
CASA – A Framework for

Dynamically Adaptive Applications

DOCTORAL THESIS

FOR THE DEGREE OF A

DOCTOR OF INFORMATICS

AT THE FACULTY OF ECONOMICS,

BUSINESS ADMINISTRATION AND

INFORMATION TECHNOLOGY

OF THE

UNIVERSITY OF ZURICH

by

ARUN MUKHIJA

from

India

Accepted on the recommendation of

PROF. DR. MARTIN GLINZ

PROF. DR. GUSTAVO ALONSO

December 2007

The Faculty of Economics, Business Administration and Information Technology

of the University of Zurich herewith permits the publication of the aforementioned

dissertation without expressing any opinion on the views contained therein.

Zurich, December 5, 2007*

The Vice Dean of the Academic Program in Informatics: Prof. Dr. Gerhard Schwabe

*Date of the graduation

To my parents,

for teaching me to think independently.

Acknowledgments

This work would never have come to fruition without the invaluable help, support and

guidance provided by many people. Although words can never express my gratitude

to them, I would simply like to acknowledge them here for their contributions to my

research and to my life as a researcher.

First and foremost, Thanks to my advisor, Prof. Martin Glinz. He has been truly

a Doktorvater (a German word for Doctoral advisor, which literally means Doctor-

Father) to me, giving me the freedom to explore new ideas, and, at the same time,

providing his able guidance and motivation to keep me focussed on such an interesting

research topic. His analytically deep questions and attention to details have helped

me greatly in identifying critical research issues, and in finding solutions to both our

satisfaction. He has also been a source of inspiration by way of his thorough and

flawless working style. I would like to thank him especially for his understanding and

encouragement, which proved very beneficial in creating a productive and pleasant

working atmosphere. He has been an ideal advisor that I could ask for.

Thanks to Prof. Gustavo Alonso for agreeing to be my co-advisor, and for pro-

viding insightful comments and suggestions that helped to improve the quality of

this dissertation.

Thanks to NCCR-MICS (National Center of Competence in Research on Mobile

Information and Communication Systems, a center supported by the Swiss National

Science Foundation) for partially funding my work, and for providing an excellent

platform for disseminating results and getting feedback at different stages of my

work through its various scientific conferences and workshops.

Thanks to Rolf Hintermann, Tobias Reinhard and Adrian Gygax for their help

with the implementation and evaluation of the prototype system.

Thanks to the members of IfI (Institut für Informatik), and in particular to the

members of our research group, for providing an intellectually-stimulating and fun-

iii

iv

filled environment – both within and outside of work. Some names need a special

mention here: Christian, Martin, Nancy, Norbert, Samuel, Silvio, Stefan H., Tobias,

Uta and Yong – Thanks folks for making my time in Switzerland such a special and

memorable one!

Thanks to my family and friends for their support. Unfortunately not all of them

can be listed here, but special Thanks to my brother Rakesh and his family for the

happy times spent together which helped me re-energize myself to face new challenges

in research; in particular, Thanks to Rakesh for his constant encouragement.

Lastly, I dedicate this dissertation to my parents. I will forever remain indebted

to them for their love and sacrifices.

It is not the strongest of the species that survives,

nor the most intelligent,

but the one most responsive to change.

Charles Darwin

Abstract

More and more software applications are deployed in dynamic computing environ-

ments. These environments are characterized by frequent and unpredictable changes

in the availability of resources to software applications, as well as changes in the

contextual information of interest to the applications. Some of these changes might

present an opportunity for an application to improve its performance or to provide

a more relevant functionality, while others might pose a threat to the continued

execution of the application. In either case, a software application should be able

to adapt its behavior dynamically in response to runtime changes in its execution

environment.

This dissertation describes the CASA (Contract-based Adaptive Software Archi-

tecture) framework, which enables the development and operation of dynamically

adaptive applications. The CASA framework integrates a number of different adap-

tation mechanisms with an aim to comprehensively meet the adaptation needs of

software applications executing in dynamic environments. These adaptation mecha-

nisms can collectively change any part of an application’s configuration at runtime,

including changing the application components, aspects, attributes and lower-level

services. The design of the CASA framework is based on the software engineering

principle of separation of concerns. The separation of concerns allows implement-

ing the adaptation concerns as a reusable and shareable runtime adaptation system,

while the business concerns of an application are implemented as a part of the ap-

plication code. The adaptation policy of every application is defined in a so-called

application contract in the CASA framework. The application contract is defined

using an XML-based specification language, and allows changing the adaptation pol-

icy at runtime. The ability to carry out runtime changes in the adaptation policy is

useful for customizing the adaptation policy according to a user’s current needs and

preferences, as well as for evolving the adaptation policy to include new adaptation

capabilities.

vii

Zusammenfassung

Mehr und mehr kommen Software Applikationen in dynamischen Umgebungen

zum Einsatz. Solche Umgebungen lassen sich durch häufige und unvorhersehbare

Änderungen charakterisieren, welche die Ressourcenverfügbarkeit für Software Ap-

plikationen beeinflussen. Zusätzlich können sich kontextabhängige Informationen

ändern, die für Applikationen von Bedeutung sind. Einige dieser Änderungen können

einer Applikation die Möglichkeit bieten, ihre Leistung zu verbessern oder weitere,

passendere Funktionalität anzubieten. Andere Änderungen hingegen können den

weiteren Ablauf der Applikation gefährden. So oder so, Software sollte in der

Lage sein, ihr Verhalten dynamisch anzupassen, um auf Änderungen während der

Laufzeit angemessen zu reagieren.

Diese Dissertation beschreibt das CASA (Contract-based Adaptive Software

Architecture) Framework, welches die Entwicklung und Ausführung von dynamisch

adaptiven Applikationen ermöglicht. Das CASA Framework integriert eine Reihe

von verschiedenen Adaptionsmechanismen mit dem Ziel, den Anforderungen von

Software Applikationen, die in dynamischen Umgebungen ablaufen, umfassend

nachzukommen. Diese Adaptionsmechanismen können zusammen jeden Teil der

Konfiguration einer Applikation zur Laufzeit ändern, insbesondere Komponenten,

Aspekte, Attribute und systemnahe Dienste. Das Design des CASA Frameworks

basiert auf dem softwaretechnischen Prinzip der �Separation of Concerns�. Dies

erlaubt es, die Adaptionsmechanismen als ein wiederverwendbares und gemeinsam

nutzbares System zu implementieren, während die eigentliche Funktionalität im Ap-

plikationscode implementiert ist. Im CASA Framework wird die Adaptionsstrategie

jeder Applikation in einem sogenannten �Application Contract� festgelegt. Ein

solcher �Application Contract� wird mittels einer XML-basierten Spezifikation-

ssprache definiert. Dadurch lassen sich Strategien zur Laufzeit ändern und anpassen.

Die Möglichkeit, die Strategie während der Laufzeit zu ändern, ist zum einen sehr

nützlich, um die Strategie an die jeweiligen Bedürfnisse und Präferenzen eines

ix

x

Benutzers anzupassen, und zum anderen, um eine Evolution der Strategie zu

ermöglichen.

Contents

1 Introduction 1

1.1 Need for dynamic adaptation of applications 1

1.2 State of the art . 2

1.3 Need for a framework-based approach 6

1.4 Human metaphor to application adaptation 9

1.5 Contributions of the dissertation . 11

1.6 Example applications . 13

1.7 Organization of the dissertation . 16

2 The CASA Framework 19

2.1 Design goals of the CASA framework 19

2.2 Overview of the CASA framework 21

2.3 Design of the CASA framework . 24

2.3.1 Design overview . 24

2.3.2 Monitoring the execution environment 26

2.3.3 Adapting applications . 29

2.4 Application contract specifications 34

2.5 Working of the CASA framework . 39

2.5.1 Initial activation of an application 39

2.5.2 Runtime changes in the execution environment 43

2.5.3 Dynamic changes in adaptation policy 44

2.6 Service negotiations . 45

2.6.1 Simple negotiations . 46

2.6.2 Complex negotiations . 48

2.7 Discussion . 51

xi

xii Contents

2.7.1 Capabilities and limitations of the CASA framework 51

2.7.2 Using the CASA framework in practice 53

3 Monitoring the Execution Environment 57

3.1 Monitoring resources . 57

3.1.1 Monitoring hardware resources 57

3.1.2 Monitoring software services 65

3.2 Resource allocation algorithm . 67

3.2.1 Allocating resources for initial activation 68

3.2.2 Reallocating resources due to a change in availability 74

3.2.3 Complexity of the resource allocation algorithms 76

3.3 Monitoring contextual information 77

4 Dynamic Adaptation of Lower-level Services and Aspects 83

4.1 Dynamic adaptation of lower-level services 84

4.2 Dynamic adaptation of aspects . 90

5 Dynamic Recomposition of Components 97

5.1 Introduction . 97

5.2 Dynamic replacement of components 102

5.2.1 Dynamic replacement process 103

5.2.2 Transient state transfer . 115

5.2.3 Multiple calls executing concurrently 120

5.2.4 Discussion . 121

5.3 Dynamic addition and removal of components 124

5.3.1 Dynamic addition of components 124

5.3.2 Dynamic removal of components 125

5.4 Sequential vs. atomic recomposition 126

5.5 Discussion . 130

6 Prototype Implementation and Performance Evaluation 133

6.1 Implementation . 134

6.2 Performance evaluation . 141

7 Related Work 155

7.1 Middleware level adaptation . 156

Contents xiii

7.2 Application code level adaptation . 159

7.3 Software architecture level adaptation 163

8 Conclusion and Future Work 167

8.1 Concluding discussion . 167

8.2 Future directions of work . 169

Bibliography 171

Appendices

A XML Schema of the Application Contract 181

B Resource Allocation Algorithms 187

B.1 Algorithm for new request . 187

B.2 Algorithm for allocating resources 188

B.3 Algorithm for compulsorily allocating resources 189

B.4 Algorithm for reduced availability of resources 191

B.5 Algorithm for increased availability of resources 192

List of Figures

1.1 Constituents of an application . 7

2.1 Adaptation process in the CASA framework 24

2.2 Design of the CASA framework . 25

2.3 Application Contract . 35

2.4 Working of the CASA framework . 40

2.5 Simple point-to-point service negotiations 47

2.6 Cycle of service negotiations . 49

2.7 Concurrent rankings in service negotiations 50

2.8 Deployment diagram of the CASA framework 53

3.1 Architecture of Remos . 59

3.2 Architecture of Dproc . 60

3.3 Architecture of Odyssey . 62

3.4 Resource monitoring functions of Odyssey 63

3.5 Interactions between the RM and Odyssey 64

3.6 Example <sw> element in the application contract 66

3.7 Example OWL-S profile for restaurant search service 67

3.8 Algorithm for new request . 70

3.9 Algorithm for allocating resources 71

3.10 Algorithm for compulsorily allocating resources 71

3.11 Algorithm for reduced availability of resources 75

3.12 Algorithm for increased availability of resources 75

3.13 Context Monitor . 78

3.14 Example OWL ontology . 79

xv

xvi List of Figures

4.1 Type-specific operation in Odyssey 86

4.2 Example <lls> element . 88

4.3 Example tsop() call . 88

4.4 Interactions between the CES and Odyssey 89

4.5 Architecture of PROSE . 91

4.6 Example of a PROSE aspect . 91

4.7 Interactions between the AAS and PROSE 93

4.8 Example access control aspect . 94

5.1 Hierarchical structuring of objects 102

5.2 Replacement strategies . 104

5.3 Invoking an operation through a Handle class instance 106

5.4 Specification of a <binding> element 107

5.5 Creation of a Handle class instance 107

5.6 Handle class instance invoking the CAS 108

5.7 Dynamic replacement process . 109

5.8 Handle class instance nullifying the active instance 110

5.9 Handle class instance replacing the active instance 112

5.10 Storing the transient state at a safe point 113

5.11 Handle class instance setting the new active instance 115

5.12 Transfer of call within the active instance 116

5.13 Storing the transient state in a transient state object 118

5.14 Sequential recomposition process . 127

5.15 Atomic recomposition process . 127

6.1 Support application . 137

6.2 CASA on the node hosting Monitoring application 138

6.3 CASA on node A, hosting Monitoring and a dummy application . . 138

6.4 Support application after reconfiguration 139

6.5 GUI of the application contract . 140

6.6 Modified application contract . 140

6.7 Support application after modified application contract 141

6.8 Time per application adaptation vs. number of applications 143

6.9 Time for components replacement vs. number of components 145

6.10 Time for components replacement vs. number of Handles 146

List of Figures xvii

6.11 Time for a component replacement vs. number of safe points 147

6.12 Overhead per safe point . 148

6.13 Time per Handle initialization . 150

6.14 Additional overhead per variable . 151

List of Tables

6.1 Time per application adaptation vs. number of applications 143

6.2 Time for components replacement vs. number of components 144

6.3 Time for components replacement vs. number of Handles 145

6.4 Time for a component replacement vs. number of safe points 146

6.5 Overhead due to safe points during normal operation 148

6.6 Overhead due to Handles during normal operation 149

6.7 Time for initializing Handles . 150

6.8 Overhead due to state transfer . 151

6.9 Time for registering an application with CASA 152

xix

List of Abbreviations

AAS Aspects Adaptation System

CAS Components Adaptation System

CASA Contract-based Adaptive Software Architecture

CES Contract Enforcement System

CM Context Monitor

CRS CASA Runtime System

EmCoS Emergency Coordination System

RCF Resource Contention Factor

RM Resource Manager

SC Service Coordinator

SRC Software Resource Coordinator

xxi

Chapter 1

Introduction

1.1 Need for dynamic adaptation of applications

Software applications executing in today’s dynamic computing environments, such

as mobile and wireless computing environments, experience frequent and usually

unpredictable changes in their execution environment. Changes in the execution

environment can be in the form of (1) changes in resource availability (e.g. band-

width, battery power, connectivity etc.), or (2) changes in contextual information

(e.g. user’s location, activity, identity of nearby objects or persons etc.).

Contextual information here refers to (purely) the information about the context

of an application that may influence the service provided by the application (such

as locational information, temporal information, atmospherical information etc.),

while resource availability refers to the physical infrastructure available to the appli-

cation for providing this service (such as communication resources, data resources,

computing resources etc.).

The inherent flexibility and value provided by dynamic computing environments

have resulted in their widespread growth over the last few years. Moreover, the

amount of effort being invested currently (by both academia and industry) for the

realization and widespread deployment of pervasive and ubiquitous computing en-

vironments guarantees that dynamic computing environments will continue to grow

rapidly for some more time to come.

With the growth of dynamic computing environments, many new and innovative

applications are being conceived and developed for these environments. However, in

order to be able to cultivate the benefits offered by dynamic computing environments,

1

2 Chapter 1. Introduction

the applications need to successfully face the challenge posed by runtime changes in

the execution environment.

A change in the execution environment can present an opportunity or a threat for

a running application. For instance, a change in the execution environment in the

form of a loss of certain resources required by an application may present a threat,

as this may force the application to run at a degraded performance or functionality.

On the other hand, a change in the execution environment in the form of a change

in contextual information may present an opportunity for an application to provide

a more relevant context-dependent service.

In either case, an application should be able to adapt its behavior dynamically

(i.e. at runtime, without requiring to stop and restart the application) in order to

cope with the changes in its execution environment [MG03, MG04, MG05a].

1.2 State of the art, or how dynamically adaptive

applications are developed currently

Adapting an application in response to a change in the execution environment re-

quires ability to: (1) detect a change in the execution environment, (2) take appro-

priate adaptation decisions in response to the change, and (3) carry out adaptation

actions corresponding to the adaptation decisions taken.

As discussed before, a change in the execution environment can be in the form

of a change in resource availability or a change in contextual information.

Unreliable availability of resources is now a well-accepted fact for applications ex-

ecuting in dynamic computing environments. Accordingly, several approaches have

been proposed for adapting an application in response to a change in the resource

availability.

A change in contextual information, on the other hand, has only recently been

recognized as a significant part of an application’s execution environment that may

be exploited by the application to provide a context-dependent behavior. Though

some progress has been made in the area of context-aware computing, the focus so

far has been mostly on the ways of extracting the contextual information from the

execution environment. The actual interpretation and analysis of the contextual

information, as well as the resulting adaptation of the application behavior have

been largely assumed to be the responsibility of the application itself.

1.2. State of the art 3

In the most primitive form of application adaptation, as followed in the earliest

adaptation approaches, the adaptation mechanism is hard-coded within an applica-

tion. There are two main disadvantages of hard-coding the adaptation mechanism

within an application. First, it increases the complexity involved in application

development because of intertwining of the adaptation concerns with the business

concerns of the application. And second, the adaptation policy of the application

cannot be modified at runtime because of the hard-coding of the adaptation mech-

anism (apart from any adaptation tuning capabilities provided by the application

itself).

Over the last few years, significant progress has been made in the field of mid-

dleware technologies for facilitating execution of software applications deployed in

dynamic and distributed computing environments. The basic idea behind middle-

ware technologies is to insulate an application from the complexities of the under-

lying computing environment by providing a layer of software, called middleware,

between the application and its computing environment. Middleware is responsi-

ble for facilitating interactions of the application with its computing environment.

More specifically, middleware is equipped to provide various lower-level services re-

quired by an application for its interactions with the computing environment (such as

communication services, security services etc.), thereby freeing the application from

dealing with the complexities of the computing environment (such as heterogeneity

and dynamicity of the environment).

In many ways, middleware seems to be a logical place for providing adaptation

capabilities to an application. Since the middleware comes into direct contact with

the computing environment of an application, it is in a favorable position to monitor

the execution environment of the application and detect any runtime changes therein.

Moreover, many times, the adaptation actions involve adapting the lower-level ser-

vices controlled by the middleware itself. A common example of the adaptation of

lower-level services is changing the degree of data compression (i.e. adapting the

lower-level data compression service) in response to a change in the communication

bandwidth available.

A middleware-based adaptation system further helps in separating the adaptation

concerns of an application from its business concerns (as the adaptation responsibil-

ity is delegated here to the middleware), thus reducing the complexity involved in

application development.

4 Chapter 1. Introduction

In view of the abovementioned reasons, several middleware-based adaptation ap-

proaches have been proposed in the last few years, such as [Sch94, ZBS97, PSA+03]

etc. In the earlier middleware-based adaptation approaches, the adaptation deci-

sions were taken by the middleware itself by following some standard pre-defined

adaptation rules encoded within the middleware. That is, in such approaches, the

application had little control over the adaptation decisions. However, some of the

latter middleware-based adaptation approaches realized that the application’s par-

ticipation is crucial in taking adaptation decisions because of different adaptation

needs of different applications. This resulted in the concept of application-aware

adaptation [NSN+97], where the application has a control over the adaptation deci-

sions to be taken.

Although middleware-based adaptation approaches offer several advantages and

are indeed quite successful in meeting the adaptation requirements of many applica-

tions, their scope is rather limited. More specifically, middleware-based adaptation

approaches are largely restricted to adapting the lower-level services used by an ap-

plication. Whereas, sometimes adaptation of lower-level services alone may not be

sufficient, and a change in the application code itself may be required as a means of

application adaptation.1

Continuing with our above example of adapting the data compression service,

for a small drop in the communication bandwidth, a corresponding increase in the

degree of data compression may be sufficient. However, for a large drop in the com-

munication bandwidth, increasing the degree of data compression alone may not be

sufficient, and a change in the application code may be required in order to reduce

the data throughput of the application. Similarly, in response to a change in contex-

tual information, usually a corresponding change in the application’s functionality

is required which may necessitate a change in the application code.

In the last few years, a number of approaches have been proposed for enabling

runtime software evolution [HG98, MPG+00, Dmi01]. These approaches have been

targeted towards evolving software applications which are required to be always

available, i.e. where shutting down an application temporarily for the evolution is not

preferred. Runtime software evolution naturally involves changing the application

code at runtime. Though the original focus of these approaches has been software
1The relationship between the application code (consisting of application components and as-

pects) and the lower-level services used by an application is discussed in Section 1.3.

1.2. State of the art 5

evolution, the concepts developed as a part of these approaches are nevertheless

useful for application adaptation as well.

Modern software applications are developed as a composition of software compo-

nents, where the components collaborate among themselves in order to accomplish

the required task of the application. In a component-based application development,

the components encapsulate their implementation details, interact with each other

only through their well-defined interfaces, and generally follow the principle of sepa-

ration of concerns [Szy98]. These characteristics of components make them a natural

unit of adaptation for adapting the application code. That is, adaptation of the ap-

plication code can be conveniently carried out by recomposing (adding / removing)

the components at runtime, as in some of the recent approaches for runtime software

evolution [DL03, RP03, LPH04].

Another field closely related to runtime adaptation of applications is dynamic

AOP (aspect-oriented programming) [KMM+98, Bol99]. AOP [KLM+97] has been

strongly advocated in the last few years as a means for separating the crosscut-

ting concerns (implemented as aspects) of an application from its core concerns

(implemented as conventional components), and thereby reducing the application’s

complexity. Examples of crosscutting concerns are access control, persistence man-

agement, transaction management etc. More recently, some approaches have been

proposed for weaving and unweaving of aspects into / from an application at run-

time. These approaches are commonly referred as dynamic AOP approaches. Some

of the popular dynamic AOP systems include PROSE [PGA02, PAG03, NA05], JAC

[PSDF01], TRAP/J [SMCS04] etc.

Since the adaptation of an application in response to a change in its execution

environment may involve a change in the crosscutting concerns rather than the core

concerns, dynamic AOP approaches provide a useful means of adapting an applica-

tion in certain situations. As an example, in response to a change in an application’s

location from a low-risk area to a high-risk area, the corresponding access control

aspect of the application may need to be adapted. Similarly, in response to a loss

of connection to a remote data storage, the corresponding persistence management

aspect of the application may need to be adapted.

6 Chapter 1. Introduction

1.3 Need for a framework-based approach

Different approaches for application adaptation, as discussed in Section 1.2, are

quite successful in meeting the specific adaptation requirements of their target ap-

plications. That is, these approaches are capable of adapting a software application

in response to specific changes in its execution environment. However, none of these

adaptation approaches is individually capable of meeting a wide range of adaptation

needs of software applications executing in dynamic environments.

In particular, the same application may benefit from one adaptation approach

for certain specific changes in its execution environment, but may require another

adaptation approach for some other kinds of changes in the execution environment

that could not be served by the first adaptation approach. For example, in response

to a runtime change in the resources available to an application, a corresponding

adaptation of the lower-level services used by the application may be sufficient for

the purpose. Whereas, in response to a change in the contextual information of

interest to the application, a corresponding change in the component composition

of the application may be required in order to realize a change in the application’s

functionality. Similarly, recall our earlier example where for a small drop in commu-

nication bandwidth a change in the lower-level data compression service is required,

while for a large drop in bandwidth a change in the application code is required to

reduce the throughput of the application.

Though the adaptation approaches discussed in Section 1.2 are not individually

capable of meeting a wide range of adaptation needs of software applications, these

adaptation approaches can in fact complement each other in order to meet those

adaptation needs.

There is a need to integrate different adaptation mechanisms provided by the

different approaches into a single comprehensive framework in order to benefit from

the complementary nature of these approaches. This way, the resulting framework

will have the capability to meet the adaptation needs of a broad and diverse set of

applications executing in dynamic environments.

We classify different mechanisms for application adaptation according to the level

where the adaptation takes place, as follows:

• dynamic recomposition of application components

• dynamic weaving and unweaving of aspects

1.3. Need for a framework-based approach 7

• dynamic change of application attributes

• dynamic change of lower-level services

Figure 1.1 illustrates the relationship between the application code and the lower-

level services used by an application for its execution.

Components AspectsApplication
Code

Lower-level Services
(usually managed by a middleware)

Persistence
management

Transaction
management

Access
management

. . .

. . .

Data
transmission

Data
compression

Video
coding/

decoding

Data
caching

. . .

. . .

User
Interface

Result
Formatting

Task
Scheduler

Request
Resolver

Data
Refinement

Figure 1.1: Constituents of an application

The upper part of Figure 1.1 shows the application code consisting of application

components and aspects. The directions of arrows within the application code indi-

cate the dependencies among components, and the dependencies of components on

aspects. The lower part of Figure 1.1 shows the lower-level services used by the ap-

plication code. The different constituents of an application shown in the above figure

work together to accomplish the required task of the application. The organization

of an application into components, aspects and lower-level services helps in reducing

8 Chapter 1. Introduction

the complexity involved in developing and maintaining software applications.

Lower-level services are not application-specific, and can be shared among dif-

ferent applications deployed on the same platform. Some of these services might

be specialized to a few application domains, such as video coding-decoding service,

while others might be more widely applicable, such as data transmission service.

Since these services are mostly generic and easily shared among different applica-

tions, these are provided by the deployment platform. These services are very often

managed by an underlying middleware system which is a part of the deployment

platform.

Even though some or many of the application components and aspects can be

reusable, these are generally not shared among different applications. Accordingly,

the application components and aspects are parts of the specific application code (i.e.

these are not provided as a part of the deployment platform). As discussed earlier,

application components implement the core concerns, and the aspects implement

the crosscutting concerns of an application.

The third mechanism listed above is used for adapting an application by simply

changing certain attributes of the application, without adding or removing any of

its components or aspects, or changing any lower-level services. Changing an appli-

cation attribute here refers to changing the value of a certain variable that is part

of the application code. This variable can be encoded within one of the application

components or in a configuration file. It is assumed here that changing the value of

this variable at runtime results in the adaptation of application behavior.

In this dissertation, we consider an application configuration to consist of appli-

cation components, aspects, attributes and lower-level services.

In addition to the mechanisms listed above, another form of adaptation can be

carried out directly at the resource level. For example, in response to a loss of a

certain resource used by an application, an adaptive middleware may locate an al-

ternative resource providing the same type of service as the lost resource, and allocate

this alternative resource to the application. Since this form of adaptation is carried

out transparently without resulting in a change in the application configuration, it

is not a part of the proposed application adaptation framework. However, this form

of adaptation at the resource level is obviously quite useful, and should be provided

if possible.

1.4. Human metaphor to application adaptation 9

1.4 Human metaphor to application adaptation

In everyday life, we human beings adapt our behavior all the time according to our

current surroundings and environment. It is interesting to observe the analogies

between the adaptation of human behavior and application behavior, in response

to changes in their respective environments. As we will notice from our discussion

below, there are indeed several similarities between the two, and the natural approach

of human adaptation can help in understanding the requirements for developing an

appropriate approach for application adaptation.

To understand the adaptive behavior of humans, let us look at a typical day in

the life of John.

As John goes about his daily life, the contextual information of interest to John

keeps changing almost consistently. Examples of contextual information are location

of John, people in his surroundings, time of day, weather conditions etc. John collects

data about the current contextual information of interest through his senses to see,

hear, touch, smell etc. The data collected by various sensors of John is passed to

his mind that interprets and analyzes this data, and – based on the ontological

information already stored in the mind – defines the current contextual information

of interest to John.

Based on the current contextual information, John decides an appropriate be-

havior. John may typically have a number of alternative behaviors to choose from,

corresponding to the given contextual information. The behavior ultimately chosen

by John will likely depend upon the resources currently available to John. Practi-

cally, the alternative behaviors corresponding to the given contextual information

may have some kind of preferential ordering within John’s mind, and each of these

alternative behaviors may have their own specific resource requirements. Depending

on the resources currently available, John will select the behavior which is highest in

this preferential ordering and for which sufficient resources are available. Examples

of resources here can be anything that John may use, such as a car, phone, map,

directory service, pizza delivery service etc.

As an example, consider the current contextual information of interest to John

be: “location = home” and “time = 45 minutes to attend a meeting at office”.

Now, let the alternative behaviors possible for John corresponding to the above

contextual information be: (1) to reach his office by car, (2) to reach his office by

public transport, (3) call up his office to cancel the meeting. Assuming that the

10 Chapter 1. Introduction

meeting is important for John, the alternative (3) will be the least preferred by

John. Among the first two alternatives, John may prefer alternative (1) over (2),

i.e. to go to office using his car rather than using public transport, as John may find

going by car to be more comfortable and time-saving. Alternative (1) requires that

a car in functional condition is available to John. However, if John realizes that

his car has a flat tire since last evening, he may have to select alternative (2), even

though it is actually less preferred by John than alternative (1). If a little later,

John realizes that there is a strike of all public transport in the city, he will be left

with no other alternative than (3), i.e. to call up his office and cancel the meeting,

though it is actually the least preferred alternative.

The above example shows that, in general, the current contextual information

presents the human with a limited number of alternative behaviors to choose from.

The ultimate choice of a behavior is dependent upon the human’s preference as well

as the current resource availability.

Over time, the contextual information of interest to John as well as the resources

available to John may change. Such changes in the environment are quite common in

the daily life of John, and John needs to adapt his behavior accordingly in response

to these changes.

The adaptation of John’s behavior can take place at various levels – in particular

at the level of the subconscious mind or the conscious mind of John.

For example, suppose John is talking to Mary over the phone. Upon realizing

that Mary is not able to hear John properly due to some disturbance in the phone

line, John automatically raises the volume of his voice. Rising of the volume of

John’s voice is carried out automatically by the subconscious mind of John. In

a similar manner, the subconscious mind of John does several instant reactions in

response to certain changes in the environment. For example, if John tastes a very

bitter substance in his food, he might spit it out instantly. Spitting the very bitter

substance here is controlled by the subconscious mind of John.

Naturally, many of the other changes in John’s environment require adaptation

of John’s behavior directly controlled by the conscious mind of John. For example,

on meeting a potential customer, John might behave in a certain way to persuade

the customer to buy a product that John is trying to sell. This persuasive behavior

of John is controlled by the conscious mind of John.

The above example shows that for certain types of changes in the environment

1.5. Contributions of the dissertation 11

an adaptation at the level of subconscious mind is sufficient, while some other types

of changes demand an adaptation at the level of conscious mind.

Now let us compare the above metaphor to software applications. Even in soft-

ware applications, the current contextual information of an application presents the

application with a choice of alternative behaviors, while the final choice of a behavior

is dependent upon the user’s preference as well as the current resource availability.

Similar to the adaptation of human behavior at different levels of human mind,

the adaptation of software applications also takes place at different levels. The

adaptation at the level of subconscious mind of humans is similar to the adaptation

of lower-level services carried out at the level of middleware for adapting application

behavior. Whereas, the adaptation at the level of conscious mind is similar to the

adaptation of application’s components, aspects or attributes carried out at the level

of application code.

Humans are naturally more powerful than software applications. In particular,

humans may have abilities to predict any changes in the environment in advance,

or even control the environment to some extent. Software applications normally do

not have such abilities. Therefore, we have assumed here that an application can

neither predict any changes in its execution environment in advance, nor have any

direct control over the environment.

1.5 Contributions of the dissertation

In this dissertation, we present the CASA (Contract-based Adaptive Software Ar-

chitecture) framework for enabling dynamic adaptation of software applications in

response to changes in their execution environment.

The key features of the CASA framework are:

Comprehensive: The CASA framework integrates a number of different adapta-

tion mechanisms identified in Section 1.3. This way the CASA framework is able

to provide support for adaptation at various levels of an application, and thereby

comprehensively meet a wide range of adaptation needs of software applications

executing in dynamic environments.

Runtime support: The CASA framework provides a runtime system for han-

dling adaptation concerns, i.e. for monitoring the execution environment, taking

12 Chapter 1. Introduction

adaptation decisions, and carrying out adaptation actions. The runtime system con-

siderably facilitates development of new adaptive applications by reducing the effort

required of the application developer.

Modifiable adaptation policy: The CASA framework follows a contract-based

adaptation policy, wherein the adaptation policy is defined in a so-called application

contract. The application contract is external to the application, and is defined

using an XML-based specification language. The contract-based adaptation policy

allows modifying the adaptation policy at runtime. A runtime modification of the

adaptation policy is useful for customizing the adaptation policy according to an

individual user’s needs and preferences, as well as for evolving the adaptation policy

e.g. to prepare an application for handling any changes in the execution environment

which were not foreseen at the time of application development.

Separation of concerns: The adaptation concerns of an application are separated

from its business concerns in the CASA framework. The runtime system provided by

the CASA framework and the contract-based adaptation policy jointly facilitate this

separation. The separation of concerns, in turn, helps in reducing the complexity

involved in the development and maintenance of dynamically adaptive applications.

In developing the CASA framework, our objective has been to build on the ad-

vances already made in the field of dynamic adaptation of software applications. In

particular, there have been a number of adaptation systems developed for adapt-

ing the lower-level services used by an application at the middleware-level. Any

of these middleware-based adaptation systems can be integrated with the CASA

framework, subject to satisfying certain minimum requirements concerning their in-

tegration (Chapter 4). Similarly, for dynamic weaving and unweaving of crosscutting

aspects, the CASA framework integrates a system called PROSE [NA05], which is a

flexible and efficient system developed for this purpose (Chapter 4).

However, for dynamic recomposition of application components, none of the ex-

isting systems were found to be suitable for integration with the CASA framework in

terms of the flexibility offered by these systems. Therefore, we have developed our

own approach for dynamic recomposition of components in the CASA framework

(Chapter 5).

Several of the existing middleware-based adaptation systems incorporate capa-

1.6. Example applications 13

bilities for monitoring the availability of resources. Therefore, we have delegated the

task of monitoring resource availability to the underlying middleware-based adapta-

tion system integrated with the CASA framework (Chapter 3).

As we mentioned before, recognition of the contextual information as a useful

part of an application’s execution environment is a relatively recent development.

Accordingly, some approaches for monitoring contextual information have been de-

veloped, and more progress is underway. In the CASA framework, we have used

an abstract context monitor, which relies on externally developed mechanisms for

monitoring contextual information (Chapter 3).

We should point out here that our focus in this work has been more on the ways

of adapting an application’s behavior dynamically, rather than on the ways of moni-

toring the execution environment (resource availability and contextual information).

1.6 Example applications to benefit from the CASA

framework

Below we give a few example applications that may benefit from the dynamic adap-

tation capability provided by the CASA framework, followed by a short discussion

on the capabilities of the CASA framework. These example applications form just

a small subset of the target applications for our work. There can of course be innu-

merable other kinds of applications that may benefit from the dynamic adaptation

capability provided by the CASA framework.

Tourist-Guide: Consider a tourist taking a walk through a new city. The tourist is

guided by a Tourist-Guide application running on a mobile handheld device. While

traveling, as the tourist comes in the vicinity of a touristic point-of-interest, the

Tourist-Guide application provides a service relevant to that point-of-interest. The

quality of the service provided by the Tourist-Guide application ultimately depends

on the resources currently available to the application. A dynamic change in the

point-of-interest here constitutes a change in the contextual information of interest

to the tourist, and demands an appropriate adaptation of the service provided by the

Tourist-Guide application. The resources available to the Tourist-Guide application

may also change at runtime, and demand a corresponding adaptation of the quality of

service. For example, if the contextual information of interest to the tourist changes

14 Chapter 1. Introduction

from shopping mall to museum, the Tourist-Guide application provides relevant

information about the museum in place of the information about the availability of

the items from the tourist’s shopping wish-list in the shopping mall. The quality of

information about the museum provided by the Tourist-Guide application in turn

depends on the communication bandwidth available between the tourist’s handheld

device and the information server of the museum. If the bandwidth available is

high, a multimedia-rich brochure of the museum is fetched and displayed by the

application, but if the bandwidth is low or drops during the service, only a simple

text-based brochure of the museum can be fetched and displayed by the application.

