
Aspect-Oriented Requirements Modeling

DISSERTATION

DER WIRSCHAFTWISSENSCHAFTLICHEN

FAKULTÄT

DER UNIVERSTITÄT ZÜRICH

zur Erlangung der Würde
eines Doktors der Informatik

vorgelegt von
SILVIO MEIER

von
Muri AG, Schweiz

genehmigt auf Antrag von

Prof. Dr. Martin Glinz
Prof. Dr. Harald Gall

Dezember 2009

Die Wirtschaftswissenschaftliche Fakultät der Universität Zürich, Lehrbereich Informatik, ge-
stattet hierdurch die Drucklegung der vorliegenden Dissertation, ohne damit zu den darin ausge-
sprochenen Anschauungen Stellung zu nehmen.

Zürich, den 9. Dezember 20091

Der Lehrbereichsvorsteher: Prof. Dr. Harald Gall

1Datum der Promotionsfeier

The supreme goal of all theory is to make the irreducible ba-
sic elements as simple and as few as possible without having
to surrender the adequate representation of a single datum
of experience.

— Albert Einstein

Acknowledgments

There are many people to whom I would like to express my gratitude. Many students contributed
work to the aspect-oriented ADORA approach. My most profound thanks to Adrian Gygax, Ivo
Vigan, Jürg Schlä�i, Pascal Schöni, and Marc Vontobel, who contributed as student workers the
major part of the proof-of-concept implementation of the present work. They also gave invalu-
able inputs for improvements. Without their help, the present implementation would not have
been possible and probably many weaknesses in the concepts would not have been discovered
and left unadjusted. I would also like to thank the students who contributed with their diploma
work to the project, especially Irene Bonomo who delivered a great diploma thesis about the
state-of-the-art of aspect-oriented software development.

I am much obliged to my colleagues Tobias Reinhard, Reinhard Stoiber, Christina Cramer,
Christian Seybold, Nancy Merlo-Schett, Samuel Fricker, and Yong Xia who gave helpful input
for the present work and discussed several issues with me. I am also indebted to Norbert Fuchs,
who was ever ready to lend me a sympathetic ear to my problems. My thanks also go to my
supervisor Martin Glinz, who critically examined many pages of draft.

Gérard Milmeister and Jody Weissmann reviewed parts of the present work, too. Gérard
also critically examined the concepts, partially revised the English, and gave hints for further
improvements. John Melaugh discerningly proofread the English in the work.

Last but not least I want to thank my fiancée Jeannette for her love and patience, which was
a strong support in finishing the present work.

Many thanks to all of you.

Zurich, August 2009

Abstract

Over, the last few years, a research field called Aspect-Oriented Software Development has been
emerging. It aims at the proper separation of concerns in a piece of software. By keeping the so-
called crosscutting concerns separate from other concerns, the description of a software system
can be simplified, which increases the understandability of the artifacts. In turn, this results in
easier maintainability of the software and, therefore, in lower costs.

Aspect-oriented techniques can also be useful at the early phases of the software development
process. Requirements engineering is the most important early phase because its result is the
foundation for all following stages. Errors made at this stage have far-reaching consequences
and a strong impact on the success of a software project.

Crosscutting concerns may become manifest in various kinds of requirements artifacts, such
as the description of non-functional requirements which are inherently crosscutting. Document-
ing crosscutting concerns with conventional means leads to unnecessary, problem-exogenous
complexity in the software requirements, which can be an unnecessary source of errors. Aspect-
oriented techniques are a promising means to eliminate this problem. It also entails other advan-
tages, such as a better traceability of crosscutting concerns. However, aspect-oriented techniques
may also sometimes negatively affect the understandability because additional complexity may
be introduced under certain circumstances.

Requirements must be recorded on an adequate level of formality and detail so that they are
easy to communicate to the stakeholders in a project. Moreover, they must be easily tangible and
understandable. A good means which has all these desiderata are graphical modeling techniques.

The work at hand investigates the characteristics that an optimal aspect-oriented requirements
modeling approach should have. It demonstrates how existing requirements and architectural
modeling languages may be enriched by aspect-oriented language elements. The insights of the
present work are exemplified by a new aspect-oriented requirements modeling approach based on
the ADORA language. ADORA was chosen because it innately possesses several characteristics
which are desirable for an aspect-oriented requirements approach. The proposed approach allows
switching between the conventional and the aspect-oriented view, which is useful to mitigate the
additional complexity introduced by the aspect-oriented constructs themselves. Moreover, the
language supports a planned evolution of aspect-oriented requirements from a very early point
in the software process.

Zusammenfassung
In den letzen Jahren ist ein neues Forschungsgebiet namens Aspektorientierte Software-Entwick-
lung entstanden. Aspektorientierte Software-Entwicklung zielt darauf ab, die Belange (engl.
Concerns) einer Software sauber voneinander zu trennen. Indem die sogenannten querschnei-
denden Belange (engl. Crosscutting Concerns) von den anderen Belangen getrennt werden, wird
die Beschreibung einer Software vereinfacht, was deren Verständlichkeit erhöht. Dies wiederum
führt zu einer besseren Wartbarkeit der Software und zu weniger Kosten bei der Entwicklung.

Der Einsatz von aspektorientierten Techniken ist ebenfalls in den frühen Phasen der Software-
Entwicklung sinnvoll. Das Erarbeiten der Software-Anforderungen ist die wichtigste frühe Phase,
da deren Resultate die Grundlage für alle folgenden Aktivitäten bildet. Fehler, die zu diesem
Zeitpunkt gemacht werden, haben weitreichende Konsequenzen und eine grosse Auswirkung
auf den Erfolg eines Software-Projekts.

Querschneidende Belange manifestieren sich in verschiedenen Artefakten der Anforderungs-
phase, wie z.B. in nicht funktionale Anforderungen, die inhärent querschneidend sind. Die
Beschreibung von querschneidenden Belangen mit konventionellen Mitteln führt zu unnötiger,
nicht problem-inhärenter Komplexität in den Software-Anforderungen, was eine unnötige Feh-
lerquelle darstellt. Aspektorientierte Techniken sind eine vielversprechende Möglichkeit, welche
die beschriebenen Probleme beheben kann. Zudem ergeben sich weitere Vorteile, wie z.B. eine
bessere Rückverfolgbarkeit der Anforderungen. Nichtsdestotrotz kann die Verwendung von as-
pektorientierten Techniken auch Nachteile mit sich bringen, weil unter bestimmten Umständen
zusätzliche Komplexität eingeführt wird.

Anforderungen müssen so adäquat dargestellt und formalisiert sein, damit diese möglichst
einfach an alle Projektbeteiligten kommuniziert werden können. Zudem sollten diese einfach
fassbar und verständlich sein. Dafür eignen sich grafische Modellierungstechniken besonders
gut.

Die vorliegende Arbeit identifiziert die Eigenschaften, die ein optimaler aspektorientierter
grafischer Modellierungsansatz für Anforderungen besitzen sollte. Sie demonstriert, wie exi-
stierende Anforderungsansätze mit den nötigen Sprachelementen angereichert werden können.
Die Erkenntnisse der Arbeit werden anhand einer aspektorientierten Erweiterung für die gra-
fische Modellierungssprache ADORA gezeigt. ADORA wurde ausgewählt, weil sie von Grund
auf verschiedene erwünschte Eigenschaften einer aspektorientierten Anforderungssprache be-
sitzt. Der gezeigte Ansatz erlaubt es, zwischen der konventionellen und der aspektorientierten
Modellierungssicht zu wechseln, was hilft, die zusätzliche Komplexität, welche durch die as-
pektorientierten Elemente eingeführt wurde, abzuschwächen. Weiter unterstützt die Spracheer-
weiterung von ADORA die kontrollierte Evolution von aspektorientierten Elementen von einem
frühen Zeitpunkt im Software-Entwicklungsprozess an.

CONTENTS xi

Contents

List of Figures xix

List of Tables xxiii

Listings xxiv

I Basics and Motivation of Aspect-Oriented Requirements Engineer-
ing 1

1 Introduction 3
1.1 Motivation . 3
1.2 Gaps in Existing Aspect-Oriented Requirements

Approaches . 5
1.3 Goals of the Present Work . 5
1.4 Contribution . 6
1.5 Structure of this Thesis . 7

2 Basics of Requirements Engineering and Modeling 9
2.1 Requirements Engineering . 10

2.1.1 Functional and Non-Functional Requirements 10
2.1.2 Requirements Process . 11

2.2 Requirements Document . 15
2.2.1 General Quality Characteristics . 16
2.2.2 Degree of Formality and Detailedness 17
2.2.3 Constructive vs. Descriptive Specification 18

2.3 Modeling . 19
2.3.1 General Model Theory . 19
2.3.2 Languages for the Visual Modeling of Software Systems 19

3 Aspect-Oriented Software Development 23
3.1 Fundamental Terms and Concepts of AOSD . 23

3.1.1 Concerns and Separation of Concerns 24

xii CONTENTS

3.1.2 Crosscutting Concerns vs. Core Concerns 25
3.1.3 Documenting Concerns in Software . 26
3.1.4 Tangling, Scattering, and the Resulting Problems 30
3.1.5 Decoupling Crosscutting Concerns . 32
3.1.6 Separation vs. Composition . 34
3.1.7 Complexity Caused by the Use of Aspect-Oriented Artifacts 36
3.1.8 Characteristics of Aspects . 37
3.1.9 Connection between Concerns and Requirements 38

3.2 State of the Art Approaches . 40
3.2.1 Categorizing Aspect-Oriented Approaches 40
3.2.2 Approaches to Aspect-Oriented Programming 41
3.2.3 Approach to Software Design . 44
3.2.4 Approaches to Software Architecture 45
3.2.5 Approaches to Requirements Engineering 46

3.3 Criticism of AOSD . 48
3.3.1 Criticism of AOSD at the Requirements Stage 48
3.3.2 Problems with the Understandability of Aspect-Oriented Constructs . . . 50
3.3.3 Breaking the Principle of Information Hiding 51
3.3.4 Fragile Join Points . 51
3.3.5 Further Criticism . 52

3.4 Discussion . 52

4 Motivating a Novel Aspect-Oriented Requirements Engineering Approach 53
4.1 Gaps in the Existing Approaches . 53
4.2 Proposal for a New Aspect-Oriented Requirements Engineering Approach 58

5 Basics of the ADORA Approach 61
5.1 Language Concepts of ADORA . 62

5.1.1 Modeling with Abstract Objects . 63
5.1.2 Hierarchical Decomposition . 64
5.1.3 Integrated Modeling Language Concepts 64
5.1.4 Visual Abstraction Mechanisms . 66
5.1.5 Variable Degree of Formality . 67
5.1.6 Requirements Evolution Support . 68

5.2 Overview of the ADORA Language . 68
5.2.1 Base View . 68
5.2.2 Structural View . 70
5.2.3 Behavioral View . 73
5.2.4 User View . 76
5.2.5 Context View . 77
5.2.6 Functional View . 78
5.2.7 Additional Structures . 84

CONTENTS xiii

6 Analyzing and De�ning the ADORA Language 87
6.1 ADORA Grammar . 88

6.1.1 Grammar Definition . 88
6.1.2 Applying the Grammar to Textual ADORA Models 90
6.1.3 Representing Informal Elements . 91
6.1.4 Expressing Model Relationships by Nesting Textual Models 92
6.1.5 Identifying ADORA Model Elements 93
6.1.6 The Representation of Connections . 95
6.1.7 Non-Graphical Language Elements . 95

6.2 Formalizing the Model Data Structure and Operations 96
6.2.1 A Data Structure for the Textual Representation of ADORA Models . . . 96
6.2.2 Functions on Syntax Trees . 98

6.3 Language Constraints . 99
6.3.1 Time-Dependant Enforcement of Constraints 100
6.3.2 Example of a Constraint Description . 101

6.4 Graphical Mapping . 102

II The Aspect-Oriented ADORA Modeling Approach 105

7 Aspect-Oriented Language Extension for ADORA 107
7.1 Motivation . 107
7.2 Overview of the new Aspect-Oriented Approach 111
7.3 Aspect Module . 115

7.3.1 Grammar Production Rules . 115
7.3.2 Language Constraints . 116

7.4 Crosscutting Behavior . 116
7.4.1 Production Rules . 118
7.4.2 Language Constraints . 119

7.5 Crosscutting User View . 121
7.5.1 Production Rules . 122
7.5.2 Language Constraints . 122

7.6 Join Relationships . 125
7.6.1 Production Rules . 128
7.6.2 Language Constraints . 129

7.7 Crosscutting Environment Objects . 132
7.7.1 Grammar Production Rules . 133
7.7.2 Language Constraints . 134

7.8 Crosscutting Functional Specification . 135
7.8.1 Grammar Production Rules . 136
7.8.2 Language Constraints . 138

7.9 Aspect Decomposition . 139
7.9.1 Grammar Production Rules . 140

xiv CONTENTS

7.9.2 Language Constraints . 141
7.10 Summary and Discussion . 142

8 Visualization of Aspect-Oriented Model Elements 145
8.1 Applying Abstractions to Aspects . 145

8.1.1 View Transition Semantics for Aspect Modules 146
8.1.2 Join Relationships . 147

8.2 Extending the View Concept . 149
8.3 Discussion . 150

9 Composing Aspect-Oriented ADORA Models 153
9.1 Weaving Process Overview . 154

9.1.1 Weaving Preparation . 156
9.1.2 Weaving Transformation . 159

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 160
9.2.1 Weaving Semantics of Behavior Chunks 160
9.2.2 Weaving Semantics of Scenario Chunks 166
9.2.3 Weaving of Crosscutting Statecharts . 171
9.2.4 Crosscutting Scenariocharts . 172
9.2.5 Weaving of Embedded Components . 176
9.2.6 Weaving Environment Objects . 177
9.2.7 Weaving the Functional View of an Aspect 179
9.2.8 Weaving Server Components Connected to Aspects 182
9.2.9 Solving Naming Con�icts, Handling Context Mappings, and Adjusting

Scope . 186
9.2.10 Post processing . 188

9.3 Weaving Semantics Involving Partial Aspect-Oriented Elements 188
9.3.1 Partial Join Relationship Connecting Scenario/Behavior Chunks with a

Scenario/Transition . 189
9.3.2 Partial Join Relationship Connecting Other Elements 190
9.3.3 Weaving Semantics of Partial Join Relationships Between Environment

Objects . 191
9.3.4 Weaving Partial Aspects . 193

9.4 Formal Weaving Semantics . 194
9.4.1 A Description Schema for the ADORA Weaving Semantics 195
9.4.2 Description Schema of the ADORA Weaving Semantics 197
9.4.3 Illustration of the Formal Weaving Semantics 199

9.5 Weaving the Layout Information . 202
9.6 Summary and Discussion . 205

10 Applying the Aspect-Oriented ADORA Approach 207
10.1 ADORA Modeling Process Overview . 207
10.2 Functional Requirements Model Increment . 208

CONTENTS xv

10.3 Detection of Functional Crosscutting Requirements 210
10.4 Eliciting/Refining Non-functional Requirements 212
10.5 Discussion . 215

III ADORA Tool Implementation and Validation 217

11 Tool Implementation 219
11.1 Tool Overview . 220

11.1.1 Features of the ADORA Tool . 220
11.1.2 Architecture of the ADORA Tool . 221

11.2 Meta-Model Implementation . 224
11.2.1 Choosing an Appropriate Design for the Meta-model Implementation . . 224
11.2.2 Grammar Mapping . 225
11.2.3 Tool Support for the Mapping of the Meta-model 229
11.2.4 Discussion of the ADORA Tool Implementation 229

11.3 Constraints Checking . 230
11.4 Model Transformations . 231

12 Experimental Validation of the Aspect-Oriented Modeling Approach 233
12.1 Experiment . 236

12.1.1 Planning and Preparation of the Experiment 237
12.1.2 Case Studies . 237
12.1.3 Realization of the Experiment . 240

12.2 Analysis of the Results . 242
12.2.1 Validity of the experiment . 246

12.3 Summary . 246

IV Conclusions 249

13 Conclusions 251
13.1 Discussion and Contribution of the Present Work 252

13.1.1 Summary, Discussion, and Contribution 252
13.2 Outlook . 255
13.3 Conclusion . 257

V Appendix 259

A Discussion of Aspect-Oriented Requirements Approaches 261
A.1 Evaluation Criteria . 261
A.2 Conventional Approaches . 262

A.2.1 PREView . 262

xvi CONTENTS

A.2.2 NFR Framework . 264
A.2.3 KAOS Approach . 265
A.2.4 I* Approach . 267
A.2.5 Use Case Method . 268

A.3 Aspect-Oriented Approaches . 270
A.3.1 AORE with Arcade . 270
A.3.2 ARGM . 271
A.3.3 AOSD/UC . 273
A.3.4 SMA . 274
A.3.5 AUCDA . 275
A.3.6 Cosmos . 277
A.3.7 CORE . 278
A.3.8 AOREC . 279
A.3.9 Theme/Doc . 281

B EBNF of the Aspect-Oriented ADORA language 283
B.1 Extended Backus Naur Form . 283
B.2 Regular Expressions in the Grammar . 284
B.3 EBNF Grammar of the ADORA Language . 285
B.4 Production Rules of Identifiers and References 291

C Mapping of Graphical ADORA Model Elements 295

D Textual ADORA Example Model 299
D.1 Example of a Conventional ADORA Text Model 299
D.2 Example of Textual Description of an Aspect Module 302

E Functions on Syntax Trees 305
E.1 Formalized Data Structure for Syntax Tree . 305
E.2 Alphabetical Catalog of Functions . 306
E.3 Primitive Functions . 309
E.4 Basic Functions . 312
E.5 Aspect Specific Functions . 343
E.6 Transformation Functions . 352

F Formal Language Constraints of Aspect-Oriented Constructs 365
F.1 Aspect Module . 365
F.2 Behavior Description . 365

F.2.1 State Groups Must Be Well-Formed . 365
F.2.2 No Out-Going Join Relationships from Crosscutting Statecharts 366
F.2.3 No Crossing of the Aspect Border by Transitions 366
F.2.4 Transitions May Connect to Exit Points 366

F.3 User View . 367

CONTENTS xvii

F.3.1 No Crossing of Aspect Border by a Scenario Connection 367
F.3.2 Well-Formed Scenario Chunks . 367
F.3.3 Well-Formed Crosscutting Scenariocharts 368
F.3.4 Disallowed Embedding of A Scenario Node in a Component Belonging

to a Statechart . 368
F.4 Join Relationships . 369

F.4.1 Constituents of Non-Partial Join Relationships 369
F.4.2 Constituents of Partial Join Relationships 369
F.4.3 Join Relationships Connecting to Scenariochart Root Nodes 370
F.4.4 No Cycles in Join Relationships . 370
F.4.5 Border Crossing of the Join Relationship 371
F.4.6 Priority within the Range of 1–10 . 371

F.5 Crosscutting Environment Objects . 371
F.5.1 Only One Join Relationship between Two Environment Objects 371
F.5.2 Crosscutting Environment Objects Must Be Connected To a Scenariochart 371
F.5.3 No Association of a Crosscutting Environment to More than One Aspect 372

F.6 Aspect Decomposition . 372
F.6.1 Aspect-Refined Aspect Modules May Contain only Aspect Modules . . . 372
F.6.2 Associations Originating within an Aspect May not Cross the Border of

the Aspect . 373
F.6.3 Components and Aspects Must Be Connectable 373

G Formal Weaving Semantics 375
G.1 Formal Weaving Semantics of Non-Partial Elements 375

G.1.1 Weaving Semantics of Behavior Chunks 375
G.1.2 Formal Weaving Semantics of Scenario Chunks 380
G.1.3 Formal Weaving Semantics of Crosscutting Statecharts 386
G.1.4 Formal Weaving Semantics of Crosscutting Scenariocharts 388
G.1.5 Formal Weaving Semantics of Embedded Components 391
G.1.6 Formal Weaving Semantics of Environment Objects 395
G.1.7 Formal Weaving Semantics of the Functional Specification 399
G.1.8 Formal Weaving Semantics of Server Components 403
G.1.9 Formal Semantics of the Postprocessing 412

G.2 Formal Weaving Semantics for Partial Aspect-Oriented Elements 413
G.2.1 Formal Weaving Semantics of Partial Join Relationships Connecting Sce-

nario/Behavior Chunks with a Scenario/Transition 413
G.2.2 Formal Weaving Semantics of Partial Join Relationships Connecting other

Elements . 414
G.2.3 Formal Weaving Semantics of Partial Join Relationships between Cross-

cutting Environment Objects . 416
G.2.4 Formal Weaving Semantics of Partial Aspect Modules 417

xviii CONTENTS

H More Details on the Tool Implementation 419
H.1 Relating the Visual Representation to the Model Elements 419
H.2 Mapping between EBNF Rules and Classes in the Object-Oriented Meta-model . 420
H.3 Using the Constraints Checking Plug-in and ICL 423

Bibliography 427

LIST OF FIGURES xix

List of Figures

2.1 An example for the refinement of a high-level functional requirement to exe-
cutable code . 12

2.2 Example for the operationalization of non-functional requirements 14
2.3 Example model facets of a UML model . 20

3.1 Illustration of the crosscutting concerns and the crosscutting relationship be-
tween concerns . 26

3.2 Documenting crosscutting concerns with conventional modular artifacts 27
3.3 Example for crosscutting concerns in architectural artifacts 31
3.4 Excerpt from user documentation containing crosscutting concerns 32
3.5 Illustration of the scattering and tangling of crosscutting concerns 33
3.6 Illustration of the separation and integration process of crosscutting concerns . . 35

4.1 Illustration of the number of integration operations needed to compose different
facets described by an aspect-oriented UML approach 57

5.1 An object composition for a library system vs. the class representation of the
same system . 63

5.2 Parts of a library system modeled in ADORA 66
5.3 The library system with a different focus on the model 70
5.4 Examples of associations, abstracted associations and interrelationships 72
5.5 Illustration of the behavioral description . 74
5.6 Illustration of the life cycle modeling of objects 75
5.7 An example of the scenario syntax and all syntax elements of scenarios 78

6.1 A concrete syntax tree of a textual model . 97
6.2 An example of a syntax tree represented as nested tuple structure 98
6.3 An example tuple structure containing an informal comment 98
6.4 Illustration of a constraint violation . 101

7.1 A partial conventional view of the library system example. 109
7.2 An example ADORA model that contains aspect-oriented elements 114
7.3 Examples violating and satisfying the constraints of an aspect’s behavior de-

scription . 120

xx LIST OF FIGURES

7.4 Examples violating and satisfying the user view constraints. 124
7.5 Example motivating the usage of a context map. 127
7.6 Allowed use of partial and concrete join relationships 130
7.7 Concrete join relationships connected to the root node of a scenariochart. 131
7.8 Model which exemplifies cyclic that join relationships are not allowed 131
7.9 A join relationship may not cross the border of the aspect’s parent. 132
7.10 Illustration of the constraints for crosscutting environment objects 134
7.11 Illustrations of the language constraints for the aspect refinement 141

8.1 Several situations which illustrate the hiding of a node in an aspect 147
8.2 View transition when hiding an aspect module. 147
8.3 Examples of calculated abstract join relationships 148
8.4 Further examples of calculated abstract join relationships 149
8.5 Illustration of hiding the behavioral view, the user view, the aspect view and the

join relationship view . 151

9.1 Illustration of the effects on a model/syntax tree when executing a weaving
operation . 155

9.2 Illustration of a complex network of join relationships 157
9.3 A partial view of the aspect-oriented library system model 161
9.4 The woven model of the library system . 162
9.5 Illustration of the weaving semantics for behavior chunks 164
9.6 Illustration of the weaving semantics for multiple behavior chunks impacting

the same target transition . 165
9.7 Illustration of the weaving semantics for multiple behavior chunks impacting

the same target transition . 166
9.8 Weaving semantics for scenario chunks crosscutting a target scenario node . . . 169
9.9 Weaving semantics for more than one join relationship targeting at the same

scenario node of type sequence . 170
9.10 Further cases with more than one join relationship targeting at the same scenario

node . 171
9.11 Weaving semantics for crosscutting statecharts 173
9.12 Example for the weaving semantics of crosscutting scenariocharts 174
9.13 Illustration of the weaving process for crosscutting scenariocharts 175
9.14 Example of the weaving semantics for embedded components 177
9.15 Illustration of the weaving process for embedded components 178
9.16 Example of the weaving semantics for a crosscutting environment object 179
9.17 Illustration of the weaving steps for crosscutting environment objects 180
9.18 Model illustrating the weaving semantics of the functional specification 180
9.19 Illustration of the weaving semantics for server components 184
9.20 Example for the handling of naming con�icts, the weaving semantics of a con-

text map, and the scope extension of message arguments 187

LIST OF FIGURES xxi

9.21 Illustration of the weaving semantics for an abstract join relationship connecting
a behavior chunk with a transition and a scenario chunk with a scenario node,
respectively . 189

9.22 Illustration of the weaving semantics for a join relationship between an aspect
and a component . 191

9.23 Illustration of the weaving semantics for an abstract join relationship between
an aspect and an association . 192

9.24 Illustration of the weaving semantics for the abstract join relationship between
an entry state of a behavior chunk and a component 192

9.25 Illustration of the weaving semantics for an abstract join relationship connecting
two environment objects . 193

9.26 Weaving semantics for a partial aspect . 194
9.27 Illustration of the weaving process. 198
9.28 Model illustrating the visual weaving of behavior and scenario chunks 203
9.29 Model illustrating the visual weaving of crosscutting statecharts, crosscutting

scenariocharts, and embedded components . 204
9.30 Illustration of the open issues in the visual weaving of ADORA models 205

10.1 Overview of the requirements process . 208
10.2 Elicitation and refinement process for functional requirements 209
10.3 Example of the first few steps in an evolutionary process creating the model of

a library system . 211
10.4 Elicitation and refinement process for non-functional requirements 213
10.5 Some further steps in the evolution of the example 215

11.1 A screen shot of the ADORA tool . 221
11.2 The current architecture of the ADORA tool . 223
11.3 A coarse class diagram of the meta-model implementation of the ADORA tool . 226

