
our results are probably affected by the modifications made
to the manual links (see Section 4.1) in order to make the
comparison possible.

Answering Q2. RETRO performs similarly when generat-
ing traces between two documents written in natural lan-
guage and when generating traces between a document in
natural language and source code. While we can make no
reliable conclusions about the performance of RETRO based
on a single experiment, the experiment suggests that RETRO
could achieve comparable results when used for tracing doc-
uments written in natural language and when used for source
code.

4.3 Lessons Learned
In this section, we present a number of problems that we
faced during the development of our benchmark and how
we mitigated them.

Figure 6: Precision and Recall for traceability links
generated from the user-level requirements (ULR)
to the software requirements specification (SRS) and
from the software architecture document (SArch) to
the source code

Rules for defining links. When defining the traceability
links, deciding whether or not two elements are related was
sometimes difficult. In the literature, we could not find
guidelines about how to define traceability links within a
project. Therefore, we defined our own guidelines: we con-
sider two elements A and B to be related only if B is de-
rived from A or if B gives additional and useful information
about A. There may be other ways to define traceability
links among artifacts depending on the purpose behind their
implementation. We encourage traceability researchers to
explore what kinds of links are most useful and how these
links should be defined.

Support for hierarchical documents. Current techniques
for generating traceability links do not support the hierarchi-
cal structure of documents. For example, they do not allow
linking one element to a whole section or subsection in a
document. They also do not take titles and subtitles into
consideration. In the answer set of the benchmark, there are
links pointing from elements in the architecture document
to packages in the code. It was not possible to compare
these links directly to those generated by RETRO because
the links generated by RETRO only point to classes. To
overcome this problem, we split the links pointing to a cer-
tain package into several links pointing to every class within
the package (see section 4.1).
Supporting the hierarchical structure of documents is an in-
teresting direction for future research.

5. THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our
benchmark.

Construct Validity. To evaluate the effectiveness of trace-
ability approaches, we use two classical measures that have
been extensively used to evaluate IR based approaches: pre-
cision and recall. However, these measures may not cover all

the strengths and weaknesses of a tracing method or tool.
Therefore, it would be interesting to consider additional
measures that assess other dimensions of the traceability
tool or method, such as the usefulness of the generated links
for program comprehension.

Internal validity. The AquaLush artifacts used for creat-
ing the benchmark were developed by a third party who was
not aiming at using them for traceability purposes. This
reduces the risk of having artifacts that are tailored for fa-
cilitating the generation of traceability links among them or
artifacts that are adapted to some special traceability tool
or technique.

External validity. AquaLush is a relatively small project
which has high-quality artifacts. It is therefore not repre-
sentative of large real-world software projects having incom-
plete and low-quality artifacts.

The evaluation of the effectiveness of a tool or technique
depends on the example used for the evaluation. In most
cases, we get different results when we apply the same tool
or technique on different case studies. Therefore, a single
case study is not enough to draw generalizable conclusions.
A good benchmark should include documents that are rep-
resentative of different types of projects. Thus, it is impor-
tant to expand our benchmark in the future by adding other
types of projects.

Other limitations. A major limitation of our benchmark is
that the traceability links we defined (i.e., the ground truth)
have not been validated other than through a careful inspec-
tion by us. To strengthen the validity of the traceability
links, we intend to ask the original developer of AquaLush
to evaluate the adequacy of our links. Currently, our answer
set also lacks direct traceability links from requirements to
the source code. We only trace from requirements to code
via the software architecture (see Figure 2). We might add
the direct requirements-to-code links in a future version of
our benchmark.

6. NEXT STEPS
We are currently finalizing the answer set by completing the
traceability links among the artifacts as presented in Fig-
ure 2. For future work, we intend (1) to use the benchmark
to compare different traceability links and tools and (2) to
extend the benchmark to cover other traceability related
tasks.