Collaborative-Working: Consider a hypothetical collaborative working scenario,

where a number of participants are collaborating on a common mission. The partic-

ipants may be geographically distributed, and some of them may even be mobile at

any given time. For the collaboration to work, each participant runs an instance of

the Collaborative-Working application, which includes a video display showing other

participants, a shared drawing space and a discussion board. Some of the resources

available to a participant, such as communication bandwidth and battery power, are

likely to vary over time because of the mobility and other constraints. Similarly, the

contextual information related to a participant (in a meeting, at home etc.) is likely

to vary over time. The runtime changes in resources and contextual information

demand an appropriate and non-disruptive adaptation of the Collaborative-Working

application. For example, in response to a small drop in the bandwidth available to

a participant, the quality of the video display may be reduced accordingly. Whereas

for a large drop in the bandwidth, any video content may be removed altogether.

A change in the contextual information may also influence the application behavior,

e.g. only important updates may be sent while the participant is in a meeting.

Personal-Assistant: A Personal-Assistant application is used to assist a user in

her daily business, and can be customized by the user to meet her individual needs

and preferences. For example, if the user needs to attend a meeting in some time (as

informed by the user’s electronic agenda which acts as a source of contextual informa-

tion here), the Personal-Assistant application assists the user in finding the fastest

route to the place of meeting by collecting information about the current location

of the user, traffic congestion situation on various alternative routes etc. While in

the meeting, the Personal-Assistant application retrieves past notes related to each

1.6. Example applications 15

of the participants present at the meeting. If the meeting ends around noon, the

Personal-Assistant application provides information about the restaurants nearby,

and may even suggest one for lunch according to the user’s likings and stored diet

requirements. The quality of the service provided by the Personal-Assistant appli-

cation can vary depending on the resources currently available to the application.

For example, in deciding the fastest route to a given destination, if the application

has access to the information server of the traffic department, then it can provide

an accurate result based on the precise information about the traffic conditions on

alternative routes. However, if the connection to the traffic information server is

broken, then the Personal-Assistant application may form an ad-hoc network with

other similar applications running on the devices in the vicinity, and provide a re-

sult based on the information shared between these applications. The result in the

second case can be of inferior quality (less accurate) compared to the one in the first

case, because of an important resource (traffic information server) being unavailable

in the second case.

Discussion: The CASA framework is able to adapt any of the constituents of an

application configuration, i.e. application components, aspects, attributes and lower-

level services. For adding any new application components (which implement the

core functionality provided by an application) and aspects (which implement the

crosscutting functionality of the application), the executable codes of these com-

ponents and aspects need to be provided. The locations of these components and

aspects are specified in the application contract, which defines the adaptation policy

of the application. The runtime replacement of components and aspects is carried

out using the adaptation mechanisms provided in the CASA framework. For adapt-

ing the application attributes (which can influence the application behavior to some

extent), the concerned application needs to implement appropriate callback methods

that can be invoked by CASA at runtime. The adaptation capability achievable by

changing the application attributes is pre-defined, and is usually restricted to minor

tuning of the application behavior. Adaptation of the lower-level services involves ac-

tivating or deactivating certain services, or changing the parameters of some running

services. The lower-level services are usually controlled by an underlying middleware

system, while CASA interacts with this system by invoking certain operations for

carrying out the required changes in the lower-level services.

16 Chapter 1. Introduction

Depending on the adaptation requirements of a given application, any combina-

tion of the above adaptation mechanisms can be used. For instance, a change in

contextual information usually affects an application’s functionality and therefore

demands an appropriate adaptation of the application components or aspects, while

it rarely requires an adaptation of the lower-level services. A change in resources, on

the other hand, is usually well responded by an adaptation of the lower-level services

or application attributes, though in some cases it may also require an adaptation of

the application’s functionality achieved by changing the application components or

aspects.

In our earlier example of a Collaborative Working application, a small drop in the

communication bandwidth (resource) is likely to require a corresponding change in

the lower-level video coding/decoding service for reducing the frame-rate or resolu-

tion of video, without requiring any changes in the application components, aspects

or attributes. Whereas, a change in contextual information from office to meeting

room can be best served by replacing a filter component of the application, such

that only important updates are forwarded to the user rather than delivering all

messages.

On the other hand, in our example of a Personal Assistant application, even a

change in a resource (connection to a traffic information server) requires a corre-

sponding change in an application component (the route planning component). A

change in contextual information in all of the example applications discussed above

requires a corresponding adaptation of the application components or aspects.

1.7 Organization of the dissertation

The rest of the dissertation is organized as follows.

Chapter 2 presents the overall design and working of the CASA framework, in-

cluding details of application contract specifications and service negotiations among

distributed applications. Chapter 3 discusses techniques for monitoring the execu-

tion environment (resource availability and contextual information) of an application,

and provides details of the Resource Manager and the Context Monitor used in the

CASA framework. Chapter 4 discusses adaptation of lower-level services used by

an application at the middleware level, and adaptation of crosscutting aspects of an

application. Chapter 5 provides details of the dynamic components recomposition

1.7. Organization of the dissertation 17

approach followed in the CASA framework. Chapter 6 describes the implementation

of a prototype system based on the CASA framework, and discusses the perfor-

mance evaluation of the prototype system. Chapter 7 gives an overview of other

approaches related to our work on dynamic adaptation of applications. Finally,

Chapter 8 presents concluding discussion, and outlines directions for future work.

Chapter 2

The CASA Framework

This chapter is organized as follows. Section 2.1 presents the main design goals

of the CASA framework. Section 2.2 gives an overview of the CASA framework.

Section 2.3 presents the design of the CASA framework. Section 2.4 presents ap-

plication contract specifications. Section 2.5 describes the overall working of the

CASA framework. Section 2.6 presents details of service negotiations among dis-

tributed applications. Finally, Section 2.7 concludes this chapter with a discussion

on the capabilities and limitations of the CASA framework, and how to use the

framework in practice.

2.1 Design goals of the CASA framework

The design of the CASA framework has been guided by the following design goals:

Separation of Concerns: The design of the CASA framework is based on the

fundamental principle of separation of concerns [Dij82]. Following this principle, the

adaptation concerns of an application are separated from its business concerns. The

separation between the adaptation concerns and business concerns of an application

results in considerably reducing the complexity involved in developing and main-

taining dynamically adaptive applications. This separation is achieved through the

following two characteristics of the CASA framework.

Independent and reusable adaptation infrastructure: The adaptation infrastructure

in CASA consists of the entities responsible for monitoring the execution environment

19

20 Chapter 2. The CASA Framework

of running applications, and adapting these applications. This adaptation infrastruc-

ture is independent of the business logic of the application. The entities constituting

the adaptation infrastructure are also loosely coupled among themselves, i.e. any of

these entities may evolve independent of the others.

The independent adaptation infrastructure in CASA implies that it can be reused

and shared among applications. This results in significantly reducing the complexity

involved in developing dynamically adaptive applications, as the application devel-

oper is able to better focus on the business logic of the application, without having

to worry about implementing the adaptation mechanisms for the application.

Contract-based adaptation policy: In CASA, the adaptation policy of every applica-

tion is defined in a so-called application contract. The application contract is exter-

nal to the application, and is specified in an application-independent format. The

contract-based adaptation policy further enables separating the adaptation concerns

of an application from its business concerns, and also plays a facilitating role in the

development of an independent and reusable adaptation infrastructure mentioned

above.

Comprehensive Adaptation Solution: In order to satisfy a wide range of adap-

tation requirements of the software applications executing in dynamic computing

environments, the CASA framework provides a comprehensive adaptation solution.

This is achieved by: (a) being able to monitor changes in different parameters of

an application’s execution environment, and (b) supporting a number of adaptation

mechanisms for adapting different parameters of an application’s configuration.

In particular, the CASA framework supports the following four adaptation mech-

anisms (as identified in Chapter 1):

• dynamic recomposition of application components

• dynamic weaving and unweaving of aspects

• dynamic change of application attributes

• dynamic change of lower-level services

The above adaptation mechanisms can collectively adapt any parameter of an

application’s configuration, and thus help in providing a comprehensive adaptation

solution.

2.2. Overview of the CASA framework 21

Modifiable Adaptation Policy: As stated earlier, CASA follows a contract-

based adaptation policy. In addition to facilitating the separation between adap-

tation concerns and business concerns, a major contribution of the contract-based

adaptation policy is in supporting runtime modifications of the policy. Runtime

modifications of the adaptation policy are possible as the application contract defin-

ing the adaptation policy is external to the application, and uses an XML-based

specification language for defining the adaptation policy.

Runtime modifications of the adaptation policy of an application help in cus-

tomizing the adaptation policy according to the user’s needs and preferences. Cus-

tomization of the adaptation policy is important as each individual user of an appli-

cation may have different requirements or preferences concerning the way an applica-

tion should behave and adapt in response to changes in the execution environment,

and these user requirements may even change dynamically. Runtime modifications of

the adaptation policy also mean that the application developer is able to evolve the

adaptation policy of the application at runtime. This may be required, for example,

to equip an application to deal with certain changes in the application’s execution

environment that were not foreseen at the time of application development, or to

add new adaptation capabilities to the application and thereby change the way it

adapts to certain execution environment conditions.

2.2 Overview of the CASA framework

In CASA, the execution environment E of an application is defined by the set of

resources available to the application and the contextual information relevant to the

application. That is,

E = {Availability of Resources, Contextual Information}

As discussed in Chapter 1, an application configuration G consists of the com-

ponents, aspects, attributes, and lower-level services constituting the application.

That is,

G = {Components, Aspects, Attributes, Lower-level Services}

The application contract defines the mappings between all possible states of the

execution environment of an application and the corresponding application configu-

rations. That is,

22 Chapter 2. The CASA Framework

Application Contract = {(E1, G1), (E2, G2), . . . , (En, Gn)}

The adaptation process in CASA consists of the following three steps: (1) deter-

mining a change in the execution environment, say from Ei to Ej , (2) consulting the

application contract to determine the configuration corresponding to Ej , i.e. Gj , (3)

changing the application configuration from Gi to Gj .

A change in the execution environment of an application means a change in the

availability of resources and/or a change in the contextual information relevant to

the application. A change in the application configuration in response to a change in

the execution environment implies changing one or more constituents of the configu-

ration (i.e. components, aspects, attributes, and lower-level services). An application

configuration can be represented as,

Gi = {Ci, Ai, Ti, Li}

where Ci is the set of components constituting Gi,

Ci = {Ci1 , Ci2 , . . . , Cip}

Ai is the set of aspects constituting Gi,

Ai = {Ai1 , Ai2 , . . . , Aiq}

Ti is the set of application attributes constituting Gi,

Ti = {Ti1 , Ti2 , . . . , Tir}

and Li is the set of lower-level services constituting Gi

Li = {Li1 , Li2 , . . . , Lis}.

Changing the component composition of an application from Ci to Cj (as a result

of the change in configuration from Gi to Gj) implies (1) adding any components

that are in the set Cj but not in Ci, and (2) removing any components that are in Ci

but not in Cj . A change in the aspects composition is carried out similarly. A change

in application attributes from Ti to Tj implies resetting the attribute values, such

that the values specified in Tj are assigned to the corresponding attributes replacing

2.2. Overview of the CASA framework 23

the previous values assigned by Ti. A lower-level service specified in Li or Lj denotes

the corresponding service and any parameters characterizing the service. A change

in lower-level services from Li to Lj implies that (1) if a service exists in both Li and

Lj , then resetting the parameters of this service as specified in Lj , (2) if a service

exists in Lj but not in Li, then activating this service with the specified parameters,

and (3) if a service exists in Li but not in Lj , then deactivating this service.

The components, aspects, attributes, and lower-level services that remain the

same across all configurations are not specified in the application contract, and are

instead activated during the application initialization.

Every computing node hosting dynamically adaptive applications is required to

run an instance of the CASA Runtime System (CRS). The CRS has two respon-

sibilities: firstly, it monitors the execution environment on behalf of the running

applications. Secondly, in case of significant changes in the execution environment,

the CRS carries out the adaptation of the affected applications.

The adaptation process in CASA discussed above is carried out by the CRS as

follows (refer Figure 2.1):

1. Detect a change in the execution environment: The CRS continuously monitors

the execution environment of running applications, and detects any significant

changes in the execution environment that may warrant an adaptation of one

or more running applications.

2. Consult adaptation policy: Once the CRS detects a significant change in the

execution environment, it consults the adaptation policies of the affected ap-

plications (specified in the respective application contracts) in order to decide

if there is a need to take certain adaptation decisions.

3. Carry out adaptation actions: If certain adaptation decisions are taken in the

previous step, then the CRS carries out adaptation actions on the concerned

applications corresponding to the adaptation decisions taken. The adaptation

actions involve changing the configurations of the concerned applications.

In the next section, we discuss the detailed design of the CASA framework, and

the functions of individual entities constituting the framework.

24 Chapter 2. The CASA Framework

a change in
execution environment
warranting adaptation

CASA Runtime System (CRS)

Execution Environment

1

consult
adaptation

policy

2

 Dynamically Adaptive
Applications (1...n)

dynamic change in
components / aspects /

attributes

dynamic change in
lower-level services

Adaptive Middleware

3

Application Contracts
(1...n)

3

Figure 2.1: Adaptation process in the CASA framework

2.3 Design of the CASA framework

Before discussing details of the design of CASA framework, we should emphasize

that our focus in this work has been more on the mechanisms for adapting appli-

cations, rather than on the mechanisms for monitoring the execution environment.

Therefore, we present only an abstract design of the mechanisms used for monitor-

ing the execution environment (contextual information and resources), leaving the

details and refinements of these mechanisms as a future work.

2.3.1 Design overview

Figure 2.2 depicts the CASA framework. The entities within the dotted area rep-

resent the CASA Runtime System (CRS). Below we first briefly describe the re-

sponsibilities of each of these entities, and then discuss the roles of these entities in

monitoring the execution environment and adapting applications.

2.3. Design of the CASA framework 25

Components Adaptation System (CAS)

Aspects Adaptation System (AAS)

Resource Manager (RM)
Context Monitor (CM)

Dynamically Adaptive Application

Adaptive Middleware

Application Contract

Contract Enforcement System (CES)

Figure 2.2: Design of the CASA framework

Contract Enforcement System (CES): The CES is responsible for coordinat-

ing the working of all other entities of the CRS.

Resource Manager (RM): The RM is responsible for allocating resources to

applications in accordance with the relative priorities of these applications. The RM

relies on an external resource monitoring service for information about the current

availability of local and network resources. Such a resource monitoring service can

be embedded within the underlying adaptive middleware.

Context Monitor (CM): The CM is responsible for monitoring the contextual

information relevant to applications, and detecting any runtime changes in the con-

textual information.

Components Adaptation System (CAS): The CAS is responsible for recom-

posing application components at runtime, as and when instructed by the CES.

Aspects Adaptation System (AAS): Similar to the CAS, the AAS is responsi-

ble for dynamically changing the aspects composition of an application, as and when

instructed by the CES. The AAS is integrated with the PROSE system [NA05],

26 Chapter 2. The CASA Framework

which actually carries out dynamic weaving and unweaving of aspects into / from

an application.

Adaptive Middleware: Though an adaptive middleware is technically not a part

of the CRS, the CRS relies on the following services provided by the underlying

adaptive middleware for its operations:

• The adaptive middleware is responsible for dynamically adapting the lower-

level services used by an application, as and when instructed by the CES.

• The adaptive middleware can be optionally responsible for monitoring the cur-

rent availability of local and network resources, and updating the RM about

any runtime changes in the availability of these resources.

2.3.2 Monitoring the execution environment

As discussed earlier, the execution environment of an application can be divided into:

contextual information and resources. The term contextual information here refers

to (purely) the information about the context of an application that may influence

the service provided by the application (such as locational information, temporal

information, atmospherical information etc.), while the term resources refers to the

physical infrastructure available to the application for providing this service (such as

communication resources, data resources, computing resources etc.).

Monitoring contextual information: The Context Monitor (CM) in the CASA

framework is responsible for monitoring contextual information. Examples of con-

textual information are user’s location, activity, identity of nearby objects or persons

etc.

Monitoring the contextual information relevant to an application consists of the

following steps:

• acquiring the data related to contextual information,

• structuring the acquired data based on an application domain-specific ontology,

and

• deducting the final knowledge, i.e. the contextual information relevant to the

application, from this data.

2.3. Design of the CASA framework 27

A variety of context sensors are used for acquiring the data related to contextual

information. The context sensors can range from being highly sophisticated (e.g.

to determine the identity of a person, sophisticated sensors are employed) to very

simple (e.g. to determine the current location, a GPS monitoring device is sufficient).

The data acquired by various context sensors is structured according to the appli-

cation domain-specific ontology. Once the data is formally structured, the current

contextual information relevant to the application can be deducted from this data

in a straightforward manner.

As can be seen from above, the application domain-specific ontology plays a very

important role in reasoning about the current contextual information. The ontology

defines different contextual parameters and their possible values in OWL (Ontology

Web Language) [OWL07]. OWL is based on RDF (which in turn is based on XML),

and provides rich expression capabilities for defining an ontology.

It is very likely that different application domains might require different im-

plementations of the CM, as no single CM can be presumed to be able to monitor

all the different kinds of contextual parameters across different application domains.

This is because of a wide range of context sensing devices required for monitoring

different contextual parameters.

The above implies that an application needs to make sure that the CASA frame-

work it is going to use has the right CM installed, before using the framework. This

should not be a major problem as there would only be a limited number of applica-

tion domains for dynamically adaptive applications. Moreover, a given node is likely

to cater to the applications from the same application domain, and therefore would

have the right configuration of the CASA framework installed for that domain. In

our work, we propose only an abstract design of the CM, which can be customized

for the individual application domains.

Further details on monitoring contextual information are given in Chapter 3.

Monitoring resources: We categorize resources into: hardware resources and

software resources. Hardware resources include both local resources (such as memory,

CPU, battery) as well as network resources (such as communication bandwidth).

Software resources can be local or remote.

For monitoring hardware resources (both local and network), several resource

monitoring services have been developed that operate at the platform (operating

28 Chapter 2. The CASA Framework

system, network) level, where resources can be monitored efficiently. Examples

of such resource monitoring services are Remos [LMK+03], Dproc [APK+03] etc.

Therefore, for monitoring local and network hardware resources, CASA relies on

an external resource monitoring service. Several adaptive middleware systems have

built-in hardware resource monitoring services that can be made available to CASA.

For the discussion in this dissertation, we assume that CASA is integrated with an

adaptive middleware system called Odyssey [NSN+97], which can provide resource

monitoring service. The Resource Manager (RM) in CASA is responsible for inter-

acting with the underlying resource monitoring service.

For monitoring any software resources required by an application, the RM in-

cludes a Software Resource Coordinator (SRC) entity. The SRC may use a variety

of service discovery infrastructures for discovering software services required by an

application.1 For the discussion in this dissertation, we assume that software services

required by an application are implemented as Web services, and use XML-based

Web service standards like UDDI (for service registry), WSDL (for describing ser-

vice interface) and SOAP (for message wrapping) [ACKM04]. However, automated

discovery and selection of software resources requires semantic information, which is

not provided in the plain WSDL specifications. For semantic specification, we rely

on OWL-S [OS07], which is an OWL-based ontology for the semantic specification

of Web services.

An OWL-S specification of a service has three parts: profile, process model and

grounding. Profile describes the capability of a service complete with information

about its input messages, output messages, preconditions and effects. Process model

describes in detail what the service does in terms of atomic processes, and composite

processes that are formed by combining other atomic and/or composite processes.

And, grounding describes details of how to access the service, including details of

communication protocols, serialization techniques etc. The grounding information

usually maps the service-access related information to the corresponding WSDL

description of the service. In this sense, OWL-S can be viewed as building on top of
1It should be noted that once the required software resources are discovered, their references

are passed to the application. It is up to the application on how it interacts with these resources.

However, an application may or may not delegate the software resource discovery to CASA. For

example, if the software resource discovery involves complex negotiations and establishing a SLA

(service level agreement), then the application will do the discovery and selection on its own rather

than delegating it to CASA.

2.3. Design of the CASA framework 29

WSDL, i.e. providing additional semantic information that cannot be provided using

WSDL. For more details on OWL-S specifications, please refer to [OS07]. A service

requestor needs to provide only an OWL-S profile, while a service provider should

provide at least the grounding information in addition to the profile description.

More details on monitoring and managing resources are given in Chapter 3.

2.3.3 Adapting applications

Application adaptation can be realized using one or more of the following adaptation

mechanisms supported by CASA, depending on the adaptation needs of a specific

application.

Dynamic change of lower-level services: As discussed in Chapter 1, lower-

level services are generic services provided by the deployment platform and usually

managed by a middleware system. Software applications rely on these services for

their execution. Since these services are generic and can be shared among different

applications, these are not implemented as a part of the application code. Exam-

ples of such services are data encryption, compression, transmission, caching, video

coding/decoding etc.

An application adaptation through a dynamic change of lower-level services is

typically required in response to a change in the availability of resources, though it

can also be required in response to a change in contextual information.

Common examples of such an adaptation exhibit some form of resource vs. re-

source tradeoff or resource vs. quality of service tradeoff. An example of a resource

vs. resource tradeoff is to compress the data being transmitted over a communica-

tion channel by invoking a lower-level lossless data compression service, in response

to a drop in the bandwidth available on the channel. Compressing the data will

result in increased CPU consumption, but at the same time it will result in saving

precious bandwidth.2 Note that the quality of service (here, the quality of data)

is not affected by this adaptation. An example of a resource vs. quality of service

tradeoff is to reduce the frame-rate or resolution of the video being transmitted over

a communication channel by adapting the lower-level video coding/decoding service,
2In fact, compressing the data also requires increased battery consumption. However, at the

same time, there is a saving in the battery consumption during transmission of the compressed data

as compared to the uncompressed data.

30 Chapter 2. The CASA Framework

in response to a drop in the available bandwidth.

Several adaptive middleware systems have been developed that are capable of

adapting an application by dynamically changing the lower-level services used by the

application. Some of these middleware systems are reflective in nature, i.e. support

external regulation of their adaptation strategy. Any of the reflection-based adaptive

middleware can be integrated with CASA for carrying out dynamic adaptation of

lower-level services. CASA can even be integrated with more than one adaptive

middleware system offering different adaptation capabilities.

The Contract Enforcement System (CES) in CASA is responsible for interacting

with the underlying adaptive middleware system. The reflective nature of the adap-

tive middleware system implies that the CES can instruct the middleware to carry

out the required changes in lower-level services. This includes activating or deacti-

vating some services, or changing certain parameters of some of the running services.

More details on dynamically adapting lower-level services are given in Chapter 4.

Many of the adaptive middleware systems also have a built-in resource monitoring

service for monitoring local and network resources. Thus, an adaptive middleware

system can serve the dual purpose of monitoring local and network resources, in

addition to dynamically changing lower-level services.

However, an application adaptation through a dynamic change of lower-level ser-

vices is applicable only in limited scenarios – limited kinds of applications, execution

environment conditions, and the amount of variations in the execution environment.

In order to deal with the other scenarios, one or more of the following adaptation

mechanisms may be used.

Dynamic weaving and unweaving of aspects: AOP (aspect-oriented program-

ming) [KLM+97] enables separating the crosscutting functionality of an application

from its core functionality. Many times a change in the execution environment re-

quires a corresponding change in the crosscutting functionality of an application,

without really affecting the core functionality of the application. Thus, the ability

to dynamically weave and unweave aspects into / from an application, generally

referred as dynamic AOP, presents a powerful adaptation mechanism.

As an example, consider an application using an access control aspect. If the

node hosting the application moves from a low-risk environment to a high-risk envi-

ronment, the access control aspect of the application should be adapted accordingly

2.3. Design of the CASA framework 31

to enforce a stronger security behavior (i.e. by replacing the current aspect with a

new aspect that implements a more restrictive access control policy). As another ex-

ample, consider an application using a persistence management aspect that relies on

a remote data storage. If the connection to the remote data storage is lost, the per-

sistence management aspect of the application should be adapted accordingly (e.g.

by replacing the current aspect with a new aspect that relies on the local storage

only).

For dynamic weaving and unweaving of aspects, CASA relies on a dynamic AOP

system called PROSE [NA05], which is a flexible and efficient Java-based system

developed for this purpose.

The Aspects Adaptation System (AAS) in CASA is responsible for interacting

with PROSE. The AAS can pass the appropriate aspect details (name and location

of the aspect file) to PROSE at runtime for dynamically weaving the aspect into

an application. The aspect file contains the information about the join-points (the

execution points where the aspect needs to be weaved) as well as the actual aspect

code to be executed at these points. PROSE is able to intercept the join-points

in a running Java application, and invoke the corresponding aspect code at these

points. At the end of the execution of the aspect code, the control is returned

to the next execution point in the application. Similarly, the AAS can instruct

PROSE to unweave an already weaved aspect. More details on dynamically changing

application aspects in CASA are given in Chapter 4.

However, if a change in the core functionality of an application is required in

response to a change in the execution environment, rather than in the crosscutting

one, then the following adaptation mechanisms may be used.

Dynamic recomposition of application components: Modern software appli-

cations are composed of components, where each component implements a subtask

of the application. In a component-based application development, the components

encapsulate their implementation details and interact with each other only through

their well-defined interfaces.

This makes it possible and convenient to dynamically change the core function-

ality of an application through dynamic recomposition of application components.

A dynamic recomposition of application components involves adding, removing or

replacing the components at runtime. A change in the core functionality is most

32 Chapter 2. The CASA Framework

likely required in response to a change in contextual information, but may also be

required for significant variations in resource availability [MG05b].

For example, if the contextual information related to a Tourist-Guide application

changes from shopping mall to open-air cinema, the application needs to provide rel-

evant information about the weather conditions and show-timings, in place of the

information about the availability of the items from the tourist’s shopping wish-list

in the shopping mall. This kind of a change in the core functionality can be accom-

plished through dynamic recomposition of application components. Needless to say

that the possibilities for application adaptation through dynamic recomposition of

application components are enormous.

In the last few years, a number of approaches have been proposed for dynamic

recomposition of application components. However, these approaches are not able to

adapt the currently running components, without discarding their current execution.

That is, these approaches require that either a component is not running at the

time of adaptation, or its current execution is discarded as a result of adaptation.

Moreover, many of these approaches are restricted to using specific programming

languages or platforms. More discussion on the related approaches for dynamic

recomposition of components is provided in Chapter 7. Due to the lack of flexibility

offered by the currently available approaches, we have developed our own approach

for dynamic recomposition of components in CASA.

The Components Adaptation System (CAS) in CASA is responsible for dynamic

recomposition of application components. That is, the CAS can add, remove or

replace the application components dynamically. The CAS takes care to ensure that

the consistency of the application is not compromised as a result of dynamic recom-

position. Ensuring the consistency involves, among other things, transferring the

state of an outgoing component to its successor (in case of a dynamic replacement),

and maintaining the integrity of the interactions ongoing at the time of dynamic re-

composition. The components recomposition approach developed in CASA is generic

enough to be used with any modern object-oriented programming language. More

detail on this approach are given in Chapter 5.

However, sometimes only a dynamic change of certain attributes of an application

may be required, rather than a dynamic recomposition of application components.

For a dynamic change of application attributes, the following adaptation mechanism

may be used.

2.3. Design of the CASA framework 33

Dynamic change of application attributes: An application attribute here

refers to a variable that is part of the application code. This variable can be encoded

within an application component or in a configuration file. A runtime change of an

application attribute, therefore, implies changing the value of the corresponding vari-

able. A dynamic change of attribute can effect a change in the application behavior,

thereby allowing the application to adapt to a change in the execution environment.

Examples of application adaptation through a dynamic change of application

attributes include changing the value of a certain timeout period, frequency of data

transmission, size of each transmission, or some other threshold parameters affect-

ing an application’s behavior in response to a change in the execution environment.

It is assumed here that the above parameters are encoded as variables in the ap-

plication code, whose values can be changed at runtime. Changing the value of a

variable results in a change in the application behavior. For instance, reducing the

frequency of data transmission by changing the value of the corresponding variable

is likely to result in reducing the throughput of the application. A reduction in the

throughput allows the application to successfully adapt to a drop in the availability

of communication bandwidth.

For a dynamic change of application attributes, the concerned application needs

to provide appropriate callback methods that can be called by the CES at runtime.

That is, the ultimate responsibility of changing the application attributes lies with

the application itself. This allows the application to decide the appropriate timing

and order of changing these attributes.

In addition to the above adaptation mechanisms, certain resource-level adapta-

tions may be carried out transparently by the underlying adaptive middleware or the

SRC (Software Resource Coordinator). Such adaptations usually involve dynami-

cally selecting an alternative resource among those available, in response to a loss of

certain resource. For example, if the availability of a remote resource being used by

an application drops, the SRC may dynamically switch to an alternative resource

providing the same type of service but with better availability. Or, if the bandwidth

on a certain communication channel drops, the adaptive middleware may switch the

data transmission to another communication channel with better bandwidth (as-

suming that alternative communication channels are available for the transmission

of data).

The overall working of the CASA framework is described in Section 2.5. In the

34 Chapter 2. The CASA Framework

next section, the specification of an application contract is discussed.

2.4 Application contract specifications

The adaptation policy of every application is defined in a so-called application con-

tract. The application contract is external to the application, and is specified using

an XML-based language. The contract-based adaptation policy facilitates easy mod-

ification, extension and customization of the adaptation policy at runtime, besides

playing a key role in separating the adaptation concerns of an application from its

business concerns.

An excerpt of the application contract of a Tourist-Guide application is shown in

Figure 2.3. The complete XML schema for application contracts is given in Appendix

A.

An application contract is divided into <context> elements, where each

<context> element represents a state of contextual information of interest to

the application. The parameters characterizing this state are specified within the

<params> element, which is a sub-element of <context> element. As discussed

in the next section, the <context> elements are ordered within the application

contract according to their user-perceived preference.

The <params> element has an attribute called ontology, which contains a ref-

erence to the corresponding OWL ontology for the given application domain. In

addition, the <params> element contains one or more <par> elements, with each

<par> element corresponding to a distinct context parameter. Every <par> ele-

ment contains a name attribute specifying the name of the context parameter, an

optional unit attribute specifying the unit of measurement, a value attribute (for

non-numeric parameter values) specifying the corresponding value of the parameter,

minv and maxv attributes (for numeric parameter values) specifying the lower and

upper bounds of the corresponding range of parameter values, and an enum attribute

(for enumerated values of a parameter, separated by commas) specifying the corre-

sponding enumeration of values. For the non-numeric parameter values specified

using a value attribute, an exact match is required. For the numeric parameter val-

ues, the monitored value must be within the range specified by the minv and maxv

attributes. And for the values specified using an enum attribute, the monitored value

must match at least one of the enumerated values, in order for the corresponding

2.4. Application contract specifications 35

<app-contract name="Tourist-Guide">
 <context id="1">
 <params ontology="tourist.owl">
 <par name="vicinity" value="museum"/>
 </params>
 <config id="1">
 <resources>
 <hw name="bandwidth" unit="kbps" mpv="200" lpv="50"
 reference="homeserver"/>
 ...
 <sw name="museum-info" reference="/sw-folder/mi.owl"/>
 ...
 </resources>
 <components>
 <binding handle="HC" boundto="/class-folder/CdefA"/>
 ...
 </components>
 <aspects>
 <aspect name="access-control" reference="/aspect-folder/AC"/>
 ...
 </aspects>
 <callbacks>
 <call method="upcall-1">
 <arg value="5" type="int"/>
 </call>
 ...
 </callbacks>
 <llservices>
 <lls manager="Odyssey" name="video" operation="tsop">
 <arg value="/VideoWarden/QT_Movie" type="string"/>
 <arg value="QT_SwitchTracks" type="string"/>
 <arg value="5" type="int"/>
 <arg value="2" type="int"/>
 </lls>
 ...
 </llservices>
 </config>
 <config id="2">
 ...
 ...
 </config>
 ...
 ...
 </context>
 ...
 ...
</app-contract>

Figure 2.3: Application Contract

36 Chapter 2. The CASA Framework

parameter to be considered valid in the given state of execution environment.

The names of context parameters are standard and unique for the corresponding

application domain. The parameter names and their possible values are specified in

the corresponding application domain-specific ontology. Examples of the parameter

names for the Tourist-Guide application are vicinity (referring to a place of interest

nearby), time (referring to the time of day) etc.

There may be a default <context> element in an application contract that is

valid when none of the other <context> elements is valid. This default <context>

element is listed at the end of the application contract, and does not contain a

<params> element.

Each <context> element further contains a list of alternative configurations

of the application, which are suitable for activation in the corresponding state of

contextual information. Please note that there must be at least one configuration

listed within a <context> element.

The alternative configurations within a <context> element are listed in an or-

dering that reflects their user-perceived preference. These configurations vary in

their resource requirements, and most likely in their behavior (functionality / per-

formance). Each of the alternative configurations is specified within a <config>

element, which is a sub-element of <context> element.

A <config> element, representing a configuration, specifies the resource re-

quirements of the configuration (in <resources> sub-element), the components

and aspects constituting the configuration (in <components> and <aspects> sub-

elements), the callback methods to be called for changing the application attributes

for the configuration (in <callbacks> sub-element), and the lower-level services

participating in the configuration (in <llservices> sub-element).

The <resources> element may contain any number of <hw> and <sw> el-

ements. A <hw> element represents a hardware resource, and a <sw> element

represents a software service that is part of the corresponding application configura-

tion.

Every <hw> element contains a name attribute specifying the name of resource,

an optional unit attribute specifying the unit of measurement, a mpv attribute spec-

ifying the most preferred value, a lpv attribute specifying the least preferred value of

the corresponding resource, and an optional reference attribute specifying the ref-

erence item (e.g. in case of network bandwidth, the reference attribute will contain

2.4. Application contract specifications 37

the referred destination). We have assumed here that all hardware resources are

numerically quantifiable (however, the schema of application contract allows non-

numeric values to be specified in a value attribute, and an enumeration of values to

be specified in an enum attribute). The range of numbers between mpv and lpv are

assumed to be linearly distributed. Both mpv and lpv attributes might have special

values denoted as max or min. A max value specifies the maximum possible value for

the resource, and a min value specifies the minimum possible value for the resource

under the given execution environment conditions. That is, these two special values

denote relative values for a resource rather than absolute ones. A <hw> element

can have an optional attribute called essential with a possible value of yes or

no (default is yes), specifying whether this resource is essential for the application

configuration or not.

The resource names for hardware resources are standard and unique, i.e. every

hardware resource can be uniquely identified by a standard resource name. Resource

requirements for hardware resources can also be specified at a high level of abstrac-

tion such as in terms of throughput and packet size, instead of directly specifying

these in terms of actual resources such as bandwidth. If the resource requirements

are specified at a high level, then the RM needs to convert these into actual concrete

resource values to be allocated.

A <sw> element has a name attribute specifying the name of the software ser-

vice and a reference attribute containing a reference to the OWL-S profile of the

service. The name of the service is used for internal reference only, while the de-

scription of the required service is provided in the OWL-S profile referred by the

reference attribute. The OWL-S profile referred in the <sw> element is used by

the SRC (Software Resource Coordinator) for discovering the required matching ser-

vices. As will be discussed later in Chapter 3, the SRC relies on UDDI enhanced

with OWL-S for service discovery [SPS04], and the OWL-S API matchmaker for

service matchmaking [API07]. A <sw> element can also have an optional attribute

called essential, to specify whether this resource is essential for the application

configuration or not.

The <components> element contains a list of adaptable application components,

i.e. those components that may differ from one configuration to another. The non-

adaptable components, which remain the same across all configurations, are not

specified in the <components> element. In the same way, the <aspects> element

38 Chapter 2. The CASA Framework

contains a list of adaptable aspects. Every component and aspect is specified along

with its namespace location, as this is required by the CRS (CASA Runtime System)

for activating a configuration. Similarly, the <callbacks> element contains a list

of application methods to be called, and the <llservices> element contains a

list of lower-level services corresponding to the configuration. Further details of

<components>, <aspects> and <llservices> elements are given in the following

chapters, along with the descriptions of their respective adaptation mechanisms.