12.1 Example illustrating the isolated and the interrelated focus on a crosscutting
concern . 234

12.2 Screen shot of the empirical testing environment of the ADORA tool 239
12.3 Modeling skills of the test persons . 241
12.4 Process of the validation experiment . 241
12.5 Average performance results per question for the objective questions with an

isolated focus on the crosscutting concerns . 243
12.6 Average performance results per question for the objective questions having an

interrelated focus on the crosscutting concerns 244
12.7 Subjective answers about the usefulness of the aspect-oriented modeling view . 245

E.1 A simple example model for the illustration of functions working on syntax trees 306
E.2 A concrete syntax tree example . 310
E.3 A tuple representation of an ADORA model . 311

xxii LIST OF FIGURES

H.1 An overview of the relationships between the specification, the ADORA model
nodes, and its representation . 420

H.2 An overview of the representation of the meta-model elements 421
H.3 A screen shot of the constraint checker view in the ADORA tool 425

LIST OF TABLES xxiii

List of Tables

4.1 Criteria for the evaluation of aspect-oriented requirements approaches. 53

6.1 Excerpt of the ADORA EBNF grammar showing the most important production
rules . 89

6.2 Points in time for evaluating language constraints 100
6.3 Excerpt of the graphical mapping in Appendix C. 104

7.1 The EBNF grammar for aspect modules . 116
7.2 Syntax rules describing the embedding of aspects in components and the root

of an ADORA model . 116
7.3 EBNF syntax rules describing the behavioral view of an aspect 119
7.4 EBNF syntax rules for the user view of an aspect. 123
7.5 EBNF grammar defining join relationships. 129
7.6 EBNF grammar rules of the join relationships of crosscutting environment objects.133
7.7 EBNF grammar rules for the functional specification of an aspect. 137

11.1 Excerpt of the ADORA EBNF grammar rules defining a component 229

12.1 Impact on the performance of tasks resulting from different combinations of
focus type and the type of view. 235

12.2 Some examples of tasks with an isolated or an interrelated focus on a crosscut-
ting concern. 235

A.1 Criteria for the evaluation of aspect-oriented requirements approaches. 261
A.2 Evaluation of the PREView approach. 263
A.3 Evaluation of the NFR approach. 265
A.4 Evaluation of the KAOS approach. 266
A.5 Evaluation of I* . 267
A.6 Evaluation of the Use Cases Method approach. 269
A.7 Evaluation of the AORE with Arcade. 270
A.8 Evaluation of ARGM. 272
A.9 Evaluation of AOSD/UC. 273
A.10 Evaluation of SMA. 275
A.11 Evaluation of the AUCDA approach. 276

xxiv LIST OF TABLES

A.12 Evaluation of the Cosmos approach. 277
A.13 Evaluation of the CORE approach. 279
A.14 Evaluation of AOREC. 280
A.15 Evaluation of the Theme/Doc. 281

B.1 Informal Description of the EBNF grammar. 283
B.2 Regular Expressions in the ADORA grammar. 284
B.3 EBNF grammar of the aspect-oriented ADORA language. 285
B.4 Grammar rules of identifiers and references 292

C.1 Graphical Mapping for the aspect-oriented ADORA Language 295

E.1 Alphabetical list of syntax tree function. 306
E.2 Table defining the valid part-of relationships of ADORA elements. 319

LISTINGS xxv

Listings

3.1 Example of a piece of code with two tangled concerns. A business concern
managing the transfer of money is tangled with a logging concern. 28

5.1 An example of provides/requires section. 79
5.2 A example of an invariant which may be part of the library system. 80
5.3 Examples of data types, standardized properties and attributes. 80
5.4 An example for the definition of a synchronous operation. 83
6.1 Excerpt of a textual model example based on the model in Fig. 5.2. 90
6.2 Example of a informal description: The object set is described by an informal

comment. 92

6.3 The model from Fig. 6.4 as textual description. 102
7.1 The Authentication aspect from Fig. 7.2 as textual specification. 112
9.1 The functional specification of the component C of model t0 in Fig 9.18. 181
9.2 The functional specification of the aspect A of model t0 in Fig 9.18. 181
9.3 The functional specification of the woven component C of model tn in Fig 9.18. . 182
D.1 An example of a textual ADORA model which shows a partial version of the

library system. 299

D.2 The Authentication aspect from the model of Fig. 7.2 as textual specification. . . 302

E.1 The function actionPart . 313
E.2 The function attributes . 313
E.3 The function calcdistance. 314
E.4 The function childOfType. 315
E.5 The function childrenSet . 315
E.6 The function childrenSetOfType. 315
E.7 The function conditionPart . 316
E.8 The function connections . 317
E.9 The function containsElement . 317
E.10 The function createElementReferenceTree . 318
E.11 The function createUniqueElementIdentTree. 318
E.12 The function dataTypeDeclarations . 319
E.13 The function decompositionParent . 320
E.14 The function descendants. 320
E.15 The function distance. 321

xxvi LISTINGS

E.16 The function elementReference. 321
E.17 The function equals . 322
E.18 The function filterFsElement . 322
E.19 The function filterOperationsOrProperties . 323
E.20 The function filterProvidesRequires . 324
E.21 The function filterSet . 324
E.22 The function find . 325
E.23 The auxiliary function findParentAndChildrenScenarios 326
E.24 The auxiliary function findScenarioGroupMembers 326
E.25 The auxiliary function findScenarioSubtreeMembers 327
E.26 The function findStateGroupMembers . 328
E.27 The function flatenTuple. 328
E.28 The function functionalSpec. 329
E.29 The function invariants . 329
E.30 The function operations . 330
E.31 The function orderedChildrenOfType. 330
E.32 The function partial . 330
E.33 The function parts . 331
E.34 The function provides . 331
E.35 The function requries . 332
E.36 The function roleChannelNames . 333
E.37 The function roleName. 333
E.38 The function rootScenarios . 334
E.39 The function scenarioGroups . 334
E.40 The function scenarioParent . 335
E.41 The function scenarioSiblings . 336
E.42 The function scenarioType. 336
E.43 The function seekTargetConnections . 337
E.44 The function seqNo. 338
E.45 The function source. 339
E.46 The function sourceRole. 339
E.47 The function specialIdentifier . 340
E.48 The function standardizedProperties . 340
E.49 The function startStates . 340
E.50 The function stateGroups . 341
E.51 The function target . 342
E.52 The function targetConnections . 342
E.53 The function targetRole. 343
E.54 The function treeAncestor . 344
E.55 The function uniqueElementIdentifier . 344
E.56 The function containedAspects . 345
E.57 The function enclosingAspects . 346
E.58 The function endTargetModules . 347

LISTINGS xxvii

E.59 The function exitPoints . 347
E.60 The function findEoJrs . 348
E.61 The auxiliary function findJoinRelationshipCycle 349
E.62 The function gatherAspects . 350
E.63 The function hasJoinRelationshipCycles . 350
E.64 The function jrHostingAspect . 350
E.65 The function ordering . 351
E.66 The function priority . 351
E.67 The function serverComponentAssociations . 352
E.68 The function targetModule. 353
E.69 The function adaptCloneReferences . 353
E.70 The function cloneElement . 354
E.71 The function createAdditionalExitStateClone 355
E.72 The function createCloneMap. 356
E.73 The function findClone. 357
E.74 The function findOrderingGroups . 358
E.75 The function firstJr . 358
E.76 The function gatherJrs . 359
E.77 The function identicalElement . 360
E.78 The function isPredecessorGroup. 361
E.79 The function mappedReference. 361
E.80 The function prioritySort . 362
E.81 The function removeScenarios . 363
E.82 The function sortTargetGroups . 363
E.83 The function topologicJrSort . 364
H.1 Constraint C3 formulated for the ADORA tool in ICL. 424

Part I

Basics and Motivation of Aspect-Oriented
Requirements Engineering

3

Chapter 1

Introduction

1.1 Motivation

The size and complexity of software systems has been steadily increasing since the beginning
of computing. On the one hand, the currently developed systems are orders of magnitude larger
and fulfill broader and more complex tasks than decades ago. On the other hand, errors are
more likely to occur in large-scale software systems than in a small piece of software, which
is additionally amplified by the higher complexity of contemporary computer systems. These
errors have been leading to delayed or even abandoned projects, software failures, maintenance
problems, and, hence, higher costs than planned.

As a consequence of these problems, the demand for more deliberate development of soft-
ware began to grow decades ago [Buxt69, Dijk72, Rand96], which finally resulted in systematic
and better software engineering methods. Errors in software systems which originate from the
requirements phase are especially problematic. This is due to the fact that errors are the more ex-
pensive, the later they are discovered in the software process [Boeh81]. This insight has led to the
development of various systematic requirements engineering methods which aim at the system-
atic gathering, managing and documenting of requirements (cf. for instance [Robe99, Davi92,
Sawy96, Koto98, Rupp04]). Such a method usually consists firstly of a language that is used to
document and communicate requirements between the stakeholders1 in the software project and
secondly of a process which is employed for eliciting, managing and validating the requirements.

The document emanating from the requirements phase is called software requirements spec-
ification (SRS) and describes the desired properties of the system to be built. The SRS is crucial,
as all following phases in the software process depend on this document. The SRS should satisfy
a set of desiderata, such as being adequate, complete, understandable, etc. [Joos99, Davi92]. Ob-
viously, errors in the requirements document should be avoided because they compromise these
properties. Nevertheless, there should be an optimal balance between the costs saved by remov-
ing errors from the SRS and the costs generated by the creation of the SRS [Boeh81, Glin05].

1In this work, role names like reader of the model, user, stakeholder, customer, etc. stand for female, as well
as for male persons. However, where it is necessary to use pronouns, the male form is employed for the sake of
simplicity.

4 Chapter 1. Introduction

According to [Joos99, p. 3], errors in the SRS are caused by two different problems. First, a
volatile environment may result in an inappropriate capturing of the requirements, and/or incon-
sistencies due to changes in the requirements. This problem can barely be avoided and must be
accepted by the stakeholders in a project because it is inherently given. The second problem lead-
ing to errors in the SRS is the communication gap between the various stakeholders in a software
project. It is strongly in�uenced, amongst other factors, by poor intelligibility of the communi-
cated requirements.2 In turn, the understandability may be in�uenced by the complexity of the
requirements.

There are two types of complexity in requirements: problem-endogenous complexity and
problem-exogenous complexity. Problem-endogenous complexity in requirements results from
the problem domain: the requirements and the resulting system are at least as complex as
the problem which is solved. Thus, this kind of complexity can obviously not be eliminated
[Glin07b]. In contrast, problem-exogenous complexity is not caused by the problem itself and
can therefore be mitigated or reduced to a minimum with adequate means.

Aspect-oriented software development (AOSD) is a newer research field which has gained
a lot of attention in the past few years. It deals with the reduction of the problem-exogenous
complexity in software artifacts. The idea of AOSD originates in the field of aspect-oriented
programming (AOP), which addresses the proper separation of concerns [Dijk82] at the pro-
gramming level. The code of so-called crosscutting concerns scatters and tangles with the code
of other concerns in the implemented system. The scattering and tangling problem results from
the lack of adequate means to modularize software [Tarr99], and results in complex and badly
understandable code, maintainability problems, and higher costs. Crosscutting concerns cannot
be handled adequately by conventional modularization techniques. AOP tries to overcome these
problems by introducing additional modularization dimensions, which allows the separation of
crosscutting concerns, aiming at resulting systems that are easier to understand and simpler to
handle.

The advantages of AOP techniques are manifold [Ladd03, Kicz01b]: the responsibility of
code artifacts is defined more clearly due to their better modularization, and therefore, they are
easier to reuse and to maintain. The resulting design is clearer and therefore leads to more
stable and better maintainable systems. Overall, this lowers the costs of the development and the
operation of a system.

However, the problem of crosscutting concerns is not only a phenomenon at the implemen-
tation stage. Tangling and scattering effects occur also in the artifacts describing crosscutting
concerns at the design, architectural and requirements phases. Hence, the idea of AOP can be
transferred to the other phases of the software engineering process, which results in a clearer
separation of concerns in those phases, too. AOSD propagates the application of aspect-oriented
techniques to artifacts of software engineering stages other than the implementation phase. In
particular, the use of aspect-oriented techniques in the requirements phase may result in bene-
fits, as the separation of concerns is achieved very early and the concerns are separated in the
following phases. Moreover, it facilitates the traceability of crosscutting concerns. Furthermore,

2There are also other factors which contribute to the communication gap, such as the use of a differing semantics
in the vocabulary of the stakeholders.

1.2 Gaps in Existing Aspect-Oriented Requirements
Approaches 5

when aspect-oriented paradigms are used at the implementation phase of a software system,
aspect-oriented techniques used at the earlier stages reduce or eliminate the clash of different
paradigms. However, apart from the advantages, aspect-oriented techniques may also increase
complexity due to the strong modularization achieved.

The present work deals mainly with the documentation of software requirements by employ-
ing aspect-oriented techniques to decrease the problem-exogenous complexity of the require-
ments. It also partially sketches the process employed in the requirements phase.

1.2 Gaps in Existing Aspect-Oriented Requirements
Approaches

There are many aspect-oriented requirements approaches. However, not all of them solve the
problem of the separation of concerns satisfactorily. Moreover, they have deficiencies when used
for communicating between the various stakeholders in a software project.3

The existing aspect-oriented approaches neglect the simple understandability of require-
ments. Some of them, such as goal-oriented approaches, use rather abstract concepts which
are remote from the problem domain they describe. This may be difficult to comprehend for
non-expert stakeholders. Some of the approaches do not use an adequate representation for the
artifacts and their relationships.

Other approaches use XML [WWWC06] files for structuring natural language requirements
statements. However, an XML representation is not very suitable for communicating with stake-
holders.

Some of the approaches use the modeling language UML [OMaG03b] which facilitates the
understandability of the represented requirements, because the artifacts are modeled graphically
and are easier for non-expert stakeholders to comprehend than abstract concepts, such as goal-
oriented approaches. However, the major drawback of UML is that it uses a set of sublanguages
which are visualized separately, thus imposing greater demands on the user because a model
needs to be integrated piecemeal in the mind to achieve understanding of the whole model.
Moreover, in combination with aspect-oriented language constructs, the difficulties in the under-
standability of a model may be amplified.

Furthermore, some of the examined approaches do not have a readily scalable representation
of the artifacts. Some of the approaches also lack support for other characteristics which are
desirable for requirements approaches, such as support for easy adjustment of the artifacts.

1.3 Goals of the Present Work
The present work investigates the question of how aspect-oriented techniques can help to close
the communication gap by reducing the exogenous complexity and therefore improving the un-
derstandability of an SRS. It aims at the development of a comprehensive requirements approach

3 A detailed evaluation and discussion of the approaches is given in Section 3.2 and Appendix A.

6 Chapter 1. Introduction

to overcome the problems identified in the existing approaches with a special focus on:

• Understandability: The approach should facilitate a good understandability of the com-
municated requirements for all stakeholders.

• Concern handling: It should be able to handle all types of crosscutting concerns ade-
quately.

• Scalability: The representation, as well as the corresponding process must be scalable.

• Other characteristics: The usual desired characteristics of a requirements specification,
such as traceability, consistency, evolution support, should be facilitated as well.

For this purpose, the concept for a language is developed that supports the identification, the
handling and the modular description of crosscutting concerns at the requirements and architec-
tural level. The focus of the present work is on the description of crosscutting concerns during
the requirements and architectural phase of the software process. To some extent, it also deals
with the requirements process needed to identify and separate the crosscutting concerns.

1.4 Contribution
This work demonstrates how an existing requirements modeling language can be extended to be
capable of handling crosscutting concerns adequately. It also discusses the pitfalls and problems
that are covered by the approach as well as open issues.

The graphical modeling language ADORA [Joos99, Glin02b] innately possesses several of
the desired characteristics for an extension and is therefore chosen as a basis for a new aspect-
oriented requirements approach. In order to extend the ADORA language with aspect-oriented
language constructs, it is first analyzed and the existing language concepts are extended. The
language definition created by previous work [Joos99, Glin02b, Xia04, Seyb06a] is unified and
integrated in one meta-model framework based on a textual syntax. The corresponding aspect-
oriented language constructs are introduced.

Moreover, a weaving semantics for the aspect-oriented elements is developed that concen-
trates on the transformation from aspect-oriented syntax to the conventional syntax. It allows
one to switch between the conventional and the aspect-oriented model. Apart from the model
transformations, the work also sketches how the visual representation of the model can be trans-
formed for an optimal understanding. The presented language extensions are implemented in
a modeling tool to demonstrate their feasibility. This implementation can also be used as an
experimental platform for future research on the aspect-oriented ADORA approach.

Furthermore, a generic evolutionary requirements process is sketched which exemplifies how
to employ the introduced modeling language in a software development project.

Apart from the demonstration of how a conventional modeling language can be extended by
aspect-oriented constructs, several other contributions are made by the present work.

There is a discussion and a clarification of the terminology used in the field of AOSD. Sev-
eral important terms in the field have no clear-cut definition which makes it difficult to capture a

1.5 Structure of this Thesis 7

common meaning of the terminology in the field. Apart from the terminology, the desirable char-
acteristics of an aspect-oriented requirements approach are derived. State of the art approaches,
their strengths and weaknesses are identified and discussed.

The work also investigates the question of how aspect-oriented techniques can improve in-
telligibility and whether the introduced language elements can simplify the handling of require-
ments documents. An empirical study demonstrates that, under some circumstances, there are
improvements when aspect-oriented artifacts are used.

1.5 Structure of this Thesis
The remainder of this thesis is structured in several parts. The first part introduces the prerequi-
sites for understanding the content of the work. It sketches the field of requirements engineering
and motivates the use of modeling techniques for documenting requirements (Chapter 2). The
field of aspect-oriented software engineering is introduced (Chapter 3), and then motivation for
a new requirements modeling approach is given (Chapter 4). Moreover, the ADORA modeling
language, which is used as a basis of the aspect-oriented approach, is introduced (Chapter 5),
analyzed and defined in detail (Chapter 6).

The second part of this thesis presents the proposed aspect-oriented approach, which consists
of a graphical modeling language definition (Chapter 7), a weaving semantics (Chapter 9), and a
process (Chapter 10). Furthermore, the visual abstraction mechanisms which can be applied to
the newly introduced syntax elements are outlined (Chapter 8).

The third part deals with the feasibility of the approach and its validity. To exploit the advan-
tages of ADORA, the approach strongly relies on tool support. The features of the tool prototype,
the meta-model implementation, the realization of the constraint checking mechanism as well as
the weaving engine are outlined (Chapter 11) in the third part. The subsequent chapter presents
the results of an experiment (Chapter 12) which tested the approach for an improvement of the
efficiency and effectiveness of the understandability of aspect-oriented models compared to con-
ventional models.

The fourth part (Chapter 13) summarizes the present work and compares the presented ap-
proach with other existing aspect-oriented requirements approaches. The scientific contribution
is discussed, open issues are identified and a preview of future work is given.

The appendix contains various additional materials which complements the main text. A
detailed discussion of the current state-of-the-art requirements approaches can be found in Ap-
pendix A. In Appendix B, the context-free syntax of the ADORA language is provided, and in
Appendix C, the mapping rules between the graphical language and the textual grammar are
given. A full example of a textual model, which illustrates the syntax, is given in Appendix D.
Moreover, the appendix also contains a catalog of functions that are used for expressing proper-
ties of the ADORA model syntax trees (Appendix E). Appendix F contains the formal language
constraints for the introduced aspect-oriented elements. In Appendix G, the weaving semantics
of the aspect-oriented extension is discussed formally, and, finally, Appendix H discusses some
facets of the tool implementation in more detail.

9

Chapter 2

Basics of Requirements Engineering and
Modeling

This chapter gives a brief introduction to the field of modeling as well as to requirements engi-
neering.

The development of systematic requirements engineering dates back to the late 1960s. At
this time, which is also known as an era of software crisis [Buxt69, Dijk72, Rand96], software
projects encountered more and more problems because the systems developed in those days
were becoming bigger and more complex than the previously. As a consequence, the demand for
more systematic and deliberate approaches to software development increased, which finally led
to numerous approaches and process models. Examples of such process models are the waterfall
model [Boeh81, Royc70], the spiral model [Boeh88], incremental process models [Basi75] and
agile software development [Cock02]. All software process models have the following phases in
common:

1. Requirements Phase. In the requirements phase, the software requirements are systemat-
ically elicited, gathered and managed. Typically, the requirements phase usually does not
deal with technical problems but with the problems of the application domain.

2. Architectural Phase. The architectural phase aims at creating a coarse organizational
structure of the software. Moreover, first decisions about its technical realization are made
during this phase.

3. Design. The design phase results in a detailed description of the software.

4. Implementation. The implementation concerns the coding, i.e., the realization of the
system’s executable description.

5. Integration and Deployment. In the integration and deployment phase, the software
parts are assembled into an executable system and deployed within the test or production
environment.

10 Chapter 2. Basics of Requirements Engineering and Modeling

6. Maintenance. During the maintenence phase, the software is adapted to new requirements
arising from the a volatile environment of the software system [Lehm97].

Depending on the type of software process, the phases described above may be performed
sequentially or iteratively. Furthermore, there are several tasks which can be found throughout
all of the phases.

i. Testing. Software tests [Bind99, Myer04] have mainly two purposes. First they are used to
verify the correctness of a software implementation against a set of test cases derived from
the software specification. Second, tests are employed to validate the software against the
requirements of the software stakeholders.

Verification tests can be classified into Unit tests, integration tests, system tests, and re-
gression tests [Glin05]. Apart from the verification tests, validation tests or so-called ac-
ceptance tests are used to show that all customer requirements are satisfied. They are
usually executed at the end of a software project or before a deliverable is deployed into a
productive environment.

ii. Documentation. The documentation of a piece of software is used to communicate knowl-
edge. Documentation is created in every phase of the software process. The documents
produced during the software process include, for example, the requirements specification
document, the architectural descriptions, as well as the comments in the code.

The approach presented in this work mainly deals with the specification document created
during the requirements phase. Therefore, the remainder of this chapter gives a brief introduction
to the field of requirements engineering (Section 2.1), the software requirements specification
document (see Section 2.2), and the use of modeling techniques during the software process
(Section 2.3) used as a way of represent a software requirements specification.

2.1 Requirements Engineering
Requirements engineering is a natural consequence of the need for systematic software engi-
neering. It concerns the methodical elicitation, gathering and management of software require-
ments and has to be supported by an adequate process. In the following, a definition of soft-
ware requirements and a brief discussion of the requirements engineering process and man-
agement is given. A deeper discussion of the topic can be found in various sources, such as
[Koto98, Somm97, Robe99, Davi92, Rupp04].

2.1.1 Functional and Non-Functional Requirements
A software requirement is defined as a condition or capability that must be met or possessed by
a system or system component to satisfy a contract, standard, speci�cation, or other formally im-
posed documents [IEEE90]. There exist functional requirements (FR), as well as non-functional
requirements (NFR). Both terms have been given various definitions in the literature.

2.1 Requirements Engineering 11

A functional requirement is commonly defined as the description of what the system should
do [Somm97]. Thus, a FR describes the output of a computation that is performed by a system
which is in a particular state. The output may be stimulated by an external input, or, if the system
is proactive, the system can itself produce internal stimuli.

In contrast to the definition of functional requirements, there is no consensus about the term
non-functional requirement [Glin05, Glin07a] although there has been an extensive discussion
about its definition, e.g., in [Davi92, Koto98, Lams01, IEEE98]. For example, [Somm97] de-
fines NFRs by a specific characteristic common to all NFRs: an NFR puts restrictions on other
requirements (cf. [Somm97, p. 7] and [Koto98, p.187]). The restriction relationship is unidirec-
tional, i.e., the constrained requirement cannot in�uence the way in which it is restricted by the
constraining NFR. However, this characteristic is not unique1 to NFRs, and therefore, it is not
precise enough to be used as their definition.

This work rather sticks to the definition given in [Glin07a] which overcomes the divergent use
of the terms employed in the field. The term non-functional requirements is defined according
to a consistent taxonomy which provides a set of classification rules. A requirement is simply
assigned to a given category in the case it matches the corresponding rule. NFRs belong to the
categories attributes and constraints:

• Attributes:

– Performance requirements are requirements concerning the efficiency of a system.
Examples are timing, speed, memory usage, and throughput boundaries of the soft-
ware.

– Speci�c quality requirements deal with the quality of a system. For instance, the
demand for a certain level of reliability, usability, security, availability, portability,
and maintainability fits this category.

• A constraint is any other restriction which is not an attribute or a functional requirement.
For example, physical, legal, cultural, environmental, design & implementation, or inter-
face restrictions belong to this category.

2.1.2 Requirements Process
The requirements engineering process consists of the four tasks: elicitation, analysis and nego-
tiation, documentation and validation [Koto98]. It is usually iterative or evolutionary, or, for the
case of small and simple systems, it can be linear. The process needs to be customized for the
type of software being developed [Glin05].2

Volatile environments may call for changes in already negotiated software requirements,
which causes software evolution [Lehm97]. The changes in the requirements for a piece of

1There are also functional requirements which can restrict other (functional) requirements, as shown in Sec-
tion 3.1.9.

2For example, off-the-shelf software for the mass market needs another requirements process than custom soft-
ware.

12 Chapter 2. Basics of Requirements Engineering and Modeling

The system must
output the sales
reports monthly

The monthly sales
report must aggre-
gate the sales for each
product. It must
maintain a moving
average for
each product.

1. Compute averages
1.1 Compute the aggre-
 gated sales figure
 for each Product P.
1.2 Maintain the moving
 average for Product P
2. Generate Report
3. Notify product owner

...
if (date.equals(new Date()) {
 reportgenerateAverage();
 ...
 reporting.sendReports();
}
...

... ...

a) b) c) d)

Figure 2.1: An example for the refinement of a high-level functional requirement to exe-
cutable code. The cloud shapes denote functional requirements on an abstract level and the
arrows represent refinement steps. The rectangle indicates a concrete piece of code resulting
from the refinement process.

software must be managed with an adequate requirements management process. It is performed
concurrently to the actual requirements process. It concerns the identification, the change man-
agement and the traceability of the requirements acquired during the requirements phase.