Using the benchmark. We will use our benchmark to com-
pare the effectiveness of different traceability link generation
techniques and tools. The goal of the experiment will be to
find which tool or technique is most efficient for each type
of document. Each technique/tool will be used to gener-
ate links among the different AquaLush documents and the
results will be compared to each other.

Extending the Benchmark. We intend to support the fol-
lowing three tasks in the future: Analyzing the impact of
change, tracing bug reports and updating traceability links.
The goal of the impact analysis task is to identify all the ar-
tifacts affected by a given change. To cover this task, we will
define a number of changes (like bug fixes, changes in the
external behavior of the system or changes in the design)
and identify all the artifacts affected by the change. We
will also define measures that estimate the time needed for
performing the analysis and the correctness of the obtained
results.

The bug-tracing task is about generating traceability links
between bug reports and source code. For this task, we will
extend AquaLush with some bug reports and traceability
links from the bug reports to the source code.

Updating traceability links is a challenging task that can be
evaluated using our benchmark. We will create a second re-
lease of the AquaLush artifacts and define traceability links
among them. The task will then be to identify all links
affected by the changes in the artefacts and update these
links.

7. RELATED WORK
To the best of our knowledge, none of the existing case stud-
ies used for evaluating traceability technique cover all the
artifacts that are covered by our benchmark and provide
end-to-end traceability among the artifacts.

Hayes at al. [12] use data sets obtained from two NASA
projects: CM-1 and MODIS. These data sets only cover
high-level and low-level requirements. In [16], Oliveto et al.
used data sets from the eTour and the EasyClinic projects.
eTour only includes use cases and code classes. EasyClinic
includes uses cases, a textual representation of interaction
diagrams, source code and test cases. However, it does not
contain a software requirements specification, an architec-
tural document nor a design document.

iTrust5, a medical application, has also been used as a trace-
ability case. It includes a requirements specification, source
code and a testing plan. Again, we did not find any design
or architecture document.

Antoniol et al. [1] used two case studies (LEDA and Al-
bergate) to evaluate their traceability recovery techniques.
They only used the source code and the manual pages of
LEDA (a C++ framework that is freely available). No other
artifacts were mentioned.

Albergate is a software system that has been developed by
students based on 16 functional requirements. The Alber-
gate case study is not published. According to [1], Albergate
includes all the documentation related to the entire software
development process, but traceability links were only defined
between the 16 requirements and the classes implementing
them. Furthermore, the documentation of Albergate is writ-
ten in Italian, which is problematic for many researchers.

5http://agile.csc.ncsu.edu/iTrust

8. CONCLUSION
In this paper, we presented a candidate benchmark for trace-
ability based on a software for an irrigation system. Among
other features, our benchmark includes all the typical arti-
facts that are produced during the development of a soft-
ware system and it provides end-to-end traceability linking
among these artifacts. The benchmark data, which are pub-
licly available, do not depend on any specific traceability tool
or technique. Therefore, researchers can use our benchmark
to easily assess the effectiveness of their traceability meth-
ods. The benchmark is also convenient for the comparison
of traceability methods.

The benchmark we are proposing is a first piece of an en-
visaged set of benchmarks that the traceability community
needs. Our benchmark covers traceability tasks that require
a rich set of artifacts with end-to-end traceability linking.
We hope and envisage that other researchers will contribute
further benchmarks featuring other characteristics such as
very large data sets or traceability links evolving over time.

9. ACKNOWLEDGMENTS
Our work is partially funded by the Swiss National Science
Foundation. We thank Professor Christopher Fox for pro-
viding us with the AquaLush artifacts. We also thank Dr.
Jane Cleland-Huang for giving us useful information about
existing traceability data sets.

10. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,

and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, 2002.

[2] G. Antoniol, G. Canfora, A. de Lucia, and G. Casazza.
Information retrieval models for recovering traceability
links between code and documentation. In Proceedings
of the International Conference on Software
Maintenance, ICSM’00, pages 40–49, 2000.

[3] David Caspar. A benchmark for software traceability.
Bachelor’s thesis, University of Zurich, 2011.