A <callbacks> element contains one or more <call> elements, with each

<call> element corresponding to a distinct application method to be called. A

<call> element contains a method attribute specifying the method to be called, and

a number of <arg> sub-elements specifying the values and types of the arguments

to be passed with the method call. There are no return values associated with such

method calls.

All the elements specifying the constituents of a configuration (i.e. the

<components>, <aspects>, <callbacks> and <llservices> elements) are

optional. That is, any of these elements may or may not appear in a configuration

specification, depending on the adaptation requirements of the corresponding ap-

plication. For example, if an application has no adaptable components, but only

adaptable aspects, attributes and lower-level services, then the <components>

element will not appear in the specification of an application configuration.

Similarly, if an application needs to respond only to the changes in contextual

information, but not to the changes in resource availability, then the <resources>

element can be omitted from the configuration specification (e.g. if all the resources

required by an application are guaranteed to be available sufficiently). In this case,

every <context> element may contain only a single configuration suited to the

corresponding state of contextual information, as the availability of the constituents

of a configuration (components, aspects etc.) is usually guaranteed.

On the other hand, if an application needs to respond only to the changes in

resource availability, but not to the changes in contextual information, then there

will be a single default <context> element in the application contract. That is, the

application contract will contain a simple listing of the alternative configurations

of the application (<config> elements), ordered according to their user-perceived

preference, within a single <context> element.

Depending on the current state of the execution environment (contextual infor-

2.5. Working of the CASA framework 39

mation and resources), the appropriate configuration from the application contract

is selected and activated by the CRS, as explained in the next section.

2.5 Working of the CASA framework

2.5.1 Initial activation of an application

In the beginning, when an application wants to start its execution, it registers it-

self with the CRS. As a part of the registration, the application contract of the

application is sent to the CES (Contract Enforcement System) (Figure 2.4a).

If the application contract contains a <context> element, other than the default

<context> element (i.e. the one without a <params> element), the CES invokes

the CM (Context Monitor) passing a reference to the application contract (Figure

2.4b). The CM monitors the values for contextual parameters defined in the appli-

cation contract, in order to determine the current contextual information relevant to

the application. The contextual information monitored by the CM is matched with

the <params> elements specified in the application contract, for deciding the cur-

rently valid <context> element. This is done by matching the monitored values of

contextual parameters with the corresponding values specified within the <params>

element of every <context> element in the application contract.

It is possible that more than one <context> element specified in the application

contract is eligible to be valid simultaneously. For example, one <context> element

may be valid if the user is currently in her office-building, and the other may be

valid if the user is currently in her office-room. So, if the user is currently in her

office-room, then both the above <context> elements are eligible to be valid at the

same time. In this case, the ordering of the <context> elements in the application

contract is important for deciding the currently valid <context> element, as this

ordering reflects the relative preference of the <context> elements. That is, the

CM identifies the highest listed valid <context> element as the currently valid

<context> element. Practically, the CM starts searching for the currently valid

<context> element from the top of the application contract, and the search ends

as soon as a valid <context> element is found.

If there are certain contextual parameters in the application contract that can-

not be monitored by the CM, it raises an exception to the CES communicating

the parameters that cannot be monitored. The CES in turn communicates these

40 Chapter 2. The CASA Framework

Dynamically
Adaptive
Application

CES

Application
Contract

a. Application contract sent to the CES

CES CM
findContext

validContext

b. Determining the valid context

CES RM
findConfig

validConfig

c. Determining the valid configuration

CES

CAS

AAS

Adaptive
Middleware

Dynamically
Adaptive
Application

activate
components

activate
aspectsactivate

lower-level
services

callbacks

d. Activating the selected configuration

Figure 2.4: Working of the CASA framework

2.5. Working of the CASA framework 41

parameters to the concerned application. The application may either ignore these

parameters (i.e. remove these parameters from the application contract and resubmit

the contract to the CES), or choose not to execute as the current configuration of

the CASA framework is not compatible with the application’s requirements.

Similarly, it is possible that none of the <context> elements specified in the

application contract is currently valid (assuming that no default <context> element

is specified in the contract). In this case, the application cannot begin its execution,

and the CES communicates this failure to the application.

Once the current contextual information relevant to the application is successfully

determined, the CM communicates the identifier of the currently valid <context>

element to the CES (Figure 2.4b).

Recall that every <context> element in the application contract contains a list

of alternative configurations, represented by <config> elements, which are suitable

for the corresponding state of contextual information defined by the <context>

element. If the <config> elements listed within the currently valid <context>

element contain <resources> elements, then the CES invokes the RM (Resource

Manager) passing a reference to the application contract and the identifier of the

<context> element (Figure 2.4c). As with the ordering of the <context> elements,

the <config> elements are also preferentially ordered within every <context>

element in the application contract.

The RM is responsible for allocating resources to the application according to the

current availability of resources. Since the configurations are listed in a preferential

ordering within the <context> element, the RM tries to allocate resources for

the first configuration listed in the <context> element. If there are not sufficient

resources for the first configuration then it tries for the second configuration, and

so on. The RM relies on the underlying resource monitoring service and the SRC

(Software Resource Coordinator) for the discovery of required resources (as discussed

earlier in Section 2.3). The resource allocation phase ends as soon as resources for a

configuration can be successfully allocated, given the current availability of resources.

This configuration is then selected for activation.

In case of multiple applications competing for the same resources, the RM takes

into account the relative priorities (as defined by the user) as well as the adaptation

possibilities of the applications for allocating resources. The details of the resource

allocation algorithm followed by the RM are given in Chapter 3.

42 Chapter 2. The CASA Framework

If none of the configurations listed in the current <context> element can be al-

located the required resources (due to the unavailability of resources), the RM com-

municates the failure to the CES. The CES reinvokes the CM, asking it to determine

all currently valid <context> elements. The list of all currently valid <context>

elements returned by the CM is then forwarded to the RM by the CES. This list is

ordered in the same order as the original order in the application contract, i.e. in

the user-perceived order of preference. The RM carries out the resource allocation

procedure for every <context> element in the list, until a configuration from one

of the <context> elements can be successfully allocated its required resources.

In practice, the chances of successful allocation of one of the configurations from

the most preferred <context> element are likely to be high. On the other hand,

the chances of an application having more than one valid <context> element at

the same time are likely to be low. Therefore, a re-run of context determination and

resource allocation phase, as discussed in the above paragraph, is likely to be very

rare.

However, if no configuration of the application can be allocated its required

resources at the end of the complete resource allocation phase, then the application,

obviously, cannot begin its execution. This failure is communicated by the CES to

the application.

Once the resources for a configuration are allocated successfully, the RM com-

municates the selected configuration to the CES (Figure 2.4c). The CES in turn

communicates the selected configuration and context to the application for its con-

firmation.

Once the application sends its confirmation, the CES instructs the CAS (Compo-

nents Adaptation System), the AAS (Aspects Adaptation System) and the underly-

ing adaptive middleware to activate the components, aspects and lower-level services

corresponding to the selected configuration respectively (Figure 2.4d). The CES also

issues any callbacks specified for this configuration. Recall that the components, as-

pects, lower-level services and callbacks corresponding to the selected configuration

are specified within the <config> element describing the configuration. The appli-

cation can now begin its execution.

The process of getting confirmation from the application before activating the

selected configuration is usually straightforward, as the application is expected to

agree to the decision of the CES. This is because the decision of the CES is based on

2.5. Working of the CASA framework 43

the adaptation policy specified by the application itself in its application contract.

However, the process of getting confirmation from the application, before activating

the configuration, allows the application to perform initialization operations. This

might include, for example, informing the user that the corresponding service will

be available soon. In some rare cases, the application might even have to refuse

the configuration because of any failure of its initialization operations. For instance,

the user might opt not to execute the service at the last moment. In this case, the

resources already allocated to the application are freed, and the activation of the

selected configuration is aborted.

2.5.2 Runtime changes in the execution environment

Runtime changes in the execution environment can be in the form of changes in

contextual information or resource availability. If there is a runtime change in the

contextual information relevant to the application, such that either the currently

active <context> element is no longer valid or one of the <context> elements

listed higher than the currently active <context> element becomes valid, then this

change is detected by the CM. The CM communicates the new <context> element

to the CES. The CES invokes the RM (assuming that the configurations listed within

the new <context> element contain <resources> elements) passing the identifier

of the new <context> element. The RM allocates resources for a new configuration

from this <context> element, following the same procedure as during the initial

allocation, and communicates the new selected configuration to the CES.

Similarly, if there is a runtime change in the availability of resources, but not a

change in the contextual information, then the RM is informed about the change by

the underlying resource monitoring service or the SRC. If the new resource availabil-

ity makes it impossible for the application to continue with its current configuration,

then the RM allocates resources for a new configuration from the current <context>

element, based on the changed availability of resources. Similarly, if the new resource

availability allows a new configuration listed higher than the currently active configu-

ration within the current <context> element to be activated, then the RM allocates

resources for this configuration. The resource allocation algorithm followed by the

RM is discussed in Chapter 3. The RM communicates the new selected configuration

to the CES.

Any failure to resource allocation (i.e. no configuration can be selected due to

44 Chapter 2. The CASA Framework

unavailability of resources) or context determination (i.e. no context specified in the

application contract is currently valid) is communicated by the CES to the applica-

tion. Such a failure implies that the application cannot continue with its execution.

The application needs to implement appropriate failure handling mechanisms for

dealing with such a failure.

Once a new configuration is selected by the RM and communicated to the CES,

the CES communicates the change in configuration to the application for its ap-

proval. Once the application confirms the change, the CES instructs appropriate

entities of the CASA framework for carrying out a change from the old configura-

tion to the new configuration, and issues any callbacks as required. A change in

configuration may imply a change in application components, aspects, lower-level

services and/or application attributes. Further details of a dynamic change in an

application’s configuration are discussed in the following chapters.

However, if the application does not accept the change in configuration (less

likely because the change is decided in accordance with the adaptation policy of the

application; but still possible due to a last-minute change in external factors such

as user’s preference), then it may not be able to continue with its execution. In this

case, the application needs to carry out finalization operations, and the resources

allocated to the application are freed.

2.5.3 Dynamic changes in adaptation policy

Customization of adaptation policy: As seen from the above description of

the working of CASA, the ordering of <context> elements within an application

contract, as well as the ordering of <config> elements within a <context> element,

influence the adaptation policy of an application to a large extent.

The ordering of these elements can be changed by the user at runtime. In addition

to changing the order, the user can also remove certain <context> or <config>

elements at runtime. This way the user is able to customize the adaptation policy

of an application according to her needs or preferences.

For example, in the Tourist-Guide application, if the user is not interested in

the museum context, but only interested in the shopping mall and open-air cinema

contexts, then she may remove the museum context from the application contract.

For customizing the adaptation policy, a graphical user interface for the

application contract should be provided by the application developer, which ex-

2.6. Service negotiations 45

plains the significance of the various <context> and <config> elements in

user-understandable terms. That is, instead of displaying the list of parameters

characterizing a <context> element, it displays what the particular state of con-

textual information means for the user. And instead of displaying the detailed

constituents of a <config> element, it displays the appropriate functionality and

performance characteristics associated with the corresponding configuration.

Evolution of adaptation policy: For the evolution of adaptation policy, any of

the elements in the application contract (e.g. <context> or <config> elements, or

any of their sub-elements) can be modified at runtime. Similarly, new <context>

or <config> elements can be added to an application contract (which were not

foreseen at the time of application development), and any obsolete <context> or

<config> elements can be removed from an application contract at runtime.

2.6 Service negotiations

In the design of the CASA framework, we have assumed that applications are com-

pletely autonomous, and have no a-priori knowledge of other applications that might

be available for interactions. Different autonomous applications may discover each

other only at runtime, and decide to interact in an ad-hoc manner. In this way,

the interacting applications may form a distributed software system at runtime, and

collaborate with each other for a common task.

In view of the autonomous nature of applications, each application has its own

individual adaptation policy defined in its own application contract. That is, there

is no centralized adaptation policy for the whole distributed software system, as

each application is considered to be independent in defining its own policy and

requirements.

However, in a distributed software system, peer applications may need to be

consulted before an adaptation decision is taken by an application, as the interests of

different interacting applications can be interdependent. This implies that different

peer applications participating in a distributed software system should be able to

carry out service negotiations among themselves. CASA provides support for service

negotiations among peer applications.

For carrying out service negotiations, the concerned application needs to imple-

ment a Service Coordinator (SC) component. In addition, the application developer

46 Chapter 2. The CASA Framework

needs to provide a service description for every alternative configuration defined in

the application contract. A service description specifies the service capability of the

corresponding configuration. The service description of a configuration is defined in

a separate document called the Service Description Document, which is accessible

to the SC.

The Service Description Document is defined using OWL-S [OS07]. Even though

the application may not be accessible as a Web service (i.e. it need not communicate

using SOAP, or be advertised on a UDDI registry etc.), the OWL-S specification

language provides a standard format for describing a service, which is useful for

exchanging service descriptions among peer applications.

In the following, we describe the changes in the working of CASA framework that

are implied by the inclusion of service negotiations. We discuss simple point-to-point

service negotiations in Section 2.6.1, and complex negotiations in Section 2.6.2.

2.6.1 Simple negotiations

When service negotiations are involved, the resource allocation phase does not end

as soon as a match between the resource requirements of a preferred configuration

and the current availability of resources is found. Rather, the RM identifies all

the application configurations that can be activated in the current availability of

resources. The RM communicates the identified configurations to the CES. The

CES passes the list of identified configurations to the SC.

If there was no need for a resource allocation phase (i.e. alternative configurations

did not specify any resources requirements in the application contract), then the CES

simply communicates all the alternative configurations that can be activated in the

current execution environment to the SC.

The SC sends the Service Description Documents associated with each of the

identified configurations to the peer applications that are affected by the change,

i.e. the peer applications that were using the service provided by the adapting ap-

plication (refer Figure 2.5). The peer applications are then required to rank these

configurations based on the service descriptions, and send the ranked list back to the

SC. The SC then selects the most appropriate configuration for activation, based on

the rankings given by the peer applications, and communicates its decision to the

peer applications and to the CES.

An application might assign different weights to different peer applications, so

2.6. Service negotiations 47

Adapting
Application

CES

SC

Peer Application 1

Peer Application 2

Peer Application 3

request for ranking

request for rankingrequest for ranking

result

result

result

Figure 2.5: Simple point-to-point service negotiations

that the rankings by these peer applications are treated accordingly for the final

selection of a configuration. Any ties for the top-ranked configuration are resolved

by selecting the configuration listed highest in the application contract.

The peer applications need not be developed according to the CASA framework,

but they must provide a component for receiving a list of alternative configurations

and ranking them. If a peer application also needs to be adapted due to a change

in the configuration of the above application, then the ranking is decided according

to the relative preferences of the corresponding adaptations of the peer application

itself for each of these alternative configurations.

If a peer application is developed according to the CASA framework, then this

peer application might be using the service provided by the above adapting applica-

tion as a required software resource discovered by the SRC (irrespective of whether

the discovery was made using UDDI enhanced with OWL-S, or by any other means).

Though the above situation is likely, it is not necessary because an application may

not delegate all its software resource requirements to the CASA framework. For in-

stance, if the selection of a software service requires complex negotiations (possibly

involving a human user) then the application may discover and select the service

providers itself, rather than delegating this job to the underlying CASA framework.

However, if the above adapting application is being used as a software resource

that was discovered by the SRC of the peer application, then the list of alternative

48 Chapter 2. The CASA Framework

configurations of the above application is forwarded to the SRC. The SRC passes

this list to the RM of the peer application, which then evaluates the correspond-

ing adaptation actions. Inclusion of different alternative configurations from the list

results in different resource availabilities from the RM perspective. Based on the

relative preferences of these adaptation decisions, i.e. relative preferences of the re-

sulting configurations of the peer application, the RM ranks the list and sends it

to the SRC. The SRC sends the ranked list back to the SC of the above adapting

application.

As an example where service negotiations may be required, consider an applica-

tion transmitting high-quality multimedia (video + audio) to a number of clients. In

response to a drop in the available bandwidth, the application may have an option

either to switch to a configuration that reduces the quality of audio but maintains

the high quality of video, or to a configuration that reduces the quality of video but

keeps the quality of audio high. Before actually changing its configuration, the appli-

cation needs to carry out service negotiations with the clients. The clients’ decision,

on the other hand, may be governed by the actual content of the transmission. For

instance, if the transmission is that of a soccer match, the clients may choose to

reduce the quality of audio while maintaining the high quality of video. Whereas, if

the transmission is that of a musical concert, the clients may choose to reduce the

quality of video without disturbing the quality of audio.

However, service negotiations are not essential for all kinds of applications that

participate in distributed software systems. For instance, if in the above example

the application transmits sports events only, then it may have the default adaptation

behavior of switching to the first kind of configuration, without requiring any service

negotiations with its clients.

At the time of registering with the CRS, an application needs to indicate whether

service negotiations are required, and pass a reference of its SC component accord-

ingly.

2.6.2 Complex negotiations

Section 2.6.1 describes simple service negotiations involving point-to-point negoti-

ations between the adapting application and its peer applications. In most of the

cases occurring in practice, simple service negotiations will be sufficient. However,

the above description of simple negotiations does not address some of the complexi-

2.6. Service negotiations 49

ties that might arise when service negotiations are more complicated than point-to-

point negotiations. Below we present some of these complexities and the possible

solutions. The issue of complex negotiations requires more in-depth research, and is

considered as one of the directions of work that should be explored in future.

Let us assume that an application A sends its list of alternative configurations

for ranking to a peer application B. The application B, which is a client of A (i.e.

consuming the service provided by A), might need to be adapted as a result of the

adaptation of A. Adaptation of B might imply a change in the service provided

by B, and therefore B might need to carry out negotiations with its own clients

before informing its ranking decision to A. This should not be a problem in general,

because B can finish its own negotiations first before informing its decision to A.

However, the chain of negotiations might be long, and might even have cycles. That

is, what happens if B needs to negotiate with its client C, but C itself needs to

negotiate with its client A (refer Figure 2.6)? A may not be able to give a definite

answer to C, as it is still waiting for the result of its negotiations with B. To break

this kind of deadlock, every application might set a timeout period after which it

takes a decision based on the already received responses, and simply communicates

its final decision to the clients. This may not result in the best solution for all the

applications involved, but it offers a way out of deadlock.

Application A Application B

Application C

request for
ranking

request for
ranking

request for
ranking

Figure 2.6: Cycle of service negotiations

The problem gets more complex if in the above situation of a cycle between A-

B-C, the options given by C to A may require a change in the list of alternative

configurations that A had submitted to B. This would require renegotiations be-

tween A and B, and possibly have a spiraling effect on the negotiations between B

50 Chapter 2. The CASA Framework

and C, and so on.

Similarly, application A might have two clients B and C to whom it submits

its list of alternative configurations for ranking. B in turn might be providing a

service to C, i.e. C might be a client to both A and B. Consequently, C might

get a list of alternative configurations from A as well as B (refer Figure 2.7). C

might rank these two lists independently according to its best interest. However,

since none of the applications have a global picture of the negotiations taking place,

the independent rankings by C may not serve its best interest. That is, even if

rankings of A by C are in the best interest of C, rankings of B by C might result in

a situation that B gives different rankings to A than what C had given to A. If B is

a more important client for A, rankings of B will be approved by A. This will result

in a situation that the service provided by A will not be the best one for C, and

another combination of rankings might have been a better option for C. In general,

an application can be faced with ranking different lists that should not be treated in

isolation. Different lists present different ranking combinations to the application.

However, in the absence of a global view of negotiations taking place, the decisions

taken by the application might be sub-optimal.

Application A Application B

Application C

request for
ranking

request for
ranking

request for
ranking

Figure 2.7: Concurrent rankings in service negotiations

The issue of multi-party service negotiations can indeed be very complex, and is

a part of the future work.

2.7. Discussion 51

2.7 Discussion

2.7.1 Capabilities and limitations of the CASA framework

In this chapter, we have presented the overall design and working of the CASA

framework. As seen from the description above, the CASA framework is able to

comprehensively meet a wide range of adaptation needs of software applications,

thanks to its ability to adapt any parameter of an application’s configuration. The

design decisions taken in the CASA framework (independent and reusable adap-

tation infrastructure, and contract-based adaptation policy) enable separating the

adaptation concerns of an application from its business concerns, thereby consider-

ably reducing the complexity involved in developing and maintaining dynamically

adaptive applications. The contract-based adaptation policy further allows modify-

ing the adaptation policy at runtime.

The design of the CASA framework is very modular with only a loose coupling

between various entities of the framework. The loosely coupled design allows the

entities of the CASA framework to evolve independent of each other. This would

help in easily replacing any of the existing monitoring or adaptation mechanisms

with their improved versions in the future. For example, the existing context or

resource monitoring mechanisms can be replaced with more efficient or effective

mechanisms in future. Similarly, a new improved adaptive middleware can replace an

existing adaptive middleware, or new and better components or aspects adaptation

approaches can be used in place of the existing ones.

The CASA framework relies on externally developed context sensing and resource

monitoring mechanisms. Therefore, the ability to monitor different parameters of

the execution environment, and the efficiency with which these parameters can be

monitored depend on the functionality and performance offered by these external

mechanisms. However, this is considered a practical approach in the design of the

framework, as the third-party monitoring mechanisms are specialized for the pur-

pose and therefore offer reasonably good functionality and performance. Similarly,

the adaptation of lower-level services and aspects is delegated to the external mech-

anisms, which are very well-suited for the purpose. For dynamic recomposition of

components, CASA follows an indigenously developed approach, as none of the cur-

rently available approaches offer the required flexibility for recomposing components

at runtime.

52 Chapter 2. The CASA Framework

It is assumed in the design of the CASA framework that the correctness and

completeness of the application contract defining the adaptation policy of an appli-

cation is ensured by the application developer. We currently do not provide any

tools to aid the application developer in ensuring the correctness and completeness

of the application contract. However, this is considered an important part of the

future work.

When changing the configuration of an application at runtime, it is assumed that

the application components, aspects and lower-level services required by the new con-

figuration are available and accessible to the CASA Runtime System. The location

of the components and aspects to be added is specified in the application contract.

These components and aspects can be available either locally, or be downloaded

on-the-fly from a remote location. The procedures to activate or deactivate any

lower-level services, or to change the parameters of some currently running services

are defined in the application contract. Obviously, the adaptation of the lower-level

services should be supported by the underlying adaptive middleware. Similarly, any

callback methods required by the new configuration are specified in the application

contract, and these should be provided by the application. However, the correct-

ness of the new configuration (i.e. the correctness of the corresponding components,

aspects, attributes and lower-level services) for the required application behavior is

not verified by the CASA framework. Ensuring this correctness is considered a part

of ensuring the correctness and completeness of the overall application contract.

Every adaptation mechanism supported in the CASA framework is individually

responsible for ensuring that the change in configuration carried out by this mecha-

nism does not compromise the consistency and integrity of the application. There is

no centralized mechanism in CASA for ensuring or verifying the overall consistency

and integrity of the application during or after the adaptation process. However,

this should not be a problem in practice, as the different adaptation mechanisms

are responsible for adapting orthogonal parts of an application’s configuration. The

future work might include developing more stringent mechanisms for ensuring and

verifying the consistency and integrity of the application.

Another limitation of the CASA framework is that if a legacy application wants

to take advantage of the adaptation capabilities provided by CASA, then it needs to

be considerably refactored. This is particularly true for the components recomposi-

tion approach followed in CASA, though a legacy application might take advantage

2.7. Discussion 53

of other adaptation mechanisms with relatively minor changes. The components

recomposition approach followed in CASA requires a replaceable component to be

accessed through a handler, and to define safe points for its termination. This implies

considerable refactoring of the existing components of a legacy application.

2.7.2 Using the CASA framework in practice

Figure 2.8 shows the deployment diagram of the CASA framework being used by an

adaptive application. A prototype CASA Runtime System has been implemented in

Java. However, the design of the CASA framework presented in this dissertation is

generic, and not bound to any specific programming language.

Virtual Machine of CASA

Virtual Machine of the Application

Application

ApplicationProxyImpl

FrameworkProxyImplFrameworkFacadeImpl

CES

CM

AAS

RM

CAS

FrameworkFacade ApplicationProxy FrameworkProxy

Figure 2.8: Deployment diagram of the CASA framework

As an example, consider the Tourist-Guide application described earlier. When

54 Chapter 2. The CASA Framework

the Tourist-Guide application wants to begin its execution, it registers itself with

the CASA Runtime System. The registration with the CASA Runtime System is

handled by the Framework Façade, as shown in Figure 2.8. This allows exposing

only a simplified interface of the CASA Runtime System to an adaptive application.

Since the application and the CASA Runtime System are running in different virtual

machines, the communication between the Tourist-Guide application and the Frame-

work Façade takes place using Java RMI. The Framework Façade can be discovered

by the Tourist-Guide application using the RMI registry. During the registration,

the Tourist-Guide application provides an Application Proxy to the CASA Runtime

System. The Application Proxy is used by the CES for invoking callback methods

on the application. In return, a Framework Proxy is sent to the application, which

is used by the application for identification and future communication with CASA.

The application contract of the Tourist-Guide application is now forwarded to the

CES.

Once the registration of the Tourist-Guide application with CASA is completed,

the CASA Runtime System determines the currently valid configuration of the ap-

plication and activates this configuration using the process described for initial ac-

tivation of an application in Section 2.5.1.

Let the current contextual information relevant to the Tourist-Guide applica-

tion be “location = city center” and “time = morning”, as discovered by the CM.

The most preferred configuration of the Tourist-Guide application in the above con-

text requires activating the components that display information about the touris-

tic points-of-interest near the city center, including short videos of these points-of-

interest along with audio commentary. At the same time, the above configuration

requires a high bandwidth connection to the information server of the department of

tourism. Let initially the bandwidth availability be high, and the RM allocates the

required bandwidth to the Tourist-Guide application. The CES then activates the

above configuration by instructing the corresponding entities of the CASA Runtime

System, including the CAS to activate the required components.

Runtime changes in the execution environment of the Tourist-Guide application

are handled by the CASA Runtime System using the adaptation process described

in Section 2.5.2. For instance, if the network bandwidth available to the Tourist-

Guide application drops a little later, this change in discovered by the RM. The RM

reallocates resources to the application, and selects a new application configuration

2.7. Discussion 55

corresponding to the changed availability of resources. The new configuration is com-

municated to the CES, which instructs other entities for a change in configuration.

This change might involve adapting the lower-level video fetching service to fetch

low-quality video (e.g. black and white video instead of colored video), while main-

taining the good quality of the audio commentary. If the bandwidth drops further

a little later, the components displaying video with audio commentary may need to

be replaced with components that display only still images with textual description

of the touristic points-of-interest. The replacement of above components is carried

out by the CAS, at the instructions of the CES.

Assume that after a few hours, the tourist is heading to visit a castle outside

the city. Let the new contextual information relevant to the Tourist-Guide appli-

cation be “location = highway-M1” and “time = noon”. The change in context

is discovered by the CM. The most preferred configuration in the new context re-

quires activating the components that allow searching and browsing information

about different restaurants near the highway M1, and booking a table in a selected

restaurant. This configuration also requires activating a security aspect that enables

secured communication between the application and the restaurant booking server

(e.g. by encrypting the credit card details that are required for booking a table).

The above configuration requires a resource of restaurant search and booking ser-

vice to be available. The restaurant search and booking service is discovered by

the SRC (Software Resource Coordinator), and its reference is communicated to the

application. This means that the above configuration can be selected for activa-

tion, as its resource requirements are fulfilled. The CAS and the AAS activate the

corresponding components and aspects for this configuration accordingly.

However, if during the browsing of restaurants by the tourist, the connection to

the restaurant search and booking service is broken, the application needs to recon-

figure itself in order to deal with the loss of resource. The reconfiguration may involve

replacing the current components for searching and booking restaurants online with

alternative components that display a short information about a few popular restau-

rants in the area and their phone numbers. This information is assumed to be stored

in the local memory of the device hosting the Tourist-Guide application. The tourist

can use this information for selecting a restaurant from the limited list of restaurants,

and calling the selected restaurant to book a table. The security aspect used in the

most preferred configuration above can be similarly removed from the application,

56 Chapter 2. The CASA Framework

as it is not required in the new configuration. These changes in the components and

aspects are carried out by the CAS and the AAS accordingly.

The above example shows that the same application may need to adapt to the

changes in contextual information as well as changes in resource availability. The

adaptation may involve recomposing application components, adding and removing

crosscutting aspects, or adapting the lower-level services used by an application. In

general, an adaptation decision may affect multiple levels of an application simul-

taneously, e.g. adapting components, aspects, as well as lower-level services of an

application. This example illustrates the versatility offered by the CASA frame-

work (by allowing different parameters of an application’s execution environment

to be monitored, and different parameters of the application’s configuration to be

adapted), which allows it to meet a wide range of adaptation needs of software

applications executing in dynamic environments.

In the remaining chapters, we present details of the monitoring and adaptation

mechanisms supported in the CASA framework. As we mentioned earlier, our focus

in this work has been mostly on the ways of adapting applications, rather than on

monitoring execution environment. Therefore, we present only an abstract design

of the monitoring mechanisms for contextual information and resources in Chapter

3. For adapting lower-level services and crosscutting aspects, the CASA framework

relies on externally developed mechanisms. We discuss these mechanisms in Chapter

4. For dynamic recomposition of application components, we have developed an in-

digenous approach which we describe in detail in Chapter 5, and present performance

evaluation results for this approach in Chapter 6. Finally, we give an overview of

related work in Chapter 7, and present concluding discussion and possible directions

for future work in Chapter 8.

Chapter 3

Monitoring the Execution

Environment

In this chapter, we give an abstract design of the mechanisms used for monitor-

ing the execution environment of applications (contextual information and resource

availability) in the CASA framework. In addition, we present details of the resource

allocation algorithm employed by the Resource Manager (RM) in CASA.

Details of resource monitoring in the CASA framework are discussed in Section

3.1. The resource allocation algorithm employed by the RM is described in Section

3.2. Finally, details of monitoring contextual information are presented in Section

3.3.

3.1 Monitoring resources

As discussed in Chapter 2, resource requirements of an application configuration

are specified within <resources> element in the application contract. Resource

requirements can be of two types: hardware requirements (such as CPU, memory,

communication bandwidth etc.) and software requirements (i.e. software services

required by the corresponding application configuration).

3.1.1 Monitoring hardware resources

Dynamically adaptive applications might be executing on small handheld devices,

where the amount of local hardware resources is limited. The limited availability of

57

58 Chapter 3. Monitoring the Execution Environment

hardware resources implies increased contention among software application for using

these resources. Similarly, network resources are usually the most contended among

applications due to the scarce availability and high demand for these resources.

The RM allocates resources to applications in accordance with the resource re-

quirements specified in the respective application contracts. Resource allocation is

done in a fair manner, such that the competing applications are allocated resources

according to their relative priorities. Different applications are assigned default pri-

orities by their application developers, and these priorities can be changed by the

user according to the user’s own needs and preferences.

An application specifies only those resource requirements in its application con-

tract that are necessary for its functional and performance commitments, and that

cannot be satisfied by simple sharing of resources as controlled by the underlying

operating system.

The RM allocates resources only for the user applications. The total amount

of resources available for allocation to the user applications is communicated to the

RM, after deducting the amount of resources necessary for the operating system and

other critically important system applications.

The first step to allocating resources is the ability to monitor the availability of

various resources.

For monitoring various hardware resources required by applications, several re-

source monitoring systems have been proposed and developed, such as [LMK+03,

APK+03, TG04]. These systems operate directly at the platform (operating system,

network) level, where resources can be monitored efficiently. The RM relies on an

external resource monitoring system for monitoring hardware resources. Many of

the existing adaptive middleware systems have built-in resource monitoring services

for monitoring hardware resources. If CASA is integrated with any such adaptive

middleware system, then the information about the current availability of resources

can be provided by the middleware system itself. For the discussion in this disserta-

tion, we assume that CASA is integrated with one such adaptive middleware system

called Odyssey [NSN+97]. Details of Odyssey and other resource monitoring systems

are discussed next.

Remos [LMK+03] provides a powerful monitoring system for network resources.

It provides two types of queries: flow queries for getting information about sim-

ple network flows, and topology queries for getting complex topological information.

3.1. Monitoring resources 59

Depending on the applications’ requirements, the RM may use either of these two

interfaces for interacting with Remos for getting information about the current avail-

ability of resources. The Remos architecture consists of Collectors, Predictors, and

Modeler. Collectors are responsible for acquiring and consolidating the resource in-

formation, and forwarding it to the Modeler. Predictors are responsible for predicting

future behavior based on the measurement history. Modeler provides interface for

resource queries, and is responsible for modeling the Collector-gathered information

about the network into the information abstractions required by the client (possibly

the RM, in our case). An overview of the Remos architecture, reproduced from

[LMK+03], is shown in Figure 3.1.

 Local
Collector

 Global
Collector

 Remote
Collector

 Master
Collector

Prediction
 Service

Application
Application

Toolkit

Modeler
Modeler

Figure 3.1: Architecture of Remos [LMK+03]

Dproc [APK+03] is able to monitor different hardware resources, such as CPU,

memory, disk space, network bandwidth etc. It utilizes the /proc virtual file system,

and extends this interface with resource information collected from both local and

remote hosts. In order to predictably capture and distribute monitoring information,

Dproc uses a kernel-level group communication facility KECho, which implements

events and event channels. An overview of the Dproc architecture, reproduced from

[APK+03], is shown in Figure 3.2.

Tuduce and Gross [TG04] have proposed an extensible resource monitoring infras-

60 Chapter 3. Monitoring the Execution Environment

CPU NET DISK PMC MEM

/proc

Monitoring Modules

Application

monitoring path
control path

Operating
 System

procfs d-mon

KECho

Figure 3.2: Architecture of Dproc [APK+03]

tructure and specific sensors for monitoring different network parameters of interest.

The monitoring infrastructure includes abstractions for capturing a node’s environ-

ment, neighborhood, and the swath (nodes within transmission range along a path).

Their approach is mainly targeted towards mobile ad-hoc networks. Here also the

interface between a client and monitoring system is query based, so that the client

(possibly the RM, in our case) is able to control the level of information needed.

There are some other resource monitoring mechanisms developed for specific

resources, such as for CPU [YN01].

All the above resource monitoring systems have been implemented and tested to

show that they incur reasonably low overhead for practical applications. Details of

their performances can be found in the respective papers.

As mentioned earlier, many of the existing adaptive middleware systems incorpo-

rate resource monitoring services for hardware resources. For the discussion in this

dissertation, we assume that CASA is integrated with one such adaptive middleware

system called Odyssey [NSN+97].

Odyssey is used for two distinct purposes in CASA: for monitoring resources, and

for adapting lower-level services. These two purposes are in principle independent

3.1. Monitoring resources 61

of each other. That is, different systems can be used for monitoring resources and

for adapting lower-level services. However, since adaptation of lower-level services is

typically carried out in response to a change in the availability of resources, many

adaptive middleware systems include the resource monitoring capability.

We have decided to use Odyssey for monitoring resources and for adapting lower-

level services for the following reasons. Odyssey is able to monitor a wide variety of

resources, in particular the most commonly required resources like CPU, memory and

network bandwidth. Many of the other resource monitoring systems are specialized

to specific types of resources, e.g. the Remos system [LMK+03] is used for network

resources, and [YN01] provides a system for monitoring CPU. Moreover, Odyssey

is generally applicable, and is not targeted to any particular network environment,

unlike the approach by Tuduce and Gross [TG04] which is targeted to mobile ad-hoc

networks. Odyssey is designed to provide resource information to a client (i.e. the

RM in our case) in a timely manner, unlike Dproc [APK+03] which is more useful for

distributing resource information using group communication. For adapting lower-

level services, the strength of Odyssey lies in its broad applicability (for different

types of lower-level services) and easy extensibility.