Elicitation, Analysis and Negotiation of Requirements

The initial discovery of requirements is called elicitation [Koto98, p. 32] and is mostly inter-
twined with the analysis and negotiation of software requirements. At a first elicitation round,
requirements are on a highly abstract level. During the analysis and negotiation phase, the soft-
ware requirements are analyzed, refined, and prioritized, and any inherent con�icts are resolved.
As soon as a requirement is fixed, it can be used in the subsequent phases of the software process,
i.e., the architectural phase, the design, and the implementation phase.

There are several different approaches to conducting the requirements process, such as goal-
oriented, e.g., [Dari96], [Chun00], or view-point-oriented approaches, e.g., [Sawy96]. However,
the following discussion is not focused on a specific approach, but rather on what is done during
the elicitation phase.

Re�ning Functional Requirements. An FR is re�ned towards a more concrete and detailed
description until an adequate level of detail is reached. The level of detail depends mainly on the
risk that a person might misconceive the requirements. Thus, parts with a high risk need a more
thorough and a more detailed specification than parts with a low risk.

In the phases of the software process which follow on the requirements stage, a FR is grad-
ually refined to a piece of runnable code. Figure 2.1 exemplifies this refinement by means of
showing the resulting artifacts for a sales application. The refinement steps between (a)–(c)
are performed in the requirements phase. After an initial elicitation, the problem is formulated
as high-level functional requirements (a). After a refinement step, it is elaborated as shown in

2.1 Requirements Engineering 13

(b), and some refinement steps later the initial high-level FR is refined to a very detailed re-
quirement statement. The resulting requirement (c) can be expressed for example as use case
[Jaco92, Cock01]. Subsequent refinement steps in the software process result in an architecture,
a design and finally, in the implementation (d) of the corresponding FR.

Operationalizing Non-Functional Requirements. NFRs are operationalized during the soft-
ware process, which means that they are incrementally refined towards more concrete require-
ments. Initially, NFRs are stated as high-level requirements. In the following steps they are
concretized, i.e., additional information describing the NFR in more detail is accumulated. More-
over, a concretization step of a requirement can result in the creation of new sub-NFRs. This is
illustrated by Fig. 2.2 (a), the (high-level) NFR “The system must be secure” leads to several
sub-NFRs. In turn, the sub-NFRs are refined further, until the operationalization stops. There are
three possible types of results from the an NFRs operationalization [Meie07].

A result of type (i) is a piece of code in the system's implementation. A high-level NFR
which ends up in this type of outcome contributes directly to the functionality of a system. An
example of such an NFR is any security requirement which demands an authorization before a
particular function of a system is executed. This situation is exemplified in Fig. 2.2 (a), where a
high-level security requirement is operationalized to an authorization mechanism. The resulting
artifact is a piece of code, denoted by the rectangle shape. The code shown implements an
authentication/authorization mechanism.

An artifact of type (ii) is a decision which in�uences the architecture, the design, or the
implementation of the software. Hence, in this case the NFR is not traceable to a specific piece
of code, but it in�uences how the functionality of a system is organized and executed. Thus, the
NFRs which result in these kind of artifacts in�uence how the system performs. For example,
performance requirements, such as memory or throughput boundaries can result in this type of
artifact. The operationalization of an NFR to an outcome of type (ii) is illustrated in Fig. 2.2 (b),
where a maintainability requirement is operationalized. The resulting outcome is represented as
a triangle and denotes an architectural decision.

An outcome of type (iii) is a decision which does not contribute directly to the functionality
of a system or how it performs. This type rather in�uences the course of a software process
or the form of the resulting software artifacts. For example, an NFR which demands a high
maintainability of the software may result in a decision to use a specific coding guide line for
method comments. This is exemplified by the operationalization in Fig. 2.2 (b). The resulting
decision is denoted by the circle shape. Another example of a type (iii) decision can be seen in
Fig. 2.2 (a), where the security NFR leads, apart from the outcome of type (i), also to one of type
(iii).

Documenting Requirements

The requirements found in the elicitation, negotiation, and analysis phase must be documented
appropriately, which is necessary in order to allow communication with the stakeholders. The
requirements specification document finally results from the process, and its form strongly de-
pends on the type of the developed software system and the risks involved. The following phases

14 Chapter 2. Basics of Requirements Engineering and Modeling

The system
must be

secure

Particular functions
may only be used
by particular users

The system may not
be compromised.

Authentication

Manage
User Credentials

The system
parts which

have direct contact to
a public network must

not be vulnerable.

Each component
of the final system

which has direct contact
with a public network

must be reviewed
with respect to
vulnerabilities

...
boolean authorized = false;
if (!userName.equals(””) &&
 !password.equals("")) {
 String pw =
 store.getPw(userName);
 ...
} ...

...

...

...

The system
must be

maintainable

The
system must

be extensible in a
simple way

The code
documentation

must have a high
quality.

Use
the plug-in

mechanism of the
Eclipse Rich Client Platform

...

...

Coding Rule:
Each method, except

privately accessed
ones, must have

a method
comment.

...

a)

b)

Figure 2.2: Example for the operationalization of non-functional requirements. Cloud shapes
denote abstract requirements and the arrows indicate the operationalization steps. Figure (a)
shows the operationalization of a security NFR. Several sub-NFRs result from the initially
given NFRs, which are then operationalized. Two resulting artifacts are illustrated: the circle
shape denotes an outcome of type (iii), the rectangle shape denotes an outcome of type (i),
i.e., concrete code in the system. Figure (b) illustrates the operationalization of a maintain-
ability NFR which results, besides an outcome of type (iii), in an outcome of type (ii), i.e., an
architectural decision.

2.2 Requirements Document 15

in the software process, such as the architecture, design, and the implementation are based on
this requirements document, and it is also employed for the creation of unit, integration, system
tests, and acceptance tests. The documentation of requirements is a focal point of this work and
will therefore be discussed more extensively in Section 2.2.

Validating Requirements

The requirements validation phase is intended to reveal any problems in the requirements doc-
ument, which may lead, if not discovered, to problems and unnecessary feedback cycles in
later stages. Therefore, the software specification is checked for completeness, consistency, and
whether the needs of the stakeholders are adequately re�ected. Consequently, a validation always
involves stakeholders.

There are static and dynamic means for doing a validation. Static means are for example
peer reviews [Faga86], or manual desk tests of artifacts. They involve a manual check and in-
terpretation of the requirements artifacts. In contrast, a dynamic validation is based on machine-
processible artifacts. Means for dynamic requirements validation are simulation and animation
techniques (e.g., [Seyb06a]), model checking (e.g., [Chec03]), or the use of prototypes [Floy84].
If a requirement changes (see below), usually a revalidation is done to ensure the completeness
and consistency of the other requirements.

Requirements Evolution, Requirements Management and Traceability

The requirements evolution is mostly caused by a volatile context in which the software is built
or used and results in a change of the software system [Lehm97].

The term evolution of requirements has no clear definition [Feli02, p. 16] in the literature.
In this work, the evolution of requirements denotes the changes or the extension of software
requirements which have already been formally negotiated and fixed during the requirements
process. These changes can either occur at any time during the software development process,
or during the maintenance phase of the software process when the system has already gone into
service.

For an appropriate management of the requirements and their changes, as well as the mainte-
nance of the consistency in a software specification, each requirement must be traceable [Koto98].
Cross-references as well as the origins must be determinable, i.e., each requirement must be
uniquely identi�ed and stored in an adequate way [Koto98].

2.2 Requirements Document
The requirements specification document records the requirements found and agreed upon during
the elicitation, analysis and negotiation phase. There are different characteristics which in�uence
the quality of a software requirements specification document:

• General Quality Characteristics. There is a set of different quality characteristics which

16 Chapter 2. Basics of Requirements Engineering and Modeling

must be satisfied by requirements specification documents, such as completeness and con-
sistency.

• Degree of Formality and Detailedness. The degree of formality and the level of detail of
a requirements specification must be adequately adapted to the risks involved in a software
project.

• Constructive vs. Descriptive Speci�cation. Requirements can either be specified con-
structively or descriptively. A constructive description partially shows how a system per-
forms a functionality, whereas a descriptive specification considers the system as a black
box.

2.2.1 General Quality Characteristics
In general, a requirements specification should satisfy the following characteristics to ensure an
adequate quality [Joos99, Davi93, Davi92]:

• Problem and Risk Adequate. A requirements specification must document the demands
of a customer adequately according to the given problem, the risk of system failure, and
the risk of a misconception.

• Complete. The specification document must describe all requirements as far as they are
needed to unambiguously specify the system (see also below in Section 2.2.2).

• Consistent. The requirements described in a requirements specification must not contra-
dict each other. For example, contradictions may result from the dissimilar viewpoints
of different stakeholders or from changes in the requirements. In the first case, the con-
�icts must be resolved during the requirements analysis and negotiation process. In the
latter case, the requirements management process must enforce the corresponding quality
measures, such as reviews and consistency checks.

• Unambiguous. The requirements of a specification document must not be interpretable in
unintended ways.

• Veri�able. A software system must be verifiable against its specification. Depending
on the degree of formality, the verification can either be done manually or automatically.
Formal specifications can also be verified automatically.

• Understandable. Specification documents should be as easy to understand as possible.
Therefore, they should stick to understandable representations. However, understandabil-
ity depends strongly on psychological and cognitive factors which may vary from indi-
vidual to individual. Furthermore, the form of a specification cannot reduce problem-
endogenous complexity: a specification document is at least as complex as the problem
described [Glin05].

2.2 Requirements Document 17

• Traceable. A requirements document is subject to change. Therefore, its content must be
actively managed. The dependencies of a requirement which needs to be changed must be
easy to find in a software specification. A requirement’s origin should be easy to determine
and traceable through the whole software life cycle.

• Modi�able. For the sake of ease of alteration, a requirements document must be well
structured. The redundancy in a document should be minimal, as redundancy compromises
the consistency when changing parts of the document.3

• Independent of Design. A good requirements document must not anticipate the archi-
tecture, design or implementation, unless there are explicit requirements concerning those
elements.

• Mappable/Feasible. A good requirements document should be easily transferable to later
stages in the software process. The paradigms used for the specification should match the
paradigms in later stages and provide instructions on how to map the requirements artifacts
to later stages.

2.2.2 Degree of Formality and Detailedness
There are two different risks involved when using or developing a software system. First, fail-
ures may occur during the operation of a system. Failures are costly or even hazardous to the
environment of the software system.4 Second, there is the risk of a misconception during the de-
velopment of the software system, which may result in a late schedule and higher costs or even
in the failure and abandonment of the project. The means for handling both risks are an adequate
degree of formality and detailedness of the software specification.

Degree of Formality A software requirements specification document can be informal, formal,
or semi-formal. The creation of formal specifications demands a greater effort than the creation
of informal specifications. To be economical, the degree of formality should be adequate to the
risk of failure involved by a system. For example, a system with a high risk of failure should be
based on a more formal specification than a system with a low risk.

An informal specification has no fixed syntax and semantics. It can differ in the way it
is interpreted by a reader of the specification. The most often used informal means is natural
language which can be written and understood by any stakeholder of a software project, without
any training. However, natural language tends to be imprecise and ambiguous.

In contrast, a formal specification language or method, such as algebraic specification of
abstract data types [Gutt77], the Vienna Development Method (VDM) [Bjor78], Z [Spiv89], or
the Object Constraint Language (OCL) [OMaG06] are more precise, as they have a well-defined

3However, redundancy can also deliberately be used to detect problems in a requirements specification (cf.
[Joos99]).

4See the Therac-25 case in the 1980s [Leve93], where several people were killed as a consequence of software
failures in the radiation device used.

18 Chapter 2. Basics of Requirements Engineering and Modeling

syntax and semantics. However, formal specifications are costly and more difficult to understand
[Joos99]. Therefore, formal methods are usually employed in describing systems or parts of a
system which involve a high risk of failure.

Semi-formal specification methods are a compromise between formal and informal methods.
According to [Seyb04b], a specification is semi-formal if it has at least one language element that
has an imprecise semantics, or if it fulfills one of the following conditions: (i) it contains at least
one syntactically correct5, but semantically not well defined construct, or (ii) the specification
is intentionally incomplete, or (iii), the specification contains at least one syntactically correct
element which is (unintentionally) wrongly used, i.e., which has a wrong semantics.

There are different degrees of semi-formality, there are even languages which support a vari-
able degree of formality, such as ADORA [Joos99, Glin02b]. The variable degree of formality
can be computed [Seyb06a, p. 96] and means that the more formal elements are contained in a
semi-formal specification, the more formal the specification is. For example, the use of structured
natural language is more formal than (informal) unstructured natural language.

Detailedness. Apart from the degree of formality, a software requirements specification docu-
ment can vary in its detailedness. An economical specification process should not over-specify
requirements. Software parts which involve a small risk of misconception or ambiguity during
the development of the system do not need to be detailed. These parts of a specification docu-
ment are also known as implicit requirements. Implicit requirements are based on the common
sense of the stakeholders.

2.2.3 Constructive vs. Descriptive Speci�cation

A specification can define the problem domain either descriptively or constructively. A speci-
fication is descriptive if it handles the system as a black box that defines only what the system
does. It specifies the initial state and the input of the system as well as the resulting output. As
a descriptive specification does not describe how the output is computed, it is independent of a
concrete realization of the system and does not therefore anticipate an architecture, design, or
implementation.

In contrast, a constructive specification not only does describe what is done by the function-
ality of a system, but also how this is done. The requirements are structured logically according
to the dependencies and the interrelationships between the requirements in the modeled applica-
tion domain resulting in a high-level logical architecture of the requirements. As the resulting
constructive description partially anticipates the realization of a system, it is not solution-neutral.
It narrows the solution space and may result in a suboptimal solution.

However, compared to descriptive software requirements documents, especially large speci-
fications can be easier to understand if they are constructive (cf. [Joos99, p. 25] and [Davi92, p.
213ff]).

5That means a given sentence in a language is recognized by the grammar of the language.

2.3 Modeling 19

2.3 Modeling
Models are an important means to describe whole software systems and their parts at any stage
and also for the description of a software requirements specification. In software engineering, the
term model usually implies the visualization of a graph structure.6 To get an overview of model-
ing, a brief discussion about the general model theory and the graphical modeling of software is
given in the following.

2.3.1 General Model Theory
According to the general model theory of Stachowiak [Stac73], a model is a construct which
represents an original that can either be a thing of the real world or another model. A model
contains a set of entities consisting of attributes. An attribute is either a property, a relationship
or an operation. The purpose of a model is to communicate the original in a simplified way
and thereby to accentuate specific properties of the original. Each model has three different
characteristics [Stac73]:

1. Mapping. The entities and attributes of the original are mapped to the model by specific
mapping operations. Moreover, the original can be mapped to many different models.

2. Abstraction. Not all of the original entities and attributes of the original need to be mapped
to the model. Entities as well as attributes from the original may have no counterpart in
the model. Vice versa, models may have entities and attributes which have no counterpart
in the original. However, the model should only contain elements which are relevant for
the communicated information (cf. pragmatics below).

3. Pragmatics. A model is used in a specific context and serves a specific purpose. Therefore,
one type of model may be better suited for a specific goal than another type of model.

The process of creating a model is called modeling. The person who is creating the model is
named modeler, and the person who is reading it is called the reader of the model.

2.3.2 Languages for the Visual Modeling of Software Systems
Models can be used at every abstraction level and at every phase in the software process.7 Model-
driven software development [OMaG03a, Pool01] even tries to use models as the central artifacts
throughout the whole software process. Software requirements can be described by models too,
either to complement particular parts or to describe the whole requirements specification. Re-
quirements are usually modeled constructively.

6However, as given by the model theory definition below, a description of a system in natural language can also
be seen as model. In the remainder of the work, the term model refers to graph visualizations, unless otherwise
stated.

7A broader discussion and a comparison of modeling languages and their use can be found in [Joos99].

20 Chapter 2. Basics of Requirements Engineering and Modeling

Customer

name : String
firstName : String

Home Location

street : String
city : String
streetNo : int
zip : String
country : String
phoneNumber : String

Car

rent(customer : Customer) : void
prepareForRenting() : void
maintenance() : void
setCustomer(customer : Customer) : void

carNo : int
brand : String
modelType : String

renting

0..1 rented

0..1 rents

assignment
1..*

belongsTo1

isAssignedTo

a) b)

c)

Rents a car

Customer

Renting

1

1

Fill out car rental request form

<<extend>>
!Customer.exists()

Customer gets car

<<include>>

Customer brings back car
<<include>>

Demands support

<<extend>>
Car.hasProblems()

Desk Clerk

CarReceipt

1

1

Hotline Staff

Support
11

1
CarHandOver

1

Car Rental Service

ReadyForRenting Rented

Maintenance

maintenance()

rent(customer : Customer)

maintenanceNeeded()

prepareForRenting()

Figure 2.3: Example model facets of a UML model. The figure shows a part of a car rental
agency system. Figure (a) contains the domain class model, i.e., the static structure of the
system, (b) shows the behavior for a car, and (c) illustrates a use case diagram denoting the
interrelationships between use cases.

2.3 Modeling 21

Depending on the modeling language, one or more facets of a system can be described. A
facet is a particular property or characteristic of the system that is a focus of interest. For example,
such a facet is the description of the behavior, the relationships between different elements, or
the organization of the system.

There are two different types of modeling languages: problem-specific and general-purpose
modeling languages. Problem-specific modeling languages allow one either to model just par-
ticular facets of a system, or a restricted application domain. For example, finite state machines
[Cap93, p. 133ff], statecharts [Hare87], and petri-nets [Petr62] can only be used to model the
behavioral facet. The language SysML [OMaG07] is a representative of domain-specific lan-
guages. It is mainly used for systems engineering.

In contrast to problem-specific modeling languages, general-purpose modeling languages
can be applied in various application domains and allow an extensive description of different
system facets. The best known example is the Unified Modeling Language (UML) [OMaG03b,
Rumb05] that consists of a set of sublanguages.

Each sublanguage allows one to model a specific facet of the system. For example, state-
and activity diagrams allow one to model the behavior, class diagrams are used to specify the
organization of the classes, and the use case diagrams give an overview of the dependencies
between existing use cases in the system. In the current language version 2.0 [OMaG03b], there
is a total of thirteen different sublanguages/facets in UML.

Figure 2.3 illustrates what some parts of a requirements model for a simple software system
for a car rental agency can look like in UML. The figure describes a simple car rental agency
system. Three different facets are given: Figure 2.3 (a) shows the class structure of the system
with the three classes Customer, Car, and Home Location. In Fig. 2.3 (b) the behavior of the
class Car is given as a state diagram8. Finally, Fig. 2.3 (c) shows a use case diagram which
describes the system behavior from a user point of view.

Modeling languages can be classified into non-integrated and integrated modeling languages.
A non-integrated modeling language is mostly based on a set of decoupled sublanguages, which
is the case for the UML. The reader of a non-integrated model has to integrate in mind the system
as a whole, which can be cumbersome even for small models. Furthermore, a non-integrated
modeling language may cause unintentional inconsistencies, as it contains more redundancy
[Joos99].

In contrast, an integrated modeling language visualizes all system facets in one common
model [Joos99, Section 5.2.1]. Therefore, it eases the interpretation for the reader of the model,
as the model does not need to be integrated progressively in mind. The data �ow diagrams of
the Structured Analysis Method [DeMa78] and the ADORA language [Joos99, Glin02b] are
examples of integrated languages.

8State diagrams are a variant of a statechart [Hare87].

23

Chapter 3

Aspect-Oriented Software Development

In the last few years a new research field called Aspect-Oriented Software Development (AOSD)
has emerged. It had its origin in aspect-oriented programming (AOP) which tackles the problem
of so-called crosscutting concerns at the programming level. Crosscutting concerns cannot be
handled adequately with conventional modularization techniques, which leads to a violation of
the separation of concerns principle.

The improper separation leads to a tangling of the crosscutting concerns with other concerns
and their scattering over several modules in the software. The scattering and tangling may result
in redundant pieces of code1 scattered throughout a piece of software. Therefore, the understand-
ability and maintainability of the code may be affected. AOP tries to overcome this deficiency
by introducing a new way to modularize the code.

The problem of crosscutting concerns not only manifests itself during the programming phase
but rather throughout the whole software life cycle. Artifacts at the design, architectural, or the
requirements phase may also be affected by crosscutting concerns. For example at the require-
ments stage, a use case description belonging to one concern may be tangled with the use case
description of another concern. Therefore, it is reasonable to pursue a separation of concerns
at all stages of the software process. AOSD deals with the introduction of the corresponding
techniques at all phases of the software life cycle.

This chapter provides an introduction to AOSD. Section 3.1 presents the fundamental ter-
minology and concepts. The most important and in�uential approaches in the field are brie�y
discussed in Section 3.2. Section 3.3 provides a critical assessment of AOSD, and finally, Sec-
tion 3.4 summarizes and discusses the chapter.

3.1 Fundamental Terms and Concepts of AOSD

The knowledge of the terminology of the research field, such as concern, crosscutting, etc., is
crucial to the understanding of the topic. In the following the terms as well as an overview of the
problems solved by AOSD are treated brie�y. A broader overview can be found in [Bono04].

1The code pieces are not necessarily equal but similar, i.e., they fulfill the same kind of task.

24 Chapter 3. Aspect-Oriented Software Development

3.1.1 Concerns and Separation of Concerns

The term concern was first used by Dijkstra in [Dijk82] and [Dijk76]. A concern is an abstract
concept in software engineering which describes a specific purpose or interest in a software prob-
lem. There are various definitions of the term concern in the literature [Bono04]: For example,
sometimes a concern is seen as interest in the system [IEEE00], or it is defined either as a require-
ment or a viewpoint [Ladd03]. However, as the concepts of aspect-orientation can be applied to
any stage in the software process (cf. [Gray01]), the concept of the term concern needs to be
more general.

This work relies on the definition for the term concern given by [Stan02, Rose04]: a concern
is any matter of interest in a software system which deals with the fulfilling of one particular
purpose in a software system. Hence, the concept of a concern can be distinguished from the
following concepts:

• A concern is not a detailed requirement, but it manifests in one or more detailed require-
ments. Nevertheless, a concern can be seen as a high-level, abstract requirement, i.e.,
before any refinement of the requirement is done.2

• A concern is not a viewpoint in the sense of a viewpoint approach [Fink92] because it is
not seen from a stakeholder’s perspective. A concern is rather the common intersection
between two or more viewpoints on the same matter in the system.

• A concern is not a module of a software system, as a module is a concrete artifact. How-
ever, a concern can be described by one or more modules (see Section 3.1.3).

The separation of concerns is a basic principle in software engineering and the key issue of
AOSD. Dijkstra mentions this concept in an essay from 19743 [Dijk82]:

. . . We know that a program must be correct and we can study it from that view-
point only; we also know that it should be efficient and we can study its efficiency
on another day. . . . But nothing is gained – on the contrary – by tackling these var-
ious aspects simultaneously. It is what I sometimes have called “the separation of
concerns”.

Based on the definition in [Ossh01], the separation of concerns is the ability to keep the
concerns of a piece of software and its descriptions separate, i.e., to describe and manage them
independently from the other concerns.

2See also Section 3.1.9.
3The essay was not published until 1982. However, the concept of the separation of concerns was discussed also

in [Dijk76].

3.1 Fundamental Terms and Concepts of AOSD 25

3.1.2 Crosscutting Concerns vs. Core Concerns

Two concerns are overlapping or crosscutting if some parts of them deal partially or fully with the
same matter. Even though the term crosscutting is used in every paper about AOSD approaches,
attempts to define it are rare. One of the definitions can be found in [Rose04] where the term
crosscutting is seen as a relationship between two elements where one element in�uences or
restricts the other. Having a look at different approaches in AOSD regarding the usage of the term
crosscutting, e.g., in [Kicz01a, Ossh01, Lieb01, Clar05], reveals that this definition is plausible.

Hence, in this work crosscutting is defined as a relationship between two concerns A and
B where A in�uences or restricts B and B has no control on the way in which A is doing this
[Meie07]. The crosscutting concern A is called the originator of the crosscutting relationship,
whereas the crosscut concern B is called the target, which is simply denoted as A crosscuts
B. In contrast to crosscutting concerns, a so-called core concern, which is called sometimes
conventional or core concern in this work, is not the originator of a crosscutting relationship.

A (crosscutting) concern can crosscut any other concern, i.e., the target may be either another
crosscutting concern or a core concern. If a concern A crosscuts concern B, and B, in turn,
crosscuts concern C, A is said to crosscut C transitively. However, a concern is not allowed
to crosscut itself, neither directly, nor transitively, as this is not meaningful.4 A crosscutting
concern is called strictly crosscutting if it has at least two different targets which are directly,
i.e., not transitively, crosscut. In many approaches, a concern is only seen as crosscutting if it
impacts more than one target. Nevertheless, for a proper separation of concerns, even non-strictly
crosscutting concerns should be handled as such.

Figure 3.1 exemplifies the concept of crosscutting concerns and core concerns. The dashed
boxes denote concerns, the solid boxes describe artifacts representing one or more concerns, and
the dashed arrows are crosscutting relationships. Figure 3.1 (a) shows the concerns A, B, C, D,
and E which overlap in some parts of the concerned matter. A overlaps with B and D, as well
with C. Moreover, B also overlaps with E. Separating them from each other when describing
them with modular artifacts (cf. the definition below) results in minor parts that are common
between different artifacts. These parts can be assigned to one artifact which is dominated by
one particular concern. This situation is shown in Fig. 3.1 (b).5 The dominating parts are core
concerns, the minor overlappings belong to the crosscutting concerns.

In order not to lose the connection between the concerns that are dispersed over several
artifacts, the corresponding crosscutting relationships are introduced instead, as shown in Fig. 3.1
(c). C, D, and B are crosscutting concerns, because they have at least one outgoing crosscutting
relationship, whereas A and E are core concerns that are crosscut. B is strictly crosscutting, as it
has more than one direct target. In contrast, D and C are not strictly crosscutting. A is crosscut
by B, D, and C, whereas E is crosscut by B. The concern C is crosscutting A transitively over B.

4Hence, no cycles in a path of crosscutting relationships are allowed.
5The assignment of the overlapping parts is done haphazardly in this case.