[4] J. Cleland-Huang, A. Dekhtyar, J. Hayes, G. Antoniol,
B. Berenbach, A. Eyged, S. Ferguson, J. Maletic, and
A. Zisman. Grand challenges in traceability. Technical
Report COET-GCT-06-01-0.9, Center of Excellence
for Traceability, 2006.

[5] J. Cleland-Huang, A. Czauderna, A. Dekhtyar,
O. Gotel, J.H. Hayes, E. Keenan, G. Leach,
J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman,
G. Antoniol, B. Berenbach, and P. Maeder. Grand
challenges, benchmarks, and tracelab: Developing
infrastructure for the software traceability research
community. In Proceedings of the 6th International
Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE’11, 2011.

[6] J. Cleland-Huang, A. Czauderna, M. Gibiec, and
J. Emenecker. A machine learning approach for tracing
regulatory codes to product specific requirements. In
Proceedings of the 32nd International Conference on
Software Engineering, ICSE’10, pages 155–164, 2010.

[7] A. Dekhtyar, J.H. Hayes, and G. Antoniol.
Benchmarks for Traceability? In Proceedings of

Traceability in Emerging Forms of Software
Engineering, TEFSE’07, 2007.

[8] M. Eaddy, A.V. Aho, G. Antoniol, and Y.-G.
Gueheneuc. CERBERUS: Tracing requirements to
source code using information retrieval, dynamic
analysis, and program analysis. In Proceedings of the
16th International Conference on Program
Comprehension, ICPC’08, pages 53–62, 2008.

[9] A. Egyed. A scenario-driven approach to trace
dependency analysis. IEEE Transactions on Software
Engineering, 29(2):116–132, 2003.

[10] C. Fox. Introduction to Software Engineering Design:
Processes, Principles and Patterns with UML2.
Addison Wesley, 2006.

[11] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram.
Improving after-the-fact tracing and mapping:
supporting software quality predictions. IEEE
Software, 22(6):30–37, 2005.

[12] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram.
Advancing candidate link generation for requirements
tracing: the study of methods. IEEE Transactions on
Software Engineering, 32(1):4–19, 2006.

[13] J.H. Hayes, A. Dekhtyar, S.K. Sundaram, E.A.
Holbrook, S. Vadlamudi, and A. April. REquirements
TRacing On target (RETRO): improving software
maintenance through traceability recovery.
Innovations in Systems and Software Engineering,
3(3):193–202, 2007.

[14] B. Liskov and J. Wing. A new definition of the
subtype relation. In Proceedings of the 7th European
Conference on Object-Oriented Programming,
ECOOP’93, pages 118–141, 1993.

[15] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In Proceedings of the 25th
International Conference on Software Engineering,
ICSE’03, pages 125–135, 2003.

[16] R. Oliveto, M. Gethers, D. Poshyvanyk, and
A. De Lucia. On the equivalence of information
retrieval methods for automated traceability link
recovery. In Proceedings of the 18th International
Conference on Program Comprehension, ICPC ’10,
pages 68–71, 2010.

[17] S. Elliott Sim, S. Easterbrook, and R. C. Holt. Using
benchmarking to advance research: a challenge to
software engineering. In Proceedings of the 25th
International Conference on Software Engineering,
ICSE’03, pages 74–83, 2003.

[18] S. K. Sundaram, J. H. Hayes, and A. Dekhtyar.
Baselines in requirements tracing. In Proceedings of
the 2005 workshop on Predictor models in software
engineering, PROMISE’05, pages 1–6, 2005.

[19] W.F. Tichy. Should computer scientists experiment
more? IEEE Computer, 31(5):32 –40, 1998.

[20] R. Watkins and M. Neal. Why and how of
requirements tracing. IEEE Software, 11(4):104–106,
1994.

[21] A Zisman G Spanoudakis. Software Traceability: A
Roadmap. Handbook of Software Engineering and
Knowledge Engineering, World Scientific Publishing,
2005.