Below we briefly discuss the resource monitoring capability of Odyssey, while

the role of Odyssey in adapting the lower-level services used by an application is

discussed in Chapter 4.

Resource monitoring using Odyssey: The architecture of Odyssey is shown in

Figure 3.3 (reproduced from [Nob00]).

The Odyssey system consists of Viceroy and a set of Wardens. Viceroy is re-

sponsible for centralized resource management, i.e. Viceroy acts as the single point

of resource control for a client. In particular, Viceroy is responsible for monitoring

resources, and notifying a client (i.e. the RM, in our case) about any changes in the

availability of resources. The RM can request resources on behalf of running appli-

cations to Viceroy (using the request method). When Viceroy discovers that the

availability of a resource has strayed outside the requested window of tolerance for

that resource, it notifies the RM accordingly (using the handler method), thereby

enabling the RM to reallocate resources. Wardens are used for adapting lower-level

services used by an application, and are discussed in more detail in Chapter 4.

Odyssey is able to monitor commonly required resources such as network band-

62 Chapter 3. Monitoring the Execution Environment

Client (CASA Runtime System)

Odyssey Manager

Upcalls

Interceptor

Odyssey

Kernel

V
ic

er
oy

 Video
Warden

 Web
Warden

 tsop,
request

handler

Figure 3.3: Architecture of Odyssey [Nob00]

width, CPU, memory, battery power etc. Since Odyssey is implemented at the

operating system level, the resources can be monitored efficiently and any changes

in the runtime availability of resources can be detected quickly. Resource moni-

toring functions of Odyssey are illustrated in Figure 3.4, which is reproduced from

[NSN+97].

In the current implementation, Odyssey provides an interface called request

which accepts a unique resource identifier and tolerance levels for the allocation

of the corresponding resource. If the current availability of the requested resource

lies outside the bounds of the requested tolerance window, Odyssey returns an error

along with the value of current availability of the resource. We propose that Odyssey

be extended to provide an additional interface called availability that accepts a

unique resource identifier and returns the current availability of that resource. The

RM requires the values of the current availability of various resources for allocating

these resources according to the relative priorities of the running applications. In the

absence of such an interface, the RM may simply use the request interface and set

the tolerance window higher than the maximum possible value of a resource. This

way, Odyssey will be forced to return an error and indicate the current availability

of the corresponding resource to the RM. Once resource allocation has been done,

3.1. Monitoring resources 63

request(in path, in resource-descriptor, out request-id)
cancel(in request-id)

(a) Resource Negotiation Operations

resource-id
lower bound
upper bound
name of upcall handler

(b) Resource Descriptor Fields

Network Bandwidth bytes/second
Network Latency microseconds
Disk Cache Space kilobytes
CPU SPECint95
Battery Power minutes
Money cents

(c) Generic Resources in Odyssey

handler(in request-id, in resource-id, in resource-level

(d) Upcall Handler

Figure 3.4: Resource monitoring functions of Odyssey [NSN+97]

the RM can use the request interface for reserving the desired amount of resources.

Whenever the availability of resources varies outside the requested tolerance

bounds, Odyssey automatically informs its client (i.e. the RM) about the new avail-

ability using the handler method (refer Figure 3.4d). This enables the RM to carry

out reallocation of resources, and submit a new request to Odyssey based on the

changed allocation.

Interactions between the RM and Odyssey are shown in Figure 3.5. The RM

sends a request for resources to the Odyssey Manager, which forwards the request

to Viceroy. Similarly, the upcalls made by Viceroy are forwarded by the Odyssey

Manager to the RM. The request and handler method calls exchanged between

the Odyssey Manager and Viceroy are forwarded through the Kernel as shown in

Figure 3.3.

Please note that in future, Odyssey can be replaced or complemented with any

64 Chapter 3. Monitoring the Execution Environment

Resource Manager (RM)

Odyssey Manager

Viceroy

request()

request()

handler()

handler()

Figure 3.5: Interactions between the RM and Odyssey

other adaptive middleware systems, which may offer better functionality or perfor-

mance. The only requirement for a middleware system to be integrated with CASA

is that the middleware system should be reflective in nature, i.e. allow external reg-

ulation of its adaptation strategy, as discussed in Chapter 4.

With regard to resource monitoring, CASA can be integrated with any of the

resource monitoring systems that are able to monitor hardware resources efficiently

and provide information about the current availability of these resources. CASA

can even be integrated with any number of different resource monitoring systems

for monitoring different hardware resources. Naturally, it is of no concern to CASA

whether these resource monitoring systems are embedded within an adaptive mid-

dleware system or deployed independently.

The resource monitoring systems integrated with CASA are assumed to be in-

dependent and self-contained. The details of how monitoring is actually performed

(e.g. how many samples are taken, how frequently and how long sampling is done

etc.) are encapsulated within the design of the resource monitoring systems. The

RM does not control the working of the resource monitoring systems, but simply uses

the monitoring services provided by these systems as an external client. Different

resource monitoring systems for the same resource might differ somewhat in the de-

tails of their working, e.g. one system might be able to better hide temporary peaks

or drops in the availability of a resource by considering values over a longer period

of time than another system. However, most of the resource monitoring systems are

3.1. Monitoring resources 65

not customizable, i.e. they do not allow any control over their monitoring details,

as these details are presumed to be optimized for the design of these systems. The

differences in these systems are mostly because of certain trade-offs made in their

design, i.e. one system might be more suitable than others in a particular situation

but not in some other situations. Therefore, the choice of a resource monitoring

system for integration with CASA might depend on the target environments where

the monitoring system is to be deployed.

3.1.2 Monitoring software services

For monitoring software services, the RM includes a Software Resource Coordinator

(SRC) entity. Software services required by an application configuration might be

residing anywhere in the network. The SRC can use a variety of service discovery

infrastructures for discovering software services required by a configuration. For

the discussion in this dissertation, we assume that software services required by an

application configuration are implemented as Web services. The basic Web service

technologies include: UDDI (for service discovery), WSDL (for service description)

and SOAP (for service communication) [ACKM04]. However, the above basic tech-

nologies have not been designed for runtime automated discovery and binding of

services. For instance, WSDL is able to describe only the syntactic specification of a

service, with no semantic information. UDDI, in its current specifications, supports

only WSDL descriptions for advertising and searching services.

Nevertheless, in the last couple of years, there has been a tremendous amount of

work done in the area of semantic specification of Web services. The most popular

approach for semantic specification of services is OWL-S [OS07]. It is currently in

the process of being standardized by World Wide Web Consortium (W3C). OWL-S

is an OWL (Web Ontology Language [OWL07]) based ontology for the semantic

specification of services.

As discussed in Section 2.3.2, an OWL-S specification of a service has three

parts: profile, process model and grounding. A service requestor needs to provide

only an OWL-S profile, while a service provider should provide at least the grounding

information in addition to the profile description. UDDI has been recently enhanced

with OWL-S, as a part of the research effort at CMU [SPS04]. This allows searching

services based on their OWL-S descriptions using the UDDI enhanced with OWL-S.

The OWL-S profiles of the required services are provided within the specifica-

66 Chapter 3. Monitoring the Execution Environment

tion of the corresponding application configuration in the application contract. The

SRC may search for the services that match these OWL-S profiles using the UDDI

enhanced with OWL-S. A number of matchmakers for matching the services speci-

fied in OWL-S have been developed. One of the efficient matchmakers for OWL-S is

called OWL-S API [API07], which is developed as a part of the MINDSWAP project

at the University of Maryland.

Once all the services required for a given configuration are discovered, the SRC

communicates the successful discovery to the RM. In addition, the SRC passes the

references to the service providers of the matched services to the CES. The CES

communicates these references to the concerned application, once this configuration

is approved for activation.

As an example, the Tourist-Guide application might require a restaurant-search

service in one of its configurations. The profile of the restaurant-search service is

described in OWL-S, and this service can be used for searching a restaurant according

to the current time and location of the user, preferred cuisine, and number of persons.

The specification of the restaurant-search service within the application contract of

the Tourist-Guide application is shown in Figure 3.6, and the OWL-S profile of the

restaurant search service (as referred by the reference attribute in Figure 3.6) is

shown in Figure 3.7. The SRC uses the profile to search for a matching service using

the UDDI enhanced with OWL-S. Once a matching service is discovered, the SRC

communicates the successful discovery to the RM. The reference to the provider

of the restaurant-search service is passed to the application by the SRC through

the CES. As another example, the Tourist-Guide application might require a map

service for planning a route to the next point-of-interest.

In future, the SRC can be extended to discover services other than those acces-

sible as Web services, e.g. UPnP [UPn07] and OSGi [OSG07] services.

<sw name="restaurant-search"

reference="/sw-folder/restaurant-search.owl"/>

Figure 3.6: Example <sw> element in the application contract

3.2. Resource allocation algorithm 67

<rest:RestaurantSearchService rdf:ID="RestaurantSearchProfile">

<profile:hasInput rdf:resource="#date"/>

<profile:hasInput rdf:resource="#time"/>

<profile:hasInput rdf:resource="#location"/>

<profile:hasInput rdf:resource="#cuisine"/>

<profile:hasInput rdf:resource="#numberOfPersons"/>

<profile:hasOutput rdf:resource="#restaurantList"/>

</rest:RestaurantSearchService>

Figure 3.7: Example OWL-S profile for restaurant search service

3.2 Resource allocation algorithm

The Resource Manager (RM) is responsible for allocating resources to various run-

ning applications, and reallocating resources whenever there is a change in the avail-

ability or demand for resources.

Resource allocation decisions are governed by the relative priorities of various run-

ning applications. Relative priorities of applications are based on the user-perceived

preferences for these applications. Every application has a certain default priority

(expressed as a number between 1 and 10) defined by the application developer.

The default priority of an application can however be changed by the user according

to the user’s own needs and preferences. The RM maintains a priority list PL of

all running applications. This list is sorted from the lowest priority to the highest

priority applications.

Below we present simplified versions of the algorithms used for resource allocation

by the RM, hiding away some of the details and optimizations in order to make the

algorithms easy to follow. Detailed algorithms are provided in Appendix B.

Please note that in the following algorithms, wherever a change in configura-

tion or suspension is mentioned, it is carried out only within the data structures of

the algorithm, until the execution of the algorithm is over. Only after the successful

completion of the algorithm and approval by the CES, all the decided changes in con-

figurations and suspensions are actually carried out on the concerned applications.

This is analogous to database transactions where all modifications in a transaction

are made tentatively until the transaction commits, and only then the modifications

become persistent. Or as in a virtual shopping cart of an online shopping system,

68 Chapter 3. Monitoring the Execution Environment

where all items added to or removed from the shopping cart are tentative until the

customer checks out and pays for the items, and only then the order is actually

processed.

3.2.1 Allocating resources for initial activation

The first algorithm we present is New Request (refer Figure 3.8), which is invoked

when resources for a configuration from a given context element are to be allocated,

and accordingly the configuration is selected for activation. The input parameters

for this algorithm are an application identifier A (for referring the corresponding

application contract) and a context identifier C (as specified within the application

contract). The algorithm either returns the identifier of the selected configuration,

or null if no configuration could be selected in the current availability of resources.

The New Request algorithm depends on Allocate Resources (refer Figure 3.9)

and Must Allocate Resources algorithms (refer Figure 3.10).

Allocate Resources accepts an application identifier and a configuration identi-

fier, and returns true if resources for the given configuration are allocated successfully

or false otherwise.

If enough free resources are available, Allocate Resources simply allocates re-

sources for the given configuration. Otherwise (i.e. if enough free resources are

not available), Allocate Resources reconfigures lower priority applications (i.e. ap-

plications with lower priority than the requesting application) in order to free up

resources for accommodating the given configuration, but without reconfiguring any

of the higher priority applications and without suspending any of the lower priority

applications.

If the Allocate Resources algorithm fails to allocate resources for any of

the configurations in the given context element, then New Request invokes the

Must Allocate Resources algorithm. The Must Allocate Resources algorithm

tries to allocate resources for the configuration passed to it, by reconfiguring all

running applications (including the higher priority ones) and even suspending lower

priority applications to free up resources. Must Allocate Resources also accepts

an application identifier and a configuration identifier, but it returns the numbers

and net priorities of all applications that need to be reconfigured or suspended for

accommodating the given configuration. This data is used by the New Request

algorithm for selecting an appropriate configuration that results in least number of

3.2. Resource allocation algorithm 69

suspensions and reconfigurations of other applications. In case of the same number

of suspensions or reconfigurations, net priority of the applications to be suspended

or reconfigured is taken as the selection criteria.

The criteria behind allocating resources to a new application (as manifested in the

above algorithms) are: (1) first, try to allocate resources without disturbing any of

the running applications, (2) if this is not possible, then reconfigure the applications

with lower priority than the new application one-by-one (starting with the lowest

priority) to free the resources required by the new application, (3) if this does not

work either, then reconfigure the same priority and higher priority applications to

free the resources required by the new application, (4) if all the above fail to work,

start suspending the lower priority applications one-by-one to free the resources for

the new application. If in spite of all the above, sufficient amount of resources for the

new application are not available, the failure is communicated to the application.

If accommodating a new application results in suspending other lower priority

applications (step 4 above) and/or reconfiguring the same priority and higher priority

applications (step 3 above), then the configuration that results in the least number

of suspensions and reconfigurations of other applications is selected for activation.

The decision to reconfigure higher priority applications in order to accommodate

a new (low priority) application (step 3 above) is based on the assumption that

the execution of the new application is important for the user, even though not as

important as the execution of the higher priority applications. That is, in order to

accommodate the new application, the user is ready to sacrifice the functionality

or performance of the higher priority applications (without suspending these appli-

cations), just like she would have done in case of loss of certain resources required

by these higher priority applications. More importantly, the user is ready to sacri-

fice the functionality or performance of the higher priority applications, rather than

suspending some of the lower priority applications (which is done in step 4 above).

However, when a higher priority application is to be reconfigured for accommo-

dating a new application (or even when a lower priority application is to be suspended

for accommodating the new application), the user is prompted for confirmation (a

feature that the user may turn off, if required), at which point the user may accept or

deny the reconfiguration (or suspension). If a reconfiguration or suspension is denied

by the user, the resource allocation algorithm considers other applications for recon-

figuration and/or suspension. The user may also disable some of the low-preference

70 Chapter 3. Monitoring the Execution Environment

New_Request(App A, Context C)
BEGIN
 FOR(each Config G in C) /* starting from top to bottom */
 DO
 Allocate_Resources(A, G);
 IF(resources allocated successfully for G) THEN
 RETURN G;
 ENDIF
 ENDFOR
 FOR(each Config G in C) /* starting from top to bottom */
 DO
 Must_Allocate_Resources(A, G);
 IF(resources allocated successfully for G) THEN
 STORE G in a list Q along with information about
 applications to be suspended and reconfigured for
 accommodating G;
 ENDIF
 ENDFOR
 IF (the list Q is empty) THEN
 RETURN NULL;
 ENDIF
 Selected_G = first Config in the list Q;
 FOR(each Config G in the list Q, starting from second Config)
 DO
 IF(number of applications to be suspended for G is less
 than that for Selected_G) THEN
 Selected_G = G;
 CONTINUE;
 ENDIF
 IF(number of applications to be suspended for G is the
 same as that for Selected_G) THEN
 IF(net priority of applications to be suspended for
 G is less than that for Selected_G) THEN
 Selected_G = G;
 CONTINUE;
 ENDIF
 ENDIF
 IF(number and net priority of applications to be suspended
 for G are the same as that for Selected_G) THEN
 IF(number of applications to be reconfigured for G
 is less than that for Selected_G) THEN
 Selected_G = G;
 CONTINUE;
 ENDIF
 IF((number of applications to be reconfigured for G
 is the same as that for Selected_G) and (net priority
 of applications to be reconfigured for G is less than
 that for Selected_G) THEN
 Selected_G = G;
 CONTINUE;
 ENDIF
 ENDIF
 ENDFOR
 RETURN Selected_G;
END New_Request

Figure 3.8: Algorithm for new request

3.2. Resource allocation algorithm 71

Allocate_Resources(App A, Config G)
BEGIN
 Allocate free resources required by G;
 IF(resource requirement of G is fulfilled) THEN
 RETURN TRUE;
 ENDIF
 FOR (each application K in PL with Priority(K) < Priority(A))
 /* starting from lowest to highest priority */
 DO
 Replace current Config of K with the one (within the
 same Context) that results in freeing up maximum amount
 of resources required by G;
 Allocate freed-up resources to G;
 IF(resource requirement of G is fulfilled) THEN
 RETURN TRUE;
 ENDIF
 ENDFOR
 RETURN FALSE;
END Allocate_Resources

Figure 3.9: Algorithm for allocating resources

Must_Allocate_Resources(App A, Config G)
BEGIN
 Allocate free resources required by G;
 FOR (each application K in PL)
 /* starting from lowest to highest priority */
 DO
 Replace current Config of K with the one (within the
 same Context) that results in freeing up maximum amount
 of resources required by G;
 Allocate freed-up resources to G;
 IF(resource requirement of G is fulfilled) THEN
 RETURN (number and net priority of all applications
 that need to be reconfigured for accommodating G);
 ENDIF
 ENDFOR
 FOR (each application K in PL with Priority(K) < Priority(A))
 /* starting from lowest to highest priority */
 DO
 IF(K has allocated resources required by G) THEN
 Suspend K to free up its resources;
 Allocate freed-up resources to G;
 IF(resource requirement of G is fulfilled) THEN
 RETURN (number and net priority of all
 applications that need to be reconfigured
 and suspended for accommodating G);
 ENDIF
 ENDIF
 ENDFOR
 RETURN NULL;
END Must_Allocate_Resources

Figure 3.10: Algorithm for compulsorily allocating resources

72 Chapter 3. Monitoring the Execution Environment

configurations of the higher priority applications within the respective application

contracts, so that these configurations are not considered by the resource allocation

algorithm. Obviously, the user may, at any time, voluntarily stop the execution

of an application (for instance, some of the lowest priority applications) to free up

resources for better configurations of some other applications.

A more sophisticated way of managing the priorities of applications – for instance,

different priority levels for different adaptation actions (suspensions and reconfigura-

tions) and for different reasons for adaptation (loss of resources, increase in resources,

accommodating new application requests) – is a part of the future work.

In the Allocate Resources and Must Allocate Resources algorithms, we have

mentioned replacing the current configuration (say, GK) of an application K with the

one (say, GK ′) that results in freeing up maximum amount of resources required by

the requested configuration G. The choice of GK ′ depends not merely on the absolute

quantity of all the resources that are freed, but also on the Resource Contention

Factor (RCF) of each resource.

In particular, the RM dynamically computes RCF for every resource, based on

the recent history of contention for the resources. RCF for a resource R is computed

as the total demand for the resource R divided by the total availability of the resource

R at any time. That is,

RCFR =
(Total demand)R

(Total availability)R

RCF for a resource is computed every time there is a change in the demand or

availability of the resource. The final RCF value of a resource (for the purpose of

comparing with RCFs of other resources) is calculated as an average of the latest

five RCF values computed. This is done to mitigate the effects of any temporary

peaks or downfalls in the contention for a resource.

For every configuration that is a potential candidate for replacing GK, the freed-

up amount of each resource (i.e. the amount of resource that will be freed-up by

switching to this configuration) is divided by the total availability of the resource

(for normalization, i.e. to compare all resources at an equal level). This value is

then multiplied with the RCF of that resource, to arrive at the saving value for that

particular resource. That is,

Saving valueR = RCFR · (Freed-up amount)R

(Total availability)R

3.2. Resource allocation algorithm 73

Finally, saving values for all resources required by G are summed up to arrive at

the saving value for that configuration. The saving value for a particular resource

can also be negative, if the freed-up amount for that resource is actually negative

(i.e. the requirement of the new configuration for that particular resource is actually

more than that of the current configuration). However, a configuration change is

allowed only if sufficient resources are available for the new configuration.

Among the freely available resources, the resources required by G are already al-

located to it before a change in the configurations of other applications is considered.

Please note that the saving values are computed only for those resources which are

still required by G, i.e. which are not already allocated to G in the required amounts.

The configuration with the highest saving value is selected for replacing GK.

The idea here is that resources that are highly contended (with high RCF) are likely

to be available in scarce quantities, and should be given a priority for freeing them

up.

In case of suspending applications in the Must Allocate Resources algorithm,

if suspension of an application results in freeing up some extra resources than those

required by G, then the RM tries to revoke the suspensions (or reconfigurations) of

other applications that were decided to be suspended (or reconfigured) earlier but

could use these extra resources to continue their execution – either with their original

configurations or with alternative configurations. Similarly, reconfiguration of an

application (in the Allocate Resources and Must Allocate Resources algorithms)

might result in revoking the reconfigurations of some other applications that were

decided to be reconfigured earlier.

If there is a runtime change in an application’s contextual information, the CM

detects this change and communicates the new <context> element to the CES.

The CES communicates the new <context> element to the RM. The RM frees up

the resources allocated to the currently active configuration of the application in

its internal data structures, and invokes the New Request algorithm with the new

context identifier.

If the user changes anything in the application contract, the whole contract is re-

evaluated by the CES. If there is any change in the ordering of <context> elements

such that a lower <context> element has now become higher than the currently

active <context> element, then the CM is invoked again. If the CM concludes that

there is a change in the current <context> element due to the reordering, then the

74 Chapter 3. Monitoring the Execution Environment

CES communicates the new <context> element to the RM as above.

If the current <context> element remains valid (either the <context> elements

were not reordered as above, or the CM concludes that current <context> is valid

even after reordering), but the ordering of <config> elements has been changed

within the current <context> element such that a lower <config> has now become

higher than the current <config>, then also the New Request algorithm is invoked

with the current context identifier.

Similarly, any changes in the definition of contextual parameters of the current

or any higher <context> elements, or a change in the resource requirements of

the current or any higher <config> elements, is treated as a new request from the

application.

3.2.2 Reallocating resources in response to a change in availability

The RM needs to reallocate resources whenever there is a change in the availability

of resources, either in the form of reduced availability or increased availability.

In response to a change in the availability of resources, the RM uses the following

two algorithms for reallocating resources: Less Resources (when informed about

the reduced availability of resources, refer Figure 3.11) and More Resources (when

informed about the increased availability of resources, refer Figure 3.12).

The reduced availability of resources might result in reconfiguring or even sus-

pending some of the running applications. The running applications are reconfigured

or suspended according to their relative priorities. The decision for reconfiguring an

application takes into account the RCF for the freed-up resources, similar to the one

for accommodating a new application, as described in the previous sub-section.

For the increased availability of resources, a change to a more preferred configu-

ration of each running application is attempted, in the order of the relative priorities

of the applications (i.e. starting from the high priority applications to the low pri-

ority ones). The concerned application may approve or reject a change to a more

preferred configuration (e.g. the application may decide not to disrupt its current

execution even for a more preferred configuration).

If suspension of an application in the Less Resources algorithm results in freeing

up some extra resources than those required to reduce the resource deficit, then the

RM tries to revoke the suspensions (or reconfigurations) of other applications that

were decided to be suspended (or reconfigured) earlier but could use these extra

3.2. Resource allocation algorithm 75

Less_Resources(current resource availability)
BEGIN
 resource_deficit = (current resource allocation – current resource availability);
 FOR (each application K in PL)
 /* starting from lowest to highest priority */
 DO
 Replace current Config of K with the one (within the same Context)
 that results in freeing up maximum amount of resources required to
 reduce resource_deficit;
 Compute new resource_deficit;
 IF(resource_deficit <= 0) THEN
 RETURN;
 ENDIF
 ENDFOR
 FOR (each application K in PL)
 /* starting from lowest to highest priority */
 DO
 IF(K has resources required to reduce resource_deficit) THEN
 Suspend K to free up its resources;
 Compute new resource_deficit;
 IF(resource_deficit <= 0) THEN
 RETURN;
 ENDIF
 ENDIF
 ENDFOR
END Less_Resources

Figure 3.11: Algorithm for reduced availability of resources

More_Resources(current resource availability)
BEGIN
 resource_surplus = (current resource availability - current resource allocation);
 FOR (each application K in PL in the reverse order of priority)
 /* i.e. starting from highest to lowest priority */
 DO
 IF(current Config of K is not the highest in its current Context) THEN
 Try to replace current Config of K with a higher Config in its
 current Context, starting from the highest to current Config;
 Compute new resource_surplus;
 IF(resource_surplus == 0) THEN
 RETURN;
 ENDIF
 ENDIF
 ENDFOR
END More_Resources

Figure 3.12: Algorithm for increased availability of resources

76 Chapter 3. Monitoring the Execution Environment

resources to continue their execution. Similarly, the reconfiguration of an application

might result in revoking the reconfigurations of some other applications that were

decided to be reconfigured earlier, if some extra resources than those required become

available.

When an application terminates, its resources are freed up and the More Resources

algorithm is invoked.

3.2.3 Complexity of the resource allocation algorithms

Here we discuss the complexity of the algorithms described above for the initial al-

location of resources to an application, and for reallocating resources to applications

in response to a change in the availability of resources. For allocating resources to a

new application for its initial activation, the RM uses three algorithms: New Request,

Allocate Resources and Must Allocate Resources. For simplicity, let us define

the average number of alternative configurations in a given <context> element of

an application as n. Let the average number of running applications (that are man-

aged by the CASA Runtime system) at any given time be p (this number is the

same as the length of the priority list PL maintained by the RM, which contains all

running applications).

The complexity of both Allocate Resources and Must Allocate Resources al-

gorithms is O(pn). The relatively low complexity of these two algorithms is because

of our approach of using the RCF of resources for selecting an appropriate configura-

tion for an application to be reconfigured (as discussed in the previous sub-sections).

Otherwise, a more exhaustive search for selecting the best possible configuration for

every application to be reconfigured, i.e. choosing among np different combinations

in the worst case, would result in a much higher complexity. The approach based

on RCF of resources works satisfactorily in most cases, even though it may not give

the best possible results in all cases as could be possible with the exhaustive search.

However, given the huge difference in the complexities of the two approaches, the

approach based on the RCF of resources has been preferred. The New Request algo-

rithm depends on Allocate Resources and Must Allocate Resources algorithms.

The complexity of the New Request algorithm is O(pn2).

The complexity of the Less Resources algorithm (for reduced availability of re-

sources) is O(pn), and that for the More Resources algorithm (for increased avail-

ability of resources) is also O(pn). Here also, the use of our approach based on RCF

3.3. Monitoring contextual information 77

of resources for deciding an appropriate configuration for a reconfiguring application

results in the relatively low complexity of the Less Resources algorithm.

Since the average number of alternative configurations in a given <context>

element of an application (i.e. n) is likely to be low, and the average number of

running applications at any given time (i.e. p) is also likely to be low, the complexity

of the above resource allocation algorithms is reasonable. We believe that for most

common scenarios in practice, a typical value of n is likely to be less than 10, and

that for p is likely to be less than 20.

A discussion on the runtime performance of a CASA prototype system is given

in Chapter 6.

3.3 Monitoring contextual information

As briefly outlined in Chapter 2, monitoring contextual information consists of the

following steps:

• acquiring the data related to contextual information,

• structuring the acquired data based on an application domain-specific ontology,

and

• deducting the final knowledge, i.e. the contextual information relevant to the

application, from this data.

An overview of the architecture of the Context Monitor (CM) is given in Figure

3.13.

At the lowest level, a variety of Context Sensors are used to acquire the data re-

lated to contextual information. At the middle level, the acquired data is structured

based on an application domain-specific ontology by a collection of Context Inter-

preters (each one responsible for a different context parameter), and the values of

the corresponding context parameters are deducted from this data. And, at the top

level, a Context Matcher combines these values of context parameters, and matches

these values with the context parameter values defined in the application contract, in

order to determine the currently valid <context> element (i.e. the final contextual

information relevant to the application). The Context Matcher then communicates

the determined <context> element to the CES (Contract Enforcement System).

78 Chapter 3. Monitoring the Execution Environment

Context Matcher

Context
Interpreter

Context
Sensor

. . . Context
Sensor

Context
Interpreter

Context
Sensor

. . . Context
Sensor

Context
Interpreter

Context
Sensor

. . . Context
Sensor

. . .

Figure 3.13: Context Monitor

Context sensors can be used for sensing a wide variety of contextual data. This

includes providing measurements of physical variables such as temperature, lighting,

physical motion etc., or a combination of sensors for identifying objects or persons.

Simply reading the GPS data for ascertaining the current location, or even referring

to the user’s agenda for detecting the current user activity is also a part of context

sensing. It is obvious that different application domains might require entirely differ-

ent sets of context sensors. The context sensors can range from highly sophisticated

hardware sensors to relatively simple software sensors.

The data sensed by different context sensors is passed to the corresponding Con-

text Interpreters. Context Interpreters structure the acquired data according to an

application domain-specific ontology for deducting the values of the relevant context

parameters.

The role of an ontology is very important in the design of the CM, as it actually

provides the semantics for the observed data in order to extract useful information

about the contextual parameters of interest from this data. Design and development

of an ontology is a separate and broad field of research, and we do not address this in

detail here. However, the design of an ontology should allow sufficient expressiveness,

and extensibility to accommodate new context parameters. OWL (Ontology Web

Language) [OWL07] is an emerging standard for defining an ontology. OWL is

based on RDF, which in turn is based on XML. Being XML-based, an ontology

3.3. Monitoring contextual information 79

defined in OWL can be easily extended or modified. OWL provides rich expression

capabilities for defining an ontology, and is very well suited for ontological knowledge

representation of contextual information.

Figure 3.14 shows an example OWL ontology for discovering whether the user is

currently in a meeting. This requires satisfaction of two conditions. First the user

must be in a meeting room, and second the number of persons in the room must be at

least two. The current location of the user and the number of persons in the vicinity

of the user are detected by different context sensors. The data collected by these

sensors is passed to the corresponding Context Interpreter. The Context Interpreter

structures this data according to the OWL ontology, and decides whether the user

is currently in meeting. This information is then passed by the Context Interpreter

to the Context Matcher. The Context Matcher uses the information about different

context parameters sent by different Context Interpreters in order to decide the

currently valid <context> element.

<owl:Class rdf:ID="inMeeting">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class>

<owl:Restriction>

<owl:onProperty rdf:resource="#currentLocation"/>

<owl:hasValue rdf:resource="#meetingRoom"/>

</owl:Restriction>

</owl:Class>

<owl:Class>

<owl:Restriction>

<owl:onProperty rdf:resource="#numberOfPersons"/>

<owl:minCardinality rdf:datatype="xsd:nonNegativeInteger">2

</owl:minCardinality>

</owl:Restriction>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

Figure 3.14: Example OWL ontology

80 Chapter 3. Monitoring the Execution Environment

The architecture of the CM is very modular, and therefore allows easy extensi-

bility. The extensibility of the CM is very important as different applications can

be interested in different parameters of contextual information, some of which may

be highly specific to an application and thus could not be provided by a standard

CM. The architecture of the CM allows new Context Sensors and new Context Inter-

preters to be added to the CM. The job of the Context Matcher is simply to collect

the values of different context parameters from all available Context Interpreters,

and match these values for deciding the currently valid <context> element in the

application contract. Since the Context Matcher provides only a general functional-

ity, it needs not be evolved.

The Context Matcher provides an interface whereby new Context Interpreters

can get registered with it. Similarly, Context Interpreters provide interfaces for

registering new Context Sensors.

Context-awareness is a relatively new field of research and development, and

therefore there are not many general-purpose context monitoring mechanisms avail-

able. Most of the techniques for context monitoring presented in the literature have

been tightly bound to the target applications for which these techniques have been

primarily developed. Examples of such techniques are ParcTab [WSA+95], Active

Badge [WHFG92], Stick-e Document [Bro96] etc.

The Context Toolkit [SDA99] developed at Georgia Institute of Technology pro-

vides by far the most general-purpose toolkit for developing context monitoring

mechanisms. The Context Toolkit relies on the concept of context widgets, which

mediate between a client and its contextual environment. Context widgets are used

for sensing contextual data, and providing this data to clients. The Context Toolkit

includes a widget library for sensing common contextual data such as presence, iden-

tity and activity of people and things. The context widgets act as building blocks

for developing context monitoring mechanisms.

In the design of the CM, the Context Toolkit can be used for developing context

widgets, which would actually act as context sensors and provide contextual data

to the Context Interpreters. The Context Interpreters will then combine the data

received from the relevant context widgets, and decide the value of the corresponding

context parameter with the help of the context ontology. The advantage of using

context widgets is that they already abstract the data collected from various sources

in a format which can be readily understood by their clients, i.e. Context Interpreters

3.3. Monitoring contextual information 81

in our case.

We leave further details on monitoring contextual information and resources as a

future work. In the remaining chapters of this dissertation, we focus on mechanisms

for dynamic adaptation of applications.

Chapter 4

Dynamic Adaptation of

Lower-level Services and

Aspects

As discussed in Chapter 2, lower-level services in this dissertation mean underlying

services required by an application for its execution, e.g. data compression, transmis-

sion, encryption, caching, video coding/decoding etc. These services can be shared

among different applications, and are provided by the deployment platform. Lower-

level services that are part of an application configuration are listed in the appli-

cation contract in the <llservices> element within the corresponding <config>

element. These services are considered to be always available, i.e. an application

can always rely upon the availability of these services. If the availability of a service

cannot be relied upon, then this service should be listed as a software resource in the

<resources> element in the application contract, and not in the <llservices>

element.

For the discussion here, we assume that all the required lower-level services are

managed by an underlying adaptive middleware system. However, if a certain lower-

level service is not managed by the middleware system, then a manager for the

service should be implemented and its reference should be provided to the CES,

so that the CES may activate or deactivate the lower-level service, or change some

parameters of the service as required for the selected application configuration.

The term aspect is used here in the sense of aspect-oriented programming (AOP)

83

84 Chapter 4. Dynamic Adaptation of Services and Aspects

[KLM+97]. That is, aspects implement the crosscutting concerns of an application,

in contrast to components that implement the core functional concerns of the applica-

tion. Examples of crosscutting concerns are access control, persistence management,

transaction management etc. The aspects that can be added or removed dynamically

are listed in the <aspects> element within the corresponding <config> element

in the application contract. Whereas, any other aspects that need to be always

present in an application irrespective of its current configuration need not be speci-

fied in the application contract. These aspects are activated during the application

initialization.

Details of dynamic adaptation of lower-level services are discussed in Section 4.1,

and details of dynamic adaptation of aspects are discussed in Section 4.2.

4.1 Dynamic adaptation of lower-level services

A number of adaptive middleware systems have been developed for adapting lower-

level services used by an application. Many of these systems are quite mature, offer-

ing good functionality as well as performance. Therefore, in CASA, we have decided

to use an external adaptive middleware system for adapting lower-level services.

In order to be integrated with the CASA framework, the adaptive middleware

system should allow external regulation of its adaptation strategy, so that the CES

may instruct to activate or deactivate the corresponding lower-level services, and

control the quality of these services according to the requirements of the selected ap-

plication configuration. In other words, an adaptive middleware should be reflective

in nature in order to be integrated with the CASA framework.

There are several reflection-based adaptive middleware systems available, which

can potentially be integrated with the CASA framework. These different adap-

tive middleware systems have their respective strengths, and depending on a specific

application’s domain and adaptation requirements, one of these systems may outper-

form others. We envision that in practice different flavors of CASA will be available,

with each one suited for a different application domain and adaptation requirements,

and therefore integrated with a different adaptive middleware system. In fact, the

CASA framework can be integrated with more than one adaptive middleware system

at the same time. As discussed later, the choice of an adaptive middleware system

does not affect the design of the CASA Runtime System (CRS).