26 Chapter 3. Aspect-Oriented Software Development

E

A
B

CD

a)

c)

C

D

b)

A

B

E E

CD

A
B

Figure 3.1: Illustration of the crosscutting concerns and the crosscutting relationship between
concerns. The dashed rectangles denote concerns, the solid rectangles modular artifacts. In
(a), the concerns A, B, C, and D are overlapping. Separating them when building artifacts in
(b) results in the assignment of the overlapping area to one artifact of the corresponding con-
cern and to an introduction of a crosscutting relationship in (c) between those artifacts. The
relationship indicates that two concerns have a common crosscutting part. The crosscutting
relationship is represented by dashed arrows.

3.1.3 Documenting Concerns in Software
The concerns of a software system normally become manifest in various types of software ar-
tifacts, such as requirements statements, parts of a software architecture, modules in the imple-
mentation6, or even the user manual. The separation of concerns should be guaranteed in order
to ensure an easy understandability of the documented system. This can be achieved by a de-
scription of the system that uses modular artifacts and also allows the description of crosscutting
relationships.

A modular artifact is a description of a contiguous problem, bounded by boundary elements
having an aggregate identifier.7 A modular artifact should have a high cohesion8.

6The implementation is a special type of document which is an executable description of the problem to be
solved.

7This definition is based on the one for code modules given by [Scha96].
8The concept of cohesion for code modules is well known [Scha96]. However, the concept modular artifacts is

more general and therefore the term cohesion can also be applied to a general modular artifacts. A general modular

3.1 Fundamental Terms and Concepts of AOSD 27

A

B

C

A

B

C

B

C

a)

b)

c)

Figure 3.2: Documenting crosscutting concerns with conventional modular artifacts. The
solid rectangles denote modules representing the corresponding artifacts and the solid arrows
denote references. Dashed rectangles and dashed arrows denote concerns and crosscutting
relationships respectively. Figure (a) shows the structure of crosscutting concerns: the cross-
cutting concern A crosscuts B and C. Figure (b) shows the artifacts documenting B, C, and
A using a reference as a decoupling mechanism. Figure (c) illustrates the embedding of the
matters of A in the artifacts of B and C. Both mechanisms illustrated by (b) and (c) result in
redundancy and a violation of the separation of concerns principle.

Conventional software engineering approaches usually use some kind of referencing as a
general kind of relationship and do not know the concept of crosscutting relationships. All
relationships, are expressed the same way, and crosscutting relationships, which are a restriction
of one element on another element, can usually not be properly expressed. Consequently, using
conventional means for the modularization ends up in scattered and tangled concerns in the
software artifacts, which is known as the tyranny of the dominant decomposition [Tarr99].

Figure 3.2 exemplifies the problems which result from the use of conventional modular arti-
facts and references for the description of crosscutting concerns. In (a) the crosscutting concern
A crosscuts B and C.

There are two possible ways to represent the crosscutting concerns given in Fig. 3.2 (a) by
conventional artifacts.

In the first case, a crosscutting concern is represented by one (or more) modular artifacts.
One of these artifacts is then referenced by the artifacts of the crosscut concerns. This case is
exemplified in Fig. 3.2 (b): the crosscutting concern A is represented by one modular artifact
(modular artifacts are visualized by solid boxes). To express the crosscutting relationship, the
modular artifact of A is referred by the artifacts of the concerns B and C by using a reference.
The reference is denoted by a solid gray arrow. References work in the opposite direction to a

artifact with a high cohesion should concern only one matter of interest.

28 Chapter 3. Aspect-Oriented Software Development

crosscutting relationship. As a result, B and C contain some kind of “glue part”, represented as
gray dot in the illustration, which describes the reference to the modular artifact of the cross-
cutting concern A. However, there are two reasons why this “glue part” is problematic. First,
this glue part is redundant, as it is introduced in each of the crosscut modular artifacts. Second,
the “glue part” is intrusive, as it properly belongs to the crosscutting concern and, therefore, it
violates the separation of concerns.

In the second case, where conventional means are used to represent a crosscutting concern,
each crosscut concern incorporates the elements forming part of the crosscutting concern. This
case is shown in Fig. 3.2 (c). The crosscutting concern A is incorporated into each modular target
artifact B and C. Thus, there is no need to express the crosscutting relationship. However, this has
grave consequences, as major parts of the crosscutting concern A are duplicated in each crosscut
artifact. Moreover, this solution also violates the separation of concerns.

Listing 3.1: Example of a piece of code with two tangled concerns. A business concern
managing the transfer of money is tangled with a logging concern.

1 public void transfer(�oat amount, BankAccount account) {
2 Logger.log("transfer() called with" + amount + "f" + account);
3 if (amount <= 0) {
4 RuntimeException ex = new RuntimeException("Error, negative amount!");
5 Logger.log("transfer() exited with exception: " + ex);
6 throw ex;
7 }
8 if (account == null) {
9 RuntimeException ex = new RuntimeException(" Error, account may not be null");

10 Logger.log("Exiting transfer() with Exception " + ex);
11 throw ex;
12 }
13 sum = sum − amount;
14 try {
15 account.deposit(amount);
16 account.checkLastDeposit(amount);
17 } catch (RuntimeException ex) {
18 Logger.log("Exiting transfer() with exception " + ex);
19 throw ex;
20 }
21 Logger.log("Exiting transfer() normally");
22 }

Examples. The following four modular artifacts examples, taken from different stages in the
software process, illustrate the problems that occur when describing crosscutting concerns by
conventional means.

Example (3.1). Listing 3.1 shows a modular code artifact of the implementation of a banking
system. It is a Java method of a class implementing the business logic of a SavingsAccount

3.1 Fundamental Terms and Concepts of AOSD 29

which does not allow a balance to be less than 0. It provides the functionality for transferring
money from the current account to a target account. The method contains two different concerns:
the core concern for transferring money and a logging concern which is crosscutting. The lines
4–5, 9–10, 19, and 21 in Listing 3.1 are dealing with the crosscutting concern.

Example (3.2). Suppose that the tourist information bureau of a big city wants to provide a hand-
held tourist guide device to visitors that is context and location aware.9 The sketched use cases
for this system may look as follows:

• Suggest City Walk: The tourist guide suggests a walk through the city. The suggestion is
determined by the current location and the configured interests.

1. The user chooses the “Suggest Walk” function.
2. The system checks if the interests have already been entered. If the interest have not

yet been con�gured, call the use case Enter Interest Con�guration.
3. . . .

• Show Events: The tourist guide suggests a set of events taking place at a specified date and
time. The events are chosen by the interests profile of the user. After choosing the event,
the user has to declare his credit card information if required for a reservation.

1. The user chooses the “Show Events” function.
2. The system checks if the interests con�guration has already been entered. If the inter-

ests have not yet been con�gured, call use case Enter Interest Con�guration.
3. The system retrieves the current events.
4. Enter date and time.
5. Show the events according to the user's interest.
6. Select the event.
7. Confirm the event.
8. If the chosen event requires a reservation with a credit card and the credit card infor-

mation has not been entered before, then call use case Enter Credit Card Information.

• Theater Reservation: The tourist guide allows the user to choose from a set of theatrical
performances. For a reservation, some of the theaters need a credit card number.

1. The user chooses the “Theater Reservation” function.
2. The user can choose from a set of theatrical performances and the seat (use case

Choose Theatrical Performance).
3. If the reservation of the chosen performance requires the credit card information and

the information has not been entered before, then call use case Enter Credit Card
Information.

4. . . .

• Enter Interest Configuration: The user can choose from a set of interests:

9The system is inspired by the case study used in [Davi01].

30 Chapter 3. Aspect-Oriented Software Development

1. . . .

• Enter Credit Card Information: The user enters credit card information:

1. . . .

• . . .

The decomposition criteria for this example are use cases resulting in the corresponding modular
artifacts. The use cases mentioned contain the three core concerns Suggest City Walk, Show
Events, and Theater Reservation. Furthermore, there are the two crosscutting concerns “Handle
Interest Configuration”, and “Handle Credit Card Information”. The text lines belonging to the
crosscutting concerns are visualized in italics in the use cases. Handle Interest Con�guration
consists of the use case Enter Interest Con�guration. It crosscuts the use cases Show Events and
Suggest City Walk. The concern Handle Credit Card Information comprises the use case Enter
Credit Card Information and crosscuts the use cases Show Events and Theater Reservation.

Example (3.3). Figure 3.3 shows an excerpt from an architectural description for a library man-
agement system, which describes the process for deleting and editing entries in the register for
borrowed books. Both functionalities are only allowed for users with the corresponding privi-
leges. The privileges are accredited by an authentication. Editing a book and deleting books are
core concerns, whereas authentication is a crosscutting concern with an impact on the concern
editing a book and deleting books. Figure 3.3 (a) shows the behavior description of the editing
books concern and (b) the deleting books concern. The elements of the crosscutting concern are
emphasized by a gray background.

Example (3.4). Crosscutting concerns can even affect auxiliary artifacts of a software system,
such as the user documentation. The functionality described by Example (3.3) can be accompa-
nied by the user documentation given in Fig. 3.4, where the text of the crosscutting concern is
set in italics.

3.1.4 Tangling, Scattering, and the Resulting Problems
The two ways presented in Section 3.1.3 to describe crosscutting concerns and their crosscutting
relationship using conventional modular artifacts are suboptimal as both introduce redundancy
and/or violate the principle of the separation of concerns. Both problems manifest in a scattering
and tangling of the crosscutting concerns in the artifacts of the core concern.

Figure 3.5 illustrates the problem of scattering and tangling. It shows a core concern, crosscut
by an Authentication and Logging concern. The mixing of the three concerns is called tangling.
The dispersing of one crosscutting concern over several modules is called scattering. Tangling
and scattering affect modular artifacts in several ways:

• The redundancy in the artifacts, or at least the number of similar elements, is increased.

• An artifact which contains tangled concerns has bad cohesion, as concerns with different
responsibilities and aims are contained in one modular artifact.

3.1 Fundamental Terms and Concepts of AOSD 31

EnterUserName

EnterPassword authenticate(user, password)

[No] / trials = 0

[No] / trials = trials + 1

ListBooks SelectBook ShowEditingMask

ShowAuthenticationFailedMessage
[No and trials = 2]

[Yes]

[Yes]

[No]

[Yes]

Is authenticated?

Edit another Book?

authenticated?

(a) Describes the behavior of editing books concern.

EnterUserName

[No] / trials = 0

ListBooks
[Yes]

EnterPassword authenticate(user, password)

ChooseBooks DeleteSelectedBooks

[Yes]

Is authenticated?
[No]

Delete other Books?

[No] / trials = trials + 1 ShowAuthenticationFailedMessage[No and trials = 2]

authenticated?

[Yes]

(b) Describes the behavior of the deleting books concern.

Figure 3.3: Example for crosscutting concerns in architectural artifacts. The figure shows
two UML activity diagrams [OMaG03b]. Figure (a) describes the concern for editing a book,
(b) a concern for deleting a book. Both are crosscut by an authentication concern.

32 Chapter 3. Aspect-Oriented Software Development

. . .
2.1 Editing Book
The function Editing Book allows you to edit a book record. Before performing this operation, you need to
authorize it with your user name and password to be able to execute the editing of book records, and you need
to have the corresponding privileges. See also Section 3.1 for additional information about the authentication
procedure of the library system.
After a successful authentication, a search mask for searching for and listing particular books is shown. . . .
. . .
2.2 Deleting Books
The function Delete Books allows you to delete a set of book records.Before performing this operation, you need
to authorize it with your user name and the password to be able to perform this operation, and you need to have
the corresponding privileges. See also Section 3.1 for additional information about the authentication procedure
of the library system.
After a successful authentication, a search mask for searching for and listing particular books is shown. . . .
. . .

Figure 3.4: Excerpt from user documentation containing crosscutting concerns. The figure
shows the description of the functionality given in Fig. 3.3. The crosscutting concerns of the
authentication also manifests in the user documentation.

• The intelligibility deteriorates as the redundancy bloats the artifacts unnecessarily.

• The intelligibility degrades because particular artifacts cannot easily be assigned to a spe-
cific responsibility or concern, respectively.

• The artifacts are more error-prone and more difficult to maintain due to the increased
complexity of their structure.

• Crosscutting concerns are almost impossible to trace as they are distributed over multiple
artifacts.

• The artifacts are less likely to be reusable since they mix different concerns.

The tangling problem results from the missing separation of concerns. In turn, the scattering
of a crosscutting concern over several modules is a consequence of the tangling. Scattering
only occurs if the concern is strictly crosscutting, i.e., if there is more than one crosscutting
relationship to other modular artifacts.

3.1.5 Decoupling Crosscutting Concerns

To overcome the problems resulting from the tangling and scattering of crosscutting concerns,
aspect-oriented approaches provide language elements to keep crosscutting concerns separate.
They provide a way to describe modular artifacts for the core concern, separate artifacts for the
crosscutting concern, and a way to express the crosscutting relationship.

3.1 Fundamental Terms and Concepts of AOSD 33

Modular Artifact 1
Modular Artifact 2

Modular Artifact 3

... Modular Artifact n

Logging

Authentication

Core Concern

Figure 3.5: Illustration of the scattering and tangling of crosscutting concerns (based on
[Ladd03, p. 8] and [Bono04, p. 17f]). The white areas denote the core concern, the light
and dark gray ones show the crosscutting concerns Authentication and Logging, respectively.
Both crosscutting concerns are tangled in the modular artifacts. It exemplifies also the scat-
tering of the two crosscutting concerns over several modules.

In aspect-oriented approaches, two types of modular artifacts are given: components and
aspects. The superordinate concept of aspects and components is the modular artifact. Com-
ponents are modular artifacts that have no outgoing crosscutting relationships. An aspect is the
originator of at least one crosscutting relationship.

The problem of modularizing crosscutting concerns is not confined to the implementation
phase. Moreover, there are crosscutting concerns which do not necessarily end up in the imple-
mented functionality of a system, as discussed below. Therefore, the definition of the term aspect
given in this work is broader than in most other aspect-oriented approaches, such as [Lieb01] or
in [Jaco03], where aspects are defined as a modular unit of a crosscutting implementation.10 Fur-
thermore, an aspect is specified obliviously for the target, i.e., the target of an aspect must not be
aware that it is crosscut [Film00]11, as otherwise a kind of coupling between aspect and crosscut
modular artifact is introduced.

In order that a crosscutting concern can be properly modularized, a crosscutting relationship

10It is defined similarly to [Saku04]: ..., an aspect is the unit of modular de�nitions of crosscutting concerns.
11In [Film00], the principles discussed deal with aspects in programming. However, the concepts can be trans-

ferred to aspect-oriented artifacts in the whole software process.

34 Chapter 3. Aspect-Oriented Software Development

must be adequately describable, i.e., as unidirectional relationship expressing a restriction or an
in�uence on the target. This is similar to the macro expansion semantics known from the concept
of macro assembler programming languages [Gree59] or the preprocessor of the C language
[ISO 05] and has therefore similar effects. However, the macro expansion concept demands that
the target of a macro defines, i.e., controls, where the macro applies. In contrast, a crosscutting
concern and its crosscutting relationship rather define where the impact is located and therefore
fully control the impact location.

The crosscutting relationships can either be part of or be separate from the aspect description.
Furthermore, sometimes it is necessary that an aspect can access the elements (such as attributes)
of the crosscut modular artifact. Therefore, the elements which are accessible in the context of
the target must be declared by the crosscutting relationship.

A quanti�cation is part of the crosscutting concern that allows the specification of the location
where an aspect has an impact on another modular artifact [Film00]. In many aspect-oriented
approaches, such as AspectJ [Kicz01a], the quantification is expressed as a condition which
specifies when and where an aspect has an impact on another modular artifact.

3.1.6 Separation vs. Composition

As discussed above, crosscutting concerns can occur in artifacts at every stage in the software
process. Therefore, the goal should be throughout to introduce an adequate means for repre-
senting them during the whole software-process and to separate them as early as possible from
other concerns. Moreover, using an aspect-oriented paradigm in the early phases of the software
process simplifies the application of aspect-oriented approaches in later phases, e.g., during the
implementation.

It is sometimes necessary to recombine the separated crosscutting and core concerns again.
This composition is the reverse process of the identification and separation during the early
phases. It results in artifacts with woven crosscutting and core concerns.

Figure 3.6 illustrates the separation and composition of concerns by means of a prism meta-
phor (cf. [Ladd03, p. 9] and [Wund05, p. 31]). A concern separation mechanism, visualized as
a prism, allows to systematically separate the concerns at an early stage of the software process.
The separation should take place as early as possible, best when the requirements are elicited.
After the identification and separation, the concerns are documented with an aspect-oriented
approach supporting a clear separation of concerns. The result of the documentation process is a
set of aspects and components that are refined during the subsequent software process. Whenever
it is appropriate, an aspect weaver, visualized in Fig. 3.6 as an upside down prism, creates the
composed artifacts.12 The composition process is also called weaving.

12Note that some aspect-oriented approaches, especially in the field of programming, do not integrate the artifacts.
Instead the artifacts are used in a strictly separated way. However, when artifacts are interpreted by human beings,
it makes sense to have the integrated artifacts, as the specific parts and interrelationships in a system can be better
understood in some situations. See also the discussion below.

3.1 Fundamental Terms and Concepts of AOSD 35

Undocumented and
unstructured concerns at

the requirements stage

Concern identification /
separation mechanism

Aspect-
Weaver

Identified and
Separated
Concerns

Separated Concern
Artifacts

(Aspects +
Components)

Documenting
concerns

Integrated Artifacts

Artifact
n -1

Artifact
1

Artifact
0

Artifact
n ...

Figure 3.6: Illustration of the separation and integration process of crosscutting concerns.

Discovering and Separating Crosscutting Concerns

In the past, numerous approaches have been proposed for the discovery of crosscutting concerns.
A first type of approach deals with mining crosscutting concerns in legacy software artifacts. Re-
verse engineering and aspect mining approaches in the code of existing systems, such as [Mari04]
or [Hann01], belong to this category.

As mentioned above, crosscutting concerns should be separated as early as possible in the
software process. Therefore, when building a new software system, crosscutting concerns should
be identified and separated at a very early stage in the software life cycle. Most approaches to
early identification, such as [Rose04], [Duan07], [Clel06], and [Samp05], deal with the process-
ing of natural language requirements statements. Furthermore, an approach which mixes natural
language processing concepts and heuristics is presented in [Bani04a].

Composing Aspects and Components

The weaving of aspect-oriented artifacts is necessary in some situations. A composition may be
necessary when the system is executed, or when it must be verified or validated.

Executable and non-executable parts of the system. A software system consists of exe-
cutable and non-executable artifacts. Executable artifacts are those code parts which can be
directly executed by a machine. Non-executable artifacts are any other auxiliary artifacts, such
as the user manual, of the software needed by the user or the system to execute.

For executable software parts, a weaving of the aspect-oriented artifacts is required. The
weaving either occurs statically, i.e., explicitly, or dynamically, i.e., transparent to the user (cf.
Section 3.2.1).

There are non-executable artifacts in a deployed system, such as the user manual, that are

36 Chapter 3. Aspect-Oriented Software Development

read and interpreted by the users of the software. They are usually composed before they are
deployed.

Veri�cation and validation. Verification and validation tasks13 can be done either dynamically
or statically (cf. Section 2.1.2). Before aspect-oriented artifacts can be veri�ed or validated
dynamically, they may be woven.

For performing a static verification14, the aspect-oriented as well as the woven artifacts can
be used. Static verification/validation means involving people who assess the quality and the ad-
equateness of the given artifacts by analyzing and interpreting them individually. Therefore, the
intelligibility of the document is crucial. In turn, the understandability is in�uenced by whether
aspect-oriented or conventional artifacts are used. Depending on the situation, aspect-oriented
artifacts may increase the understandability or they may not, as argued in the following Sec-
tion 3.1.7. Therefore, it is useful to provide the capability to switch between aspect-oriented and
conventional artifacts when doing a static verification or validation.

3.1.7 Complexity Caused by the Use of Aspect-Oriented Artifacts
An aspect-oriented approach may simplify artifacts, but may also introduce additional complex-
ity [Meie05] due to the strict separation of concerns. In some situations, aspect-oriented artifacts
are better suited than their conventional counterparts. However, there can be situations where it is
the other way round. The understanding depends on the type of focus that is put on the concerns
in the artifacts. There are two different types of focus:

1. An isolated focus15 ignores the interaction between the concerns, and is a separated view
of crosscutting and core concerns.

2. In contrast, an interrelated focus16 on concerns deals with the interplay between the cross-
cutting and other concerns.

Depending on the type of focus, the understandability of the artifacts is affected. An isolated
focus used on aspect-oriented artifacts improves the understandability. This is due to the fact
that modularized crosscutting concerns are strongly decoupled from other concerns. The parts
of crosscutting concerns are not scattered in the system but rather concentrated in one modular
artifact. The reader of that artifact does not need to separate them individually in mind from the
other concerns and the understandability is better.

In contrast, using the aspect-oriented artifacts of a system together with an interrelated focus
does not improve the understandability compared with the use of the conventional artifacts. This
is due to the fact that the reader of the model has to integrate the crosscutting and the conventional

13Validation tasks are for example the simulation of requirements, e.g., [Seyb06a], or the acceptance test
[IEEE90]. Verification tasks are the testing (unit tests, integration tests, system tests) of the software.

14For example, a static validation is done by performing a code inspection[Faga86] or a manual desk check.
15In [Meie05] this type of focus is called local. However, in this work it is more adequately called isolated focus.
16In [Meie05] this type of focus is called global. In this work it is called more adequately interrelated focus.

3.1 Fundamental Terms and Concepts of AOSD 37

concerns in his mind to understand how they interplay. In fact, it may even result in a worse
understandability of the described system.

The type of focus which is put on the concerns depends on the operation performed by the
person who reads/modifies the artifacts. For example, editing and modifying operations on a par-
ticular concern have usually an isolated focus. In contrast, interpreting the relationships between
aspects and components demands an interrelated focus.

For this reason, it is useful to be able to choose the most adequate representation when work-
ing with the artifacts during the development. As a consequence, an aspect-oriented representa-
tion must be composable into a integrated (i.e., conventional) representation.

3.1.8 Characteristics of Aspects
Aspects should have a set of specific properties. How well they are satisfied depends on the
concrete situation. In the following, they are summarized and discussed brie�y (cf. [Bono04,
p. 25f]):

• Modularity: The separation of concerns and therefore the modular description of all
concerns in a software system is the primary aim of an aspect-oriented approach. Aspects
should be self-contained modular artifacts. An aspect should declare its dependencies, so
that it can be understood in isolation [Elra01]17.

• Obliviousness: Obliviousness [Film00] demands that the artifacts of a crosscut concern
must not be aware of being crosscut. Otherwise, a coupling of the crosscutting concern
and the crosscut concern is introduced. Obliviousness has been discussed controversially
in the recent past, e.g., in [Sull05].

• Homogeneity of an aspect: An aspect is homogeneous if it provides the same content
for each target. The aspect is inhomogeneous if the provided content depends on the target
and usually has multiple responsibilities. However, such an aspect has low cohesion and is
therefore better split up into different aspects handling the different impact situations.

• Avoidance of side effects: Aspects should not introduce side-effects in the artifacts of
crosscut concerns. This property applies to executable as well as non-executable artifacts.
For executable artifacts, such as code in the implementation phase, this means that an
aspect must not break the contracts of a target module (cf. the-design-by-contract principle
[Meye92]). For non-executable artifacts, such as semi-formal models, this means that an
aspect should not introduce content into the target which is ambiguous or misleading to
the (human) reader of the artifact.

• Reusability: An aspect should be reusable [Elra01]. Reusability is achieved by having a
low coupling18 and a high cohesion.

17In [Elra01] this property is called self-containedness.
18In the case of crosscutting concerns, coupling results from the usage of conventional relationships, such as

references.

38 Chapter 3. Aspect-Oriented Software Development

• Composability: Aspects must be composable. Depending on the situation, certain facts
are better understandable to human beings when expressed as conventional artifacts than
aspect-oriented artifacts (cf. Section 3.1.7). Vice versa, there may be situations where
aspect-oriented artifacts are better suited. Therefore, aspects should be composable with
the artifacts of the core concerns [Elra01]. Consequently, there must be a set of well-
formed rules that allow transformation from the aspect-oriented to the conventional repre-
sentation and vice-versa.

• Additivity: Aspects should not be invasive19 [Ladd03] when they are added to or removed
from an existing system. A non-invasive aspect is called additive.

• Orthogonality: The same target can be impacted by more than one aspect. If the or-
der in which they occur in the final system does not affect the semantics of the software,
they are called orthogonal. However, orthogonality cannot be always achieved. There-
fore, an aspect-oriented approach must provide a mechanism for solving con�icts, e.g., by
assigning a precedence.

3.1.9 Connection between Concerns and Requirements
A concern categorizes a specific matter of interest in the system and comprises one or more
software artifacts. It is expressed by high-level requirements statements, such as “the system
must print out monthly reports” or “the system must be secure”. Therefore, concerns and high-
level requirements are seen as equivalent in this work.

Functional and non-functional high-level requirements (or concerns) are refined during the
software process towards concrete requirements or other modular artifacts of the software sys-
tem. Consequently, the artifacts representing a concern can be evolved from the corresponding
high-level requirement, and aspects can result from non-functional or functional high-level re-
quirements. The refinement process ends in a set of artifacts which together form the resulting
system.

During the refinement process, a concern is identified as crosscutting if at least one of its
artifacts is the origin of a crosscutting relationship. Thus, a concern may not be identified as
crosscutting until a later stage of the software process. However, this mainly applies to func-
tional concerns. In contrast, non-functional concerns are usually identified from the beginning
as crosscutting.

The resulting aspects arising from this refinement process are discussed in the following in
more detail.

Non-Functional Aspects

Non-functional requirements (cf. Section 2.1.1) restrict or in�uence other requirements, though
they have one or more crosscutting relationships to other requirements. Therefore, a high-level
non-functional requirement (NFR) is a crosscutting concern and always results in one or more

19That means that there should be no need to change an impacted artifact when being impacted by an aspect.

3.1 Fundamental Terms and Concepts of AOSD 39

aspects. Consequently, all artifacts originating from a high-level non-functional requirement
should be represented by aspects. To indicate their origin, aspects resulting from a non-functional
high-level requirement are called non-functional aspects.

The aspects emanating from a high-level NFR have one of the following three types (cf.
Section 2.1.2). Type (i) is an aspect that contributes to the system’s functionality. Therefore,
it manifests in the system as a piece of code at the end of the development process. Typically,
non-functional aspects of type (i) can be handled at the implementation stage through one of the
AOP approaches, such as AspectJ [Kicz01a].

Example (3.5). An example of a type (i) non-functional aspect is the authentication functionality
given in Example (3.3). It can be modularized in a aspect and is refined from the high-level non-
functional requirements Security or Authorizing/Authenticating, respectively. In the final system
it manifests in a concrete piece of code that is executed.

Non-functional aspects of type (ii) result in a decision which in�uences how the function of
the system is performed. They may have an impact on one or more other artifacts of the software.
Usually aspects of type (ii) are absorbed by the architecture or the design of the final system. This
absorption can be seen as weaving the decision into the system. Sometimes, it is also possible to
realize such a decision by an AOP aspect.20

Example (3.6). Suppose there is a high-level NFR which demands that a large information system
performs within a given time limit. In a further refinement of the NFR, the architectural decision
results in the use of a fast performing, transparent cache which already exists as a component-
off-the-shelf (COTS) implementation.

Finally, non-functional aspects of type (iii) result in a decision which in�uences neither what
nor how the functionality of a system is performed. They rather result in a decision which
in�uences either the software process or the form of other artifacts.

Example (3.7). Suppose there is a high-level NFR which requires a high maintainability of the
developed system, because it is embedded in a highly volatile environment. To improve the
quality of the source code and therefore to increase its maintainability, a decision is taken that a
coding rule must be followed This decision is crosscutting, i.e., it has an effect on the system at
various locations.

Functional Aspects

High-level functional requirements can be crosscutting concerns because they may result in more
detailed artifacts which “inject” functionality into other concerns. In aspect-oriented approaches,
they should be handled as aspects, too. As an indication of their origin, aspects resulting from a
refinement process of functional requirements are called functional aspects.

20An example for the realization of a type (ii) artifact as an AOP aspect is given in [Kicz97], where a non-
functional performance requirement for a composable graphics filter library for bitmap graphics is solved by AOP
constructs.

40 Chapter 3. Aspect-Oriented Software Development

Example (3.8). An example for a functional crosscutting concern is given by the tourist guide
device of Example (3.2): Handling the credit card information, as well as handling of the per-
sonal interest are crosscutting concerns, as they in�uence the behavior of other concerns. They
can be modularized and finally implemented as aspects.

3.2 State of the Art Approaches
Originally, aspect-oriented approaches were introduced at the programming stage. Then these
concepts were adapted to other phases of the software process. Ever since the first ideas of
aspect-oriented programming were proposed [Kicz97], many aspect-oriented approaches have
been suggested for supporting each phase in the software process.

In the following, a selection of approaches is presented. The various characteristics of
aspect-oriented approaches are discussed in Section 3.2.1. The most in�uential programming
approaches are presented in more detail in Section 3.2.2. Approaches to the design and the ar-
chitecture are sketched in Section 3.2.3 and Section 3.2.4, respectively. Existing aspect-oriented
requirements approaches are outlined in Section 3.2.5.

3.2.1 Categorizing Aspect-Oriented Approaches

Aspect-oriented approaches can be categorized according to several characteristics, such as their
symmetry, and how aspects are composed into the artifacts of the core concerns.

Symmetric vs. asymmetric approaches. In symmetric approaches, such as HyperJ [Ossh01],
aspects and components are modularized by the same type of modular artifacts [Harr02]. Thus,
core and crosscutting concerns are seen as peers and concerns are said to be overlapping rather
than crosscutting. As a consequence, the crosscutting relationship is specified separately from
the overlapping artifacts.

In contrast, asymmetric aspect-oriented approaches, such as AspectJ [Kicz01b], provide
asymmetric modular artifacts, i.e., there are aspects describing the crosscutting concern as well
as components describing core concerns. The artifacts of the core concern augment the arti-
facts of the crosscutting concern. Moreover, aspects usually also contain the specification of the
crosscutting relationship, i.e., where an aspect has an impact on other concerns.

Symmetric approaches are useful to separate concerns that are seen as peers and that are
rather loosely coupled. In contrast, asymmetric approaches are better suited for systems which
have clear core concerns that are augmented by crosscutting concerns.

Linguistic vs. framework-based approaches. Linguistic approaches introduce a new lan-
guage or extend an existing language which allows the description of crosscutting concerns
separately. In contrast, framework-based approaches try to use existing programming frame-
works, i.e., predefined solution patterns, or language features to keep concerns separate. The
distinction between linguistic and framework-based approaches is usually made in AOP, but not

3.2 State of the Art Approaches 41

for aspect-oriented approaches at the pre-implementation stages of the software process. This is
due to the fact that framework-based approaches rest upon programming frameworks.

Domain speci�c vs. general purpose approach. Domain-speci�c approaches solve a narrow
and specific problem, whereas general purpose approaches can be used to describe a broad range
of problems.

Static vs. dynamic composition. Static composition approaches integrate the aspect-oriented
artifacts at a stroke into a set of woven set of artifacts. Dynamic approaches either perform
the composition incrementally, i.e., when needed or they interpret the aspect-oriented artifacts
directly, e.g., by using a suitable mechanism, such as Java re�ection.

The distinction between whether an aspect-oriented approach employs a static or a dynamic
composition is only used for approaches with executable artifacts, e.g., aspect-oriented program-
ming or requirements specifications that are executable. Dynamic composition is usually slower
than static composition when executing the artifacts. For approaches with non-executable arti-
facts, static composition is used.

Software variability support. There is the distinction between whether aspect-oriented ap-
proaches are able to handle software product lines (cf. for example [Clem01, Pohl05, Brow96,
Kang90, Parn76]) or not. Variable and common software parts can be seen as concerns (see for
example [Coly04, Gris00b, Gris00a]) that have to be separated and composed to create product
variants.

3.2.2 Approaches to Aspect-Oriented Programming
In the following, a selection of AOP approaches is brie�y presented.21 It will help in under-
standing the details of aspect-orientation and the approaches used during the other phases of the
software process.

AspectJ

AspectJ [Kicz01a, Ladd03] is probably the most widespread AOP approach. Therefore, it is dis-
cussed more extensively here. It is a linguistic, asymmetric approach that extends the language
Java [Sun 07a] with modularization capabilities for crosscutting concerns. It is a general-purpose
aspect language that may be used for a broad range of problems. In AspectJ, a modular cross-
cutting concern is described by a syntactical feature called aspect. An aspect contains pointcut
de�nitions, advice de�nitions, declarations, and introductions.

An aspect specifies the crosscutting relationship to other modules, i.e., classes and other as-
pects, through pointcuts. A pointcut specifies the locations in the program �ow, where crosscut-
ting behavior is injected.22 In AspectJ terminology, these impact locations are called join points.

21For an extensive discussion, please consult the references.
22The specification of the impact location is also called quantification (cf. Section 3.1.5).

42 Chapter 3. Aspect-Oriented Software Development

A pointcut defines a pattern that match class, field, or method names in the target specifying the
join points. A join point can be the call of a method, the body of a method23, the catch part
of an exception handler, the location where object �elds are read or written, etc.24 A pointcut
can either be identified by a name, or it can be anonymously specified together with an advice
definition.

An advice de�nition describes the crosscutting behavior of the aspect. Apart from that, its
impact location is specified by a pointcut (as defined previously). Moreover, the advice declares
if the crosscutting code is executed either before, after, or around25 the join point. An advice
definition can access the context, i.e., the variables in the scope of the join point.

Last, declarations allow modification of the inheritance hierarchy of the classes, define com-
pilation warnings or errors, the precedence of aspects, or the softening of the throw clause of
exceptions.

Summarized, AspectJ is very �exible and can be used for a broad range of problems. How-
ever, there are also several weaknesses. The name-based join point model of AspectJ results in
some deficiencies. A difficulty results from an unintentional quantification of join points when
using the pattern matching for names. Therefore, the naming has to be well planned and rigor-
ously realized. Moreover, join points are fragile [Stor05] or vulnerable to changes in the code.
Furthermore, the use of the names for defining join points makes the migration of legacy Java
applications to AspectJ tedious. Such an application may require invasive changes in the naming
of the elements, in order to be used with AspectJ pointcuts.

HyperJ

HyperJ is a symmetric linguistic approach that is based on Java and relies on the principle of
multidimensional separation of concerns (MDSOC) [Tarr99].26 MDSOC allows the separation
of overlapping concerns according to different decomposition dimensions. A decomposition
dimension may be any criterion that is of interest during the development of the software, such
as data, features, business rules, etc. In HyperJ, all concerns are handled as peers.

For the composition of a system, HyperJ introduces the concepts of hyperspace, hyperslice,
and hypermodule. The hyperspace of an application consists of all classes of all decomposition
dimensions. A hyperslice is a set of distinct conventional Java classes and the methods of these
classes which together describe a particular concern of the software.

The classes of different hyperslices may overlap by having the same methods.27 A method
which is common to several concerns has to be declared in a class of one concern. The corre-
sponding class of the other concerns need to declare this method as abstract. This must be done
in order to have a declaratively complete, i.e., self-contained, implementation of a concern.

Furthermore, HyperJ allows the separation of tangled concerns in existing legacy applications
by defining corresponding hyperslices. This approach is called the mix-and-match principle.

23This applies also to constructors.
24For a detailed discussion, see [Ladd03].
25An around specification may also result in a substitution of the join point (cf. [Ladd03]).
26MDSOC is based on the idea of subject-oriented programming [Harr93].
27Methods are the smallest decomposition unit in HyperJ.

3.2 State of the Art Approaches 43

Mix-and-match enables the tangled concerns to be separated and to be recomposed again in a
new application. Apart from handling legacy software, this feature predestines HyperJ for the
handling of software variability and software product lines.

A hypermodule defines how a set of hyperslices is composed into a system or a subsystem.
Hypermodules can also be viewed as hyperslices and can therefore be nested again in other
hypermodules [Tarr99]. There are various rules for composing hyperslices into hypermodules.
For example, the rule mergeByName defines that methods with the same name are merged. The
order in which the methods are merged in the resulting hyper module can be specified. Apart
from mergeByName composition rules, there are other rules, such as the overriding of units, or
the merging of elements with an unequal name.

HyperJ is an aspect-oriented general purpose approach, which allows a system to be decom-
posed into a set of peer concerns. Due to its ability to separate concerns, it is also well-suited to
handle legacy systems without invasive changes and it allows the handling of variability in soft-
ware systems. However, the composition rules can become rather complex, because the compo-
sition definition is separated from the modules of the concerns.In contrast, the composition rules
are speci�ed in AspectJ by pointcuts de�ned in the corresponding aspect.

The definition of the join point model is more coarse-grained than AspectJ, as the smallest
unit for merging are methods, which makes HyperJ less �exible than AspectJ. Furthermore, the
join point model is based on the matching of names, resulting in the same problems that arise
from AspectJ.

Adaptive Programming and DJ Library

Adaptive programming [Orle01, Lieb01, Lieb97] is a hybrid approach which unifies framework-
based as well as linguistic elements. Adaptive programming is domain-specific and allows the
problem of traversing data structures to be handled in an adequate way.

The traversal of data structures can be implemented in various ways. In object-oriented
systems, it is possible to add a traversal method to each class definition of the objects that are part
of the data structure. However, in this case the traversal functionality is scattered over different
classes. The visitor pattern [Gamm95] tries to overcome this problem by a generic interface
for calling a visitor that incorporates all processing logic. The class hierarchy of the objects in
the data structure only implements the visiting strategy (accept method). However, although the
traversal methods are less scattered than with the previously described approach, changes to the
processing logic are still tedious because of the law of Demeter [Lieb89].

The Law of Demeter states that a method in a class should only have limited knowledge of
the class structure, in order to be easily maintainable. However, following this law results in
a number of small methods which use dynamic binding in order to reduce knowledge of the
class structure. As a consequence, the number of methods increases and there are problems in
maintaining and understanding such classes. This is also the case for visitor implementations.

Adaptive programming overcomes these problems. DJ [Orle01] is a library which allows the
traversal of data structures using the re�ection mechanism of Java.28 For using DJ, the traversal

28In contrast to DJ, the previous approach called Demeter/Java [Lieb97] needed static compilation before the

44 Chapter 3. Aspect-Oriented Software Development

strategy as well as the processing of the data structure nodes must be defined.

Other Programming Approaches

There are other programming languages which are brie�y sketched in the following. AspectC++
[Gal01] provides similar functionality to AspectJ, but using the syntax of the C++ language. The
AspectWerkz [Bone04, Vass04] approach is based on Java and uses the re�ection mechanism
and annotations29 or XML definitions.30 The JBoss AOP Java Framework [Burk04] is similar to
AspectWerkz.31

Object-oriented frameworks, such as the Aspect Moderator Framework (AMF) [Cons00], try
to overcome the problem of the scattering and tangling of crosscutting concerns by employing
only object-oriented techniques. Usually, framework-based approaches are domain specific and
therefore solve the separation of concerns for one specific issue. For example in [Cons00],
concurrency control is handled by such a framework.

Meta-object protocols32 [Kicz91] are based on re�ection and can also be used to cope with the
separation of concerns. They enable the dynamic manipulation of the communication between
objects on the meta-level of the programming language and even make it possible to change
the behavior of the software at the runtime. Meta-object programming allows, for example,
crosscutting concern code to be executed before or after a method call. The Java re�ection
capabilities and dynamic proxies [Blos00] are a simple meta-object protocol approach in Java. A
dynamic proxy can be used to intercept method calls and manipulate and change the behavior of
the software. However, Java has no full-�edged support for implementing meta-object protocols.

Composition �lters [Berg01, Akc 92] are similar to meta-object protocols in their mode of
operation. Filters are implemented in an object-oriented manner, work dynamically and allow
filtering of the input and output messages of objects, i.e., their interception and redirection. A
composition of filters can be used to create a filter chain composition resulting in complex filter
operations. The separation of concerns is achieved by assigning a concern to a filter that redirects
the messages addressed to objects of a specific concern.

3.2.3 Approach to Software Design

Some of the various existing aspect-oriented design approaches [Chit05, p. 154ff] are summa-
rized brie�y in the following. Some are closer to the design, others closer to the architecture. In

mechanism could be used.
29Abstract annotations [Ladd05] can be used to denote possible join points in the modules that are potentially

crosscut. The use of annotations avoids the problem of fragile join points which results from the use of names for
identifying join points. However, the use of annotation approach is invasive, because the potential join points need
to be denoted in the source code of the target.

30The project has joined the AspectJ project in 2005.
31The JBoss AOP Framework as well as AspectWerkz are offsprings of web application server products. The

former is part of the JBoss (http://www.jboss.com) application server and the latter is part of the Bea Weblogic
server (http://www.bea.com)

32Meta-object protocols originate in the Common Lisp Object System (CLOS) [Keen88].

3.2 State of the Art Approaches 45

the following, a brief, but incomplete overview is given of the existing approaches.33

Aspect-oriented design modeling (AODM) [Stei02] was originally developed to support the
AspectJ language in the design phase. Later it was extended to support other asymmetric AOP
languages. It is based on UML and supports the modeling of systems by parameterized col-
laboration diagrams containing classes that specify the crosscutting structure of a system. The
crosscutting behavior can be described in terms of use cases and sequence diagrams.

Theme/UML [Bani04c, Clar05] is the design part or the Theme approach (cf. Section 3.2.5).
It maps the crosscutting and base themes to UML artifacts. Base themes are represented as
packages, crosscutting themes (aspects) as parameterizable packages in UML. The parameters
of the package indicate the join points for aspects. The crosscutting behavior is specified by
sequence diagrams contained in the theme packages.

CoCompose [Wage02] is a symmetric design approach that is not based on UML. It allows
aspect-oriented designs to be specified in terms of features. Modeling is done using a graphi-
cal language. Furthermore, a design algebra makes it possible to map the design to a specific
language.

UML for Aspects (UFA) [Herr02] is a symmetric design approach based on UML and ex-
tends the UML package construct. An aspect package construct is introduced which acts as a
facade that may have methods and attributes, representing distinct attributes and methods from
the classes contained in the package. For defining the crosscutting relationship between an as-
pect package and a target package, the aspect package must be inherited a connector package. It
binds the aspect package to the packages of the crosscut concern.

The Aspect Modeling Language [Groh04] is based on the UFA notation. It provides a subset
of the AspectJ language elements and uses packages to describe aspects and base packages. The
composition is done by connector packages.

UMLAUT [Ho00] is a weaving tool which can be used to perform compositions of aspect-
oriented models based on a UML notation.

3.2.4 Approaches to Software Architecture

Several aspect-oriented architectural approaches have been proposed in the past. A small selec-
tion of aspect-oriented approaches are described in the following. A more extensive discussion
of them as well as of conventional software architecture approaches can be found in [Chit05,
p. 114–153].

The Perspectival Concern-Space [Kand03] is an aspect-oriented approach using the UML
language. It introduces a UML meta-model extension which introduces perspectives for the mul-
tidimensional decomposition of concerns and the specification of join points where the concerns
are composed.

DAOP-ADL [Pint03] is an XML-based architecture description language that is able to de-
scribe aspects, components and interconnections. The interconnections describe the composition
rules for aspects and components.

33A more detailed discussion and overview can be found in [Chit05]. This survey also discusses conventional
design approaches.

46 Chapter 3. Aspect-Oriented Software Development

AGOA [Kule04] is an aspect-oriented architectural approach which was originally introduced
for the development of multi-agent systems. However, the concepts are more general and can
be used in other domains. The method supports the development at all stages of the software
process. It uses feature-based modeling at the requirements stage and UML component-based
modeling at the architectural stage.

The TranSAT [Bara04] approach has two main goals: the reusability of aspect-oriented ar-
chitecture artifacts and the introduction of new concerns without breaking the consistency of
the architectural description. The main constructs of the approach is the so-called architecture
pattern which consists of an architecture plan, a join point mask, and a set of transformation
rules.

3.2.5 Approaches to Requirements Engineering
As discussed in Section 3.1.6, the earlier concerns are separated, the earlier the advantages from
the separation can be exploited. Therefore requirements approaches play a key role in the ef-
fective handling of crosscutting concerns. The current aspect-oriented approaches are sketched
in the following. A more detailed discussion, as well as an evaluation of aspect-oriented and
conventional requirements engineering approaches can be found in Appendix A. The gaps in the
existing aspect-oriented requirements approaches are summarized in Chapter 4.

Use Case Approaches

AOSD/UC. Aspect-oriented software development with use cases (AOSD/UC, cf. [Jaco03]
and [Jaco05]) proposes an extension to the use cases method [Jaco92]. The approach can be
employed throughout all phases in the software process and introduces new aspect-oriented sym-
metric and asymmetric constructs. The two new main elements are pointcuts and use case slices.
It extends the UML use case constructs with aspect-oriented elements, such as pointcuts. It intro-
duces use case slices to represent the artifacts belonging to a use case at a particular stage of the
software development. Use case modules are containers for artifacts refined during the software
process. Operationalized non-functional requirements are used by so-called infrastructure use
cases.

SMA. Scenario modeling with aspects (SMA) [Arau04, Whit04] is an approach for creating
more consistent and complete use cases by modeling base and crosscutting scenarios separately
from each other. A composition mechanism generates state machines from the elicited scenarios.
These state machines help to validate the modeled use cases by simulation.

AUCDA. Aspectual use case driven approach (AUCDA) [Arau03] is another use-case-based
aspect-oriented approach. It is similar to AOSD/UC [Jaco05] and aims at identifying and de-
scribing crosscutting non-functional (called quality attributes) and functional concerns at the
requirements stage. However, in contrast to AOSD/UC, non-functional requirements are not
handled by infrastructure use cases. A template, proposed in [More02], is introduced, which
facilitates the identification of non-functional requirements.

3.2 State of the Art Approaches 47

Goal Approaches

ARGM. Aspects in Requirements Goal Models (ARGM) [Yu04] is a goal-oriented approach
which is based on the non-functional requirements framework [Chun00]. Goals and soft-goals
can be decomposed into subgoals and sub-soft-goals, respectively. This is done iteratively until
the decomposition is reduced to a task. (Sub)soft-goals can be related to operationalizations.
Correlations can represent in�uences between (sub)soft-goals and goals. Together they form a
goal/soft-goal interdependency graph, which is represented as a so-called V-graph. The approach
aims at identifying aspects during goal-oriented requirements analysis. Aspects are identified as
tasks with many links satisfying different goals.

Other Approaches

AORE. Aspect-Oriented Requirements Engineering (AORE) [Rash03] with Arcade is an ap-
proach which can be used with any requirements process/technique. In [Rash03], the approach is
used together with the PREView approach [Fink92, Fink96]. AORE aims at the modularization
of crosscutting concerns and the creation of a consistent requirements specification document.
Aspectual requirements are similar to external requirements in PREView. They crosscut user
requirements derived from various viewpoints. It uses an XML-format to store the artifacts.

COSMOS. The Cosmos approach [Stan02, Sutt03, Sutt04] is based on the principle of the
multi-dimensional separation of concerns [Tarr99], where the concern space consists of a set
of peer concerns that may overlap. Cosmos proposes an artifact-independent way of modeling
concerns. It provides a general concern-space modeling schema for the classification of concerns,
their relationships, etc. After a concern has been identified, it is assigned to one or more concern
categories. Furthermore, the relationships to other concerns are identified and classified [Sutt04].
A concern is either logical or physical. A logical concern is of a conceptual nature whereas a
physical concern deals with real world artifacts.

CORE. Concern-oriented requirements engineering (CORE) [More05a, More05b] extends the
AORE with Arcade approach [Rash03] by the concepts of the multidimensional separation of
concerns [Tarr99]. CORE decomposes requirements using different concerns as decomposition
criteria. It therefore introduces, like the Cosmos approach [Stan02], a meta-concern space which
models the concerns of a software system and their relationships. An instantiation of the corre-
sponding concerns allows the assignment of the requirements belonging to the concern. A set
of composition rules describes the impact of a concern on the requirements of other concerns.
Similarly to AORE, CORE uses XML for the representation of its artifacts, i.e., the meta-concern
structure, the concern artifacts, and the composition descriptions.

AOREC. Aspect-oriented requirements engineering for component-based software systems
(AOREC) [Grun99, Grun00] provides a classification schema for categorizing the systemic as-
pects of components. In AOREC, an aspect is a characteristic of a system which consists of
components providing or requiring services. The main artifacts for documenting aspects are

48 Chapter 3. Aspect-Oriented Software Development

diagrams. The diagrams describe the components, the related aspects and the corresponding re-
lationships. Furthermore, there are textual descriptions that additionally describe the functional
and non-functional requirements of the system. A so-called aggregated aspect describes a group
of interrelated components.

Theme/Doc. Theme/Doc [Bani04c, Bani04a, Clar05] is the requirements part of the Theme
approach. In contrast to other approaches, such as ARGM, the Theme approach has been de-
signed from scratch as an aspect-oriented approach and originates in subjective programming
[Harr93]. It aims at the identification and further handling of crosscutting concerns identified
from natural language requirements. Theme/Doc analyzes the requirements statements of a soft-
ware, thus it is applied at a later stage in the requirements process, when the requirements have
already been elicited. Theme/Doc has a focus on actions, therefore it is less suitable for de-
tecting non-functional crosscutting concerns. The analysis relies on the use of a tool, and the
artifacts produced by the tool are based on a manually compiled list of action words and entities.
Action words are derived from the verbs in the natural language requirements specification and
are called themes. A theme can be seen as the “encapsulation of a concern” [Clar05]. Entities
(nouns) related to the action words can be seen as objects on which the actions rely.

3.3 Criticism of AOSD
In the past, there have been various discussions about the usefulness of AOSD concepts. Usually,
particular AOSD topics or approaches at a particular stage in the software engineering process are
subject to criticism. However, most insights arising from these discussions can be transferred to
the whole field of AOSD. In the following some criticisms from the past are discussed, including
the application of AOSD concepts to the requirements stage, the understandability of AOSD
artifacts, the breaking of the principle of information hiding, and fragile join points.

3.3.1 Criticism of AOSD at the Requirements Stage
Better use viewpoints instead of aspect-oriented approaches. Nuseibeh [Nuse04] proposes
that aspects should not be identified too early, but that the concerns of a software system can
be analyzed in order to understand the resulting requirements. Therefore an adequate software
process must provide the means for identifying crosscutting concerns. The approach suggests the
use of a viewpoint-oriented approach for doing so, as viewpoints provide the means for handling
overlapping requirements, i.e., crosscutting requirements of several stakeholders.

However, viewpoint-oriented approaches only address con�icts in requirements which are
caused by different viewpoints before the requirements are negotiated between the stakeholders.
Thus, they do not identify and handle the actual crosscutting concerns, so that they exist also after
the negotiation. Hence, viewpoint-oriented approaches do not adequately solve the crosscutting
concern problem.34

34An exception is the PREView approach, which allows the identification and handling of non-functional cross-

3.3 Criticism of AOSD 49

Aspects in domain models. Steimann [Stei05] mistrusts the existence and the meaningfulness
of aspects in domain models, i.e., in models resulting from the early phases of the software
engineering process. Several arguments are brought forward to support this hypothesis. The
work claims first that the term aspect is used with different meanings by various approaches in
the field. The work tries to argue that these concepts are better covered by non-aspect-oriented
constructs or that they are not part of the domain modeling.

It is argued that aspects can be realized by roles by using a generalization relationship be-
tween different types in an object-oriented system. This means that a super type can denote a
role, such as Billable or Serializable. A role describes therefore a specific concern. A role can
overlap, or “crosscut”, other roles, because concerns can overlap. An overlapping of roles results
in a multiple inheritance.