4.1. Dynamic adaptation of lower-level services 85

For the discussion here, we consider an adaptive middleware system called

Odyssey [NSN+97, Nob00], which is a strong contender for integration with the

CASA framework, and is one of the most general-purpose adaptive middleware

systems. Odyssey is very broadly applicable, as it can be used for adapting a broad

range of lower-level services. Moreover, the design of Odyssey allows easy extensi-

bility, i.e. it allows integrating new adaptation capabilities for lower-level services.

Some other adaptive middleware systems that may potentially be integrated with

CASA are discussed in Chapter 7 on Related Work.

Adapting lower-level services using Odyssey: As discussed in Section 3.1.1,

the Odyssey system consists of Viceroy and a set of Wardens. Viceroy is responsi-

ble for centralized resource management, and Wardens are responsible for adapting

lower-level services used by an application. In addition to being the single point of

resource control for clients, Viceroy also acts as the single point for the clients’ inter-

actions with different Wardens. All communication between a client and Wardens is

brokered by Viceroy.

Odyssey was originally designed for adaptations related to remote data access,

and Wardens were used solely for managing lower-level services dealing with data

access by client applications, e.g. video coding/decoding service, Web caching service

etc. A Warden for managing a lower-level data access service supports multiple

fidelity levels for the corresponding service. A client application can select any of

these fidelity levels dynamically depending on the current execution environment

conditions, by instructing the corresponding Warden accordingly.

However, Wardens can in fact be implemented for managing all types of lower-

level services, and not just those dealing with data access (though most of the lower-

level services anyway deal with data access only). For the purpose of CASA, for every

lower-level service required by applications, a corresponding Warden is implemented

in Odyssey. In Odyssey terms, a Warden should support different fidelity levels (i.e.

quality levels) for the corresponding lower-level service.

The CES acts as a client of Odyssey for managing lower-level services. That

is, the CES can instruct the relevant Wardens to activate the corresponding lower-

level services at the desired quality levels, as dictated by a selected application

configuration.

In order to avoid explicitly encoding each fidelity changing operation carried out

86 Chapter 4. Dynamic Adaptation of Services and Aspects

by Wardens, Odyssey provides a general mechanism called type-specific operation or

tsop. The parameters of a tsop() call include the target object, the operation to be

performed, any arguments to be passed and results to be returned by the operation.

Figure 4.1 shows the interface of a tsop() call. More details on the functionality of

Odyssey can be found in [Nob98].

tsop(in path, in opcode, in insize, in inbuf, inout outsize, out outbuf)

Figure 4.1: Type-specific operation in Odyssey

The path passed as an argument to a tsop() call specifies the path of the cor-

responding Odyssey object on which an operation is to be performed. The opcode

argument specifies the operation to be performed. The insize and inbuf arguments

specify the size and buffer for the input parameters passed to the operation. Simi-

larly, outsize and outbuf specify the size and buffer for the return parameters. As

can be observed, the format of a tsop() call is very generic, and can be used for any

type of Warden managing any type of lower-level service. The tsop() methods are

traditionally called type-specific operations because these methods are typically used

for adapting the access to a particular type of data. For example, a tsop() method

can be used for changing the quality of video data, or for changing the caching policy

for Web data.

Wardens implement two types of operations: one for consuming the lower-level

services, and other for adapting the lower-level services. That is, a client might

use tsop() calls not just for adapting the lower-level services, but also for invoking

these services to get the desired results. In case of CASA, the operations for con-

suming lower-level services are invoked directly by the application, while operations

for adapting the services are invoked by the CES.

As an example, Odyssey provides a Warden for managing data access to Quick-

Time [Qui07] movies. The Warden supports an operation for fetching movie frames,

and another operation for changing the quality of the movie being played [Nob98].

The operation for fetching movie frames is called QT GetFrame, which takes a movie

reference and time as arguments, and returns the frame of the specified movie after

the specified time. The Warden supports three different quality levels for Quick-

Time movies: full color uncompressed, full color with lossy JPEG compression, and

black and white. These three alternative quality levels have obvious differences with

4.1. Dynamic adaptation of lower-level services 87

respect to their network bandwidth requirements. Different qualities of video are

referred as different tracks. The operation for dynamically adapting the quality level

of a movie is called QT SwitchTracks, which takes a track reference as an argument,

and adapts the quality level of the movie to the specified track accordingly.

The <llservices> element in the application contract contains a number of

<lls> elements. Every <lls> element specifies an operation to be performed for

adapting a particular lower-level service. An <lls> element has a manager attribute

specifying the corresponding manger of the lower-level service, name attribute speci-

fying the name of the lower-level service, operation attribute specifying the name of

operation to be performed, and a number of <arg> sub-elements specifying the val-

ues and types of the arguments to be passed to the operation. The role of a manager

here is to make the CASA Runtime System (CRS) decoupled from the particular

adaptive middleware system being used, thereby allowing any adaptive middleware

system to be easily integrated with CASA.

An adaptive middleware system integrated with the CASA framework needs to

provide a manager entity for managing all the lower-level services and resources

that are controlled by the middleware system. The manager provides an interface

to the CRS for managing lower-level services as well as resources. In effect, the

manager acts as a Façade (in the sense of the Façade design pattern [GHJV95])

for the underlying adaptive middleware system. A client of an adaptive middleware

system interacts only with the manager of the system. The manager in turn forwards

the client’s requests to the appropriate components of the system.

When Odyssey is integrated with CASA, the <lls> elements are used for spec-

ifying corresponding tsop() calls for controlling the quality of the lower-level ser-

vices. In detail, the manager attribute of an <lls> element contains a reference

to the Odyssey Manager (which is an interface to all Odyssey-managed lower-level

services), the name attribute specifies the name of the lower-level service (this name

is used for internal reference only, as this name is not passed to the Odyssey Man-

ager), the operation attribute has a value tsop (as this is the only operation to

be performed whenever a lower-level service needs to be adapted), and a number of

<arg> sub-elements specifying the values and types of the arguments to be passed

to the corresponding tsop() call. We assume that the quality changing operation

performed by a tsop() call does not have any return parameters.

Continuing with the above example of adapting the quality of QuickTime movies

88 Chapter 4. Dynamic Adaptation of Services and Aspects

in response to a change in the network bandwidth available, the corresponding

tsop() call will have parameters specifying the object on which the quality changing

operation needs to performed (this object provides a reference to the corresponding

Warden), the name of the quality changing operation (i.e. QT SwitchTracks, in this

example), and the arguments to be passed to this operation. An example <lls>

element is shown in Figure 4.2, and the corresponding tsop() call is shown in Fig-

ure 4.3. In this example, the arguments passed to the QT SwitchTracks operation

indicate the movie identifier and the new track identifier for the movie respectively.

There are no return parameters to be passed, as this quality changing operation does

not have any return value.

<lls manager="Odyssey" name="video" operation="tsop">

<arg value="/VideoWarden/QT_Movie" type="string"/>

<arg value="QT_SwitchTracks" type="string"/>

<arg value="5" type="int"/>

<arg value="2" type="int"/>

</lls>

Figure 4.2: Example <lls> element

tsop(/VideoWarden/QT_Movie, QT_SwitchTracks, 5, 2)

Figure 4.3: Example tsop() call

Once an application configuration is selected for activation, the CES issues the

tsop() calls specified in the corresponding <lls> elements to the Odyssey Manager.

The Odyssey Manager modifies a tsop() call into a format expected by Viceroy

(i.e. passing arguments in a buffer), and forwards the call to Viceroy. The Viceroy

determines the appropriate Warden for this tsop() call by referring to the first

argument of the call. Thereafter, the Viceroy invokes the appropriate Warden, which

carries out the specified operation for adapting the corresponding lower-level service.

The sequence of these calls is shown in Figure 4.4.

Odyssey offers very good runtime performance. In particular, both resource

monitoring as well as dynamic adaptation of lower-level services are carried out with

minimal time delays and overhead. More information on the runtime performance

4.1. Dynamic adaptation of lower-level services 89

 Web
Warden

 Video
 Warden
(QuickTime)

... other Wardens

Contract Enforcement System (CES)

Odyssey Manager

Viceroy

tsop()

tsop()

QT_SwitchTracks()

QuickTime
 Movie

Figure 4.4: Interactions between the CES and Odyssey

of Odyssey is given in [NSN+97].

As discussed earlier, Odyssey is only one of several potential adaptive middle-

ware systems that may be integrated with the CASA framework. Some adaptive

middleware systems may be more suited to certain application domains than oth-

ers. Therefore, the final choice of an adaptive middleware system depends upon the

application domain, and the given applications’ requirements with respect to the

adaptation of lower-level services.

Since the coupling between the CASA Runtime System (CRS) and the adaptive

middleware system is very loose, the choice of an adaptive middleware system does

not affect the overall design of the CRS. As discussed earlier, the <llservices>

element in the application contract contains generic <lls> elements, specifying the

calls to be made for adapting the lower-level services as required by the correspond-

ing application configuration. These specified calls are made by the CES to the

corresponding manager of the adaptive middleware system integrated with CASA.

The manager receives the calls made by the CES, and translates these calls into a for-

mat accepted by the corresponding adaptive middleware system, before forwarding

the calls to the middleware system. Similarly, more than one adaptive middleware

90 Chapter 4. Dynamic Adaptation of Services and Aspects

system can be simultaneously integrated with CASA, with each middleware system

providing a manager for interacting with the CRS.

4.2 Dynamic adaptation of aspects

As discussed earlier, aspects implement crosscutting (orthogonal) concerns of a soft-

ware application. The functionality implemented by an aspect is crosscutting in

nature, because different components across an application rely on this functional-

ity. This implies that the crosscutting functionality provided by an aspect usually

needs to be executed at several points within an application. The description of

an aspect consists of two parts: join-points (defining where the aspect is to be ex-

ecuted) and advice (defining what is the code that needs to be executed). That is,

the join-points define the execution points within an application where the aspect

is to be executed, and the advice defines the code that is to be executed at these

join-points.

Dynamic adaptation of aspects here implies dynamic weaving and unweaving of

aspects into / from an application. In the last few years, a number of approaches for

dynamic weaving and unweaving of aspects have been proposed and implemented.

These approaches are commonly referred as dynamic AOP approaches. CASA relies

on a flexible and efficient dynamic AOP system called PROSE [NA05]. Below we

briefly describe the PROSE system, and its role in the CASA framework.

PROSE is a Java-based dynamic AOP system. The architecture of PROSE is

presented in Figure 4.5. The architecture is divided into an AOP engine layer, and

an execution monitor layer. The AOP engine is responsible for managing aspects

and executing advices, while the execution monitor deals with weaving of aspects at

the join-points.

Figure 4.5 illustrates the steps involved in weaving and execution of aspects. For

more details on these steps, please refer to [NA05].

PROSE does not define any new aspect language, and uses Java as the aspect

language. An aspect file in PROSE defines the advice code, and the corresponding

set of join-points where the advice code is to be executed. An example PROSE

aspect is shown in Figure 4.6 (reproduced from [NA05]). This aspect redefines the

original version of a method with a new one.

Every aspect definition contains one or more crosscut objects. As shown in

4.2. Dynamic adaptation of aspects 91

(6.1) weave callbacks
(6.2) extend constant pool
(6.3) install new bytecode

(6) redefine method(4) get the original
 method code

(5) get constant pool

 Field
Weaver

Method
Weaver

Redefine
 Weaver

(3) set watches (8) execute advice

Bytecode Advice Weaver

AOP
Engine

Execution
Monitor

Join Point Generator

(2) create join point requests

Callback
Manager

Lower
 Layer

Class Evolution Program Execution

Java Virtual Machine Java Virtual Machine

Upper
 Layer

 Advice
Manager

(7) join point
 reached callback

(1) insert

 Aspects

Figure 4.5: Architecture of PROSE [NA05]

public class ExampleAspect extends DeafultAspect {

public Crosscut doRedef = new MethodRedfineCut() {

public void METHOD_ARGS(Foo ob, int x) {

// the new method code

}

protected PointCutter pointCutter() {

return Within.method("bar");

}

};

}

Figure 4.6: Example of a PROSE aspect [NA05]

92 Chapter 4. Dynamic Adaptation of Services and Aspects

Figure 4.6, a crosscut object defines an advice method (called METHOD ARGS()) and

a pointcut method (called pointCutter()). The pointcut method defines a set of

join-points where the advice should be executed. The aspect shown in Figure 4.6

specifies replacing the method bar from the Foo class with the code specified in the

advice.

The AOP engine accepts aspect files, extracts information about join-points, and

sends join-point requests to the execution monitor. The execution monitor performs

bytecode manipulations and method instrumentations for activating join-points by

adding advice callbacks at the corresponding bytecode locations. For advices that

are executed externally, when the program execution reaches one of the activated

join-points, the execution monitor notifies the AOP engine which then executes the

corresponding advice. When aspects are removed, the join-points are deactivated

and the original bytecode of methods is installed. Detailed working of PROSE can

be found in [NA05].

The PROSE system supports a number of aspect weaving mechanisms, namely:

stub weaving, advice weaving, hook weaving and stop-point based weaving. The

first two weaving mechanisms, stub weaving and advice weaving, are of particular

interest here. In stub weaving, the original bytecode is augmented with stubs by

the execution monitor, which then call external advice codes. Whereas in advice

weaving, the original bytecode is overwritten to include the advice code. These

two mechanisms together provide flexibility for weaving different types of aspects

and join-points, according to the application’s requirements. The other two weaving

mechanisms, hook weaving and stop-point based weaving, were implemented in the

earlier versions of PROSE. Details of these two weaving mechanisms can be found

in [PAG03] and [PGA02] respectively. However, stub weaving and advice weaving

provide better performance as well as flexibility when compared to the other two

weaving mechanisms.

The join-points supported in PROSE are method boundaries (method entry and

exit), method redefinition, field access and modification, and exception (catch and

throw).

The Aspects Adaptation System (AAS) in CASA interacts with PROSE

for dynamically weaving and unweaving aspects. In the application contract,

the <aspects> element corresponding to a configuration contains a number of

<aspect> elements. Every <aspect> element contains a name attribute specify-

4.2. Dynamic adaptation of aspects 93

ing the name of an aspect (this name is used for internal reference only), and a

reference attribute specifying the reference to the corresponding aspect definition.

Once an application configuration is selected for activation, the CES communi-

cates the new configuration to the AAS (Aspects Adaptation System). The AAS

discovers which aspects are new (i.e. part of incoming configuration but not of out-

going configuration) and thus need to be added, and which aspects are outdated (i.e.

part of outgoing configuration but not of incoming configuration) and thus need to

be removed. If the above configuration is the first configuration of the application,

then obviously all the aspects specified within the corresponding <aspects> ele-

ment need to be added. The AAS forwards the details of the identified aspects to

PROSE for dynamically weaving and unweaving these aspects.

The PROSE system provides an Aspect Manager for managing the dynamic

weaving and unweaving of aspects. The Aspect Manager provides insert()

method (for weaving aspects), withdraw() method (for unweaving aspects) and

getAllAspects() method (for getting a list of all active aspects). The AAS in-

teracts with the Aspect Manager for dynamic weaving and unweaving of aspects.

That is, the AAS invokes the insert() and withdraw() methods according to its

decision for weaving and unweaving the corresponding aspects.

Figure 4.7 shows interactions between the AAS and the Aspect Manager for

weaving an aspect. The rest of the steps involved in the weaving and execution of

an aspect by the PROSE system are as shown in Figure 4.5. For more details on

these steps and working of PROSE, please refer to [NA05].

Aspects Adaptation System (AAS)

Aspect Manager of PROSE

AOP Engine of PROSE

insert()

insert()

Figure 4.7: Interactions between the AAS and PROSE

94 Chapter 4. Dynamic Adaptation of Services and Aspects

As an example, let us assume that an application has moved from a low-risk

area to a high-risk area, and accordingly wants to weave an access control aspect.

The purpose of this aspect is to control the access to certain critical methods of the

application. Therefore, the join-points for this aspect are the entry points to these

restricted-access methods. Whenever a call to one of the restricted-access methods is

made, the corresponding access control advice is executed to authenticate the access

before the call is allowed to execute the method.

Weaving the access control aspect can be done by adding a stub to this aspect

before the original bytecode of every restricted-access method. The stub is woven

before the first instruction of the method but after the call to this method has taken

place, so that the stub can inspect the stack, extract the parameters of the call and

pass these parameters to the advice code. The arguments of the called method are

accessible to the advice, because these are passed as parameters to the advice code.

An example access control aspect as specified in the application contract is shown

in Figure 4.8. The name attribute of the <aspect> specifies the name of the aspect.

This name is used for internal reference only. The reference attribute specifies the

location of the compiled aspect file. The aspect file contains the executable advice

code and the join-points where this code is to be executed.

<aspect name="access-control"

reference="/aspect-folder/AccessControl"/>

Figure 4.8: Example access control aspect

As the application moves from a low-risk area to a high-risk area, the CASA

Runtime Systems detects this change in context and select a new configuration of

the application. The change in configuration includes weaving the access control

aspect into the application. The AAS invokes the insert() method of the Aspect

Manager of PROSE for weaving this aspect. An instance of the corresponding aspect

as specified in the application contract is passed as an argument to the insert()

method. Similarly, the AAS can invoke the withdraw() method of the Aspect

Manager for unweaving an already weaved aspect, if this aspect is no longer required

as a result of the change in application configuration. In addition to the advice code

and join-points, the aspect code contains insertionAction() method which is called

before/after the aspect is inserted, and withdrawalAction() method which is called

4.2. Dynamic adaptation of aspects 95

before/after the aspect is withdrawn. PROSE offers very good runtime performance,

the details of which can be found in [NA05].

Chapter 5

Dynamic Recomposition of

Components

5.1 Introduction

In this chapter, we discuss the CASA approach for dynamic recomposition of com-

ponents.

We start with the definition of a software component, or just component as in

this dissertation. In literature, various definitions of a component are available.

For our purpose, we use the definition provided by Clemens Szyperski [Szy98]: “A

software component is a unit of composition with contractually specified interfaces

and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parties.”

A component composition, or just composition, is a collection of components that

are able to jointly carry out the given task of the application, in conjunction with

the other appropriate parts of the application configuration i.e. aspects, lower-level

services etc.

A typical dynamically adaptive application is required to carry out different tasks

under different states of its execution environment. Accordingly, an application may

have a number of alternative compositions, only one of which will be valid at a given

time depending on the current state of the execution environment.

A composition is specified within the <components> element in the correspond-

ing <config> element in the application contract.

Dynamic recomposition of components can now be defined as changing from one

97

98 Chapter 5. Dynamic Recomposition of Components

alternative composition of an application to another at runtime.

Any two alternative compositions of an application may vary in just a few com-

ponents, while the rest of the components remain the same across both the compo-

sitions.

When changing from one alternative composition to another, there may be some

new components to be added and some old components to be removed. In other

words, a dynamic recomposition may involve any number of dynamic addition and/or

dynamic removal of components.

There may be some components that remain the same across all the alternative

compositions of an application, and provide some common core functionality. The

components that remain the same across all the alternative compositions of an ap-

plication are called non-adaptable components, while all other components that can

be added or removed dynamically are called adaptable components.

It is obvious that only the adaptable components constituting a composition need

to be specified within the corresponding <components> element in the application

contract.

Dynamic replacement of components is a special case of dynamic removal of

a component A followed by dynamic addition of a component A′, such that the

external components being served by A can now be served by A′, without requiring

any change in the external components themselves.

In order for components A and A′ to be dynamically replaceable1, both A and

A′ must conform to the same component contract2.

Conforming to the same component contract implies that the following two re-

quirements need to be satisfied by A and A′.

Requirement 1: Both A and A′ must have the same interface, i.e. the method

signatures of the publicly-accessible methods of A and A′ must be the same.

Requirement 2: The pre and post conditions of the publicly-accessible methods

of A and A′ must be the same (the pre and post conditions may also include certain
1In CASA, dynamic replaceability is a reflexive relation. That is, if A can be dynamically replaced

by A′, then it automatically implies that A′ can also be dynamically replaced by A.
2The term “component contract” is used here in the sense of the Design by Contract approach

[Mey92]. Please note that even while conforming to the same component contract, the components

are free to differ in their internal implementations.

5.1. Introduction 99

non-functional assertions or constraints).

The Components Adaptation System (CAS) in CASA is responsible for dynamic

recomposition of components.

Please note that ensuring the completeness and correctness of various alternative

compositions of an application (as specified in the application contract for different

states of the application’s execution environment) is the responsibility of the appli-

cation developer. The CAS is responsible for simply carrying out a change from one

alternative composition to another at runtime.

The completeness of a composition implies that the following requirement be

satisfied by the composition.

Requirement 3: For every component present in a composition, all the compo-

nents on which this component depends must also be present in the same composi-

tion.

In terms of dynamic recomposition, requirement 3 can be divided into following

two sub-requirements.

Requirement 3a: If a component A is removed as a part of a dynamic recomposi-

tion, then either A must be dynamically replaced by another component, or else all

the components depending on A must also be removed as a part of the dynamic

recomposition.

Requirement 3b: If a component A is added as a part of a dynamic recomposition,

then the components on which A depends either must already be present in the old

composition, or else they must also be added as a part of the dynamic recomposition.

The correctness of a composition implies that the following requirement be sat-

isfied by the composition.

Requirement 4: A composition must be able to carry out its stated task correctly,

where the correctness is defined by the ability of the composition to satisfy the

functional and non-functional requirements of the application in the corresponding

state of the execution environment, in conjunction with the other appropriate parts

of the application configuration i.e. aspects, lower-level services etc.

100 Chapter 5. Dynamic Recomposition of Components

In the following sections, we discuss the implementation issues related to dynamic

recomposition of components for applications developed using object-oriented pro-

gramming languages. In particular, we consider Java as a target language, because

of its widespread use and popularity. However, we will try to keep our discussion as

language-neutral as possible, so that the results are applicable for a wide range of

object-oriented programming languages.

Components vs. objects: Before discussing the implementation details of the

dynamic recomposition of components, we need to understand how components are

implemented in an object-oriented programming language. In the literature, there

is often confusion over the terms ‘components’ and ‘objects’, with the result that

these two terms are frequently used to denote similar abstractions. Sometimes these

two terms are used so interchangeably that it gives an impression that a compo-

nent is merely a commercial name for an object. At best, the difference between a

component and object is recognized by some as a component being a collection of

objects, and by some others as a component being an object decorated with some

bells and whistles (such as the degree of encapsulation being high in components,

and an explicitly defined interface being a necessity for components).

In a panel discussion on “Are Components Objects?” at the OOPSLA’99 confer-

ence, Clemens Szyperski [OOP99] helped explain the difference between these two

terms. According to Szyperski,

“Objects form abstractions over identifiable parts of a state space:

they have a unique identity and they encapsulate the variables and op-

erations over those variables that define the abstracted part of the state

space. Hence, no two objects occupy the same partition of the universal

state space.

Components form abstractions over namable parts of a deployment

space: they have a name but not a unique identity; they encapsulate

static implementation decisions and are restricted to explicitly specified

dependencies on other components only and, preferably, have dependen-

cies that are configurable.”

The difference between a component and object is more clearly discussed and

explained by Luigia Petre in [Pet00]. According to Petre,

5.1. Introduction 101

“Components are important as software construction concepts based

on the notion of service. Objects are also important, but in providing a

construction solution to each component. Objects are best in underlying

(modeling) a problem domain, while components are most suitable in

describing a system functionality.”

“Software systems grow continuously and need to evolve. The notion

of component as a self-contained software system that can be reused

or easily replaced meets these requirements. The implementation of a

component is however best realized when objects are used.”

The above implies that the terms ‘component’ and ‘object’ are used for differ-

ent purposes in a software development and deployment process. Component is

essentially a modularization concept that is used for organizing an application into

interacting reusable components. Whereas, objects are used for modeling a problem

domain, i.e. modeling things and relationships between things, and implementing

solutions for this domain.

A component may or may not be implemented using object-oriented program-

ming technologies. Even when a component is implemented in an object-oriented

programming language, there may not be a direct correspondence between a com-

ponent and an object. That is, a component can be implemented as a single object

or as a collection of objects.

When a component is implemented as a collection of objects, these objects are

usually hierarchically structured. That is, a top-level object instantiates other ob-

jects for its use. These objects may in turn instantiate more objects for their own

use. The hierarchical structuring of these objects results in a tree with a single root

object, as illustrated in Figure 5.1. The parent-child relation shown in Figure 5.1

represents the relation between the creator and the instance being created.

In this dissertation, we assume that a component in CASA is implemented in

an object-oriented programming language. A component can be implemented as a

single object or a collection of objects. Adding or removing a component implies

adding or removing all the corresponding objects constituting the component. All

the objects that need to be added or removed dynamically by the CASA Runtime

System need to be specified in the application contract. However, if a component is

implemented as a collection of hierarchically-structured objects, then only the root

102 Chapter 5. Dynamic Recomposition of Components

Travel
Planning

Flight
Booking

Hotel
Booking

Car
Rental

Travel
Insurance

Figure 5.1: Hierarchical structuring of objects

object needs to be added or removed by the CASA Runtime System. Every other

object in the hierarchical collection is added or removed by its parent object, using

the facilities for dynamic addition and removal of objects provided in the modern

object-oriented programming languages. Only the objects that need to be added or

removed explicitly by the CASA Runtime System are specified in the application

contract.

A dynamic recomposition involves adding, removing and/or replacing compo-

nents dynamically. Dynamic replacement of components is of particular interest

here, as it is more critical than the addition or removal of components which is rel-

atively straightforward to carry out. We discuss details of dynamic replacement of

components in Section 5.2, and that of dynamic addition and removal of components

in Section 5.3. A discussion of sequential vs. atomic recomposition is given in Section

5.4, followed by a concluding discussion in Section 5.5.

5.2 Dynamic replacement of components

In principle, there are two possible strategies for dynamic replacement of compo-

nents: lazy replacement and eager replacement. Below we briefly discuss the two.

Lazy replacement: In this strategy, once the decision for dynamic recomposition

is taken, if a component to be replaced is currently running then this component is

allowed to complete its current execution before being replaced by a new component.

5.2. Dynamic replacement of components 103

Eager replacement: In contrast to the lazy replacement strategy, here the exe-

cution of a currently running component is suspended once the decision for dynamic

recomposition is taken, and the execution resumes on the new component (from the

point where it was suspended) after the component has been replaced.

Figure 5.2 illustrates lazy replacement (Figure 5.2a) and eager replacement (Fig-

ure 5.2b). In Figure 5.2, the horizontal axis represents the time line, and the vertical

dashed line represents the time T when the decision for dynamic recomposition is

taken. In this example, the components A, B, C and D are to be replaced by the

components A′, B′, C ′ and D′ respectively as a result of dynamic recomposition

(dark bars denote the execution of old components, and light bars denote the execu-

tion of new components). Only the components A and C are under execution at time

T . In Figure 5.2a (representing lazy replacement) A and C are allowed to complete

their execution before being replaced by A′ and C ′ respectively. Whereas in Figure

5.2b (representing eager replacement), the execution of A and C is suspended at

time T , they are replaced by A′ and C ′ respectively, and the execution resumes on

A′ and C ′.

Since the eager replacement strategy is able to give a faster response to a change

in the execution environment than the lazy one, we decide in favor of eager replace-

ment for CASA. However, as discussed later in Section 5.2.4, it may not always be

possible to use eager replacement, and thus sometimes lazy replacement may be the

only option.

In Figure 5.2b (representing eager replacement), it is shown that the replacement

from an old component to a new component takes place almost instantaneously at

time T , and there is no break in the execution due to the replacement. However, this

is just a theoretical representation of the eager replacement strategy. In practice,

there will always be some delay after time T when the old component is actually

suspended, and also there will be a small time interval during which the execution

remains suspended before it may be resumed on the new component. The detailed

dynamic replacement process is discussed next.

5.2.1 Dynamic replacement process

As discussed in Section 5.1, a component can be implemented as an object or a

collection of objects in an object-oriented programming language. Thus replacing a

104 Chapter 5. Dynamic Recomposition of Components

A
B

D
C

T

A'
B'

D'
C'

a. Lazy replacement strategy

A
B

D
C

T

A'
B'

D'
C'

b. Eager replacement strategy

Figure 5.2: Replacement strategies

component implies replacing the objects constituting the component. Replacing an

object is equivalent to replacing the class definition of the instance representing the

object. Below we discuss the process of replacing the class definition of an instance

at runtime. In the following, the term instance refers to a class instance or object.

We place a restriction that an instance cannot have any externally-visible state.

This restriction is also in accordance with the good software engineering practice

which says that the state of an instance should be accessed using methods like

getState and setState only, and not accessed directly from external objects.

We now define a replaceable class as one whose instances are dynamically re-

placeable i.e. can replace, or be replaced by, instances of other classes dynamically.

5.2. Dynamic replacement of components 105

Additionally, we define a set of alternative classes as a collection of replaceable

classes whose instances can dynamically replace each other.

This implies that all replaceable classes which are members of the same set of

alternative classes (and by implication, the instances of these replaceable classes)

conform to the requirements 1 and 2 identified above.

We further impose the following constraints, in order to simplify our implemen-

tation process:

(i) An instance of a class can be dynamically replaced by an instance of another class

only if both these classes belong to the same set of alternative classes.

(ii) Any given composition may contain instances of only one of the replaceable

classes from any given set of alternative classes. That is, no two instances in a given

composition can be of two different classes belonging to the same set of alternative

classes.

We believe that the above two constraints are quite reasonable to impose. The

first constraint concerns only the way a set of alternative classes is defined. And the

second constraint simply states that at any given time (i.e. for any given state of

the execution environment), only one of the classes from a given set of alternative

classes will be valid, which is intuitively what will be required in practice anyway.

We use a variant of the Bridge pattern [GHJV95] for hiding the complexities of

dynamic replacement from the application code. The use of the variant of Bridge

pattern works as follows.

Every set of alternative classes is associated with a unique Handle class. The

Handle class conforms to the same interface as the replaceable classes in its associated

set.

The Handle class acts as an abstraction that can be bound to any of the replace-

able class implementations from its associated set of alternative classes at runtime

(the terms abstraction and implementation are used here in the sense of the Bridge

pattern [GHJV95]).

From the constraint (ii) above, we know that for any specific composition, only

one of the replaceable classes from any given set of alternative classes will be valid.

Since every set of alternative classes has a unique Handle class associated to it, we

can conclude that for any specific composition there is a unique replaceable class

bound to a given Handle class.

106 Chapter 5. Dynamic Recomposition of Components

In order to provide a layer of transparency between the application code and the

dynamic replacement process, wherever there is a need for creating an instance of

a replaceable class in the application code, an instance of the corresponding Handle

class is created instead. This Handle class instance is then linked to an instance of

the replaceable class that is currently bound to the Handle class, at runtime. Details

of establishing a link between the Handle class instance and the replaceable class

instance are discussed later.

The relationship between an instance of a Handle class, an instance of the corre-

sponding replaceable class, and the external application code interested in invoking

an operation on the replaceable class instance is shown in Figure 5.3.

External
Application

Code

Instance of
Handle Class

Instance of
Replaceable Class

request
(method call
foo())

response
(result returned

by foo())

request
(method call
foo())

response
(result returned

by foo())

Figure 5.3: Invoking an operation through a Handle class instance

The binding between a Handle class and its corresponding replaceable class

for a given composition is specified as a part of the composition specification

in the application contract (refer Figure 5.4). In Figure 5.4, HC is the Handle

class, which is bound to the replaceable class CdefA (with namespace location

/class-folder/CdefA) for the configuration with id 1.

Let a set of alternative classes S consist of the replaceable classes CdefA, CdefB

and CdefC, and the associated Handle class for the set S be HC. At any given time,

HC will be bound to a unique replaceable class from the set S, depending on the

currently active composition. However, this binding may change dynamically as a

result of dynamic recomposition.

In the application code, when a new instance instHC of the Handle class HC is

created (refer Figure 5.5), the constructor of instHC invokes the CAS (Components

Adaptation System) (refer Figure 5.6).3

The CAS first registers instHC for future recompositions. Next, the CAS gets the
3Please note that in this chapter, we will show only some small and simplified code snippets in

order to make the discussion easy to follow.

5.2. Dynamic replacement of components 107

<config id="1">

...

...

<components>

<binding handle="HC" boundto="/class-folder/CdefA"/>

...

...

</components>

...

...

</config>

Figure 5.4: Specification of a <binding> element

void externalCode() {

...

...

HC instHC = new HC();

...

...

}

Figure 5.5: Creation of a Handle class instance

information about the replaceable class currently bound to HC, say CdefA, from the

specification of the currently active composition, and returns this information back

to the constructor of instHC (this class is stored as currentBinding in Figure 5.6).

The constructor of instHC creates an instance of this class and stores it internally

as currently active instance, say activeInst.

Although a Handle class conforms to the same interface as the classes in its asso-

ciated set of alternative classes, it does not provide a real implementation for any of

the methods in this interface. The methods of a Handle class instance simply forward

the method calls invoked on them to the corresponding methods of the currently ac-

tive instance, and return the results as received from the latter. For example, if a

method foo() is invoked on instHC, then instHC.foo() simply invokes the method

activeInst.foo(), and returns the result as received from activeInst.foo() (re-

108 Chapter 5. Dynamic Recomposition of Components

class HC {

...

...

HC() {

...

Class currentBinding = CAS.register(this);

activeInst = currentBinding.newInstance();

...

}

...

...

}

Figure 5.6: Handle class instance invoking the CAS and creating activeInst

fer Figure 5.3).

If there is a change in the binding between the Handle class HC and its corre-

sponding replaceable class, due to dynamic recomposition, then the CAS passes the

information about the newly bound replaceable class, say CdefB, to all the instances

of HC (including instHC). The instances of HC then replace the old replaceable class

instances (i.e. instances of CdefA) with the instances of CdefB as active instances

(the sequence of steps for this replacement is discussed next).

The calls to an instance of HC will now be forwarded automatically to the newly

designated active instance in place of the old one. This way, the Handle class in-

stances help to hide the details of dynamic replacement from the application code.

Figure 5.7 illustrates the above example of dynamic replacement. In Figure

5.7a, the Handle class instance instHC is linked to the old instance (an instance of

CdefA), just before the dynamic replacement is carried out. And in Figure 5.7b,

instHC is linked to the new instance (an instance of CdefB), just after the dynamic

replacement is over. The external objects (extObj1, extObj2 and extObj3) are not

affected by this dynamic replacement, as their links to instHC remain undisturbed

by the change.

Below we discuss the sequence of steps to be carried out when replacing an old

instance (instance of CdefA) with a new instance (instance of CdefB) as the currently

active instance (according to the eager replacement strategy).

5.2. Dynamic replacement of components 109

instA

extObj1

extObj2

extObj3

instHC

a. Before dynamic replacement

instB

extObj1

extObj2

extObj3

instHC

b. After dynamic replacement

Figure 5.7: Dynamic replacement process

Sequence of steps:

1. Deactivate the old instance

2. Suspend the execution of the old instance

3. Create the new instance

4. Transfer the state of the old instance to the new instance

5. Activate the new instance

110 Chapter 5. Dynamic Recomposition of Components

class HC {

...

...

public boolean replace(Class newBinding) {

oldInst = activeInst;

activeInst = null;

...

...

}

...

...

}

Figure 5.8: Handle class instance nullifying activeInst

Below we discuss the implementation of the above-mentioned steps.

Step 1: Deactivate the old instance

First, on receiving an instruction from the CAS about dynamic replacement,

instHC deactivates the reference to the old instance, which is the currently active

instance. This is done practically by nullifying activeInst. However, before nulli-

fying activeInst, the reference to activeInst is stored in a temporary instance,

say oldInst, for the purpose of rest of the steps required for instance replacement

(refer Figure 5.8).

Nullifying activeInst ensures that the calls made to instHC during the instance

replacement process are not forwarded to the old instance. These new calls are

actually queued within instHC until the completion of the instance replacement

process, after which they are forwarded to the new instance (i.e. these calls are

stored in a queue within instHC waiting for the activeInst to be non-null, before

being forwarded to the new instance).