Even though this argument is correct and roles can be used for expressing crosscutting con-
cerns, this should not be considered for domain models. First, inheritance is usually not ex-
tensively used in domain models, because domain models need to be simple to understand for
non-expert stakeholders. Furthermore, introducing crosscutting concerns through roles is dif-
ficult, since inheritance is a very coarse-grained way of describing crosscutting behavior. The
smallest unit for defining the behavior of crosscutting concerns in an inheritance hierarchy are
methods. Furthermore, multiple inheritance results in complex relationships between classes,
which is a reason that it has never been broadly used. Moreover, multiple inheritance hampers
the understandability of a domain model. Nevertheless, roles in domain models may be an ap-
propriate means for the description of non-crosscutting concerns in certain situations.

The argument in [Stei05] further implies that the aspect examples usually discussed in the
literature, such as authentication, caching, distribution, logging, etc. are programming aspects
rather than aspects of the domain. This is true to some extent, as they represent behavior which
can be mapped from a crosscutting concern to a corresponding implementation. However, the
origins of the instantiated aspects are the corresponding high-level non-functional requirements,
or concerns, which cut across other concerns. Non-functional requirements can be seen as part
of the domain. This is due to the fact that the implementation of the domain will not work satis-
factorily if the NFRs are neglected. For example, take the requirements for an online shopping
scenario. Ignoring the non-functional requirement which states that the maximum response time
of an application must be below two seconds results in an unusable application. This fact is also
agreed upon [Stei05]: “. . . , that something is classi�ed as a non-functional requirement does not
preclude it from being part of a domain model, . . . ” Furthermore, functional aspects at the pro-
gramming level can have their counterpart at the requirements stage, too.35 Therefore, it makes
sense to express aspects as (high-level) aspects in a domain model.

Steimann [Stei05] also discusses aspects of modeling, which are called facets in the present
work (cf. Section 2.3.2). Facets can also be seen as concerns. They are not overlapping, i.e.,
crosscutting, concerns. Therefore, they can be represented independently from each other, e.g.,
as separate diagrams in UML. As they are not crosscutting, they do not need to be represented

cutting concerns [Fink92, Fink96] for a small number of concerns. Thus, it partially handles crosscutting concerns.
See also Section A.2.1 in the appendix.

35See Example 3.2, where an instance of a functional crosscutting concern is given.

50 Chapter 3. Aspect-Oriented Software Development

separately by an aspect.
Finally, [Stei05] claims to supply evidence for the non-existence of aspects in domain mod-

els by giving a semi-formal proof about the non-existence of the second-order quantification in
domain models. The quantification mechanism (cf. Section 3.1.5) of aspects, especially at the
programming level, is often specified in the form of second-order predicates which define where
and when an aspect crosscuts the artifacts of another concern. The paper argues that “model-
ing languages are usually �rst-order languages . . . ” [Stei05, p. 176] and therefore concludes
that the second-order quantification mechanism does not allow description of aspects in domain
models. There are two counter-arguments to this “proof”: first, the argument neglects the ex-
istence of aspect-oriented approaches which do not use second-order constructs for quantifying
the impact location of an aspect. There is not necessarily a need for second-order quantification,
thus, the crosscutting relationship between an aspect and the target can be specified by a first-
order construct. Second, if it is useful to have second-order constructs in a modeling language,
why should it not be part of the modeling language? This claim re�ects simply the pragmatics
principle in modeling (cf. Section 2.3.1). Other counterarguments to the claims in [Stei05] have
been published in [Rash06].

3.3.2 Problems with the Understandability of Aspect-Oriented Constructs

In [Stei06, Coly06, Cons04], the understandability and readability of aspect-oriented programs
is criticized. The argument in [Stei06, Cons04]36 is based on the seminal essay Goto Statement
Considered Harmful by Dijkstra [Dijk68]. Dijkstra highlights the fact that when using Goto
statements, the static and dynamic structure of a program differ strongly from each other. This
effect leads to worse understandability compare to the use of structured statements. The same
effect can be observed in AOP programs.37 The papers [Stei06, Cons04] argue that the static
structure of an AOP program strongly differs from the dynamic (i.e., the executed) structure of
the program. This effect is sometimes amplified by the fact that the impact of an AOP aspect can
sometimes only be identified dynamically. Both problems contribute to a poor intelligibility of
the source code.

The second problem which affects understandability is that the modularization of crosscutting
concerns may lead to many different aspects and many crosscutting relationships, especially
when using approaches that propose a multidimensional separation of concerns, such as HyperJ
[Ossh01]. This effect is called fragmentation in the present work. A too high fragmentation
caused by the separation of concerns can affect the understandability, as the interrelationship
between the different concerns cannot clearly be understood any more. The problem results
from the fact that for the full understanding of a system, an aspect or a component has to be
studied together with the modular artifacts that are related with it (cf. [Meie05] and also the term
interrelated focus in Section 3.1.7). Thus the more relationships there are between the concerns,

36The paper [Cons04] aimed at provoking a discussion at a panel session.
37Moreover, in [Clar84], it was proposed to use a statement come from rather than go to, which is in fact quite

similar to the mechanisms used in aspect-oriented programming today. However, this was meant as an April fool’s
joke.

3.3 Criticism of AOSD 51

the more complex it is to understand the interrelationship between the concerns.38

The problems of a decreased understandability of aspect-oriented code can also be observed
in the aspect-oriented artifacts at other stages of the software process, for example in aspect-
oriented requirements documents or models. The reader of such an artifact usually analyzes it
sequentially. When reading aspect-oriented artifacts, he has to cope with many dependencies to
understand the overall meaning. However, the reader of aspect-oriented elements cannot cope
with too many dependencies at a time.

3.3.3 Breaking the Principle of Information Hiding
According to [Stei06, Coly06]39, using AOP breaks the modularity and the data encapsulation
of crosscut modules. This is due to the fact that an aspect needs to access the internal structures
of a crosscut module. The aspect can also interfere with the program �ow of the crosscut tar-
get. Moreover, the access to the context of the crosscut target allows the aspect to globalize the
variables of the target. Both break the information hiding principle [Parn72]. Apart from that,
aspect-orientation can void the principle of design by contract [Meye92], as the interference with
the �ow of a target module may inject side effects which result in unpredictable behavior. This
problem is known as aspect interference. All problems related to the breaking of the modularity
through aspects can also be observed in aspect-oriented approaches at the design, the architec-
tural and the requirements stage. For example, an aspect may also break the information hiding
principle in a high-level component architecture.

In AOP, the problem has been addressed by so called open-modules [Aldr04, Aldr05] or
abstract annotations [Ladd05], which allow modules to be crosscut at predefined points only.
Similar constructs can be introduced at other stages of the software process. For example, the
extension point construct in AOSD/UC provides this kind of mechanism. However, [Stei05]
criticizes the decreased �exibility of aspects, as the use of annotations leads to a reduction of
obliviousness and a loss of �exibility.40

3.3.4 Fragile Join Points
There have been various criticisms, e.g., [Stei06] and [Stor05] that aspect-oriented implementa-
tions are fragile to the evolution of the code. This is due to the fact that most approaches use
names to refer to join points. As names can be subject to evolution, they are fragile and therefore
are not well suited for the identification of join points [Stor05]. Therefore this might result in
referencing units that do not exist, or in accidentally referencing units by an aspect, which in
turn leads to unintended behavior. The problem of fragile join points is also a problem at earlier
stages of software engineering. For example, AORE [Rash03] also uses a naming schema for
referencing concerns.

38As discussed in Section 3.1.7, this problem can be mitigated by using a composition mechanism which allows
switching between a view with composed crosscutting concerns and a view with separated crosscutting concerns.

39Beuche and Beust [Coly06, p. 73] do not explicitly mention the breaking of the modularity principle. However,
they observe the problems that “input/output is no longer suf�cient to understand its work as part of the system”.

40Steimann [Stei06] criticizes that the �exibility of aspects is reduced by using annotation or something similar.

52 Chapter 3. Aspect-Oriented Software Development

There are different ways to cope with fragile join points. Some of the approaches introduce
predefined locations in the modules, such as abstract annotations [Ladd03], that can be crosscut.
Other approaches try to overcome the problem by describing the semantics of the target location,
such as [Chit07] or [Oste05].41

3.3.5 Further Criticism
There are numerous claims, e.g., in [Kicz01b], that AOP techniques can be used to describe and
enforce contracts of software modules, following the principle of design by contract [Meye92].
However, in [Balz05], it is clearly shown that contracts of modules should be documented in
the modules they describe. Nevertheless, when using AOP techniques to describe and enforce
contracts, the contracts are inevitably separated from the code which is not the intention of the
original concept.

3.4 Discussion
Aspect-oriented techniques can help to improve various qualities of software artifacts, such as the
understandability and the traceability of requirements. However, aspect-orientation also breaks
or weakens well tried and established principles, such as information hiding or design by con-
tract. As a consequence, the understandability of artifacts may be hampered. Therefore, the use
of aspect-oriented techniques for describing a problem only pays off if the advantages prevail
or at least compensate the introduced disadvantages.42 As a consequence, the use of aspect-
orientation for simpler problems is probably not profitable. Nevertheless, aspect-oriented tech-
niques can help to simplify more complex problems, such as software product lines.

41However, the use of such mechanisms has also been also criticized [Stei05] (cf. Section 3.3.2).
42Therefore, the present work investigates means to mitigate the disadvantages of aspect-oriented software arti-

facts.

53

Chapter 4

Motivating a Novel Aspect-Oriented
Requirements Engineering Approach

As discussed in Section 3.1.6, the requirements engineering phase is predestined to identify
and separate crosscutting concerns. Even though many aspect-oriented requirements approaches
have been proposed all of them have one or more shortcomings. This chapter discusses the
existing problems and identifies the desirable characteristics of aspect-oriented requirements ap-
proaches in Section 4.1. Section 4.2 summarizes the desired qualities of a new approach.

4.1 Gaps in the Existing Approaches
As outlined in the previous chapter, a good separation of concerns is desirable as early as pos-
sible, thus, if feasible, it should be established during the requirements phase. Even though,
conventional requirements approaches can be used to represent crosscutting concerns, they usu-
ally result in tangled and scattered concerns. Therefore many aspect-oriented approaches have
been proposed in the past, as discussed in Section 3.2.5.

Apart from the actual ability to separate concerns, there are several other characteristics
which are desirable in a requirements approach. The resulting list of characteristics are detailed
in Table 4.1.

Table 4.1: Criteria for the evaluation of aspect-oriented requirements approaches.

Criteria Description
Traceability How well can a requirement be traced through the software process? How

well can a software artifact be associated with a requirement and how well
can be the sources of requirements be identified?

Composability Is there explicit support for decomposing crosscutting concerns and for
composing them into a set of integrated artifacts? Is there a mechanism
which allows automatic composition?

Continued on the next page . . .

54 Chapter 4. Motivating a Novel Aspect-Oriented Requirements Engineering Approach

Criteria Description
Modifiability and
Evolvability

How readily can changes be introduced in the requirements artifacts? Are
there features which support a change in the requirements document, such
as integrity checking mechanisms?

Scalability How well does the approach scale? Is the process provided capable
of handling the requirements of a small scale as well as large scale
project? Are the corresponding artifacts describing the requirements able
to describe small scale as well as large scale software?

Understandability How difficult is it for any stakeholder to understand the approach? Are the
artifacts produced by the approach easy to understand, can they easily be
used to communicate with a stakeholder, e.g., during validation?

Trade-off How well is the identification and resolution of trade-offs between different
overlapping concerns (non-orthogonal aspects) supported by the approach?

Mapping How well can the requirements artifacts be mapped to following stages?
Does the approach provide a mapping for all requirements? Does it allow
a simple mapping?

Verification and
Validation

How easy is it to conduct a validation or verification with the artifacts
resulting from the requirements process?

Concern handling How well is the identi�cation and separation of functional and non-
functional crosscutting concerns supported? Are all concerns treated in the
same way or are there differences between non-functional and functional
concerns? Can both types be represented adequately?

The remainder of this section will discuss these characteristics in more detail, and it will
show how far the existing requirements approaches satisfy them. The analysis of the present
work is based on the surveys of aspect-oriented approaches in [Bono04, Chit05]. The present
work extends this analysis by investigating some other characteristics and by clarifying some
issues.

The gaps found in the surveyed approaches are summarized in the following, whereas the
detailed survey itself and the analysis of the corresponding characteristics for each approach can
be found in Appendix A.

Traceability. The support for traceability comprises the recording of the source of the origi-
nal requirements, as well as the source for the changes in a requirement. Forward traceability
allows tracing the refinement of requirements through the resulting architectural, design and im-
plementation artifacts. Backward traceability allows the artifacts created in later stages of the
software process to be traced back to the originating requirements. Cross referencing allows the
dependencies of artifacts to be traced between the requirements on the same level of abstrac-
tion/refinement.

Many of the approaches discussed in the Appendix A do not directly or only partially address
this issue, e.g. the ARGM Approach discussed in Section A.3.2. However, some of them can be
more easily extended for traceability than others.

4.1 Gaps in the Existing Approaches 55

Composability. An aspect-oriented approach must provide a way to decompose and modular-
ize crosscutting concerns. A composition must allow the investigation of con�icts between as-
pects (cf. trade-off analysis). An automatic composition mechanism can support the understand-
ability of the aspect-oriented artifacts (cf. Section 3.1.7). Nevertheless, at the time of writing,
none of the requirements approaches in Appendix A explicitly mentions an automatic compo-
sition of the requirements artifacts. However, for some of them a composition mechanism can
be quite easily implemented. For example, the AORE approach (cf. Section A.3.1) could use a
simple XSLT-based [W3C 07] composition mechanism.

Changeability/Evolution support. Aspect-oriented approaches usually support better modi-
fiability and evolvability than conventional approaches, as they separate crosscutting concerns.
Furthermore, the elicitation/evolvability of a requirements specification may be supported by
further mechanisms, such as consistency checking mechanisms and language support for the
evolution. In some of the approaches presented in Appendix A, changes to artifacts are problem-
atic, e.g. in the ARGM approach (cf. Section A.3.2), Furthermore, several of the approaches do
not facilitate the checking of the artifacts’ consistency.

Scalability. The artifacts of a requirements approach as well as the proposed process should be
scalable. Several approaches discussed in Appendix A do not adequately address the scalability1

issue. For example, the graphical representation of I*, NFR, ARGM, the use case diagrams of
the use case based methods, the graphical representation of Theme/Doc, as well as the graphical
representation of AOREC, do not scale well. Furthermore, AORE and CORE use an XML format
as the representation of the concerns and the composition description, which tends to become
large and unclear, the more requirements are represented.2 There are various means to achieve
scalability. For instance, the process must allow multiple engineers to work on the requirements
in parallel and the representation of the artifacts must provide a way to abstract parts which are
not in the current focus of interest.

Understandability. A requirements approach should be well suited for communication with
(non-expert) stakeholders, as they are strongly involved in the requirements process. Therefore
the language used for communicating the requirements should be easy to understand. There are
various factors which in�uence understandability: (i) the representation must be scalable (see
above), because too much information at the same time is too difficult to comprehend, (ii) the
concepts used must be comprehensible for the stakeholders, and (iii) the different artifacts must
be easy to interrelate. Usually, an approach which uses concepts that are related to the domain,
such as objects or work �ows, is easier to understand than an approach that uses more abstract
concepts and therefore supports issues (ii) and (iii).

The approaches discussed in Section 3.2.3 neglect understandability. The use case based
approaches, such as AOSD/UC discussed in Appendix A, are more intelligible for non-expert

1The scalability issue is strongly related to the understandability issue.
2This problem is marginally mitigated by the use of a tool which is presented in [Chit06] (cf. the paragraph about

understandability).

56 Chapter 4. Motivating a Novel Aspect-Oriented Requirements Engineering Approach

stakeholders than the goal-oriented approaches. However, they are hampered by the lack of
scalability, which in turn may lead to problems of understandability. AORE and CORE use
XML which is in fact designed to be human-legible but not necessarily easy to understand (cf.
for example [Brab05]). There are three reasons for this. First, bigger XML files are rather
tedious to read and interpret. Second, there may be many different XML files for each concern,
each crosscutting concern, as well as for each composition description. Third, XML has a �at
text structure, which describes cross references by text identifiers and references. However, they
are not easy to grasp, as they have to be tediously followed and interpreted by the reader of an
artifact. Moreover, the use of the tool presented in [Chit06] does not satisfyingly mitigate the
understandability problem, as a requirement and the crosscutting concerns are separated from
their context and therefore difficult to relate. Instead of using a text-based XML representation,
a graphical representation, such as UML, is preferable to a textual description of relationships
and the crosscutting artifacts. A graphical representation facilitates a simpler understanding of
the interrelationships in a requirements specification.

Some of the approaches discussed involve parts of the UML language (e.g., the use case
based approaches). Even though it is advantageous to have a graphical representation of the
requirements, UML has some major drawbacks. It uses multiple sublanguages which describe
each facet separately (cf. Section 2.3.2). The facets of the system have to be integrated individ-
ually into an overall model by the reader of the model in his mind. For this purpose, each facet
model contains “glue information” which gives a hint on how to integrate two different facets.
For example, a class may indicate the name of the package to which it belongs. In turn, this helps
to identify how the class is integrated in the overall package structure of a package diagram.

Figure 4.1 illustrates the number of integration operations that have to be performed in UML.
Each of the 13 facets can be combined with maximally 12 other facets, which is described by the
X and Y axis of the cube shown. Thus using all 13 diagram types forces the reader of the model to
perform up to

(
13
2

)
= 78 or more integration operations in mind to comprehend the overall model

of the system. This can be demanding already for small models consisting of only a few facets.
Thus, a model in a non-integrated language, such as UML, contains more problem-exogenous
complexity (cf. Section 1.1) than a model described in an integrated modeling language.

An aspect-oriented modeling language which is based on UML can multiply the complexity
effect. Usually, crosscutting concerns impact various types of system facets, e.g., they affect the
structural description, the behavioral description, or the relationships between the artifacts. In
the worst case, a crosscutting concern cuts across all facets. For an aspect-oriented approach
based on UML, the number of integration operations in mind is multiplied for each additional
crosscutting concern described as an aspect in the system. This is visualized by the Z axis of the
cube in Fig. 4.1. Nevertheless, an aspect-oriented approach should try to reduce the intellectual
effort needed to understand the artifacts to a minimum. Consequently, an integrated modeling
language (cf. Section 2.3.2) may be more suitable as a base for an aspect-oriented modeling
approach than the non-integrated UML.

Even though an aspect-oriented model in an integrated language may be more understandable
than one in UML, it can still be complex (cf. Section 3.1.7). To comprehend the relationships
between the various concerns, the approach must provide a means to switch between the aspect-
oriented and the conventional representation according to the representation which is better suited

4.1 Gaps in the Existing Approaches 57

Class Diagram

Composite Structure

Object Diagram

Deployment Diagram

Package Diagram

Activity Diagram

Use Case Diagram

Statemachine Diagram

Sequence Diagram

Interaction Overview

Communication Diagram

Timing Diagram

Component Diagram

C
la

ss
 D

ia
g

ra
m

C
o

m
p

o
si

te
 S

tr
u

ct
u

re

O
b

je
ct

 D
ia

g
ra

m

D
ep

lo
ym

en
t

D
ia

g
ra

m

Pa
ck

ag
e

D
ia

g
ra

m

A
ct

iv
it

y
D

ia
g

ra
m

U
se

 C
as

e
D

ia
g

ra
m

St
at

em
ac

h
in

e
D

ia
g

ra
m

Se
q

u
en

ce
 D

ia
g

ra
m

In
te

ra
ct

io
n

 O
ve

rv
ie

w

C
o

m
m

u
n

ic
at

io
n

 D
ia

g
ra

m

Ti
m

in
g

 D
ia

g
ra

m

C
o

m
p

o
n

en
t

D
ia

g
ra

m

Crosscutting Concern 1
Crosscutting Concern 2

Crosscutting Concern n...

X

Y

Z

Figure 4.1: Illustration of the number of integration operations needed to compose different
facets described by an aspect-oriented UML approach. The X and the Y axis span the space
for the number of integration operations needed for the facets described by UML. The Z
axis expands that space by an additional dimension requiring additional effort to integrate the
overall model.

to the task at hand.
Furthermore when using an aspect-oriented visual modeling approach, the approach should

be able to handle the layout of the model when composing the aspect-oriented model to a con-
ventional one3. This is important, as otherwise the advantages from the composition get lost.

Trade-off analysis and decision support. Trade-off analysis and decision support is another
characteristic that should be supported by an aspect-oriented approach. An approach should
support the detection as well as the resolution of con�icts between crosscutting concerns. How-
ever, some of the approaches discussed in Appendix A do not satisfactorily tackle this problem.
For example, AOSD/UC discussed in Section A.3.3 only provides minimal support for handling
trade-offs. A trade-off analysis is not provided. The AUCDA and SMA approaches (cf. Sec-
tion A.3.5 and A.3.4, respectively) do not deal with the trade-off problem at all.

3See the composition characteristics discussed above.

58 Chapter 4. Motivating a Novel Aspect-Oriented Requirements Engineering Approach

Mapping. The mapping of artifacts from the requirements stage to artifacts at later stages
should be as easy as possible. The approach should support the object-oriented paradigm, since
it is the most usual. Therefore, aspect-oriented constructs should be built on top of it. Aspect-
oriented artifacts should be easily mappable to aspect-oriented artifacts at later stages or at least
to an object-oriented paradigm, which is the most popular way of implementing systems today.

Several of the approaches discussed, e.g., the SMA approach delineated in Section A.3.4, do
not explicitly or only partially disclose how the resulting artifacts are mapped from the require-
ments phase to later stages.

Validation/Veri�cation. There are static and dynamic means to validate/verify software (cf.
Chapter 2 and especially Section 2.1.2). The validation/verification of requirements artifacts
should be as easy as possible. A simple static validation/verification implies that the artifacts used
need to be easy to understand and scalable. In contrast to static validation, dynamic validation is
easier, as it allows automatic interpretation and/or checking of the artifacts, e.g., by simulation.
However, dynamic validation is often more costly, as the problem domain must be formalized
first. Most of the approaches discussed in Appendix A allow only a static verification, e.g.,
AOSD/UC or the AUCDA. Other approaches partially support dynamic verification, such as
AORE with the PROBE framework.

Concern treatment. An aspect-oriented requirements approach should be able to handle all
concerns equally. It should be possible to identify, separate and describe crosscutting as well as
non-crosscutting concerns, whether they have a non-functional or a functional origin. Neverthe-
less, some of the approaches, such as SMA or AOREC (cf. Section A.3.4 and A.3.8) do not treat
functional and non-functional crosscutting concerns equally.

4.2 Proposal for a New Aspect-Oriented Requirements Engi-
neering Approach

All of the evaluated approaches neglect the understandability of requirements artifacts to some
extent. Therefore, the present work proposes a new aspect-oriented approach that will concen-
trate on the understandability of aspect-oriented requirements, but also copes with other issues
identified in this chapter. To simplify its development, an existing requirements approach will be
used as a basis. It should facilitate understandability by satisfying the following characteristics:

1. The approach must provide a graphical representation. Modeling languages allow the
visualization of important information such as relationships, including crosscutting rela-
tionships, which makes this information more comprehensible.

2. The modeling language must use an integrated visualization, as it reduces the problem-
exogenous complexity. It helps to ease the understandability when a reader of the re-
quirements artifacts needs to interpret the relationships between the concerns or needs to
understand the overall meaning of a model.

4.2 Proposal for a New Aspect-Oriented Requirements Engineering Approach 59

3. A modeled system should be easy to understand for any stakeholder, which especially
demands an easy and straight-forward description of the domain model.

4. The approach must scale well. This can be achieved through a mechanism which helps to
abstract from elements that are not at the focus of interest, and by the support through a
process.

5. It must allow switching between the aspect-oriented view and the conventional view. This
facilitates the understandability of the relationships between the crosscutting concerns and
helps to detect con�icts.

The approach must satisfy the following characteristics, or, at least, it should facilitate a simple
implementation to satisfy them:

6. Non-functional and functional concerns must be handled equally and adequately.

7. The approach should avoid or mitigate the problems introduced by aspect-orientation, such
as fragile join points and the violation of the information hiding concepts.

8. There should be a means for a dynamic validation, e.g., by simulating a requirements
model.

9. The source of requirements as well as the source of changes should be recordable. Artifacts
should be traceable throughout the software process.

10. Artifacts should be easily modifiable. Preferably, an automatic mechanism should help to
maintain the consistency of the model after changes.

11. The approach must allow the recognition of trade-offs between crosscutting concerns im-
pacting the same target and provide a way to resolve these con�icts.

12. Artifacts from the requirements stage must be easily mappable to the following stages of
the software process.

The remainder of this work deals with the implementation of an aspect-oriented approach
which satisfies the above characteristics. It is based on the object-oriented, integrated modeling
language ADORA [Joos99, Glin02b], since ADORA satisfies several of the characteristics pro-
posed above. The following Chapters 5 and 6 introduce the ADORA language and define it more
formally. The chapters following after this introduction deal with the aspect-oriented extension
of the ADORA language and its validation.

61

Chapter 5

Basics of the ADORA Approach

This chapter introduces the modeling language ADORA. It will be used as a means for demon-
strating how to introduce aspect-oriented language constructs in a requirements modeling lan-
guage. The ADORA language comprises several language features (cf. Section 4.2) which are
desired when introducing aspect-oriented constructs.

ADORA is an object-oriented method for the Analysis and Description Of Requirements
and Architectures. The method has been developed in the Requirements Engineering Research
Group at the University of Zurich and is still evolving [Joos99, Glin02b, Bern02, Xia04, Seyb06a,
Rein08]. In this chapter, the concepts and the language elements of the ADORA approach are
presented in detail.

The ADORA language is used for modeling requirements and architectural design specifica-
tions on the logic level [Glin02b]. It can be used for describing models of functional requirements
at a later stage in the requirements process. Non-functional requirements can be included as tex-
tual annotations in ADORA models. Furthermore, ADORA models are supposed to evolve within
an incremental requirements process, as outlined in [Seyb04a, Seyb06a].

The ADORA language aims at the elimination of modeling problems and anomalies which
occur when using other modeling languages, such as UML [OMaG03b]:

• Loosely Coupled Language: UML is a loosely coupled language. Basically, UML con-
sists of a set of independent sub-languages which are neither integrated on the level of the
language nor on the level of visualization. The resulting problems are twofold:

– The lack of integration on the language level leads to more redundancy in the lan-
guage. Thus, many constraints are needed to enforce horizontal consistency [Mens05,
Cram07], i.e., the consistency between the sub-models.

– The lack of an integrated visualization of the elements leads to models which are
difficult to understand, as the reader of the model1 must integrate the loosely coupled
and separately visualized sub-models in mind, which can be a demanding task already
for small models.

1The reader of the model belongs to the group of stakeholders involved in the requirements or architectural phase
of the software.

62 Chapter 5. Basics of the ADORA Approach

• Class Models: UML uses class models as the central modeling element. Class models
have poor capabilities for expressing the context of their instances. For the reader of a
model, it is easier to work with instances instead of classes themselves, because they are
more concrete, i.e., they describe the system to be built in a more tangible way. This
problem is not satisfyingly solved by UML.

• Decomposition: Another problem in UML is the poor aptitude for model decomposition.
Decomposition is a means of coping with the complexity of a system. The support for
decomposition in the UML language up to version 1.5 is only rudimentary (e.g. by package
constructs or within state diagrams). Even though newer versions of UML provide better
support, the support is still not optimal.

The language concepts of ADORA aim at the elimination of these problems. The remainder
of this chapter elaborates on the language. Section 5.1 discusses the language concepts in detail,
whereas Section 5.2 gives an overview of the syntax and semantics of the language. The language
definition of ADORA is delineated in the next Chapter 6. It will be the basis for the introduction
of the aspect-oriented modeling elements in Part II of this work.

5.1 Language Concepts of ADORA

As summarized above, the ADORA language overcomes the problems discussed above through
the following concepts [Glin02b]:

• The ADORA modeling language is based on an integrated modeling language concept (cf.
Section 5.1.3).

• It is based on abstract objects (i.e., prototypical instances) rather than on a class model (cf.
Section 5.1.1), which permits decomposition and facilitates the integration of the language.

• ADORA models are hierarchically decomposable (cf. Section 5.1.2).

• The ADORA language employs a view concept which allows combining the representation
of different facets2 of the system (cf. Section 5.1.4) in the same diagram.

• ADORA applies three mechanisms for abstracting models (cf. Section 5.1.4), i.e., for set-
ting a particular focus of interest on a given set of elements.

• The language supports an adaptable degree of formality (cf. Section 5.1.5), which allows
models to be described either informally, semi-formally, or formally.

• ADORA supports the controlled evolution of requirements by particular model elements
(cf. Section 5.1.6).

2 Throughout this work, the term facet is used instead of the term aspect so as not to confuse the reader when
talking about aspects in the sense of aspect-orientation.

5.1 Language Concepts of ADORA 63

5.1.1 Modeling with Abstract Objects

The main structure of the ADORA modeling language is based on abstract objects, rather than on
classes or types, which are the basis for most of the other object-oriented modeling languages,
such as UML [OMaG03b]. Abstract objects are prototypical instances of types. They do not
represent objects at runtime.3 Hence, they do not have concrete values stored in their attributes.
Nevertheless, they designate the concrete instances and their location in the overall object struc-
ture of a system which is expressed by a part-of relationship.

Class models are not as powerful as object models in expressing composition relationships
(cf. Section 5.1.2 and [Joos99]). Hence, it is not possible to say in which context an instance of
a class is used. This is illustrated in Fig. 5.1. Figure 5.1 (a) shows an object decomposition de-
scribing an electronic management system of a library. The system consists of several elements
which are modeled by abstract objects denoted by rectangles. A library system consists of an
Authorization object, a BorrowManager object, a UserAdministration object and a BookAdmin-
istration object. Each of the latter three objects contains an instance of a Logger, i.e., a separate
logging object is part of each of these components. They may be used to log, for example,
security related events. In this example model, the context of each object is clearly apparent.

In contrast to Fig. 5.1 (a), Fig. 5.1 (b) shows the same system described by a UML class
diagram. In the class diagram the context of the instances is hard to identify. Only the attributed
cardinalities of the composition give a hint about the number of instances which are present at
runtime. Therefore, the connection between the different objects is more difficult to comprehend
than in the object model.4

Hence, the use of object structures instead of classes results in more expressive models and
fosters understandability, which is especially important for requirements models, as they also
have to be read and understood by the non-expert stakeholders of a project.

LibrarySystem UserAdministration AuthenticationLog

BorrowManager

1
1 1

1 2 1 1
a) b)

LibrarySystem

Authorization

BorrowManager BooksAdministration

UserAdministration

Logger

BooksAdministration

1

1

1

1 1

1

Logger

Logger

Authorization

Figure 5.1: An object composition of a library system in (a) vs. the corresponding class
representation of the same system in (b).

3However, when executing an ADORA model, a concrete instance of an abstract object is created [Seyb06a].
4In versions 1.0 to 1.5 of UML, the concept of abstract objects is known too, but it is not used coherently. In

UML 2.0, the concept of abstract object is extended and integrated more coherently as so-called structured classes.

64 Chapter 5. Basics of the ADORA Approach

5.1.2 Hierarchical Decomposition
Hierarchical decomposition5 is the main means of handling big models and coping with their
complexity. Furthermore, the use of hierarchical decomposition facilitates the concepts of infor-
mation hiding [Parn72] and increases the maintainability of components.

The hierarchical decomposition of a model means to divide it into highly cohesive parts
which are in a part-of relationship with other parts. It is enabled by the use of abstract objects
and the part-of relationship which is expressed by nesting abstract objects. Each object in the
decomposition hierarchy is encapsulated and recognizes a set of responsibilities. An object may
provide a service to other objects that may be accessed through a well-defined interface.

For example in Fig. 5.1 (a), the LibrarySystem consists of several components, e.g. the Bor-
rowManager component. In turn, the BorrowManager consists of the Logger component and the
BorrowManager might use the services provided by the Logger.

5.1.3 Integrated Modeling Language Concepts
ADORA is based on an integrated modeling concept, i.e., different facets of a software system
are defined in one coherent modeling language, which in�uences the language design and the
visualization of models:

i. Language Design: In contrast to non-integrated modeling languages, integrated languages
are based on a coherently well-defined meta-model. This means that the language is
planned from the beginning as one integrated language [Joos99, Xia04], rather than be-
ing composed from separately designed sub-languages where each of them is representing
a facet, such as behavior, static structures, use cases, etc. Non-integrated modeling lan-
guages contain more redundancy than integrated ones [Joos99, p. 76] and need therefore
more constraints to enforce consistency between the different facets.

ii. Model Visualization: In non-integrated modeling languages, such as UML, the facets of
a model must usually be visualized separately. Conventional modeling tools handle this
problem very often by describing different parts of a model in different diagrams, i.e., there
is no integrated visualization and the diagrams are connected through some kind of linking
mechanism. The navigation through the model structure has to be done by following links
to other model elements, usually causing a so-called explosive zooming [Seyb03]. An
explosive zoom displays the newly shown model parts in a separate window or area and
the reader of the model easily loses the context of the element. Thus, explosive zooming
makes it hard to understand how the visualized parts are related to each other.

ADORA does not suffer from these problems as it is based on an integrated modeling lan-
guage. The particular facets of the system model are represented as views. A view can be seen
as a projection (in the mathematical sense) on the model. For the visualization of a model, views

5A hierarchical decomposition is a composition relationship in the terminology of UML class model. An aggre-
gation relationship in the sense of UML has to be modeled in ADORA either by a decomposition or by an association
(cf. Section 5.2.2).

5.1 Language Concepts of ADORA 65

are displayed in combination with each other in an integrated way (see Fig. 5.2). There are six
different views in ADORA, which are discussed in detail in Section 5.2:

1. The Base View: The base view visualizes the static structure of the model. It consists
of abstract objects and sets of abstract objects which are just called object sets in the
following. Objects are visualized as rectangles and object sets as a stack of rectangles,
respectively. For instance, the rectangle with the name LibrarySystem in Fig. 5.2 represents
an abstract object, whereas the stack of rectangles with the name User denotes an object
set.

2. The structural view: The structural view comprises associations connecting components.
An association denotes either a structural relationship or a communication channel be-
tween objects. They are visualized as lines which may have two directed roles. A bold
association is called abstract and represents a set of hidden associations or indicates an
association which is not fully evolved at this time. Figure 5.2 illustrates the use of as-
sociations. The line between the object BorrowManager and Authorization denotes an
association with the two roles AuthenticateBorrowing and AuthorizeBorrowing which is
used for the communication between both objects.

3. The behavior view: The abstract behavior of objects is described by means of statecharts
[Hare87]. A statechart consists of states and transitions. They are denoted in ADORA by
rounded rectangles and arrows, respectively. For instance, in Fig. 5.2 the behavior of the
object Authorization is shown. For example the rounded rectangle named Wait is a state
and the arrow connecting to the state UserInfo is a transition.

4. The user view: The user view describes the use cases, which are called scenarios in the
ADORA approach. A use case is modeled by a scenariochart [Xia04] and describes the
interaction between the system and an environment object. It is visualized as an ellipse and
can be decomposed into sub-scenarios forming a scenario tree. In Fig. 5.2, the rounded
rectangle BorrowBooks in the BorrowManager component denotes a scenario which is
connected with three sub-scenarios. An association connects the root scenario with the
LibraryUser environment object in the system context.

5. The context view: The context view describes the actors in the context of the modeled
system. Actors are called environment objects in ADORA. The environment objects are
denoted by hexagons. Figure 5.2 illustrates several environment objects of the library
system, e.g., the LibraryUser.

6. The functional view: The functional view defines additional properties, such as attributes
and operations for an object or object set. This view is not visualized together with the
other views. Its information is displayed separately. An example of it can be found in
Section 5.2.6.

66 Chapter 5. Basics of the ADORA Approach

ManageCatalog

BorrowBooks

ReadCatalogBA

ReadCatalogBM

Object Object Set Scenario State Actor
Abstract Association

Association

BorrowBooks

AuthorizeBorrowing

AuthenticateBorrowing

ManageBooks

LibrarySystem

UserInfo

[not authenticated] receive queued
msg=authenticate(user:string, pw:string)
over AuthenticateBorrowing,
AuthenticateBookAdm, AuthenticateUserAdm |
send getUserInfo(user,pw)
over SendUserInfo

Authorizing

receive userInfo(ui : userinfo)
over GetUserId | syncexec
send composeUserCredentials()
to UserCredentials

receive userCredentials() from UserCredentials |
send authorized() to msg.msgAnswerTarget

Authorization...

[authenticated]
receive queued msg=authenticate(user:string, pw:string)
over AuthenticateBorrowing,
AuthenticateBookAdm, AuthenticateUserAdm | call

Wait

GetUserId

SendUserInfo

ManageUsers

ManageUserInfo

ReadUserInfo

BorrowManager...

SelectBooks...
1

LibraryUser

AuthorizeBookAdm

AuthenticateBookAdm

AuthorizeUserAdm

AuthenticateUserAdm

BookAdministration...

Book...

UserAdministration...

User...

RegisterBorrowing...
3

2
Authenticate...

GetFeedback GetFeedback

(0,n)

(0,m)

UserCredentials...

borrowedBy (0,1)
borrows (0,p)

UserAdministratorBookAdministrator

Figure 5.2: Parts of a library system modeled in ADORA, based on [Meie06].

5.1.4 Visual Abstraction Mechanisms
The use of an integrated modeling language facilitates better model understandability [Bern99b].
However, an integrated model tends to result in a cognitive overload if every part is visualized at
the same time. This is due to the fact that already small models with a few elements may have
rather large and complex graphical representations with a lot of details. Nevertheless, there are
many elements which need not to be visualized, as they are not at the focus of interest of the
model reader. Hence, it is desirable to have a mechanism reducing the cognitive overhead by
just displaying the parts in the model that are of interest. For this purpose, the ADORA language
provides three visual abstraction mechanisms which are applied to the integrated models.

1. The vertical model abstraction applies to the elements which are nested into another node,
i.e., which are a part of another node. Applying a vertical abstraction to a node hides or
shows these inner elements. For example, the details of the Authorization component in
Fig. 5.2 can be hidden if they are not

Applying a crosswise abstraction visualizes just specific concerns or viewpoints of the

5.1 Language Concepts of ADORA 67

model. For example, hiding the components UserAdministration, BookAdministration,
Book, User, the environment objects BookAdministrator and UserAdministrator results in
a model representation showing only the components BorrowManager and Authorization
as well as the environment objects. The remaining elements deal with the borrowing of
books.

Algorithm. From a technical point of view, all three abstraction mechanisms are based on
toggling the visibility of one or more model elements. This operation can be done by using a
logical fisheye zoom algorithm which is described in [Bern02]. The algorithm hides particular
model elements and therefore reduces the cognitive overhead. It allows the hiding of elements
and then shrinks the freed-up space in the diagram. Conversely, it creates enough free space,
when a model element is shown again.

The aim of the algorithm presented in [Bern02] is to preserve the layout of the modeler’s
mental map [Eade91] despite the changes in the model visualization caused by the hiding of an
element. Note that the layout resulting from the mental map is also called secondary notation
[Petr95]. However, the algorithm in [Bern02] has deficiencies as it is unstable in certain situa-
tions. This problem leads to major changes in the secondary notation when executing the inverse
of a zoom operation. To overcome these deficiencies, the algorithm was radically redesigned in
[Rein07].

Fisheye algorithms, such as the one presented in [Rein07], can be used not only to abstract a
model but also to implement a smart editing that allows the automatic allocation of space when
inserting a new model element and the disposal of freed space when deleting a model element
[Seyb03].

Orthogonality of the abstraction mechanisms. The abstraction mechanisms presented work
independently of each other, e.g., if a state A is hidden by the crosswise abstraction mechanism,
and then the behavior view is hidden, A stays hidden if the behavior view is shown again.

Indicating partial view. Zoomed out components, states and scenarios indicate their hidden
content, by adding a trailing ellipsis symbol (. . .) to their name. Furthermore, there may be
so-called abstract associations indicating associations with a hidden source and/or target node.
Both abstraction indicators are discussed in Section 5.2 in more detail.

5.1.5 Variable Degree of Formality

In ADORA, all language constructs support a variable degree of formality. Thus, elements can
be described either informally, semi-formally, which is a mix of formal and informal elements,
or formally. Therefore, the description of model parts can range from informal natural language
specifications to formal models. Nevertheless, a mixed description consisting of formal and
informal elements is employed most of the time. For example, during the evolution of software
requirements towards a complete and formal software specification, formal as well as informal

68 Chapter 5. Basics of the ADORA Approach

elements can be contained in the model. An evolutionary requirements process can be supported
by a semi-formal simulation of the model as described in [Seyb06a].

Furthermore, the ability to specify system parts with a variable degree of formality helps to
handle the varying risks of system parts. Parts that have a higher risk can be modeled formally,
whereas low risk parts can be modeled informally and need less effort [Seyb06a].

5.1.6 Requirements Evolution Support
The software process during the requirements specification phase is often evolutionary, because
requirements are not clear and complete from the beginning and have to be elicited and refined
first. Hence, a requirements language should support a planned evolution by an adequate mech-
anism. ADORA supports an evolutionary requirements process by providing language constructs
allowing the modeler to mark particular model parts as partial [Xia04], i.e., as intentionally in-
complete.

The missing information of partial elements is intended to be completed later in the model-
ing process. By using these partial constructs, the understandability of the model is increased
because it helps to distinguish between intentional and unintentional incompleteness in the spec-
ification. Furthermore, it helps in tracking the incompleteness through the whole semi-formal
simulation process as described in [Seyb04a].

In ADORA, the evolution of requirement models is supported by the so-called partial indicator
for components, states and scenarios. If the partial indicator is set, it is also visualized by an
ellipsis added to the name of the partial element. Furthermore, there is the so-called abstract
association6 which indicates the intentional incompleteness of it. Both elements, the partial
indicator and the abstract association, are discussed in detail in Section 5.2. Note that there
are also partially viewed models, which are the result of applying the abstraction mechanisms
described in Section 5.1.4. Partial models and partially viewed models are denoted by the same
syntactical elements, i.e., the partial indicator and abstract associations.

5.2 Overview of the ADORA Language
In this section, the language elements of the ADORA language are discussed in more detail
according to their view membership.

5.2.1 Base View
The basic structure of an ADORA model consists of abstract objects, which are prototypical
instances, as discussed above. An object set is a set of similarly typed objects. The superordinate
concept of abstract objects and object sets is called component, i.e., components represent both
abstract objects and object sets. A component comprises a cardinality denoting the minimal and
the maximal number of objects that exist. It is denoted by a pair (a, b), where a is the minimum

6More precisely, a partial association is a so-called manually abstracted association.

5.2 Overview of the ADORA Language 69

and b is the maximum cardinality. A component which has (1, 1) as cardinality is an abstract
object, because exactly one instance exists. Abstract objects are denoted by a rectangle, such as
the object BorrowManager in Fig. 5.3, which shows the same system as in Fig. 5.2 but with a
different focus on the system. The name is either centered or at the upper left corner of the object,
depending on whether the object contains parts or not. The cardinality tuple of an abstract object
is not displayed.

In contrast, object sets are extensions, i.e., they comprise a set of similarly typed objects and
have a cardinality different from (1, 1). An object set is represented by a shadowed rectangle, as
illustrated in Fig. 5.3 by the component User. An object set shows the cardinality tuple in the
lower left corner. In contrast to an abstract object, an object set can comprise operations which
are used to manage the extension, e.g. to delete and create objects.

Structure of a component. The structure of a component is twofold: it comprises a set of
properties and a set of parts. The properties consist of attributes, operations, values of so-
called standardized properties7, and directed relationships. The first three elements are described
in the functional specification of an object, which is discussed in Section 5.2.6. The directed
relationships originating in a component are either transitions (a component can be a part of a
statechart, cf. Section 5.2.3) or associations (cf. Section 5.2.2).

An object can be of a specific type, which helps to avoid redundant structures in objects. The
type name is indicated after the component name, separated by a colon.8 An example of an object
with a specific type is given by Fig. 5.3 where the object UserAdministration contains an object
Logging which is of the type Logger. Furthermore, an object might be �agged as external. An
external object is similar to an environment object. However, it is embedded in the system, and
therefore, it is a part of it. External components are denoted by the type external and do not have
an inner description, i.e., a functional specification or a behavior description (cf. Section 5.2.5).

Decomposition. A component can contain other components as parts. These parts can contain
in turn other components, thus a component can be decomposed recursively, creating a hierarchi-
cal decomposition of components. Moreover, there may be other parts embedded in components,
such as states (cf. Section 5.2.3) and scenarios (cf. Section 5.2.4) which can also be decomposed
hierarchically as statechart and scenariochart, respectively. The graphical representation of the
part-of relationship in ADORA is strict, i.e., neither components nor other decomposed elements
may be part of multiple elements, nor may an element contain itself [Glin02b].9 In Fig. 5.2, the
decomposition is illustrated by the LibrarySystem object which comprises several other objects.
Furthermore, there are examples of other object parts, such as scenarios, represented by ovals,
in the object BorrowManager, or the states, represented by rounded rectangles, in the object
Authorization.

7All standardized properties are defined in an directory structure which is discussed in Section 5.2.7.
8Types are defined in the type directory which is discussed in Section 5.2.7.
9An exception to the rule of being part of more than one composite is given with scenariocharts (cf. Sec-

tion 5.2.4). They form their own decomposition hierarchy besides their membership in the decomposition hierarchy
of components. Thus a scenario can be part of more than one composite.

70 Chapter 5. Basics of the ADORA Approach

Abstracting components. The modeler has the ability to hide and show the inner parts of
a component using the abstraction mechanisms discussed above. A component whose inner
structure is completely or partially hidden is indicated by a name with an ellipsis. This ab-
straction indicator helps the reader of the model to distinguish the abstracted components from
non-abstracted ones.10 Figure 5.3 illustrates the library system with an abstracted component
Authorization.

ManageCatalog

ReadCatalog

BorrowBooks

ReadCatalog

AuthorizeBorrowing

AuthenticateBorrowing

ManageBooks

LibrarySystem

Authorization...

ManageUsers

ManageUserInfo
ReadUserInfo

BorrowManager...

BookAdministrator

AuthorizeBookAdm

AuthenticateBookAdm AuthorizeUserAdm

AuthenticateUserAdm

BookAdministration...

UserAdministration...

User...

GetFeedback GetFeedback

Book...
(0,n)

(0,m)

SendUserInfo

GetUserId

borrowedBy (0,1)
borrows (0,p)

Logging... : Logger

LibraryUser UserAdministrator

Figure 5.3: The library system (cf. Fig. 5.2) with a different focus on the model. The com-
ponent Authorization is abstracted, whereas a part of the component UserAdministration is
shown.

5.2.2 Structural View
The structural view combines the base view with the associations. Associations are unidirectional
binary relationships, which can connect different types of ADORA elements. The connected
elements are called the constituents of the association. An association can either connect two
components, an external component and a scenario, or a scenario and an environment object. An
association may be assigned to two roles, one from the source to the target (source-to-target role)
and the other one from the target to the source (target-to-source role).

Application of Associations

There are two purposes for associations in a model. First, they can denote a structural rela-
tionship which is used for describing a connection between two data entities, as done in the

10In fact, denoting the abstraction by three trailing dots is also applied to other elements which are hierarchically
decomposable, such as states and scenarios.

5.2 Overview of the ADORA Language 71

entity relationship modeling with relationships. Therefore, associations can be associated with
cardinalities indicating the minimal and the maximal number of instances that take part in the
association. For instance in Fig. 5.3, the object sets Book and User are connected by a structural
association. The role borrows expresses that a user of the library can borrow between zero and
p books, where p ≤ n. The role borrowedBy denotes that one book can have zero or one user
borrowing it.

The second purpose of an association is its use as a communication channel over which a
source and a target element exchange messages with each other. The source element can send a
message to the target by addressing it in the corresponding source-to-target role. An answer may
be received over the same association. In this case, the association must define a target-to-source
role which can be addressed to get the answer. By using associations as communication channel,
it is possible to decouple components from each other, which is important for properly realizing
the information hiding principle [Parn72]. Moreover, the decoupling enables the modeling of
contracts between components.

Figure 5.3 illustrates the use of an association as a communication channel. The association
with the roles AuthenticateBorrowing and AuthorizeBorrowing between the component Borrow-
Manager and the component Authorization are used a as communication channel.

Abstract Associations

There are so-called abstract associations which are visualized as bold lines. They occur in two
cases:

1. A so-called calculated abstract association denotes one or more concrete associations. It
is introduced if a constituent of an association is hidden [Xia04, Section 2.2] in the view
of the model.

2. A so-called manually abstracted association is given if the association is partial, i.e., it is
intentionally incomplete. In this case, the abstract indicator denotes an unfinished evolu-
tion of the association [Xia04, Section 3.5].

Calculated abstract associations. The following situation illustrates when a calculated ab-
stract association occurs. Suppose a component B which is part of a component A and a compo-
nent D that is contained in a component C. B and D are connected by an association α, as shown
in Fig. 5.4 (a). An association is hidden if at least one of its constituents is hidden. Nevertheless,
the information expressed by an association is crucial to the understanding of the model and must
be preserved when applying an abstraction to the model. Thus, in the example, when hiding the
component B or D or both, a calculated abstract association is generated by the view of the model
and shown instead of α. Hence, if B is hidden, as shown in Fig. 5.4 (b), the abstract association is
drawn between its constituents A and D. A and D are derived from the constituents of α. D is the
constituent of α that is still visible, whereas A is the next direct or indirect parent of α’s hidden
constituent A. Correspondingly, the abstract association is calculated when D is hidden, or B and
D are hidden together. Both situations are illustrated by Fig. 5.4 (c) and (d), respectively.

72 Chapter 5. Basics of the ADORA Approach

A calculated abstract association β may represent a set of concrete associations δ. In this case,
all label parts of β, i.e., the cardinality, the name and the direction of β are displayed only if the
represented label parts of all associations in δ are consistent. Thus, β has only a role name with
a direction if all associations in δ have the same role names and the same direction. Moreover,
the cardinality shown by β must not be more restrictive than the least restrictive cardinality of
the represented association [Glin02b]. If there is an inconsistency, the corresponding label part
is left empty for β.

Manually abstracted associations. Compared to calculated abstract associations, manually
abstracted ones denote a partial, i.e., an unfinished, evolution. In this case, the abstract indicator
has to be set manually by the modeler. There are two reasons for an association to be partial:
either the source or the target of the association is not evolved yet, or the manually abstracted
association represents a set of associations which are not evolved yet. The label of a manually
abstracted association has to be set and maintained manually.

Hierarchical relationship between abstract associations. Components can be in a hierarchi-
cal decomposition relationship. As components may be connected by associations, the hierarchal
decomposition is also re�ected by so-called super- and sub-associations re�ecting the hierarchy
of their constituents. It is meaningful to express this relationship between associations, which
is done by so-called interrelationships denoted by a dashed line. The super-association of a
sub-association is defined by the nearest abstract association in the decomposition hierarchy.11

There are several constraints that have to be fulfilled by the interrelationship between a super-
and a sub-association, which are discussed extensively in [Joos99, Xia04]. Fig. 5.4 (e) shows
another situation of a model where an interrelationship arises between an abstract super- and a
sub-association. It is displayed by the dashed line connecting both associations.

a) A

B
A... C...

b) c)

d) e)

D

C A

BD

C

A... C...
E

G H

F...

Figure 5.4: Examples of associations, abstracted associations and interrelationships. In (a),
an initial situation is given. In (b) - (d) the model is shown after executing some zooming
operations. In (b), component A is zoomed out and in (c), D is hidden. Correspondingly,
an abstract association is displayed. In (d), B and D are hidden. Finally, (e) shows another
situation illustrating the case where an interrelationship is shown.

11An elaborated definition of super-associations can be found in [Joos99, Section 5.3.3].

5.2 Overview of the ADORA Language 73

5.2.3 Behavioral View
Each component in an ADORA model can contain an event-based behavior description based
on statecharts, i.e. hierarchically decomposable state machines. Statecharts were originally pro-
posed by Harel [Hare87].