Step 2: Suspend the execution of the old instance

Suspending the execution of the old instance implies suspending all the calls

currently executing on the old instance.

In order to keep our discussion in this section easy to follow, we assume that at

most one call will be executing on the old instance at any given time (i.e. including

5.2. Dynamic replacement of components 111

the time of instance replacement). The case for multiple calls executing concurrently

on the old instance is discussed in Section 5.2.3.

It is possible that at the time of instance replacement, there is actually no call

executing on the old instance. In such a case this step will not be required (instHC

keeps a record of the calls currently executing on the old instance). The discussion

below assumes that there is a call executing on the old instance at the time of

instance replacement.

Before actually suspending the call executing on the old instance, it needs to be

ensured that the execution of the call has reached a “safe” point, from where it can

be resumed correctly by the new instance at the end of instance replacement. For

this purpose, the safe points need to be explicitly defined in the body of the old

instance. More discussion on safe points follows in Section 5.2.4.

After deactivating the reference to the old instance (step 1), instHC sets a signal

for the suspension of the old instance (refer Figure 5.9). This is done practically by

setting a suspend flag in the old instance (the suspend() method in Figure 5.9 is

used for setting the suspend flag). At every safe point, the call executing on the old

instance checks if the suspend flag has been set. The setting of the suspend flag is

an indication for the call to suspend its execution and return to instHC.

The suspended call is made to wait within instHC until the completion of the

instance replacement process, after which the call is reinvoked on the new instance.4

Step 3: Create the new instance

After setting the signal for the suspension of old instance, instHC creates an

instance of the new replaceable class passed by the CAS, i.e. the new instance, say

newInst (refer Figure 5.9). The creation of the new instance may take place while

step 2 is still on, i.e. during the time that the call executing on the old instance

reaches a safe point and returns to instHC.

Step 4: Transfer the state of the old instance to the new instance

This step consists of two sub-steps: capturing the state of the old instance, and

initializing the state of the new instance with this captured state.
4instHC is responsible for reinvoking the suspended calls with correct method argument values.

In Java, the method argument values for each call are stored locally in the thread stack. These

method argument values are used for correctly reinvoking the suspended calls on the new instance.

112 Chapter 5. Dynamic Recomposition of Components

class HC {

...

...

public boolean replace(Class newBinding) {

...

...

oldInst.suspend();

newInst = newBinding.newInstance();

...

...

}

...

...

}

Figure 5.9: Handle class instance suspending the old instance and creating the new

instance

Before discussing further about the state transfer, we first define the transient

and persistent states of an instance. In general, the transient state is defined as

the temporary state of an instance at any time during the execution of the instance

(i.e. while a call is executing on the instance), while the persistent state is defined

as the state of the instance that needs to remain persistent in between consecutive

executions of the instance. In other words, persistent state is the state maintained

by an instance when no method call is currently executing on this instance.

For our purpose, we practically define the persistent state to consist of any global

state of an instance, and the transient state to be made up of the local states of the

currently executing methods of the instance. The global state of an instance is

initialized at the time of the instance creation. The global state is shared by all

the methods of the instance, and is required to be persistent. The local state of a

method of the instance is initialized every time the method is invoked, and is not

required to be persistent.

The state of the old instance must be transferred to the new instance, so that

the new instance is able to correctly resume the execution at the end of dynamic

replacement. The state here refers to both the transient as well as persistent states

of the instance. It is obvious that if the old instance is not executing at the time of

5.2. Dynamic replacement of components 113

class CdefA {

...

...

// this is a safe point

if(suspend) {

// code for storing transient state

// in a transient state object

}

...

...

}

Figure 5.10: Storing the transient state at a safe point

instance replacement, then there will be no transient state and only the persistent

state of the old instance will need to be transferred to the new instance.

Below we discuss the procedures for transferring the transient and persistent

states.

4a. Transferring the transient state

Please recall from step 2 that instHC sets a suspend flag in the old instance as

a signal for the instance suspension. At every safe point, the call executing on the

old instance checks if the suspend flag has been set. If the suspend flag is set, then,

before the call returns to instHC, the transient state of the old instance is stored

in a transient state object (refer Figure 5.10). Some additional information, e.g.

the information about the safe point where the call is suspended, is also stored in

the transient state object, as this information may be required by the new instance

to resume the execution of this call correctly. More discussion on transferring the

transient state follows in Section 5.2.2.

In the practical implementation, an exception is thrown on the call being sus-

pended at a safe point, to be eventually caught by instHC. This exception serves as

an indication to instHC that the call has returned after being suspended at a safe

point, and not normally at the end of its regular execution. The transient state ob-

ject containing the transient state of the old instance is also passed to instHC along

with the exception. Eventually, this transient state object is forwarded by instHC

to the new instance.

114 Chapter 5. Dynamic Recomposition of Components

It is possible that the call executing on the old instance returns to instHC nor-

mally at the end of its regular execution, and not after being suspended at a safe

point. In this case, the call is simply returned back to its original caller, and only

the persistent state of the old instance needs to be transferred to the new instance

(as in step 4b).

4b. Transferring the persistent state

For transferring the persistent state, i.e. storing the state and loading the state,

every dynamically replaceable instance needs to provide appropriate storeState

and loadState methods. This is because state parameters (names and types) of the

persistent state may vary across the old and new instances, which means that the

semantic information necessary for transferring the persistent state can be provided

by the respective instances only.

As the name indicates, the storeState method is responsible for storing the

persistent state of the old instance in a persistent state object. And the loadState

method is responsible for loading the persistent state of the new instance using the

state information stored in the persistent state object.

The storeState method of the old instance may need to convert its own internal

representation of the persistent state into a standard representation (standard for

the corresponding set of alternative classes), which the loadState method of the

new instance understands and may convert into its own internal representation.

If the old instance is executing at the time of instance replacement, instHC waits

until the call executing on the old instance returns to instHC (either after being

suspended, or normally at the end of its regular execution) before initiating the

persistent state transfer.

Once the execution of the old instance is halted, instHC calls the storeState

method of the old instance. The storeState method returns a persistent state

object back to instHC, containing the persistent state of the old instance. Next,

instHC calls the loadState method of the new instance passing it the persistent

state object received from the old instance. Using the state information stored in

the persistent state object, the loadState method should be able to initialize the

persistent state of the new instance correctly.

5.2. Dynamic replacement of components 115

class HC {

...

...

public boolean replace(Class newBinding) {

...

...

activeInst = newInst;

oldInst = null;

newInst = null;

}

...

...

}

Figure 5.11: Handle class instance setting the new instance as activeInst

Step 5: Activate the new instance

The new instance is now prepared to be used as the active instance by instHC.

Therefore, instHC now sets the new instance as the currently active instance (refer

Figure 5.11).

If the execution of the old instance was suspended in step 2 above, then the

suspended call is now reinvoked on the new instance. The new instance should be

able to resume the execution of this call correctly, because the transient state of

the old instance at the time of suspension, as well as the persistent state of the old

instance, have already been transferred to the new instance.

Any new calls that were made during the instance replacement process, which

were consequently queued within instHC, are also forwarded now to the new instance.

The reference to the old instance is now completely deleted (by nullifying

oldInst), making way for the garbage collection of the old instance.

5.2.2 Transient state transfer from the old instance to the new in-

stance

As described in step 4 of the instance replacement process, the transient state of

an instance is stored in a transient state object at the safe point where the call is

suspended.

116 Chapter 5. Dynamic Recomposition of Components

class CdefA {

...

public void foo() {

...

...

bar();

...

...

}

public void bar() {

...

...

// this is a safe point

if(suspend) {

// code for storing transient state

// in a transient state object

}

...

...

}

}

Figure 5.12: The foo() method of the currently active instance calling the bar()

method

It is possible that the call being suspended has reached the current method (where

the safe point is located) not directly from instHC, but after being forwarded from

some other methods.

For example, consider a call invoked by an external object on the foo() method

of instHC. The foo() method of instHC forwards this call to the foo() method

of the currently active instance. During the execution of the foo() method of the

currently active instance, a call may be made to the bar() method of this instance

(refer Figure 5.12). Now, during the execution of the bar() method, the call may

reach a safe point where the suspend flag is already set indicating that the call needs

to suspend its execution and store the transient state.

The transient state to be stored at the safe point in this example consists of the

5.2. Dynamic replacement of components 117

local state of bar() method and the local state of foo() method. In addition to these

states, the new instance will also need information about the specific safe point (note

that there may be several safe points in an instance) where the call is suspended,

in order to be able to resume the execution of this call correctly. Therefore, this

additional information also needs to be stored as a part of the transient state of the

instance.

Forwarding a call from one method to another within an instance can also be

viewed as going a level deeper in the instance. At the time of suspension, a call

might be at an arbitrary level of depth within the instance.

Once at the safe point indicating its suspension, the call needs to store the local

state of the current level (i.e. the current method), and return to the next higher

level (i.e. the method that last forwarded this call). Upon reaching the higher level,

the call needs to store the local state of this higher level, and then move to the still

higher level. This process goes on till the call finally reaches the highest level within

the instance, and from there it returns to instHC.

When the transient state object is passed to the new instance, the new instance

needs to reconstruct its own transient state in the reverse order, i.e. from the top

level to the level where the reinvoked call actually resumes its execution.

Because of an arbitrary number of levels involved in storing and loading the

transient state, we follow a stack-based approach for storing and retrieving the state

information. In addition to the stack containing the state information, the transient

state object also needs to store the unique call identifier (for Java, it can be the

thread identifier) of the call being suspended. This call identifier will be required

by the new instance in order to resume the execution of the call correctly on its

reinvocation.

Continuing with our example above, at the safe point where the call needs to

be suspended, a new transient state object is created (refer Figure 5.13). First,

the unique call identifier of the call is stored in the transient state object. Next, a

new stack entry is created. This stack entry will contain the unique execution point

identifier of the safe point, and the local state of the bar() method.

After storing the above state information in a stack entry, an exception is thrown

on the call, to be caught by the method that last forwarded the call, i.e. the foo()

method in our example. The transient state object is passed along with this excep-

tion.

118 Chapter 5. Dynamic Recomposition of Components

class CdefA {

...

public void foo() {

...

...

// this execution point has an ID = F2

try {

bar();

} catch(SuspendException ex) {

TransientState ts = ex.getTransientState();

ts.newStackEntry();

ts.storeExecPointID(F2);

ts.storeState(x, y);

throw ex;

}

...

...

}

public void bar() {

...

...

// this safe point has an ID = B5

if(suspend) {

TransientState ts = new TransientState();

ts.storeCallID(Thread.currentThread.getId());

ts.newStackEntry();

ts.storeExecPointID(B5);

ts.storeState(a, b);

throw new SuspendException(ts);

}

...

...

}

}

Figure 5.13: Storing the transient state in a transient state object

5.2. Dynamic replacement of components 119

Every execution point where a call can be forwarded to another method which

contains a safe point needs to be identifiable by a unique execution point identifier.

In the above example, this means that the execution point within the foo() method

where a call to the bar() method is made needs to have a unique execution point

identifier. This execution point identifier, in addition to the safe point identifier, will

be required by the new instance to resume the execution of this call correctly.

After catching the exception within the foo() method, a new stack entry is

created in the transient state object. The unique identifier of the execution point

where the bar() method is called, as well as the local state of the foo() method

is stored in this stack entry. Thereafter, an exception is thrown on this call to be

caught by the method at the next higher level. In this example, foo() is the highest

level method for this call, therefore the exception will be caught by instHC. The

transient state object is passed along with this exception, and is forwarded to the

new instance by instHC.

When the call is reinvoked at the end of the instance replacement process, the new

instance uses the information provided in the transient state object to reconstruct

the transient state correctly, and to forward the call to the appropriate safe point in

the new instance.

In our example, when the call is reinvoked on the foo() method of the new

instance, first the local state of the foo() method is initialized using the state

information stored in the topmost stack entry. Thereafter, the call is forwarded to

the appropriate execution point within the foo() method, which is also stored in the

stack entry. At this execution point, the call to the bar() method is made. Within

the bar() method, the local state of the bar() method is initialized, and the call is

forwarded to the appropriate safe point where the execution of the call can finally

be resumed.

It is possible that the names and types of the state parameters constituting the

transient state may vary across the mutually replaceable instances. In this case,

the outgoing instance may need to convert its own internal representation of the

transient state into a standard representation (just like in the case of transferring

the persistent state), which the incoming instance is able to understand and convert

into its own internal representation.

120 Chapter 5. Dynamic Recomposition of Components

5.2.3 Multiple calls executing concurrently on the old instance

In case of multiple calls executing concurrently on the old instance at the time of

instance replacement, the instance replacement process will be only slightly differ-

ent than the one discussed above for a single call. Below we discuss the required

modifications in the instance replacement process for multiple calls.

It is obvious that every call executing on the old instance needs to suspend its

execution at a safe point, and return to instHC.5

Every call stores its own transient state in a separate transient state object.

instHC keeps a record of all the calls currently executing on the old instance, and

waits till all these calls return to instHC. Once all the calls return, instHC forwards

the persistent state object to the new instance. Next, the suspended calls are rein-

voked on the new instance by instHC. The new instance is able to reconstruct the

transient state corresponding to each of the reinvoked calls using the state informa-

tion stored in the corresponding transient state object, as discussed above.

We assume that only the global state of an instance is shared among different

calls (threads) executing concurrently on the instance, and no local state of the

methods is shared.

The above approach might lead to some problems because a call reinvoked on

the new instance might find the global state to be different from the state when this

call was suspended in the old instance. This is because the global state might have

been changed by other calls, after this call was suspended. However, this situation

might arise even when the instance replacement is not involved, as a call might take

an arbitrary amount of time for executing a statement during which the global state

might be changed by other calls.

The above simply means that the access to the global state needs to be carefully

managed, and the safe points need to be carefully designed, when multiple calls are

allowed to execute concurrently on a replaceable instance.

Multiple calls executing concurrently on an instance may also potentially lead

to a deadlock situation due to arbitrary suspension of calls. A deadlock situation
5We are assuming here that even when a number of calls suspend their executions at different

safe points within the old instance, the execution of these calls can still be resumed correctly on the

new instance without compromising the consistency of the application. That is, any combination

of safe points used for the suspension of executing calls is still considered a safe point for the whole

instance.

5.2. Dynamic replacement of components 121

can occur if synchronization / mutual exclusion locks are used by the calls. For

example, one call may acquire a lock over certain object and then reach a safe point

and suspend its execution without releasing the lock. Whereas, at the same time,

another call may be waiting for the lock to be released and is not able to continue

with its execution. In this case, the waiting call may never reach a safe point to

suspend its execution, and therefore it leads to a deadlock situation. We assume

that it is the responsibility of the application developer to take into account such a

situation, and design the replaceable classes in a way that the deadlock situations

are avoided. For example, a call may be forced to release all the locks it holds just

before it is suspended.

5.2.4 Discussion

Ensuring the consistency of the application

An important requirement of the instance replacement process is that the integrity

of the application must not be compromised as a result of dynamic replacement of

instances. The requirement of ensuring the application’s integrity can be further

divided into following two requirements.

Requirement 5: The integrity of the calls executing on the old instance at the

time of instance replacement must be maintained.

Requirement 6: The integrity of the ongoing interactions among instances at the

time of instance replacement must be maintained.

Ensuring requirement 5 implies that the calls suspended due to dynamic replace-

ment must be resumed on the new instance without compromising the integrity of

these calls. This requirement is satisfied in the above instance replacement process

by suspending the calls only at safe points, and by transferring the state of the old

instance to the new instance.

Safe points can be defined as those execution points in the old instance where, if

the state of the old instance is transferred to the new instance then upon transfer it

will become a valid reachable state of the new instance. It is obvious that only if the

state transferred is a reachable state of the new instance, will the new instance be

able to resume the execution of the suspended calls correctly. Thus, we can say that

122 Chapter 5. Dynamic Recomposition of Components

a necessary condition for ensuring the integrity of the application under the eager

replacement process is that the state of the old instance should get transformed into

a reachable state of the new instance upon transfer.

The instance replacement process described above provides only some general

guidelines that can help in ensuring the integrity of the suspended calls. It ultimately

rests on the ability of the application developer to identify safe points correctly,

and provide appropriate state transfer functions for ensuring the correct and safe

resumption of the suspended calls on the new instance.

Requirement 6 is satisfied by queuing any new calls made during the instance

replacement process within instHC, as well as the calls that were suspended and

returned to instHC, and invoking these calls on the new instance at the end of the

instance replacement.

It should be noted here that the calls queued within instHC may need to wait

indefinitely during the instance replacement process, because in many cases the time

required for the suspension of the currently executing calls may not be predicted in

advance. Therefore, any hard guarantees on the response time for the waiting calls

cannot be provided.

Since the mutually replaceable instances (as well as the corresponding Handle

instance) must conform to exactly the same interface (according to the requirement 1

in Section 5.1), the type safety of the dynamic replacement is automatically ensured.

Eager replacement vs. lazy replacement

In this section, we show that eager replacement may not be viable for some instances,

leaving lazy replacement as the only option.

As discussed in the previous sub-section, a necessary condition for ensuring the

integrity of the application under the eager replacement process is that the state of

the old instance should get transformed into a reachable state of the new instance

upon transfer.

The execution points in the old instance that ensure the above condition to be

satisfied are called safe points in our description of the instance replacement process.

However, we argue that there is no guarantee that a safe point exists in an

arbitrary instance to be replaced (not counting the control points just before the

initial point and just after the final point of execution of a call, as these are not

practically very useful).

5.2. Dynamic replacement of components 123

To support our argument, we refer to the results provided by Gupta et al.

[GJB96] in the context of a runtime change in software version. They define a valid

change as the one in which the state of the old software version gets transformed

into a reachable state of the new software version. They also show that locating

the points of execution where a valid change may be guaranteed is in general unde-

cidable, and approximate techniques based on data-flow analysis and knowledge of

the application developers are required. This effectively implies that there may not

exist any point of execution in the old software version that may guarantee a valid

change.

This result can be directly extended to the case of dynamic replacement of in-

stances, to support our argument that there is no guarantee that a safe point exists

in an arbitrary instance to be replaced.

If an instance does not contain any safe point, then the possibility of adopting the

eager replacement strategy is automatically ruled out, leaving the lazy replacement

strategy as the only option.

Even with the lazy replacement, though there is no transient state to be trans-

ferred, the persistent state of the old instance still needs to be transferred to the new

instance. We assume here that the persistent state of the old instance when trans-

ferred to the new instance (using the appropriate state transfer functions provided

by the concerned instances) is automatically a reachable state of the new instance.

An exception to above is if the new instance is designed to recover from a state

loss. In this case, the execution of the currently executing calls can be suspended

abruptly (when following eager replacement) or allowed to terminate normally (when

following lazy replacement), while no state needs to be transferred to the new in-

stance. However, recovering from a state loss is likely to result in certain functional

/ performance penalties.

For lazy replacement, the replacement process discussed before can be suitably

modified in a straightforward manner. In any case, the implementation of either

eager replacement or lazy replacement is localized within a Handle class and the

corresponding replaceable classes.

Another option for implementing the eager replacement process could be to use

transactions in place of safe points. That is, all new calls could be started as trans-

actions, and in case of suspension these transactions could be simply rolled back.

However, such an approach would result in a loss of computation carried out be-

124 Chapter 5. Dynamic Recomposition of Components

tween the time when the decision for suspension is taken and the last checkpoint.

Moreover, it incurs additional runtime overhead for check-pointing etc. during the

normal execution (in our approach, major overhead is incurred during the instance

replacement process, while only a small overhead is incurred during the normal ex-

ecution). Therefore, a transaction-based approach has not been preferred for our

purpose.

5.3 Dynamic addition and removal of components

5.3.1 Dynamic addition of components

If an instance is dynamically added as a replacement of another instance, then the

addition of this instance will take place according to the procedure for dynamic

replacement of instances discussed in Section 5.2.

In this section, we discuss the dynamic addition of an instance that is not re-

placing any other existing instance. The process of dynamic addition of an instance

varies according to the actual creator of the instance. Two possible creators of the

instance are: (i) another instance (which itself may be dynamically added, either as

a part of dynamic replacement or otherwise), or (ii) the CAS.

Let the instance to be dynamically added be instA. Below we discuss the im-

plementation of dynamic addition of instA according to the above two possible

creators.

Case 1: instA is created by another instance, say instB:

In this case, the specification of instA is not provided in the application contract.

instB simply creates instA using the dynamic instance creation facilities provided

by modern OOP languages.

Case 2: instA is created by the CAS:

The specification of instA is provided in the application contract within a

<comp> element. The <comp> element is defined inside the <components>

element. An example of a <comp> element is given below:

<comp name="instA" class="/class-folder/C1"/>

In the above example, the CAS will create an instance of the class C1, and name

it instA.

5.3. Dynamic addition and removal of components 125

The constructor of instA is responsible for integrating instA into the application,

in addition to carrying out the initialization of instA.

Integrating instA into the application may involve ways to make the reference to

instA available to other instances of the application interested in using the services

provided by instA. This can be done, for example, by registering instA with an

instance directory lookup service so that other instances of the application are able

to discover instA for interactions. Alternatively, instA may itself locate and initiate

interactions with other instances of the application.

The above implies that the instances that are dynamically added (and removed)

by the CAS should provide plug-and-play properties [ML98].

5.3.2 Dynamic removal of components

If the instance to be dynamically removed is eventually replaced by another instance,

then the removal of this instance will take place according to the procedure for

dynamic replacement of instances discussed in Section 5.2.

In this section, we discuss the dynamic removal of an instance that is not replaced

by another instance. As in the dynamic addition, the process of dynamic removal

of an instance varies according to the actual remover of the instance. Two possible

removers of the instance are: (i) another instance (which itself may be dynamically

removed, either as a part of dynamic replacement or otherwise), or (ii) the CAS.

Let the instance to be dynamically removed be instA. Below we discuss the

implementation of dynamic removal of instA according to the above two possible

removers.

Case 1: instA is removed by another instance, say instB:

In this case, instB simply removes instA using the dynamic instance removal

facilities provided by modern OOP languages.

It is possible that some other instances in addition to instB also hold the refer-

ence to instA. These instances should either be informed explicitly by instB about

the removal of instA, or these should be provided with appropriate fault tolerance

mechanisms to withstand the removal of instA. It is generally discouraged to share

the reference of a dynamically removable instance.

If the instance to be removed is currently executing then, depending on the prop-

erties of the specific instance, either its execution may be immediately terminated,

126 Chapter 5. Dynamic Recomposition of Components

or it may also be provided with safe points (similar to the ones for dynamic replace-

ment of instances) where its execution may be terminated without compromising

the consistency of the application.

Case 2: instA is removed by the CAS:

In response to a change in the composition of the application, if the CAS dis-

covers that certain <comp> elements that existed in the specification of outgoing

composition do not appear in the specification of incoming composition, then this

serves as an indication for the CAS to remove the corresponding instances. The CAS

already holds the references to these instances, as these instances must have been

initially created by the CAS.

In order to remove instA, the CAS calls the finalize method of instA. The

finalize method is responsible for ensuring that the removal of instA does not

compromise the consistency of the application (e.g. it does not result in the prob-

lem of dangling references etc.), in addition to carrying out the normal finalization

operations.

The exact semantics of the finalize method as well as the constructor method

of an instance to be dynamically added / removed by the CAS are instance-specific.

The application developer needs to ensure that these two methods are implemented

appropriately so as to fulfill their individual responsibilities.

5.4 Sequential vs. atomic recomposition

So far, we have discussed addition, removal and replacement of individual instances

as a part of a dynamic change in the composition of an application. In this section, we

discuss the process of overall recomposition of an application, i.e. addition, removal

and replacement of all the instances affected by the recomposition.

In principle, there are two approaches for recomposition of instances: sequential

recomposition and atomic recomposition.

As the name suggests, in a sequential recomposition process, instances are added,

removed or replaced one after the other. That is, the process of adding, removing

or replacing one instance is completed before initiating the addition, removal or

replacement of the next instance. This implies that in a sequential recomposition,

some instances from the outgoing composition may coexist with some other instances

from the incoming composition during the recomposition process.

5.4. Sequential vs. atomic recomposition 127

Sequential_Recomposition

BEGIN

1. FOR every instance affected by the recomposition DO

2. Add, remove or replace the instance;

3. ENDFOR

END Sequential_Recomposition

Figure 5.14: Sequential recomposition process

Atomic_Recomposition

BEGIN

1. Remove all the outgoing instances;

2. Add all the incoming instances;

END Atomic_Recomposition

Figure 5.15: Atomic recomposition process

Though for many applications sequential recomposition may not pose any prob-

lems, some applications may demand that instances from only one of the alternative

compositions should be active at any given time.

A recomposition process which ensures that instances from only one of the com-

positions (either outgoing or incoming) are active at any given time is referred to

as atomic recomposition. That is, in an atomic recomposition, only when all the

outgoing instances have been removed, the incoming instances can be added. The

outgoing instances here refer to the instances belonging to the outgoing composition

but not to the incoming composition, and incoming instances refer to the instances

belonging to the incoming composition but not to the outgoing composition.

The basic algorithm for sequential recomposition is presented in Figure 5.14, and

that for atomic recomposition is presented in Figure 5.15.

In the above algorithm for the atomic recomposition process, the replacement of

instances is carried out in two steps (recall that a replacement is in fact a combination

of two steps: removal of the old instance and addition of the new instance). In the

first step of the algorithm, all the old instances to be replaced are deactivated and

their execution suspended, while all the new instances are prepared for activation

(i.e. steps 1-4 of the instance replacement process described in Section 5.2.1). In

the second step of the algorithm, all the new instances that are already prepared for

128 Chapter 5. Dynamic Recomposition of Components

activation in the first step are simply activated (i.e. step 5 of the instance replacement

process).

In case of a sequential recomposition, no additional measures are required for

ensuring the consistency of the application. This is because in a sequential recom-

position, only one addition, removal or replacement of an instance takes place at

a time. This means that once each individual addition, removal or replacement of

an instance is ensured to be consistent, the overall recomposition is automatically

ensured to be consistent.

In case of an atomic recomposition, for dynamic addition and removal of instances

(the ones which are not part of instance replacement), no additional measures need to

be taken by the recomposition process for ensuring the consistency of the application.

This is because multiple additions and removals of instances are actually independent

of each other. Once the measures for ensuring the consistency of an application in

case of a single addition or removal of an instance are provided, adding or removing

multiple instances does not impose any extra consistency concerns.

However, the atomic recomposition process adds a new complexity for dynamic

replacement of instances. This additional complexity is caused because the instance

replacement is carried out in two steps in the atomic recomposition process, forcing

interdependence among multiple instance replacements. Thus replacing multiple

instances simultaneously can potentially lead to a deadlock situation.

Before discussing further about the potential deadlock situation, let us see how

the replacement process actually works in case of an atomic recomposition.

First, the CAS instructs all the concerned Handle instances to remove old in-

stances, and prepare new instances for activation. That is, the Handle instances

carry out steps 1-4 of the instance replacement process described in Section 5.2.1.

Once a Handle instance completes the above steps, it sends a ready signal back to

the CAS indicating that it is now ready to activate the new instance. The CAS waits

until it receives the ready signals from all the concerned Handle instances. Once the

CAS receives the ready signals from all the concerned Handle instances, it instructs

the Handle instances to activate the new instances, i.e. to carry out step 5 of the

instance replacement process. This way, it is ensured that instances from only one

of the compositions are active at any given time.

Now to understand a potential deadlock situation, consider two instances instA1

and instB1 to be replaced by instA2 and instB2 respectively. A call issued from

5.4. Sequential vs. atomic recomposition 129

instA1 may be executing within instB1 at the time when the CAS sends an in-

struction for instance replacement to the Handle instances corresponding to instA1

and instB1. Once the Handle instance corresponding to instB1 sets a signal for

the suspension of instB1, all the calls currently executing on instB1 will be sus-

pended at their respective following safe points, and made to wait within the Handle

instance. The call issued from instA1 to instB1 may also be among the calls which

are suspended and made to wait within the Handle instance. However, at the same

time, instA1 will be waiting for the above call to return before its execution can be

suspended.

The above situation implies that the Handle instance corresponding to instA1

is not able to send a ready signal to the CAS until the call issued from instA1 to

instB1 returns. Whereas, on the other hand, the above call cannot return until all

the concerned Handle instances (including the one corresponding to instA1) send

the ready signals to the CAS, and the call is reinvoked on the new instance (i.e.

instB2). Therefore, this situation is a deadlock situation.

One possible solution to avoid the above deadlock situation will be for the CAS to

know the dependencies between instances, and instruct the suspension of instances in

a particular order. For instance, in the above example, if the CAS knew that instA1

may potentially issue a call to instB1, then the CAS may first instruct the suspen-

sion of instA1, and only when instA1 is suspended would the CAS instruct the

suspension of instB1. That is, the instances may be suspended in the downstream

order of their dependency.

However, the above solution has two drawbacks. First, it requires the informa-

tion about the dependencies between instances to be available to the CAS, which

obviously imposes an additional overhead. And second, this solution cannot work

when there are any cycles in the dependency graph of instances.

A simpler and lightweight solution, followed in our approach, is to give special

treatment to the calls issued from the instances that can be dynamically removed, so

that these calls are not suspended but are allowed to complete their normal execution

and return to their callers.

For the above solution to work, the calls issued from the instances that can be

dynamically removed need to be identifiable as special calls. We follow a simple

implementation of the above solution in Java, which is to append a special identifier

called nosuspend to the names of the threads executing these calls. At a safe point,

130 Chapter 5. Dynamic Recomposition of Components

the execution of a call is suspended only if the name of the thread executing the

call does not have the above identifier appended to it. Otherwise, the execution

of the call is not suspended, and instead the call is allowed to complete its normal

execution and return to its caller.

The above solution should work for most practical applications, but does not

guarantee 100% immunity from deadlock situations. For example, in case of a never-

ending loop, a call with the above special identifier appended to it may never be

suspended, even if there is a safe point within the code of the loop. For such special

cases, the application developer needs to make sure that appropriate provisions for

avoiding deadlock situations are provided within the application logic. However, for

most practical applications, the above solution would be sufficient for avoiding a

deadlock situation when the atomic recomposition process is followed.

5.5 Discussion

In this chapter, we have described the CASA approach for dynamic recomposition of

components. The approach discussed in this chapter is generic, and can be used for

any modern object-oriented programming language (even though we have used Java

as a target language for explaining some of the concepts in this chapter). In order

to use our approach, an object-oriented programming language must provide mech-

anisms for dynamically creating and deleting objects (all modern object-oriented

programming languages satisfy this basic requirement). The Handle instances used

for dynamic replacement of instances in our approach can be implemented in any

language. The interactions between the Handle instances and the CAS currently

takes place using Java RMI. However, any remote procedure call (RPC) mechanism

can be used for such interactions instead.

The main decision to develop our own approach for dynamic recomposition of

components, instead of using any of the existing approaches, is the flexibility required

for dynamic replacement in CASA. A number of approaches have been proposed for

dynamic recomposition of components in the last few years. However, these ap-

proaches are targeted to software evolution rather than software adaptation, with

the result that these approaches can adapt only those components that are not run-

ning (i.e. not serving any client requests) at the time of adaptation. If a component

is running at the time of adaptation, then either the component is allowed to finish

5.5. Discussion 131

its current execution, or its current execution is discarded.

A discussion of the related approaches for dynamic recomposition of compo-

nents is provided in Chapter 7. Two of the most popular technologies for replacing

components dynamically are Java HotSwap [Dmi01] and OSGi [OSG07]. The Java

HotSwap technology allows replacing classes of a running Java program by redefining

the methods of these classes. However, it does not allow currently active methods

of a class to be replaced. OSGi provides a framework for managing the life cycle of

Java components. It allows Java components to be dynamically added and removed,

and bindings between the components to be dynamically changed. However, OSGi

also does not provide support for replacing currently running components. On the

other hand, for simple addition or removal of components in CASA (i.e. without

replacement), technologies like OSGi can be quite useful.

The problem of replacing currently running components is much more complex

than the problem of replacing non-running components. A significant advantage of-

fered by some of the existing approaches for dynamic recomposition is that the com-

ponent replacement can be done without application participation. In our approach,

some amount of application participation is required in the form of implementing

Handle instances. However, since the Handle instances offer standard functionality,

templates for these instances can be provided by the programming environment,

which can be customized by the application developer for the specific application.

Moreover, our approach requires a replaceable instance to explicitly define safe points

where its execution can be terminated safely. We envision that appropriate tools for

identifying such safe points will be available to the application developer in future.

Similarly, our approach requires mutually-replaceable instances to agree to a com-

mon representation of the state to be exchanged. This is a reasonable requirement for

any scenario that involves information exchange between two distinct computational

entities.

In spite of the mechanisms for suspending the calls only at safe points, transfer-

ring the instance state, and maintaining the integrity of ongoing interactions provided

in CASA, the ultimate onus of resuming the execution of suspended calls correctly

is on the new instance. This implies that even if the state of the old instance is

transferred to the new instance, and the calls suspended at the safe points in the old

instance are reinvoked on the new instance, the new instance may need to implement

certain additional recovery mechanisms to be able to resume the execution of the

132 Chapter 5. Dynamic Recomposition of Components

suspended calls correctly. Such recovery mechanisms are instance and application

specific, and cannot be generalized.

In our design of the components recomposition approach, we have not placed

any special requirements on the programming language. However, a future version

of this approach can benefit from the support provided at the programming lan-

guage level. In particular, a programming language can provide special constructs

for defining safe points in the instance code. Similarly, the programing language can

support state transfer between instances. However, we believe that the application

developer will still need to define the safe points explicitly using the constructs pro-

vided by the programming language, as it seems highly unlikely at this stage that a

programming language could identify the safe points automatically (e.g. by simply

inspecting the stack formats of the methods of old and new instances). Similarly,

we believe that the application developer will need to identify the parameters of the

state to be transferred between mutually replaceable instances, though the actual

state transfer can be greatly facilitated by the programming language (by transfer-

ring the stack frames and initializing the new instance). The application developer

can be assisted in performing these activities by appropriate tools. We believe that

developing an adaptive application will eventually be a matter of partnership be-

tween the programming language features, appropriate analysis and development

tools, and the knowledge of the application developer. All these three are impor-

tant and indispensable ingredients for successfully developing an effective adaptive

application.

Chapter 6

Prototype Implementation and

Performance Evaluation

We have implemented a prototype of the CASA Runtime System (CRS), and a

demo system for demonstrating the dynamic adaptation capabilities of the CASA

framework. The prototype and the demo system are implemented in Java. The demo

system implements an Emergency Coordination System (EmCoS) consisting of two

applications: Monitoring and Support. Monitoring is responsible for monitoring a

disaster-affected area, and sending its observations to Support. Support, in turn, is

responsible for coordinating the rescue operations based on the information received

from Monitoring.

Further details on the implementation are discussed in Section 6.1, and results

of the performance evaluation are presented in Section 6.2.

The main purpose of implementing the prototype was to study the feasibility,

and evaluate the performance of our components adaptation approach presented in

the previous chapter. In addition, proof-of-concept experiments were carried out for

integration of CASA with PROSE (for dynamic adaptation of aspects), for integra-

tion of CASA with a dummy adaptive middleware system1 (for dynamic adaptation
1We decided to integrate CASA with a dummy adaptive middleware system instead of any

of the potential real adaptive middleware systems for our proof-of-concept experiment, as many

of the potential middleware systems have restrictions with respect to platform (e.g. the Odyssey

implementation is available currently only for NetBSD OS) and many others required significant

instrumentation for developing and integrating a manager for the middleware system. Therefore,

integration with a real adaptive middleware system was not considered worth the effort for a proof-

133

134 Chapter 6. Prototype Implementation and Evaluation

of lower-level services), and for dynamic adaptation of application attributes through

callbacks.

6.1 Implementation

In EmCoS, the communication bandwidth available between Monitoring and Support

is considered highly unreliable because of the nature of the operation (Monitoring

uses a wireless link for transferring data to Support ; Monitoring may need to move

frequently while surveying the disaster-affected area). Moreover, local resources

available to Monitoring and Support may also change at runtime because of resource

contentions with other applications running on the respective nodes (e.g. the node

hosting Monitoring may need to start other applications for interacting with local

rescue teams in the area).

In view of the runtime changes in resource availability, in particular the band-

width availability, Monitoring provides different alternative configurations suited for

different resource conditions. These configurations vary in the richness of informa-

tion about the disaster-affected area sent by Monitoring to Support.

Monitoring provides two types of information to Support : damage information

and rescue status. Different levels of information richness for damage information

are: high-resolution images, low-resolution images, detailed textual description and

brief textual description. Different levels of information richness for rescue status

are: detailed rescue information and brief rescue information.

Depending on the resources currently available, CASA activates the appropriate

configuration of Monitoring. Service negotiations between Monitoring and Support

take place before any major change in the configuration of Monitoring, as Support

may need to reconfigure itself in response to a reconfiguration of Monitoring (e.g.

service negotiations are required for a change from images to text, but not for a

change from high-resolution images to low-resolution images). Runtime changes in

the resource availability are artificially simulated in the prototype implementation.

The alternative configurations of Monitoring and Support are defined in the

respective application contracts. In this prototype, a configuration defines the con-

stituent components and the resource requirements. The CASA Runtime System is

responsible for monitoring the current availability of resources (which is simulated

of-concept experiment, given the time and resources at hand.

6.1. Implementation 135

in the prototype), and activate the most appropriate configuration for the current

resource availability. A change in configuration is carried out by replacing the cor-

responding components in the prototype. A runtime replacement of the information

sending components of Monitoring involves state transfer, so that the new compo-

nent does not resend the information that was already sent by the previous compo-

nent. The replacement of components is carried out using the dynamic replacement

process described in Chapter 5. This means that the concerned components need

to provide appropriate support for their dynamic replacement, e.g. by defining the

safe execution points where the components can be replaced, and the procedures for

importing and exporting the state.

In future, new adaptable components can be added to either of these applica-

tions, and thereby the adaptation capability of the EmCoS system can be evolved.

A new component that is designed to replace an existing component must conform to

the same component interface (a requirement that was discussed in Section 5.1). For

example, Monitoring can provide a new component that sends high-resolution im-

ages annotated with the locations of critical infrastructure in the area, when sending

the damage information to Support. This component might have even more resource

requirements than the component that sends normal high-resolution images. Simi-

larly, a new component of Monitoring might be able to send the exact locations of

the rescue team members in the area when sending the rescue status to Support.

These new components must satisfy all the requirements for dynamic replacement

of components discussed in Chapter 5. The executable codes of these components

need to be made accessible to the CASA Runtime System (the locations of these

components are specified at the appropriate places in the application contract), in

order to evolve the adaptation capability of the EmCoS system accordingly.

Figure 6.1 depicts the GUI of Support when Monitoring is sending high-resolution

images for the damage information and detailed rescue information for the rescue

status.

Figure 6.2 depicts the GUI of CASA running on the node hosting the Monitor-

ing application (node A). The upper bar for each resource shows the total amount

currently available, and the lower bar shows the total amount allocated for all the

running applications. A slider below the bars can be used for artificially changing

the total availability of the resource. The priority of an application can also be

changed by the user by entering a new value in the priority field. Figure 6.2 shows

136 Chapter 6. Prototype Implementation and Evaluation

that Monitoring is the only application running on node A.

As the amount of resources that can be allocated to Monitoring drops (either due

to other applications contending for the limited resources, or the total availability

of the resources dropping due to external factors), CASA carries out reconfiguration

of Monitoring. Reconfiguration here involves changing the component composition

of Monitoring. A change in configuration of Monitoring may force a corresponding

change in configuration of Support.

Figure 6.3 shows the GUI of CASA on node A when a new application (Dummy-

App1) starts executing on node A and is allocated resources, thereby reducing the

amount of resources allocated to Monitoring. This implies that Monitoring is re-

configured to send only low-resolution images for the damage information and brief

rescue information for the rescue status to Support, as depicted in the GUI of Support

in Figure 6.4.

As we know, an application contract is specified in XML, and it can be modi-

fied at runtime. CASA provides an API for modifying application contracts. For

applications serving humans, a user-friendly GUI should be provided to allow the

user to modify the application contract according to her needs and preferences. A

sample GUI for application contacts has been developed in the context of the CASA

prototype development.

The application contract of Monitoring provides a user-friendly GUI for cus-

tomizing the adaptation policy (see Figure 6.5). Figure 6.5 shows the default adapta-

tion policy. A user can change the order of alternative configurations under damage-

info and rescue-status using the “up” and “down” buttons. An alternative configura-

tion may be removed using the “remove” button. A removed configuration appears

in the Invalid zones table, and can be added later again using the “add” button.

Any changes carried out in the GUI immediately reflect a change in the application

contract in the background.

Figure 6.6 shows a situation where the user has disabled the rescue-status ser-

vice, and removed color images from the damage-info service. That is, the user is

interested in textual descriptions (preferably detailed, otherwise brief) of the damage

information only. The user in this case could have been a software application, (e.g.

Support) rather than a human user. When the user is a software application, the

GUI of the application contract is replaced with an API for revealing and modifying

the application contract. The access control for using the above API needs to be

6.1. Implementation 137

Figure 6.1: Support application

138 Chapter 6. Prototype Implementation and Evaluation

Figure 6.2: CASA on the node hosting Monitoring application

Figure 6.3: CASA on node A, hosting Monitoring and a dummy application

6.1. Implementation 139

Figure 6.4: Support application after reconfiguration

140 Chapter 6. Prototype Implementation and Evaluation

Figure 6.5: GUI of the application contract

Figure 6.6: Modified application contract

6.2. Performance evaluation 141

applied to prevent any unauthorized modification of the application contract.

The effect of the above change in the application contract is shown in the GUI

of Support in Figure 6.7.

Figure 6.7: Support application after modified application contract

6.2 Performance evaluation

We have carried out performance evaluation tests for evaluating the overhead in-

curred by our components adaptation approach described in Chapter 5. The per-

formance evaluation of the aspects adaptation approach followed by PROSE can be

found in [NA05], and that of the lower-level services adaptation approach followed

by Odyssey can be found in [NSN+97].

The performance evaluation of our components adaptation approach was origi-

nally carried out by a Master’s student as a part of an internship project. Detailed

142 Chapter 6. Prototype Implementation and Evaluation

results of the performance evaluation can be found in the internship report [Gyg04].

Below we present some of the indicative results.

Test Environment

All tests were carried out on two platforms: Macintosh Platform (CPU: PowerPC

G4 450 MHz, RAM: 640 MB, OS: MacOS X 10.3.5, Java Version: 1.4.2) and Linux

Platform (CPU: AMD Athlon XP 1900+, RAM: 1024 MB, OS: SuSE Linux 9.1,

Java Version: 1.4.2).

The profiling tool used for measurements was JProfiler 3.1.2 from EJ Technologies

[JPr04]. With the JVM default heap size of 2 MB, the Garbage Collector runs could

distort the results arbitrarily. Therefore, the heap size was set to 30 MB to prevent

any Garbage Collector runs.

Test Results

Below we present the results obtained for various performance tests on the Macintosh

platform (results for the Linux platform showed a similar pattern).

Test 1: Time required for an application adaptation with respect to the number

of applications running on the same node

The purpose of this test is to study the influence of the total number of applica-

tions running on the same node as the application being adapted. The application

adaptation here involves replacing only a single component. The component to be

replaced does not have any state and does not process any data. This ensures that

the component replacement is not delayed, and thus does not affect the results arbi-

trarily for different test runs. Tests were repeated 100 times to get a better average.

Results: The results of this test are presented in Table 6.1, and are depicted graph-

ically in Figure 6.8. Total time here is the time from detecting a change in resource

availability until completion of the component replacement. Slowdown factor in Ta-

ble 6.1 indicates how many times the application adaptation is slowed down when n

applications are running on the same node, as compared to only one running appli-

cation. The increase in time for application adaptation with respect to the number

6.2. Performance evaluation 143

of running applications is due to the increase in time required by the adaptation

algorithm for deciding which application to adapt.

Table 6.1: Time per application adaptation with respect to number of applications
Number of Total time per Slowdown

applications adaptation (ms) factor

1 38.33

2 39.29 1.03

4 44.38 1.16

7 61.97 1.62

14 117.32 3.06

20 176.16 4.6

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19

Number of applications

T
im

e
 (

m
s)

Figure 6.8: Time per application adaptation with respect to number of applications

Test 2: Time required for a change in component composition with respect to

number of components to be replaced

The purpose of this test is to study the influence of the number of components to

be replaced on the time required for recomposition. The components to be replaced

144 Chapter 6. Prototype Implementation and Evaluation

do not have any state and do not process any data. This ensures that a compo-

nent replacement is not delayed, and thus does not affect the results arbitrarily for

different test runs. Every component has exactly one Handle instantiated in the

application. Tests were repeated 100 times to get a better average.

Results: The results of this test are presented in Table 6.2, and are depicted graph-

ically in Figure 6.9. Time is measured from the moment when the CES invokes the

CAS to carry out recomposition until the recomposition process is over. Slowdown

factor in Table 6.2 indicates the factor by which the recomposition is slowed down

when replacing n components instead of only one component. The slight reduction

in the time required per component replacement with the increase in number of

components to be replaced (as observed by the slowdown factor being slightly less

than the number of components to be replaced) is mainly due to certain common

operations performed by the CAS.

Table 6.2: Time for components replacement with respect to number of components
Number of Total time for Slowdown

components replacements (ms) factor

1 6.93

2 13.22 1.91

4 25.96 3.75

7 41.56 6

14 79.57 11.48

20 107.26 15.48

Test 3: Time required for a change in component composition with respect to

number of Handle instances corresponding to components to be replaced

This test is similar to the test above, except that here we study the influence of

number of Handles instead of number of components. In this test, there was only

one component class to be replaced, and only the number of Handles instantiated in

the application for the above component class were varied for measurements. Tests

were repeated 100 times to get a better average.

Results: As expected, the time for recomposition is independent of whether every

6.2. Performance evaluation 145

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Number of components

T
im

e
 (

m
s)

Figure 6.9: Time for components replacement with respect to number of components

Handle instance in the application belongs to a different set of alternative classes,

or all Handle instances belong to the same set. Therefore the results obtained here,

as presented in Table 6.3 and Figure 6.10, are very similar to those for the previous

test.

Table 6.3: Time for components replacement with respect to number of Handles
Number of Total time for Slowdown

Handles replacements (ms) factor

1 6.81

2 13.46 1.98

4 26.18 3.84

7 46.42 6.82

14 79.61 11.69

20 108.03 15.86

Test 4: Time required for a component replacement with respect to number of

safe points in the component code

146 Chapter 6. Prototype Implementation and Evaluation

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Number of Handles

T
im

e
 (

m
s)

Figure 6.10: Time for components replacement with respect to number of Handles

The purpose of this test is to study the influence of number of safe points on

the speed of component replacement. In this test, a component to be replaced

implements a single method, which runs for 10 seconds. Tests were repeated 200

times to get a better average.

Results: The measured average times for a component replacement for different

number of safe points matched quite well with their theoretically computed values,

as shown in Table 6.4 and Figure 6.11. As expected, the frequency of safe points has

a positive effect on the speed of component replacement.

Table 6.4: Time for a component replacement with respect to number of safe points
Number of Measured Theoretical

safe points average (ms) average

0 5138.18 5007

1 2405.59 2507

2 1695.9 1674

4 926.99 1007

6.2. Performance evaluation 147

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

Number of safe points

T
im

e
 (

m
s)

Theoretical
average
(ms)

Measured
average
(ms)

Figure 6.11: Time for a component replacement with respect to number of safe points

Test 5: Overhead due to safe points during normal operation

This test studies the overhead due to presence of safe points in the application

code during normal operation (i.e. when no recomposition is involved). Tests were

carried out on a component implementing an empty method containing a number

of safe points. Total response time for the method was measured in different cases

in order to calculate the overhead due to safe points. Tests were repeated 10,000

times for each variant (containing a different number of safe points) to get a better

average.

Results: The results are presented in Table 6.5 and Figure 6.12. Please note that the

time is measured here in microseconds, unlike previous tests where time is measured

in milliseconds. The overhead due to each safe point during normal operation was

found to be very low. As expected, this overhead is independent of the total number

of safe points defined in the method.

Looking at the results from this and previous test, we observe that while the

overhead due to safe points during normal operation is quite low, the presence of safe

points can significantly speed up a component replacement during recomposition.

Therefore, it might be worthwhile to define frequent safe points if possible, especially

148 Chapter 6. Prototype Implementation and Evaluation

after any time-expensive computations.

Table 6.5: Overhead due to safe points during normal operation
Number of Total time for Overhead per

safe points a call (µs) safe point (µs)

0 2.74

1 7.7 4.96

2 13.68 5.47

3 18.06 5.11

4 23.22 5.12

5 28.62 5.18

10 54.66 5.19

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Number of safe points

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Figure 6.12: Overhead per safe point

Test 6: Overhead due to usage of Handles during normal operation

This test studies the overhead due to indirection of method calls through Han-

dles, instead of direct calls to the target component, during normal operation. Tests

were carried out on a component implementing an empty method that returns im-

6.2. Performance evaluation 149

mediately. Calls were made to the method directly and through a Handle. Tests

were repeated 10,000 times to get a better average.

Results: Table 6.6 shows the overhead due to usage of a Handle, as compared to

direct calls. Time is measured here in microseconds. It should be noted here that

the overhead due to using a Handle, as mentioned in Table 6.6, is independent of the

actual execution time of the method. Therefore, even though in Table 6.6 making a

call through a Handle is 11 times slower than a direct call, if a direct call would take

0.1 second (including the processing time by the method), a call through a Handle

would take 0.100027 second, i.e. an overhead of 0.027%.

Table 6.6: Overhead due to Handles during normal operation
Total time for Overhead due

a call (µs) to Handle (µs)

Direct 2.74

Via Handle 30.16 27.42

Test 7: Time for initializing a Handle

Time for initializing a Handle includes registering the Handle with the CAS,

getting information about the currently active class, creating an instance of this

class and setting the instance as the active instance. For the test, a number of

Handles of the same type were initialized. Tests were repeated 100 times for getting

a better average.

Results: The results for initializing Handles are shown in Table 6.7 and Figure 6.13.

As seen from the results, the first initialization of a Handle takes significantly higher

time than subsequent initializations. This is because RMI takes longer time for

creating a connection and enabling communication between a Handle and the CAS

for the first time, as compared to subsequent communications. In any case, the

communication time between a Handle and the CAS dominates the total time for

initializing a Handle.

Test 8: Overhead due to state transfer with respect to complexity of state

150 Chapter 6. Prototype Implementation and Evaluation

Table 6.7: Time for initializing Handles
Number of Total time (ms) Time per

Handles Handle (ms)

1 61.4 61.4

4 117.6 18.73

7 182.4 21.6

14 331.6 21.31

20 466.8 22.53

50 946.6 15.99

0

10

20

30

40

50

60

70

1 6 11 16 21 26 31 36 41 46

Number of Handles

T
im

e
 (

m
s)

Figure 6.13: Time per Handle initialization

This test studies the influence of complexity of state parameters on the time

for state transfer. Complexity of a state to be transferred is measured in terms of

number of state parameters and types of these parameters (integer or object). These

tests were repeated 10,000 times for getting a better average.

Results: Time for transferring the persistent state is measured, and results are pre-

sented in Table 6.8 and Figure 6.14. As seen from the results, there is not much

difference in results whether primitives (integers) or objects are transferred. This

6.2. Performance evaluation 151

implies that the time for state transfer depends mainly on the number of state pa-

rameters being transferred, while the types of these parameters do not influence the

results. As expected, time for transferring every additional state parameter (beyond

the first parameter) is almost constant.

Table 6.8: Overhead due to state transfer
Integers Objects

Variables Total time for Addl. time per Total time for Addl. time per

state transfer (µs) variable (µs) state transfer (µs) variable (µs)

0 2.6 2.6

1 32.1 29.5 32.3 29.6

2 38.7 6.6

3 45.3 6.6 44.9 6.3

5 57.9 6.3

10 90.1 6.4 90.0 6.5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Number of variables

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Figure 6.14: Additional overhead per variable

152 Chapter 6. Prototype Implementation and Evaluation

Test 9: Time for registering an application with CASA

Time for registering an application includes the time for the RMI lookup of CASA

and the time for actual registration (i.e. passing the application contract to CASA

etc.). This test was repeated 20 times to get a better average.

Results: The time required for registering an application with CASA is given in

Table 6.9. The RMI lookup of CASA takes more time than the actual registration.

Since the registration needs to be done only once in the beginning for an application,

it is not likely to be time critical.

Table 6.9: Time for registering an application with CASA
Time (ms)

RMI Lookup 665.20

Registration 395.20

TOTAL 1060.40

Discussion: The above results show that the overhead incurred by the components

recomposition approach followed in CASA is reasonably small, and tolerable for

most practical applications. We believe that the overhead incurred by an adaptation

approach during normal operation of an application is more important than the

overhead incurred during adaptation. This is because, in general, the number of

times an application needs to be adapted during its lifetime is usually very low, when

compared to the total lifetime of the application itself (i.e. the time the application

is up and running). Moreover, the adaptation of an application is meant to provide

certain value to the application (e.g. to allow it to continue its execution when

the execution environment conditions get worse, or to improve its functionality or

performance when the execution environment conditions get better). Therefore, the

overhead incurred during adaptation is not a real overhead, while that during normal

operation is a real overhead. However, having said that, the overhead incurred during

adaptation should be kept as low as possible, as some applications may have strict

availability requirements and may not be able to tolerate any significant disruptions

in their execution due to adaptation.

In this respect, the overhead incurred by the components adaptation approach

followed in CASA is found to be very small during normal operation, and reasonably

6.2. Performance evaluation 153

small during adaptation. In particular, the overhead due to an additional level of

indirection of method calls, as induced by the use of Handles, during the normal

application operation is quite small (less than 30 µs). An important observation ob-

tained by the above results is that the overhead due to safe points in the component

code is very small during the normal operation (around 5 µs per safe point). On

the other hand, as expected, increasing the number of safe points in the component

code has a considerably positive effect on the speed of component replacement. This

implies that there is an incentive in defining frequent safe points in a component – in

terms of increased speed of component replacement during adaptation, at the cost

of very low overhead due to safe points during normal operation. The safe points

should especially be defined after any time-expensive computations. The overhead

due to state transfer during adaptation is also very small (in the order of a few

microseconds), and the overhead due to the overall adaptation process is reasonably

small (in the order of a few milliseconds). However, it should be noted that the adap-

tation process can take unpredictably long time depending on the distance between

the current execution point and the next safe point within a component. A carefully

designed software component is expected to keep this distance as short as possible

on average, and not allow an indefinite waiting time before the execution reaches

a safe point. Naturally, the speed with which an application is able to respond to

the changes in its execution environment by adapting its behavior also depends on

the speed with which these changes are discovered by the underlying resource and

context monitoring services.

Chapter 7

Related Work

In this chapter, we give an overview of related work on dynamic adaptation of

applications. Related work on monitoring the execution environment, i.e. contextual

information and resources, has already been discussed in Chapter 3.

In the last few years, a vast number of approaches have been proposed for dy-

namic adaptation of applications. These approaches have tried to handle the issue

of dynamic adaptation from different perspectives. One way of classifying these

approaches would be their target of adaptation, i.e. the part of an application con-

figuration that is adapted by these approaches. According to this classification, we

classify the approaches as the ones adapting (i) application components, (ii) aspects,

and (iii) lower-level services. To our knowledge, CASA is the first approach that tries

to adapt all three above parts of an application configuration, in order to provide a

comprehensive adaptation solution.

Another way of classification would be the application level where support for

adaptation is provided. According to this classification, we classify the approaches

as (i) middleware level approaches, (ii) application code level approaches, and (iii)

software architecture level approaches. This kind of classification does not have

strict boundaries, and there are significant overlaps. For example, software architec-

ture level approaches ultimately perform adaptation actions at either the application

code level or middleware level. However, since the adaptation logic and decisions

are based at the architecture level, we classify these approaches as architecture level

approaches. Similarly, application code level approaches usually have some middle-

ware level components, but eventually carry out adaptation of the application code.

Therefore, we classify these approaches as application code level approaches. On the

155

156 Chapter 7. Related Work

other hand, middleware level approaches may interact with the application code,

but if the adaptation actions are performed at the middleware level (i.e. outside the

application code), then we classify these approaches as middleware level approaches.

Below we present some of the important approaches according to the second

classification. The field of dynamic adaptation of applications is very broad, and it

is not possible to list all the related approaches in this chapter. Therefore, we restrict

our discussion here to only some prominent approaches, or those approaches that are

closely related to our work on the CASA framework. For every approach presented,

we also specify the target of adaptation for that approach i.e. components, aspects

or lower-level services.

Many of the middleware level adaptation approaches support callbacks to ap-

plications in case of changes in the execution environment. These callbacks can be

used for adapting application attributes. Adapting application attributes through

callbacks is a trivial activity, and we do not explicitly list the approaches supporting

such callbacks.

Similarly, we do not list the approaches where the adaptation logic and mech-

anism are hard coded within an application, because such approaches are quite

restrictive in practice. In particular, these approaches result in (1) the inability

to change the adaptation strategy or add new adaptive behavior at runtime, and

(2) increased complexity due to hard coding of the adaptation concerns within an

application.

7.1 Middleware level adaptation

In some respects, middleware provides a natural place for dynamically adapting ap-

plications. This is mainly because of two reasons. First, since middleware is placed

between an application and its computing environment, it is in a favorable posi-

tion to monitor any runtime changes in the execution environment, in particular

changes in resource conditions. And second, many adaptation actions involve adapt-

ing the lower-level services used by an application, which are easy to be managed

and adapted at the middleware level. For these reasons, a number of middleware

level adaptation approaches have been proposed in the last few years. The target

of adaptation for the approaches listed in this section is invariably the lower-level

services used by an application.

7.1. Middleware level adaptation 157

Some of the earliest middleware level adaptation approaches involved adapting

the quality of data for multimedia-rich applications (e.g. audio or video streaming),

in response to a change in the availability of network resources. The motivation for

these approaches was that multimedia-rich applications typically have high demand

for network resources, which may not always be met. On the other hand, the re-

quired adaptations to meet variations in network resources can be carried out easily

at the middleware level (e.g. by adapting the frame-rate or resolution of a video at

the middleware level). Some other earlier middleware level approaches have tried

to adapt the communication services in response to changes in the execution envi-

ronment, e.g. ACE [Sch94], Ensemble [VBH+98] etc. ACE uses service wrappers

and C++ dynamic binding to support adaptable inter-process communication and

event handling services. Ensemble provides a layered architecture that allows an

application to select a particular communication protocol.

However, in the later middleware level approaches, the scope of adaptation has

been much widened, to include, for example, adaptation of data encryption, caching,

or even fault tolerance etc.

TAO (The ACE ORB) [SLM98] extends ACE to provide a CORBA-compliant

real-time ORB. TAO enhances the standard CORBA event service to provide real-

time dispatching and scheduling required by real-time applications. TAO employs

the Strategy design pattern [GHJV95] for encapsulating different aspects of ORB

internals, such as IIOP protocols, concurrency, scheduling, connection management

etc. These strategies are specified in a configuration file, which is parsed by TAO

to load the required strategies. However, TAO is configurable only at start-up time.

Dynamic TAO [KRL+00] extends TAO by using computational reflection to provide

a dynamically adaptive version of TAO. That is, using dynamic TAO, the relevant

strategies can be reconfigured dynamically, thereby carrying out middleware level

adaptation.

Another popular use of middleware level approaches is in intercepting remote

methods invoked by an application, and redirecting or modifying these invocations

dynamically as a part of dynamic adaptation. Examples of these approaches include

QuO [ZBS97, VZL+98], ACT [SM04, MSKC04a], Orbix [Orb07] etc.

QuO (Quality Objects) [ZBS97, VZL+98] is a middleware level approach for con-

trolling quality of service by adapting communication between a client and a remote

object. In QuO, CORBA stubs and skeletons are wrapped with functional dele-

158 Chapter 7. Related Work

gates. These delegates are able to intercept client requests and server replies. QuO

employs the concept of contracts for defining acceptable QoS regions. System condi-

tion objects are used for monitoring system status. Delegates consult the contract at

runtime, and modify the client requests and server replies according to the current

system status monitored by system condition objects.

ACT (Adaptive CORBA Template) [SM04, MSKC04a] is another CORBA based

adaptive middleware for intercepting remote method invocations. ACT relies on

CORBA portable interceptors for intercepting the remote invocations. Portable

interceptors serve as generic hooks that a composer can use at runtime to integrate

adaptive components. Rule-based interceptors allow a request to be redirected to a

different target, or to a proxy component that performs adaptation.

Orbix [Orb07] is a CORBA compliant ORB used for providing adaptive fault

tolerance to applications at the middleware level. This is achieved by integrating an

object replication mechanism inside the CORBA ORB. Orbix provides support for

configuring CORBA object replicas at startup time. Adaptor objects in Orbix are

used to allow the modified ORB to use the services provided by a reliable multicast.

Additionally, Orbix provides support for loading optional pluggable protocols defined

in the configuration files.

Jorgensen et al. [JTMJ00] present an approach for customizing ORB imple-

mentations according to application-specific preferences, as a part of the Lasagne/J

project. In this approach, the ORB implementations provide support for non-

functional behavior of an application. The ORB implementations can be reconfigured

on the basis of application-specific preferences, which are defined as independent pol-

icy objects. However, the policies are defined before runtime, and are translated into

code and complied with the application. This implies that the adaptation policies

cannot be changed at runtime.

Some of the middleware level adaptation approaches are reflective in nature.

That is, these approaches support external regulation of their adaptation strategy.

As discussed in Chapter 4, a basic requirement for an adaptive middleware system

to be integrated with the CASA framework is that it should be reflective in nature.

Odyssey [NSN+97, Nob00] is one of the most flexible reflection-based adaptive

middleware systems. We have already discussed Odyssey in Chapters 3 and 4 as a

potential adaptive middleware system for integration with the CASA framework.

CARISMA [CEM03] is another popular reflection-based adaptive middleware

7.2. Application code level adaptation 159

system. The behavior of the middleware can be customized according to the adap-

tation requirements of an application. In particular, the behavior of the middleware

is described as a set of associations between the services that the middleware can

adapt, the policies that can be applied to deliver these services, and the context that

must be valid for a policy to be applied.

Even though the QuO middleware [ZBS97] described above does not allow an

application to control the adaptation behavior at runtime, it can be suitably extended

to support reflection. The concept of contracts used in QuO for defining acceptable

QoS regions provides a possibility to control the runtime adaptation behavior of the

middleware.

7.2 Application code level adaptation

Several approaches have been proposed for dynamic adaptation of application code,

mostly as a part of research on dynamic evolution or incremental development of

software applications. Below we describe some of the important approaches for

carrying out runtime changes in the application code. Most of these approaches

provide a runtime system for modifying the application code dynamically, and some

of these approaches are supported by certain special languages or language constructs

for their operation.

However, from the point of view of the CASA framework, most of the approaches

proposed for dynamic adaptation of application components have a common defi-

ciency: they do not allow replacing a currently running component, without dis-

carding its current execution. That is, they require that either a component is not

running at the time of replacement, or its current execution is discarded as a result

of replacement. Though some approaches have been proposed recently for allowing

a change in the code of a running component, they are still not flexible enough to

allow resuming the execution from an arbitrary execution point within the changed

code of the component. That is, although they allow re-executing a method whose

code has been redefined, they do not allow resuming the execution from a point

within the method body.

Some languages explicitly provide support for dynamic recomposition of com-

ponents, such as CLOS and Python. Some other languages have been extended

to supporting dynamic recomposition of components. For example, Open Java, R-

160 Chapter 7. Related Work

Java, and Adaptive Java all extend Java to include new keywords and constructs

for supporting dynamic recomposition. [MSKC04b] provides a detailed discussion

of language-based approaches for dynamic recomposition of application components.

Below we briefly discuss some of the language-specific approaches for adapting ap-

plication code.

Ensink et al. [ESA03, EA04] provide a programming framework for design and

development of adaptive applications. The Program Control Language (PCL) con-

sists of a small set of extensions to a base language, such as C++ or Java, to allow

programmers to write high-level code for controlling the behavior of a target pro-

gram at runtime. PCL uses Adaptors to wrap and adapt original application classes.

Adaptors can change the behavior of a class by changing its variables and methods.

Dynamic Java classes [MPG+00] provide a generic approach to support evolution

of Java programs by changing their classes at runtime. However, with this approach

active classes, i.e. classes that have any of their methods running, cannot be replaced.

Similarly, the approach of dynamic C++ classes [HG98] allows a version change of

a running C++ class. However, with this approach, once the version of a class has

been changed, only the new instances created after the version change belong to

the newer version. The already created instances belonging to the older version are

either allowed to continue till they expire normally or they are destroyed abruptly,

while no attempt is made to replace these instances with ones belonging to the newer

version. Clearly, such an approach is not suitable for our purpose.

The work by Hicks [Hic01] presents an approach for relinking a C program once

a part of the program is updated, so that existing references to the old version of

the code are linked to the new version of the code. The application developer is

required to provide the code needed for a transition from the old version to the new

version in a dynamic patch file. The actual relinking of the code is performed by

extending the implementation of a dynamic linker in C. Therefore, this approach

requires customized support at the programming language level. A similarity to our

approach is that this work also requires specifying the timings (i.e. execution points)

when an update can be performed explicitly in the updateable code.

Soules et al. [SAH+03] present an approach for dynamic reconfiguration of op-

erating system components. This work describes an implementation for the K42

operating system by IBM, which is built using C++ objects. This approach allows

an operating system component to be dynamically replaced with a new version.

7.2. Application code level adaptation 161

However, it requires the existing calls executing on the old component to expire

on their own (by keeping a track of the generation count of threads), before any

new calls can be invoked on the new component. Since the operating system calls

are usually short-lived, this approach is reasonable for replacing operating system

components. The same assumption, however, does not apply to CASA, as a call

executing on a replaceable component in CASA can run for an arbitrarily long time.

The HotSwap [Dmi01] technology provided in the Java HotSpot JVM allows re-

placing classes of a running application dynamically. With this technology, methods

of a class can be redefined at runtime. However, in the current implementation,

active methods of a class cannot be replaced. That is, the calls currently executing

on an old method cannot be redirected to the redefined method, and are allowed to

complete their current execution within the old method.

OSGi [OSG07] provides a framework for managing the life cycle of Java compo-

nents. Cervantes and Hall [CH04] provide an OSGi based framework for dynamic

adaptation of applications. Using this framework, Java components can be dy-

namically added or removed, and the bindings between these components can be

dynamically changed. However, OSGi does not provide support for replacing the

currently running components.

Below we discuss some more approaches that provide a runtime system for actu-

alizing a dynamic change in application components.

The work by Hofmeister [Hof94] presents one of the earliest approaches for dy-

namic reconfiguration of applications. The approach adopted in this work is to ex-

tend the Polylith software bus (which is a software interconnection system) to allow

adding, removing and replacing distributed components of an application at runtime.

A similarity with our approach is that this approach also requires an application de-

veloper to specify reconfiguration points within a component where the component

can be replaced. However, this approach is restricted to using an extension of the

Polylith system for interactions between software components.

The work by Kon [Kon00] requires every component to explicitly specify its

dependencies on other components. These dependencies are resolved at runtime by

a component configurator attached to every component. The problem of runtime

replacement of components (involving state transfer etc.) is not addressed in this

work.

David and Ledoux [DL03] present an approach for runtime adaptation of ap-

162 Chapter 7. Related Work

plications by activating and deactivating certain meta-level components associated

with the normal application components, in response to changes in the execution

environment. However, the scope of adaptation is restricted here, as the meta-level

components are usually limited to doing some kind of pre or post processing that

can be adapted dynamically.

The Chisel adaptation framework [Kee04] allows dynamically associating

Iguana/J metaobjects [RC02] with application objects. The Iguana/J metaob-

jects are implemented using custom metaobject protocols (MOPs). The behavior

implemented by a metaobject is used for wrapping the original behavior of the base

object to which this metaobject is attached. However, the adaptation achieved by

using dynamic metaobject facilities is limited in scope, and imposes considerable

overhead in accessing the base objects’ data because of the computational costs

associated with using reflection.

Rasche and Polze [RP03] present an approach for dynamic reconfiguration of

component-based applications for the Microsoft .NET platform. This approach uses

a transaction-based component model to decide the appropriate timing and order for

reconfiguration. However, dynamic reconfiguration here implies adding and remov-

ing components, changing connections among components, or changing component

attributes, while it does not provide means for dynamic replacement of components

involving state transfer etc.

The Accord framework [LPH04] enables a dynamic change in application behav-

ior according to the rules associated with every application component. However,

with this approach, the interactions between application components need to be de-

fined in terms of rules associated with the corresponding components, in order for

these interactions to be changeable at runtime by changing the corresponding rules.

Since the number of potential interactions between application components can be

quite large, the number of possible rules can be exponential, making the rule man-

agement quite complex and inducing performance overhead due to execution of all

these rules at runtime.

LuckyJ [Ori07] provides an approach for dynamic recomposition of components,

where all communication between different components is mediated by a central-

ized coordination manager. The components requiring a certain service search for

provider components using the coordination manager, which performs matching be-

tween the requester and provider components. The role of the coordination manager

7.3. Software architecture level adaptation 163

here facilitates recomposition of components. However, this approach is suitable for

recomposition at a very high level of component granularity, because of the high

overhead incurred in managing components discovery, matching and interactions

using the coordination manager.

In the last few years, a number of approaches have been proposed for dynamically

adapting crosscutting aspects [KLM+97] of an application. These approaches are

commonly referred as dynamic AOP approaches. Dynamic AOP presents a powerful

mechanism for dynamic adaptation of applications, as quite often an adaptation of

application behavior implies a corresponding change in some crosscutting concerns,

such as access control, QoS, persistence management, fault tolerance etc.

As discussed earlier, the CASA framework relies on PROSE [NA05] for dynamic

weaving and unweaving of aspects. We decided to use PROSE because of the flexi-

bility and runtime efficiency it offers. However, there are some other dynamic AOP

approaches developed over the last few years, which we briefly mention below.

TRAP/J [SMCS04] uses a two-step approach for dynamic weaving of aspects. In

the first step, an aspect weaver inserts generic interception hooks into the application

code at compile time. In the second step, a composer dynamically weaves new aspects

into the application at runtime, and a meta-object protocol uses reflection to forward

intercepted operations to these aspects.

JAsCo [VS04] uses the JVM debugger interface for dynamic aspect weaving.

JAsCo introduces an aspect-oriented extension of Java for defining aspect beans and

connectors. Aspect beans define join points and the corresponding advice code in

an abstract and reusable manner. Connectors are used for deploying one or more

aspect beans within a concrete context. JAsCo uses Java HotSwap technology in

such a way that only those join-points where aspects are applied upon are trapped.

7.3 Software architecture level adaptation

A number of software architecture level adaptation approaches have been proposed

in the last few years. In these approaches, software architecture models play a central

role in reasoning about adaptation decisions and actions. Even though the adapta-

tion actions are eventually executed at the middleware or application code level, the

focus on the software architecture models for reasoning about adaptation decisions

and actions distinguishes these approaches from the approaches discussed in the pre-

164 Chapter 7. Related Work

vious two sections which were primarily concerned with runtime implementation of

adaptation actions. In other words, the primary focus of these approaches is to fa-

cilitate reasoning about the adaptation logic, irrespective of how the corresponding

adaptation actions are carried out practically. However, most of these approaches

also provide guidelines and runtime implementations for carrying out the adaptation

actions.

Kramer and Magee [KM90] have presented one of the earliest software architec-

ture based approaches for dynamic adaptation of distributed systems. The adap-

tation is achieved through dynamic recomposition of components. However, in this

approach, a component needs to be in a quiescent state in order to be replaced.

This approach provides an architecture-based dependent transaction model, which

allows discovering dependencies between transactions, and thereby between compo-

nents. The information provided by the transaction model helps in reasoning about

the quiescent state of a component to be replaced. The application components

affected by a change in application configuration, and the components directly adja-

cent to these components (according to the dependency relation) can be requested

by a reconfiguration manager to reach the quiescent states, before the change in

configuration is carried out.

Oreizy et. al. [OMT98] provide a software architecture-based approach for run-

time software evolution, and discuss dynamic recomposition of application compo-

nents at the architecture level. This approach is mainly focussed on the C2 archi-

tectural style [TMA+96], and requires all component interactions to be mediated

through explicit connectors. The use of connectors makes it possible to alter a

component composition by changing the component bindings of the connectors at

runtime. The role of connectors here is similar to the role of Handle components in

CASA. However, in this approach, all component interactions are mediated through

connectors, while in CASA only the dynamically replaceable components need to be

accessed through Handle components. This approach requires an accurate model of

an application architecture to be available at runtime (as the reasoning about the

application adaptation is carried out at the architecture level), and the mappings

between the architecture model and implementation modules to be explicitly defined

(these mappings allow the architecture level adaptation decision to be executed on

the application). This imposes additional overhead for the application, and, more-

over, induces scope for potential ambiguities and errors in defining the mappings

7.3. Software architecture level adaptation 165

between the architecture model and implementation modules. This approach does

not provide a standard for defining the adaptation policy, as it is targeted to aid

the application architect in reasoning about and carrying out modifications at the

application architecture level for runtime software evolution.

Rainbow [GCH+04, GCS03] presents another architecture-based approach for

dynamic adaptation of software applications. In this approach, software architec-

ture models are referred for monitoring an application and guiding dynamic changes

to it. The adaptation strategies are defined at the architecture level in the form of

constraints on the architecture. Since the centerpiece of this approach is the use of

software architecture models, these models need to be provided to the adaptation

infrastructure for monitoring and adapting an application. The adaptation infras-

tructure is divided into system, architecture, and translation layers. Monitoring of

the execution environment and application adaptation are carried out at the system

layer. The adaptation decisions are taken at the architecture layer, based on the

architecture model of the application and the constraints specified on the model.

Since the system layer and the architecture layer operate at different levels of ab-

straction, the role of the translation layer is to bridge the gap between these two

different abstraction levels by mapping the information exchanged between system

and architecture layers. However, this mapping may not be straightforward always

and can be potentially error-prone, besides imposing additional overhead.

Kephart and Chess [KC03] envision autonomic computing systems to be able

to deal with increasing software and environment complexity, thanks to the self-

managing characteristic of these systems. Such self-managing systems are considered

to be self-configuring, self-healing, self-optimizing and self-protecting. Recently some

approaches have been proposed with the aim to turn this vision into reality. White et.

al. [WHW+04] propose an architectural approach to developing autonomic systems.

In this approach, an autonomic system is made up of autonomic elements, where each

autonomic element is self-managing in its own behavior as well as in its interactions

with other elements. However, this work presents the approach at an early stage.

This work describes the broad requirements to be satisfied by autonomic elements

and systems, and recommends certain design patterns for self-managing properties,

while the details of carrying out self-management are not given.

Chapter 8

Conclusion and Future Work

8.1 Concluding discussion

In this dissertation, we have presented the CASA framework for enabling develop-

ment and operation of dynamically adaptive applications. Our work on the CASA

framework was motivated by the fact that software applications executing in dy-

namic computing environments, such as mobile and wireless environments, should

be able to adapt to changes in their execution environment dynamically. We have

broadly classified the changes in execution environment as: changes in contextual

information (i.e. information about the context that may influence the service pro-

vided by an application, such as location, time-of-day etc.), and changes in resource

availability (i.e. physical infrastructure available to the application for providing a

service, such as communication bandwidth, memory, data resources etc.). The adap-

tation of an application, in response to a change in its execution environment, can be

either compulsory for its continued execution (e.g. adjusting resource requirements in

response to a loss of certain resources), or desirable for the purpose of improving its

functionality or performance (e.g. providing context-dependent service in response

to a change in contextual information).

The design of the CASA framework allows separation between the adaptation

concerns and business concerns of an application. This separation plays an impor-

tant role in the framework for providing a runtime system for handling adaptation

concerns. Together, the separation of concerns and the CASA runtime system, con-

siderably facilitate development of dynamically adaptive applications.

The adaptation policy of an application is defined in the application contract.

167

168 Chapter 8. Conclusion and Future Work

The application contract is external to the application, and is specified in an

application-independent format. The contract-based adaptation policy plays a

key role in separating the adaptation concerns of an application from its business

concerns. Another important benefit of the contract-based adaptation policy is

that it allows modifying the adaptation policy at runtime. Runtime changes to

the adaptation policy are helpful in customizing the adaptation policy according to

user’s needs and preferences, as well as evolving the adaptation policy to integrate

new adaptive behaviors or to handle new execution environment conditions.

The CASA framework provides a comprehensive adaptation solution to meet the

wide range of adaptation requirements of a broad and diverse set of software applica-

tions executing in dynamic computing environments. In particular, the CASA frame-

work supports a number of adaptation mechanisms for adapting any constituent of

an application configuration. We classify the adaptable constituents of an appli-

cation configuration as: application components, crosscutting aspects, application

attributes, and lower-level services. The ability to adapt any of these constituents

implies flexibility for the application developer to comprehensively meet the adap-

tation needs of a given software application.

For dynamically adapting lower-level services, the CASA framework relies on

external reflection-based adaptive middleware systems. A number of such systems

have been developed in the last few years. Some of these systems are specific to

certain application domains, while others are more general. We have discussed inte-

gration of the CASA framework with a general and flexible reflection-based adaptive

middleware system called Odyssey.

For dynamically adapting crosscutting aspects, the CASA framework relies on a

flexible and efficient dynamic AOP system called PROSE. PROSE allows dynamic

weaving and unweaving of aspects into / from an application at runtime, and is

characterized by its flexibility and efficiency. We have discussed integration of the

CASA framework with PROSE.

For dynamic recomposition of application components, we have developed an

indigenous approach. Dynamic recomposition of components involves dynamic ad-

dition, removal and / or replacement of components. Our approach provides mech-

anisms for ensuring that the consistency of the application is not compromised as a

result of dynamic recomposition. The details of this approach have been discussed in

this dissertation. For a dynamic change in application attributes, the CASA frame-

8.2. Future directions of work 169

work requires the concerned application to provide appropriate callback methods

that are invoked by the CASA runtime system.

We have implemented a prototype system based on the CASA framework, details

of which are presented in this dissertation. Performance evaluation of the prototype,

mainly to evaluate our components adaptation approach, indicates that the overhead

incurred is reasonable for most practical applications.

8.2 Future directions of work

We have presented the foundational work on developing a framework for dynamically

adaptive applications. However, in order to realize the full potential of an enabling

framework for dynamically adaptive applications, progress in several related research

directions needs to be made. Below, we briefly describe some of the important

directions for future work.

Ensuring completeness and correctness of alternative configurations: We

have presumed that ensuring the completeness and correctness of alternative config-

urations specified in the application contract is the responsibility of the application

developer. This involves verifying that a specified configuration is appropriate for

the corresponding execution environment conditions, and all dependencies of the

constituents of the configuration are well satisfied. Ensuring the completeness and

correctness can be a non-trivial task, especially for large applications. An important

direction of future work will be to develop suitable tools for aiding the application

developing in carrying out this task effectively and efficiently.

Identifying safe points in dynamically replaceable components: In our

discussion on dynamic replacement of components, we have presumed that the “safe”

execution points (i.e. the execution points where the component replacement can be

carried out without compromising the consistency) are defined in the component

body by the application developer. Identifying such safe points is clearly a hard

problem. As Gupta et al. [GJB96] have discussed, the problem of identifying the

safe points is in general undecidable, and no generalized solutions exist for identifying

such safe points. However, more work should be carried out in developing appropriate

heuristics for identifying safe points (based on data flow analysis techniques etc.) for

specific component types, in order to aid the application developer in this task.

170 Chapter 8. Conclusion and Future Work

Monitoring the execution environment: In this dissertation, we have given

only a cursory treatment to the subject of monitoring the execution environment.

More work clearly needs to be done in this direction. The swiftness in detecting

changes in the execution environment has an obvious direct impact on the total re-

sponse time in adapting the application to these changes. On the other hand, the

ability to monitor a wide range of execution environment parameters allows flexibil-

ity to meet adaptation requirements of diverse applications. Therefore, efforts need

to be made in developing efficient mechanisms for monitoring a wide range of envi-

ronmental parameters. The developed mechanisms should be ideally easy to extend

and evolve, in order to allow flexibility in monitoring new environmental parame-

ters, or integrating more efficient mechanisms for monitoring existing environmental

parameters.

Security issues: In this dissertation, we have not paid attention to ensuring the

secure behavior of an application configuration, as security issues and measures are

considered independent and orthogonal to the field of dynamically adaptive applica-

tions. We have presumed that the application developer verifies the secure behavior

of alternative application configurations at the time of defining these configurations

and specifying adaptation policy. However, the CASA framework also allows modi-

fying the application contract at runtime. A runtime modification of the adaptation

policy may involve adding new types of components, aspects or lower-level services

dynamically. Such runtime modifications may in turn impose new security con-

cerns. Future work may involve developing stringent security measures for ensuring

the secure and predictable behavior of an application, even in the wake of runtime

adaptation or changes to the adaptation policy.

General improvements of functionality and performance: General improve-

ments may be carried out with an aim to improve the functionality and performance

of the CASA runtime system. The design of the CASA framework is very modular,

with only a loose coupling between different entities of the framework. Therefore,

any of these entities can be evolved independent of the other entities of the frame-

work. Improvements of the CASA runtime system may involve developing more

efficient adaptation mechanisms to replace the existing mechanisms.

Bibliography

[ACKM04] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web Services:

Concepts, Architectures and Applications. Springer-Verlag, 2004.

[API07] OWL-S API. Maryland Information and Network Dy-

namics Lab Semantic Web Agents Project (MINDSWAP),

http://www.mindswap.org/2004/owl-s/api/. 2007.

[APK+03] Agarwala, S., Poellabauer, C., Kong, J., Schwan, K., and Wolf, M.

System-level resource monitoring in high-performance computing envi-

ronments. Journal of Grid Computing, 1(3):273–289, 2003.

[Bol99] Bollert, K. On weaving aspects. In Proceedings of the ECOOP’99 Work-

shop on Aspect-Oriented Programming, June 1999.

[Bro96] Brown, P.J. The stick-e document: A framework for creating context-

aware applications. Electronic Publishing, 9(1):1–14, September 1996.

[CEM03] Capra, L., Emmerich, W., and Mascolo, C. CARISMA: Context-aware

reflective middleware system for mobile applications. IEEE Transac-

tions on Software Engineering, 29(10):929–945, 2003.

[CH04] Cervantes, H. and Hall, R.S. A framework for constructing adaptive

component-based applications: Concepts and experiences. In Proceed-

ings of the 7th Symposium on Component-Based Software Engineering

(CBSE 2004), May 2004.

[Dij82] E.W. Dijkstra. On the role of scientific thought. Selected Writings on

Computing: A Personal Perspective, Springer-Verlag, 1982.

171

172 Bibliography

[DL03] David, P. and Ledoux, T. Towards a framework for self-adaptive

component-based applications. In Proceedings of the 4th Interna-

tional Conference on Distributed Applications and Interoperable Systems

(DAIS 2003), 2003.

[Dmi01] Dmitriev, M. Towards flexible and safe technology for runtime evolution

of Java language applications. In Proceedings of the Workshop on En-

gineering Complex Object-Oriented Systems for Evolution at OOPSLA

2001, October 2001.

[EA04] Ensink, B. and Adve, V. Coordinating adaptations in distributed sys-

tems. In Proceedings of the 24th International Conference on Distributed

Computing Systems (ICDCS 2004), March 2004.

[ESA03] Ensink, B., Stanley, J., and Adve, V. Program control language: A

programming language for adaptive distributed applications. Journal of

Parallel and Distributed Computing, 63(11):1082–1104, November 2003.

[GCH+04] Garlan, D., Cheng, S., Huang, A., Schmerl, B., and Steenkiste, P. Rain-

bow: Architecture-based self adaptation with reusable infrastructure.

IEEE Computer, 37(10), October 2004.

[GCS03] Garlan, D., Cheng, S., and Schmerl, B. Increasing system depend-

ability through architecture-based self-repair. Architecting Dependable

Systems, Springer-Verlag, 2003.

[GHJV95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GJB96] Gupta, D., Jalote, P., and Barua, G. A formal framework for on-line

software version change. IEEE Transactions on Software Engineering,

22(2), 1996.

[Gyg04] Gygax, A. Studying the Effect of Size and Complexity of Components on

the Performance of CASA. Internship Report, Institut für Informatik,

University of Zurich,

http://www.ifi.unizh.ch/req/ftp/papers/casa-perf.pdf, 2004.

Bibliography 173

[HG98] Hjalmtysson, G. and Gray, R. Dynamic C++ classes: A lightweight

mechanism to update code in a running program. In Proceedings of the

USENIX Annual Technical Conference, 1998.

[Hic01] Hicks, M. Dynamic Software Updating. PhD thesis, Department of

Computer and Information Science, University of Pennsylvania, August

2001.

[Hof94] Hofmeister, C.R. Dynamic Reconfiguration of Distributed Applications.

PhD thesis, CS-TR-3210, Department of Computer Science, University

of Maryland, January 1994.

[JPr04] JProfiler. EJ Technologies,

http://www.ej-technologies.com/products/jprofiler/overview.html.

2004.

[JTMJ00] Jorgensen, B.N., Truyen, E., Matthijs, F., and Joosen, W. Customiza-

tion of object request brokers by application specific policies. In Pro-

ceedings of the Middleware 2000, April 2000.

[KC03] Kephart, J.O. and Chess, D.M. The vision of autonomic computing.

IEEE Computer, 36(1), 2003.

[Kee04] Keeney, J. Completely Unanticipated Dynamic Adaptation of Software.

PhD thesis, Department of Computer Science, Trinity College Dublin,

October 2004.

[KLM+97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Lo-

ingtier, J.M., and Irwin, J. Aspect-oriented programming. In Proceed-

ings of the 11th European Conference on Object-Oriented Programming

(ECOOP 1997), June 1997.

[KM90] Kramer, J. and Magee, J. The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineer-

ing, 16(11), November 1990.

[KMM+98] Kenens, P., Michiels, S., Matthijs, F., Robben, B., Truyen, E., Van-

haute, B., Joosen, W., and Verbaeten, P. An AOP case with static

174 Bibliography

and dynamic aspects. In Proceedings of the ECOOP’98 Workshop on

Aspect-Oriented Programming, July 1998.

[Kon00] Kon, F. Automatic Configuration of Component-Based Distributed Sys-

tems. PhD thesis, Department of Computer Science, University of Illi-

nois at Urbana-Champaign, May 2000.

[KRL+00] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L.C., and

Campbell, R.H. Monitoring , security, and dynamic configuration with

the dynamicTAO reflective ORB. In Proceedings of the IFIP/ACM In-

ternational Conference on Distributed Systems Platforms (Middleware

2000), April 2000.

[LMK+03] Lowekamp, B., Miller, N., Karrer, R., Gross, T., and Steenkiste, P. De-

sign, implementation, and evaluation of the Remos network monitoring

system. Journal of Grid Computing, 1(1):75–93, 2003.

[LPH04] Liu, H., Parashar, M., and Hariri, S. A component based programming

framework for autonomic applications. In Proceedings of the Interna-

tional Conference on Autonomic Computing (ICAC 2004), May 2004.

[Mey92] Meyer, B. Applying “design by contract”. IEEE Computer, 25(10):40–

51, October 1992.

[MG03] Mukhija, A. and Glinz, M. CASA – A contract-based adaptive software

architecture framework. In Proceedings of the 3rd IEEE Workshop on

Applications and Services in Wireless Networks (ASWN 2003), July

2003.

[MG04] Mukhija, A. and Glinz, M. A framework for dynamically adaptive appli-

cations in a self-organized mobile network environment. In Proceedings

of the ICDCS 2004 Workshop on Distributed Auto-adaptive and Recon-

figurable Systems, March 2004.

[MG05a] Mukhija, A. and Glinz, M. The CASA approach to autonomic appli-

cations. In Proceedings of the 5th IEEE Workshop on Applications and

Services in Wireless Networks (ASWN 2005), June-July 2005.

Bibliography 175

[MG05b] Mukhija, A. and Glinz, M. Runtime adaptation of applications through

dynamic recomposition of components. In Proceedings of the 18th In-

ternational Conference on Architecture of Computing Systems (ARCS

2005), March 2005.

[ML98] Mezini, M. and Lieberherr, K. Adaptive plug-and-play components for

evolutionary software development. In Proceedings of the 13th ACM

SIGPLAN Conference on Object Oriented Programming Systems, Lan-

guages and Applications (OOPSLA 1998), October 1998.

[MPG+00] Malabarba, S., Pandey, R., Gragg, J., Barr, E., and Barnes, J.F. Run-

time support for type-safe dynamic Java classes. In Proceedings of the

14th European Conference on Object-Oriented Programming (ECOOP

2000), 2000.

[MSKC04a] McKinley, P.K., Sadjadi, S.M., Kasten, E.P., and Cheng, B.H.C. Com-

posing adaptive software. IEEE Computer, 37(7):56–64, July 2004.

[MSKC04b] McKinley, P.K., Sadjadi, S.M., Kasten, E.P., and Cheng, B.H.C. A Tax-

onomy of Compositional Adaptation. Technical Report MSU-CSE-04-

17, Department of Computer Science and Engineering, Michigan State

University, USA, July 2004.

[NA05] Nicoara, A. and Alonso, G. Dynamic AOP with PROSE. In Proceedings

of the International Workshop on Adaptive and Self-Managing Enter-

prise Applications (ASMEA 2005), 2005.

[Nob98] Noble, B.D. Mobile Data Access. PhD thesis, CMU-CS-98-118, School

of Computer Science, Carnegie Mellon University, May 1998.

[Nob00] Noble, B.D. System support for mobile, adaptive applications. IEEE

Personal Communications, 7(1), February 2000.

[NSN+97] Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn,

J., and Walker, K.R. Agile application-aware adaptation for mobil-

ity. In Proceedings of the 16th ACM Symposium on Operating Systems

Principles, October 1997.

176 Bibliography

[OMT98] Oreizy, P., Medvidovic, N., and Taylor, R.N. Architecture-based run-

time software evolution. In Proceedings of the 20th International Con-

ference on Software Engineering (ICSE 1998), 1998.

[OOP99] OOPSLA99. Panel discussion: “Are components objects?”,

http://www.acm.org/sigs/sigplan/oopsla/oopsla99/. 1999.

[Orb07] Orbix. Iona technologies. http://www.iona.com/products/orbix/. 2007.

[Ori07] Oriol, M. Primitives for the dynamic evolution of component-based

applications. In Proceedings of the 22nd Annual ACM Symposium on

Applied Computing (SAC 2007), March 2007.

[OS07] OWL-S. OWL-based web ontology language for services,

http://www.daml.org/services/owl-s/. 2007.

[OSG07] OSGi. Open services gateway initiative, http://www.osgi.org/. 2007.

[OWL07] OWL. Web ontology language,

http://www.w3.org/2004/owl/. 2007.

[PAG03] Popovici, A., Alonso, G., and Gross, T. Just in time aspects: Efficient

dynamic weaving for Java. In Proceedings of the 2nd International Con-

ference on Aspect-Oriented Software Development (AOSD 2003), March

2003.

[Pet00] Petre, L. Components vs. Objects. TUCS Technical Report, No. 370,

Turku Centre for Computer Science, Finland, 2000.

[PGA02] Popovici, A., Gross, T., and Alonso, G. Dynamic weaving for aspect-

oriented programming. In Proceedings of the 1st International Con-

ference on Aspect-Oriented Software Development (AOSD 2002), April

2002.

[PSA+03] Poellabauer, C., Schwan, K., Agarwala, S., Gavrilovska, A., Eisenhauer,

G., Pande, S., Pu, C., and Wolf, M. Service morphing: Integrated

system- and application-level service adaptation in autonomic systems.

In Proceedings of the 5th International Workshop on Active Middleware

Services, 2003.

Bibliography 177

[PSDF01] Pawlak, R., Seinturier, L., Duchien, L., and Florin, G. JAC: A flex-

ible solution for aspect-oriented programming in Java. In Proceedings

of the REFLECTION 2001: Metalevel Architectures and Separation of

Crosscutting Concerns, September 2001.

[Qui07] QuickTime. QuickTime multimedia framework,

http://www.apple.com/quicktime/. 2007.

[RC02] Redmond, B. and Cahill, V. Supporting unanticipated dynamic adapta-

tion of application behaviour. In Proceedings of the 16th European Con-

ference on Object-Oriented Programming (ECOOP 2002), June 2002.

[RP03] Rasche, A. and Polze, A. Configuration and dynamic reconfiguration of

component-based applications with Microsoft .NET. In Proceedings of

the 6th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing, 2003.

[SAH+03] Soules, C., Appavoo, J., Hui, K., Silva, D., Ganger, G., Krieger, O.,

Stumm, M., Wisniewski, R., Auslander, M., Ostrowski, M., Rosenburg,

B., and Xenidis, J. System support for online reconfiguration. In Pro-

ceedings of the USENIX Annual Technical Conference, June 2003.

[Sch94] Schmidt, D.C. The ADAPTIVE communication environment: An

object-oriented network programming toolkit for developing commu-

nication software. In Proceedings of the 11th and 12th Sun Users Group

Conference, 1993-94.

[SDA99] Salber, D., Dey, A.K., and Abowd, G.D. The context toolkit: Aiding

the development of context-enabled applications. In Proceedings of the

ACM Conference on Human Factors in Computing Systems, 1999.

[SLM98] Schmidt, D.C., Levine, D.L., and Mungee, S. The design of the TAO

real-time object request broker. Computer Communications, Elsivier

Science, 21(4):294–324, April 1998.

[SM04] Sadjadi, S.M. and McKinley, P.K. ACT: An adaptive CORBA template

to support unanticipated adaptation. In Proceedings of the 24th IEEE

International Conference on Distributed Computing Systems (ICDCS

2004), March 2004.

178 Bibliography

[SMCS04] Sadjadi, S.M., McKinley, P.K., Cheng, B.H.C., and Stirewalt, R.E.K.

TRAP/J: Transparent generation of adaptable Java programs. In Pro-

ceedings of the International Symposium on Distributed Objects and Ap-

plications (DOA 2004), October 2004.

[SPS04] Srinivasan, N., Paolucci, M., and Sycara, K. Adding OWL-S to UDDI,

implementation and throughput. In Proceedings of the 1st International

Workshop on Semantic Web Services and Web Process Composition

(SWSWPC 2004), 2004.

[Szy98] Szyperski, C. Component Software – Beyond Object-Oriented Program-

ming. Addison-Wesley, 1998.

[TG04] Tuduce, C. and Gross, T. Resource monitoring issues in ad hoc net-

works. In Proceedings of the International Workshop on Wireless Ad-

Hoc Networks (IWWAN 2004), 2004.

[TMA+96] Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Rob-

bins, J.E., Nies, K.A., Oreizy, P., and Dubrow, D.L. A component- and

message-based architectural style for GUI software. IEEE Transactions

on Software Engineering, pages 390–406, June 1996.

[UPn07] UPnP. Universal plug and play, http://www.upnp.org/. 2007.

[VBH+98] Van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., and Karr,

D. Building adaptive systems using Ensemble. Software – Practice and

Experience, 28(9):963–979, August 1998.

[VS04] Vanderperren, W. and Suvee, D. Optimizing JAsCo dynamic AOP

through HotSwap and Jutta. In Proceedings of the Dynamic Aspects

Workshop (DAW 2004), 2004.

[VZL+98] Vanegas, R., Zinky, J.A., Loyall, J.P., Karr, D., Schantz, R.E., and

Bakken, D.E. QuO’s runtime support for quality of service in distributed

objects. In Proceedings of the IFIP International Conference on Dis-

tributed Systems Platforms and Open Distributed Processing (Middle-

ware 1998), September 1998.

Bibliography 179

[WHFG92] Want, R., Hopper, A., Falcao, V., and Gibbons, J. The active badge

location system. ACM Transactions on Information Systems, 10(1),

1992.

[WHW+04] White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., and Kephart, J.O.

An architectural approach to autonomic computing. In Proceedings of

the International Conference on Autonomic Computing (ICAC 2004),

May 2004.

[WSA+95] Want, R., Schilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg,

D., Ellis, J.R., and Weiser, M. An overview of the ParcTab ubiquitous

computing experiment. IEEE Personal Communications, 2(6), 1995.

[YN01] Yuan, W. and Nahrstedt, K. A middleware framework coordinating

processor/power resource management for multimedia applications. In

Proceedings of the Globecom, 2001.

[ZBS97] Zinky, J.A., Bakken, D.E., and Schantz, R.E. Architectural support for

quality of service for CORBA objects. Theory and Practice of Object

Systems, 3(1), 1997.

Appendix A

XML Schema of the Application

Contract

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="app-contract" type="app-contractType"/>

<xsd:complexType name="app-contractType">

<xsd:sequence>

<xsd:element name="context" type="contextType"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="contextType">

<xsd:sequence>

<xsd:element name="params" type="paramsType"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="config" type="configType"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:positiveInteger" use="required"/>

181

182 Appendix A. XML Schema of the Application Contract

</xsd:complexType>

<xsd:complexType name="paramsType">

<xsd:sequence>

<xsd:element name="par" type="parType"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="ontology" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="parType">

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="unit" type="xsd:string" use="optional"/>

<xsd:attribute name="value" type="xsd:string" use="optional"/>

<xsd:attribute name="minv" type="xsd:double" use="optional"/>

<xsd:attribute name="maxv" type="xsd:double" use="optional"/>

<xsd:attribute name="enum" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:complexType name="configType">

<xsd:sequence>

<xsd:element name="resources" type="resourcesType"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="components" type="componentsType"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="aspects" type="aspectsType"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="callbacks" type="callbacksType"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="llservices" type="llservicesType"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:positiveInteger" use="required"/>

</xsd:complexType>

183

<xsd:complexType name="resourcesType">

<xsd:sequence>

<xsd:element name="hw" type="hwType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="sw" type="swType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="hwType">

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="unit" type="xsd:string" use="optional"/>

<xsd:attribute name="mpv" type="xsd:double" use="optional"/>

<xsd:attribute name="lpv" type="xsd:double" use="optional"/>

<xsd:attribute name="value" type="xsd:string" use="optional"/>

<xsd:attribute name="enum" type="xsd:string" use="optional"/>

<xsd:attribute name="reference" type="xsd:string" use="optional"/>

<xsd:attribute name="essential" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:complexType name="swType">

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="reference" type="xsd:string" use="required"/>

<xsd:attribute name="essential" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:complexType name="componentsType">

<xsd:sequence>

<xsd:element name="comp" type="compType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="binding" type="bindingType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

184 Appendix A. XML Schema of the Application Contract

</xsd:complexType>

<xsd:complexType name="compType">

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="class" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="bindingType">

<xsd:attribute name="handle" type="xsd:string" use="required"/>

<xsd:attribute name="boundto" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="aspectsType">

<xsd:sequence>

<xsd:element name="aspect" type=" aspectType"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="aspectType">

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="reference" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="callbacksType">

<xsd:sequence>

<xsd:element name="call" type="callType"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="callType">

<xsd:sequence>

<xsd:element name="arg" type="argType"

185

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="method" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="argType">

<xsd:attribute name="value" type="xsd:string" use="required"/>

<xsd:attribute name="type" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="llservicesType">

<xsd:sequence>

<xsd:element name="lls" type="llsType"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="llsType">

<xsd:sequence>

<xsd:element name="arg" type="argType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="manager" type="xsd:string" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="operation" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:schema>

Appendix B

Resource Allocation Algorithms

B.1 Algorithm for new request

New_Request(IN: App A, IN: Context C, OUT: Config)

BEGIN

Boolean success;

List q;

// ‘sci’ denotes selected configuration index in the list ‘q’

Integer sci;

// ‘Result’ is a complex data structure with four attributes

Result = {Integer numSuspend, Float netPrioritySuspend,

Integer numReconfig, Float netPriorityReconfig};

Result res;

FOR(each Config G in C) /* starting from top to bottom */

DO

success = Allocate_Resources(A, G);

IF(success == TRUE) THEN

RETURN G;

ENDIF

ENDFOR

q = NULL;

FOR(each Config G in C) /* starting from top to bottom */

DO

res = Must_Allocate_Resources(A, G);

187

188 Appendix B. Resource Allocation Algorithms

IF(res != NULL) THEN

q.newEntry (G, res.numSuspend, res.netPrioritySuspend,

res.numReconfig, res.netPriorityReconfig);

ENDIF

ENDFOR

IF(q == NULL) THEN

RETURN NULL;

ENDIF

sci = 0;

FOR(Integer n=1; n<q.size; n++)

DO

IF(q[n].numSuspend < q[sci].numSuspend) ||

(q[n].numSuspend == q[sci].numSuspend &&

q[n].netPrioritySuspend < q[sci].netPrioritySuspend) ||

(q[n].numSuspend == q[sci].numSuspend &&

q[n].netPrioritySuspend == q[sci].netPrioritySuspend &&

q[n].numReconfig < q[sci].numReconfig) ||

(q[n].numSuspend == q[sci].numSuspend &&

q[n].netPrioritySuspend == q[sci].netPrioritySuspend &&

q[n].numReconfig == q[sci].numReconfig &&

q[n].netPriorityReconfig < q[sci].netPriorityReconfig)

THEN

sci = n;

ENDIF

ENDFOR

q[sci].assignResources();

RETURN q[sci].G;

END New_Request

B.2 Algorithm for allocating resources

Allocate_Resources(IN: App A, IN: Config G, OUT: Boolean)

BEGIN

/* ‘PL’ is the priority list of all applications, sorted in the

B.3. Algorithm for compulsorily allocating resources 189

order of lowest priority to highest priority */

List PL;

G.assignFreeResources();

IF(G.resourceReqs == NULL) THEN

RETURN TRUE;

ENDIF

FOR (Integer n=0; PL[n].priorityValue < A.priorityValue; n++)

DO

App K = PL[n];

Config currentConfig = K.currentConfig;

List configList = K.allConfigs;

Config newConfig = currentConfig;

FOR(Integer i=0; i < configList.size; i++)

DO

IF(configList[i].savingValue > newConfig.savingValue) THEN

newConfig = configList[i];

ENDIF

ENDFOR

IF(newConfig != currentConfig) THEN

K.changeConfig(newConfig);

G.assignFreedUpResources();

IF(G.resourceReqs == NULL) THEN

RETURN TRUE;

ENDIF

ENDIF

ENDFOR

RETURN FALSE;

END Allocate_Resources

B.3 Algorithm for compulsorily allocating resources

Must_Allocate_Resources(IN: App A, IN: Config G, OUT: Result)

BEGIN

// ‘Result’ is a complex data structure with four attributes

190 Appendix B. Resource Allocation Algorithms

Result = {Integer numSuspend, Float netPrioritySuspend,

Integer numReconfig, Float netPriorityReconfig};

Result res;

/* ‘PL’ is the priority list of all applications, sorted in the

order of lowest priority to highest priority */

List PL;

G.assignFreeResources();

FOR(Integer n=0; n < PL.size; n++)

DO

App K = PL[n];

Config currentConfig = K.currentConfig;

List configList = K.allConfigs;

Config newConfig = currentConfig;

FOR(Integer i=0; i < configList.size; i++)

DO

IF(configList[i].savingValue > newConfig.savingValue) THEN

newConfig = configList[i];

ENDIF

ENDFOR

IF(newConfig != currentConfig) THEN

K.changeConfig(newConfig);

G.assignFreedUpResources();

res.numReconfig++;

res.netPriorityReconfig = res.netPriorityReconfig +

K.priorityValue;

IF(G.resourceReqs == NULL) THEN

RETURN res;

ENDIF

ENDIF

ENDFOR

FOR(Integer n=0; PL[n].priorityValue < A.priorityValue; n++)

DO

App K = PL[n];

B.4. Algorithm for reduced availability of resources 191

IF(overlap(K.resourceAllocation, G.resourceReqs) != NULL) THEN

K.suspend();

G.assignFreedUpResources();

res.numSuspend++;

res.netPrioritySuspend = res.netPrioritySuspend +

K.priorityValue;

IF(G.resourceReqs == NULL) THEN

RETURN res;

ENDIF

ENDIF

ENDFOR

RETURN NULL;

END Must_Allocate_Resources

B.4 Algorithm for reduced availability of resources

Less_Resources(IN: Resources currentAvailability)

BEGIN

/* ‘PL’ is the priority list of all applications, sorted in the

order of lowest priority to highest priority */

List PL;

Resources resourceDeficit;

resourceDeficit = currentAllocation - currentAvailability;

FOR(Integer n=0; n < PL.size; n++)

DO

App K = PL[n];

Config currentConfig = K.currentConfig;

List configList = K.allConfigs;

Config newConfig = currentConfig;

FOR(Integer i=0; i < configList.size; i++)

DO

IF(configList[i].savingValue > newConfig.savingValue) THEN

newConfig = configList[i];

ENDIF

192 Appendix B. Resource Allocation Algorithms

ENDFOR

IF(newConfig != currentConfig) THEN

K.changeConfig(newConfig);

resourceDeficit = currentAllocation - currentAvailability;

IF(resourceDeficit <= 0) THEN

RETURN;

ENDIF

ENDIF

ENDFOR

FOR(Integer n=0; n < PL.size; n++)

DO

App K = PL[n];

IF(overlap(K.resourceAllocation, resourceDeficit) != NULL) THEN

K.suspend();

resourceDeficit = currentAllocation - currentAvailability;

IF(resourceDeficit <= 0) THEN

RETURN;

ENDIF

ENDIF

ENDFOR

END Less_Resources

B.5 Algorithm for increased availability of resources

More_Resources(IN: Resources currentAvailability)

BEGIN

/* ‘PL’ is the priority list of all applications, sorted in the

order of lowest priority to highest priority */

List PL;

Resources resourceSurplus;

resourceSurplus = currentAvailability - currentAllocation;

FOR(Integer n=(PL.size-1); n >= 0; n--)

DO

App K = PL[n];

B.5. Algorithm for increased availability of resources 193

Config currentConfig = K.currentConfig;

List configList = K.allConfigs;

/* configList is sorted from the most preferred (i.e. highest

in current <context> element) to the least preferred */

FOR(Integer i=0; i < configList.size; i++)

DO

IF(configList[i] == currentConfig) THEN

EXIT; //exit this inner FOR loop

ENDIF

Resources reqdResources = configList[i].resourceReqs -

currentConfig.resourceReqs;

IF(reqdResources <= resourceSurplus) THEN

K.changeConfig(configList[i]);

resourceSurplus = currentAvailability -

currentAllocation;

IF(resourceSurplus == 0) THEN

RETURN;

ELSE

EXIT; //exit this inner FOR loop

ENDIF

ENDIF

ENDFOR

ENDFOR

END More_Resources