Syntactical Elements

As outlined above, states and transitions form the behavior description of a component. States
describe the condition of being, whereas transitions designate the change from one state to an-
other state. Figure 5.5 illustrates what a behavior description looks like by showing another view
of the library system from Fig. 5.2. In this model, the component Authorize shows some details
of its behavior description. States are shown as rounded rectangles, transitions as solid arrows.

A state can be decomposed hierarchically, which allows coping with the complexity of a be-
havior description. A decomposed state is called a complex state and contains in turn a statechart.

A state might have incoming and outgoing transitions, thus, a statechart is a directed graph,
where the vertexes of the graph are represented by the states, the abstract objects, and the object
sets. Transitions designate the directed edges. A set of states connected by transitions is called
a state group. In fact, a state group is a connected component12 [Cap93, p. 77] in a statechart.
Concurrent behavior is modeled by several state groups within the same component.

Apart from states, components may also be a part of a behavior description. In this case, they
are connected by a transition to a state group and act as complex states. Components which act
as states can be used to model the life cycle of a component explicitly. They can also be used
to describe abstract concepts like operational modes (on, off, operating, startup, etc.) [Glin02b].
An in-going transition denotes the component’s instantiation, whereas an out-going transition
specifies its destruction. Moreover, a component which is part of a statechart can have a start state
indicator, denoting it as the initially active state of the corresponding state group. An example
is given by Fig. 5.6 where a component in the library system models the on/off mode of the
BorrowManager’s bar code reader component. The component On denotes an operational mode.
In the on mode, several properties and elements are available (modeled by the On component)
which do not exist in the off mode.

In statecharts, transitions may be associated with a label that specifies under which condition
the transition is triggered. The triggering condition may include a guard and a specification for a
received message. Moreover, the label may specify an action part which either calls an operation
or executes a sequence of actions. A called operation is defined in the functional specification (cf.
Section 5.2.6) of the component and executes a sequence of actions. The operation may be either
executed quasi-synchronously or asynchronously (cf. [Glin95, Glin02b, Glin02a, Seyb06a]). If
the action part defines a sequence of actions, it is embedded in the transition label itself. The
actions may, for example, generate new messages which trigger further transitions.

Messages may be sent over three different types of communication channels. First, they can
be sent over associations to another component. The association and the direction of the message
sent are specified by the referred role names in the send statement. Second, messages can be

12Connected components of a graph must not be confused with the concept of ADORA components.

74 Chapter 5. Basics of the ADORA Approach

BorrowBooks

ReadCatalog

AuthorizeBorrowing

AuthenticateBorrowing

LibrarySystem

UserInfo

[not authenticated] receive queued
msg=authenticate(user:string, pw:string)
over AuthenticateBorrowing,
AuthenticateBookAdm, AuthenticateUserAdm |
send getUserInfo(user,pw)
over SendUserInfo

Authorizing

receive userInfo(ui : userinfo)
over GetUserId | syncexec
send composeUserCredentials()
to UserCredentials

receive userCredentials() from UserCredentials |
send authorized() to msg.msgAnswerTarget

Authorization...

[authenticated]
receive queued msg=authenticate(user:string, pw:string)
over AuthenticateBorrowing,
AuthenticateBookAdm, AuthenticateUserAdm | call

Wait

GetUserId

SendUserInfo

ReadUserInfo

ManageUserInfo

BorrowManager...

AuthorizeBookAdm

AuthenticateBookAdm

AuthorizeUserAdm

AuthenticateUserAdm

BookAdministration...Book... UserAdministration...

User...

(0,n)

(0,m)

UserCredentials...

borrowedBy (0,1)

borrows (0,p)

ReadCatalog

ManageCatalog

Figure 5.5: Illustration of the behavioral description. The model shows the behavior descrip-
tion of the Authorization component.

sent to any direct or indirect child or to the direct parent by specifying the name of the target
component. Third, it is possible to broadcast a message by specifying no target association role
or target components. Broadcasts have a local scope, thus, a message is only delivered within
the object in which the message was created [Glin02b, Glin02a].

Execution Semantics, Concurrency and Redundancy Avoidance Mechanism.

The execution semantics of ADORA statecharts differs from the usual execution semantics of
other approaches such as UML or the statechart approach. ADORA statecharts have a quasi-
synchronous timing semantics [Glin95, Joos99, Glin02b, Glin02a, Kreb04, Seyb06a]. Although
the previous work extensively discusses the execution semantics, there are two open issues in
ADORA execution: race conditions and redundancy in behavior descriptions. In [Meie09a], the
problems of race conditions and unnecessary redundancy in the behavior description of ADORA

are discussed in more detail and a possible solution to both problems is introduced. The present
section summarizes the contents of this work brie�y.

A very common situation in ADORA models is when several components access a service
provided by another component. Fig. 5.5 exemplifies a service-providing component (in the fol-
lowing simply called server component). Authorization provides an authentication service for
all components that are connected by an association. The components, such as BorrowManager,
send their authentication messages to the authorization component. The requests for an authen-
tication are processed and the answer, whether the authentication was successful or not, is sent
back.

However, the language specification and the execution semantics proposed in the previous

5.2 Overview of the ADORA Language 75

BorrowManager...

Off

receive
on() | call init

BarcodeReader...

LibrarySystem...

On...

receive off() |

Figure 5.6: Illustration of the life cycle modeling of objects. The model shows the behavior
description of the BarcodeReader object which may be either in off or in on mode.

work on ADORA is not able to cope properly with server components.13 In the case that a
server component accesses a commonly used resource, a so-called race condition (cf. for example
[Tane97, p. 57 ff]) may occur. Race conditions �aw the intended semantics of the model and
therefore make it unclear. Apart from race conditions, behavior description may result in a lot
of redundancy and unclear behavior descriptions. This is due to the fact that communication
channels, such as the role of an association, are statically referred to by the transition labels.
As each receive statement of a transition could only receive messages from one channel, the
corresponding behavior had to be duplicated before a solution to the problem was proposed in
[Meie09a]. Note that the redundancy and the race conditions problem are strongly intertwined
[Meie09a].

In [Meie09a] a solution for the concurrency problem is presented. It is based on a simplified
monitor mechanism [Hoar74, Hans75] and allows a critical section to be defined within a state-
chart. The critical section is entered when a state S is left by an outgoing transition that is marked
as queued and triggered by a message m. The critical section is left, if the state S is reentered, i.e.
the critical section describes a cycle in the statechart. Any message having the same signature as
m is queued if the statechart is in the critical section. Any other message is processed normally.
After the critical section is left, the next message from the queue is removed and processed.

A solution to the redundancy problem is also presented in [Meie09a]. It proposes a mecha-
nism which allows the storing of the meta-information of a message and the answer channel of
a message to be derived dynamically. By doing so, there is no longer any need to redundantly
define the same behavior for multiple communication channels.

The example in Fig. 5.5 illustrates the use of both mechanisms. The message authenti-
cate(user:string, pw:string) triggering the transition between the state Wait and the state UserInfo
is marked as queued and indicates the entrance of the critical section. The triggering of the tran-
sition between the state Authorizing and Wait denotes its exit. In the example model, the queued

13However, a precise semantics is especially important when an ADORA model needs to be formally modeled.

76 Chapter 5. Basics of the ADORA Approach

message authenticate can be received over various channels. This is indicated by the channel
name list in the receive statement of the corresponding transition. The meta-information of the
message is assigned14 to a variable msg when triggering the transition. This meta-information
can be accessed later and is used for dynamically determining the answer channel of the mes-
sage. In the figure, the label of the transition which exits the critical section contains an action
that determines the answer channel by involving the expression msg.msgAnswerTarget. The cor-
responding send statement uses the dynamically determined channel to send an answer back to
the service consumer.

5.2.4 User View

The user view specifies the interaction between the modeled system and an environment object
[Glin02b, Seyb06b]. Thus, it provides the use cases for a system, i.e., a high-level protocol of
the logical interaction. It defines the order in which the stimuli from an environment object
are injected into the system, and defines the order in which the corresponding system responses
occur. However, the user view does not deal with a user interface design.

Use cases are called scenarios in ADORA. Scenarios have a name and can be decomposed into
sub-scenarios forming a tree. Such a scenario tree is called a scenariochart [Glin02b, Xia04] and
is similar to a Jackson JSP diagram [Jack75]. In the scenario tree, directed scenario connections
link the nodes. Directed connections are necessary due to the fact that such a scenario tree has not
necessarily a top-down and left-right order in an ADORA model. A scenario node is represented
by an ellipse, whereas a scenario connection is visualized as a line with a dot at one end. The
dot indicates the parent of the two nodes taking part in the connection. A set of scenario nodes
linked together by scenario connections are also called a scenario group.15

The decomposition hierarchy of a scenario is orthogonal to the decomposition hierarchy of
the components. As each node in a scenariochart can communicate with a particular part of
the system, it is embedded in a component. The children of a scenario that is embedded in a
component C must also either be embedded in C or in a child, grandchild or any descendant of
C.

Scenariocharts are also used to drive the simulation of reactive systems [Seyb06a]. A sce-
nariochart is interpreted during the simulation by an in-order traversal of its nodes [Seyb06b].
Each node may contain so-called transformation expressions. A transformation expression de-
notes either an injection of a stimulus into the component in which the scenario is embedded,
or it denotes the awaiting of a response from the component. As soon as a node containing a
transformation expression is encountered during the traversal, it is executed.

Each node is of a particular type used to control the way in which it is visited. The type is
visualized by a specific symbol in the oval of the scenario. There are four types: Root, Sequence,
Alternative and Parallel. In Fig. 5.7 (a), the visualization of the scenario types is illustrated.

The siblings, i.e., nodes with the same parent, in a scenariochart node must have the same
type, in order to be meaningful. The Root type is used to denote the root of a scenario tree and

14See the expression msg=authenticate(user:string, pw:string).
15Scenario group is analogously defined to the term state group (cf. Section 5.2.3).

5.2 Overview of the ADORA Language 77

is indicated by the absence of a type symbol. The types Sequence and Alternative have the same
semantics as in the JSP diagrams. The symbol of a Sequence node is displayed by a number
indicating the order of the node in the sequence. This is required due to the fact that scenari-
ocharts are not necessarily drawn from top-down and from the left to the right. In a simulation,
a sequence of nodes is visited in a sequential order, specified by the ordering numbers.

In contrast to JSP diagrams, iteration is not described by a separate node type but rather as a
property of all node types. Thus, each node may additionally have an iteration indicator which
is denoted by an asterisk (*). Each node with an iterator indicator may also contain a condition
which must evaluate to true in order to execute the node. Whenever the condition is satisfied, the
sub-tree of the node with the iterator property is visited, otherwise the execution of the node is
finished.

Nodes of the type Parallel are not part of the original JSP diagrams. Their symbol consists
of two vertical, parallel lines (||). A scenario node S which has child nodes of the type Parallel
executes its children concurrently. The execution of S is finished if the execution of each child
node is finished.

Each node in the scenariochart has a guard, which is a Boolean expression that must be
satisfied in order that the sub-tree is visited. If no expression is specified, the default value of a
guard is true. The guard is also used to determine whether an Alternative scenario is executed or
not. An alternative is visualized by a circle symbol (o). From a set of alternative nodes, the node
whose guard evaluates to true is chosen to be executed. If the guard of more than one alternative
scenario evaluates to true, one of them is chosen non-deterministically.16

Figure 5.7 (b) shows an alternative view of Fig. 5.2 and illustrates an example of a sce-
nariochart. In the object BorrowManager, the use case for borrowing books is given by the
four scenario nodes BorrowBooks, SelectBooks, Authenticate and RegisterBorrowing. The latter
three are sub-scenarios of BorrowBooks and denote a sequence in the use case. Each of these
sub-scenarios contains transformation expressions which describe the stimuli and the responses
sent to and received from the system during the execution of the use case.

5.2.5 Context View

The context view contains the objects in the environment of a system. An environment object
is denoted by a hexagon in ADORA and represents either a person, an actuator, a sensor, or
another system. It can have a cardinality which indicates the minimum and maximum number
of instances that interact with the system. Environment objects with a cardinality different from
(1,1) are visualized by a stack of hexagons.

Environment objects interact with the modeled system by injecting one or more stimuli per
scenario and awaiting the corresponding system reactions. The protocol of this interaction is
specified by scenariocharts (cf. Section 5.2.4) which are connected by an association with the
environment object. During the interactive simulation of an ADORA model, the roles of the envi-
ronment objects are played by the user driving the simulation [Sche04, Seyb06a]. Figure 5.7 (b)
illustrates the environment objects LibraryUser, BookAdministrator and UserAdministrator of

16In an interactive simulation, this choice is made by the simulation-driving user [Seyb06a].

78 Chapter 5. Basics of the ADORA Approach

BorrowBooks

LibrarySystem...

BorrowManager...

SelectBooks...
1

LibraryUser

b)

a)

Sequence of A, B and
iteration in node R

Alternative between
A and B

Concurrent exection of A and B

BookAdministrator UserAdministrator

Authenticate...
2

Register
Borrowing...

3
R

A
o

B
o

R *

A
1

B
1

R

A
||

B
||

Figure 5.7: An example of the scenario syntax and all syntax elements of scenarios. Figure
(a) shows all syntax elements for describing sequences, iterations and concurrent executions
of scenarios. Figure (b) shows a different view of the model from Fig 5.2.

the library system.
Furthermore, a so-called external component is similar to an environment object. External

components can be used to denote sub-systems which are black-boxes, e.g. third party com-
ponents. They are components which have the reserved type external and which are directly
embedded in the system instead of being placed in its context. They do not specify any internals,
such as behavior. Hence, external components are neither full-�edged environment objects nor
full-�edged components but some hybrid form of both.

5.2.6 Functional View
Each component in an ADORA model can contain a so-called functional speci�cation which
defines the properties of an object. The grammar for the functional specification is defined in the
ADORA grammar which is discussed in detail in the next chapter. A functional specification can
consist of the following properties:

• Export Declaration: The export declaration in a functional specification of a component
A defines the elements which are visible to components other than A.

• Import Declaration: The import declaration of the functional specification of a compo-
nent A defines the elements of other components which are accessed by A.

• Invariants: The invariant section is part of the component’s contract and consists of one

5.2 Overview of the ADORA Language 79

or more expressions describing a logic predicate which must hold before and after the
execution of an operation.

• Standardized Properties: Standardized properties are user-definable structures for stating
goals, constraints, configuration information, notes, etc. [Glin02b].

• Data Type Declarations: A data type declaration defines a new data type which can be
used to encapsulate or structure data.

• Attribute Declarations: An attribute is a storage which can be used to save and retrieve a
data value belonging to a particular object.

• Operation De�nition: Operations can define sequences of actions17. Furthermore, they
may define contract elements, such as pre- and postconditions.

These elements are explained in the following, however, the syntax for the functional speci-
fication is given and explained in Section 7.8.

Import/Export declarations

A component can import and export elements defined in its functional specification. Exported
and imported elements may be either attributes or named data types. Exported elements can be
accessed by components which declare them in their import statement.

Exported elements are listed by their unqualified name in the provides section. In contrast,
imported elements are listed in the requires section with a qualified name18, which may qualify
the variable either relatively or absolutely.

An example for the requires and provides section can be found in Listing 5.1, where the
attribute userName is exported and the attribute systemState and the corresponding data type
SystemStateEnumeration are imported from the object LibrarySystem.BorrowManager.

Listing 5.1: An example of provides/requires section.
1 provides userName;
2 requires LibrarySystem.BorrowManager.systemState,
3 LibrarySystem.Borrowmanager.SystemStateEnumeration;

Invariants

Creating axiomatic definitions [Hoar69, Dijk76] from software requirements and using them for
various purposes has been well known for a long time in computer science. Hoare [Hoar69] uses
pre- and postconditions for verifying program code. Perry [Perr87] extends this concept with
obligations, which describe conditions that must eventually be satis�ed. Meyer [Meye92] adds
invariants to the concept for defining software contracts.

17An action can be the sending of events or the assigning of values to variables.
18A qualified name contains an access path to the element (cf. Section 6.1.5).

80 Chapter 5. Basics of the ADORA Approach

In ADORA, axiomatic specifications are used to declare the contract of components [Joos99].
The elements of a software contract are specified optionally and become manifest in pre-, post-
conditions, and in invariants. Pre-, postconditions may be part of a component’s operation and
will be discussed later.19

The contract specification of ADORA components may also contain invariants [Seyb06a].
Invariants allow the defining of predicates on the state of a component. The state is defined by
the values of the component’s properties. During the runtime, the changing of a component’s
state space may depend on the current state of the component. Hence, certain properties of a
component in a particular state may not be changed, as otherwise the component may reach an
inconsistent state [Glin07b]. A way of avoiding this problem is to devise predicates, so-called
invariants, which must be satisfied to re�ect that a module is in a consistent state. They must
hold before and after the execution of an operation which modifies the module’s state.

There are two outcomes of using invariants. First, they can be dynamically checked together
with the other elements of a component’s contract, e.g., during the simulation run of a model,
which helps to reveal mistakes during the modeling process and incomplete specifications. Sec-
ond, invariants may cause a simplification of the postconditions, which in turn leads to a reduc-
tion of redundancy in the contract specification. This is due to the fact that commonly shared
parts in the post-condition of different operations may be assimilated by the invariant [Glin07b].

Listing 5.2 illustrates an invariant for a component of the library system. It prescribes that
the current value of the attribute userName has to be empty if the aspect is in its initial state Wait.
In contrast, the value of the attribute userName may not be empty if the module to which the
invariant belongs is in any other state.

Listing 5.2: A example of an invariant which may be part of the library system.
1 inv not isActiveState("Wait") −> userName != "";
2 isActiveState("Wait") −> userName == "";

Standardized Properties

Standardized properties are user-defined structures and annotate the objects with additional struc-
tured information, such as goals, constraints, configuration information, notes, etc. Thus, they
are a way to adapt and extend the ADORA language in a controlled way for different projects,
applications domain, or persons, i.e., they are descriptive stereotypes according to the definition
in [Bern99a]. The form of a standardized property is defined in the corresponding directory (cf.
Section 5.2.7). Each property adheres to either a primitive or a user-defined data type. Examples
of a property definition are given in lines 19 and 20 in Listing 5.3.

Listing 5.3: Examples of data types, standardized properties and attributes.
1 data type
2 UserId : string;
3

19The concept of obligations is not employed by the ADORA language.

5.2 Overview of the ADORA Language 81

4 AuthenticationResult :
5 (
6 AUTHENICATING, AUTHENTICATION_FAILED,
7 ACCOUNT_LOCKED, AUTHENTICATED
8);
9

10 AuthenticationCounter : constrained boundary : integer (boundary >= 0 and boundary <= 3);
11
12 LogEntry : structure of (
13 userName : UserId;
14 numberOfAttempts : AuthenticationCounter
15);
16
17 LoginLog : list of LogEntry;
18
19 property author "D. Cunningham";
20 property goal 1 "Identify library users.";
21
22 attributes userame : string;

Data Type Declarations

Apart from the primitive data types integer, real, boolean, id, string and time, ADORA offers
the modeler the possibility of composing more complex or restricted data types for reasons of
convenience [Joos99, Seyb06a]. Applying these user-defined types helps to simplify the behav-
ioral descriptions of components, as the number of messages exchanged between objects can be
reduced significantly.

• Primitive Type: A primitive data type, i.e., integer, string, etc. can be redefined by aliasing
it. An example for the aliasing of a primitive data type is given by line 2 in Listing 5.3,
where the alias UserId is defined for the type string.

• Enumeration Type: An enumeration type allows the specification of a set of enumeration
items, similar to the Pascal language [Wirt70]. An enumeration type can be used to denote
and to enumerate things. An example of an enumeration can be found in lines 4–8 of
Listing 5.3, where the enumeration type AuthenticationResults is defined.

• Designed Type: A designed type is one of the following types:

– Constraint Type: A constraint type specifies a new primitive data type which is
restricted in its domain. Line 10 in Listing 5.3 gives an example of a constrained type
named AuthenticationCounter which restricts an integer within a given range.

– Structure Type: A structured type consists of an arbitrary number of values which
may be of various types. It is the same as the record type known from Pascal. A

82 Chapter 5. Basics of the ADORA Approach

structured type consists of fields which are either of a primitive, an enumeration, a
list, or another structured type. In lines 12–15 of Listing 5.3, an example of the
definition of the structured data type LogEntry is given. The type can be used to store
a record entry of an authentication log.

– List Type: A list type defines an array of values whose elements either belong to
a particular primitive, enumeration, list, or a structured type. Line 17 in Listing 5.3
illustrates the declaration of a list type consisting of structure type values.

Attribute De�nitions

In object-oriented systems, an attribute is part of each instance of a class and represents it with a
stored, individual value. An attribute has a specific type and can be accessed by a name. It does
not have its own identity as an object has, i.e., an attribute and its value are under the full control
of the object. In line 22 of Listing 5.3, an example of the definition of the attribute userName is
given. It is of the type string.

Operation De�nitions

Operations are a means for processing events in a message based behavior model. There are
three purposes of operations in ADORA:

1. De�nition of synchronous events: There are two types of operations in ADORA with re-
spect to the duration of their execution. Operations execute either asynchronously or syn-
chronously. An asynchronous operation needs an undetermined amount of time to execute,
whereas a synchronous operation does not need time to perform and returns immediately
[Joos99, Meie09a]. The default handling of an event is asynchronous. If an event has to
be processed synchronously, it has to be defined explicitly by a corresponding operation
[Seyb06a].

2. Pre-/Postcondition: As stated in the section about invariants above, it is useful to specify
modules based on an axiomatic definition. An operation can have a contract specification
consisting of a pre- and postcondition.20

3. Simpli�ed behavior description: Operations can be used to define a block of actions
which is executed as a reaction to an event occurring in the system. Operations are useful
to simplify statecharts.21 Nonetheless, this means of simplifying behavior descriptions has
to be used carefully, as it may also lead to a loss of graphically visualized information in
the model.

In the following, the structure of operations is discussed. Listing 5.4 exemplifies an operation
defined in the functional specification of a component. This operation might be used by the

20Obligations are currently not supported by the ADORA language and therefore not discussed in the following.
21Instead of modeling sequence transitions which each execute one single action, the executed actions can be

united in an operation.

5.2 Overview of the ADORA Language 83

authentication mechanism of the library system introduced before. It adds a log entry after each
attempt to authenticate.

Operation signature. As mentioned above, there are two different types of operations. Syn-
chronous operations may have one or more output values apart from input values. In contrast,
asynchronous operations may only have input values. Depending on the timing operation, the
signature of an operation looks different. Listing 5.4 illustrates a synchronous operation.

Local variables. An operation may define local variables, used as temporary storage for cal-
culations. In the example of Listing 5.4, a local variable len is employed to save the length of a
field containing log messages.

Pre- and postconditions. Pre- and postconditions are two elements of the component’s con-
tract.22 The precondition describes a predicate which has to be satisfied by the sender of a
message. The postcondition defines the results of the executed operation. It is asserted in the
case the precondition has been satisfied.

Both the pre- and postconditions are predicates formed by one or more expressions which
evaluate to a Boolean result. They can built upon the attributes of the module, the local variables
and the arguments of the operation.If there is more than one expression, they are separated by a
semicolon which has the meaning of a logical AND operation.

Line 5 in Listing 5.4 exemplifies a precondition. It demands that the user name of a log entry
to be added may not be empty. The lines 6–9 describe the postcondition of the method. Line 7
of the postcondition assures that the list index of the log is increased. The second line ensures
that the last element is the newly appended log entry. Line 9 asserts the output parameter of the
operation returns the index of the log’s last element.

Statements of an operation. The statements section describes a block of actions that are exe-
cuted by the operation. A statement may be either the assignment of an evaluated expression to
a variable, the call of a meta-function, or the sending of an event.

For example, lines 10–13 in Listing 5.4 describe the sequence of statements which stores a
log entry. In line 11, the current length of the field containing the log entries is read and saved in
the local variable len. Line 12 adds the new log entry at the end of the log. Finally in line 13, the
index of the current element is assigned to the output parameter.

Listing 5.4: An example for the definition of a synchronous operation.
1 syncoperation addLogEntry(in entry : LogeEntry, logTime : time; out index : integer)
2 var
3 len : integer;
4 pre
5 entry.userName != "";
6 post

22The invariant is another part of the contract which was already discussed above.

84 Chapter 5. Basics of the ADORA Approach

7 log.length@pre + 1 == log.length;
8 log[log.length@pre] == entry;
9 index == len;

10 statements
11 len = log.length;
12 log[len] = entry;
13 index = len
14 end operation addLogEntry

5.2.7 Additional Structures

There are three additional language parts in an ADORA model which are not described by the
different views discussed in the sections above. These are directories which contain the defini-
tions of types, stereotypes and standardized properties. These structures are not fully elaborated
in the current definition of ADORA and the concepts behind them have not been investigated in
detail so far. Therefore they are a focus of interest for future research on ADORA. Nevertheless,
they are discussed brie�y in the following:

• Type Directory: The so-called type directory [Joos99] consists of type definitions. The
use of types helps to avoid similar structures and redundancy in components. For example,
all Logger objects in Fig. 5.1 might have the same type, as all of them define the same
functionality. A type comprises the attributes and operations of all objects and object sets
of this type. Furthermore, it can define the behavior and its provided services. However, a
type neither defines the associations with other objects and object sets, nor does it specify
the embedding of the instances of this type in the decomposition hierarchy.

Types may be organized in a sub-typing hierarchy, i.e., a super-type describes the common
properties and the part-of relationships to components of one or more sub-types. All types
have a common root super-type.

In the base view, the type of the component is denoted by appending the type’s name to
the name of the component separated by a colon. However, an object need not to have
an explicitly defined type. In this case, it implicitly inherits the properties and the inner
structure of the root type.23

• Standardized Properties Directory: The standardized properties directory consists of a
set of templates. Such a template specifies what a standardized property (cf. Section 5.2.6)
looks like. A template consists of the property’s name and the type of the value that can be
assigned to the name. The templates specified in this directory are accessible to all objects
of the model.

23The root type defines an empty component.

5.2 Overview of the ADORA Language 85

• Stereotype Directory: The stereotype directory defines restrictive stereotypes [Bern99a].24

They can be used to formally constrain the used language elements. The constraint expres-
sion is given by a logic predicate.

24In [Joos99], the stereotype directory comprises both restrictive and descriptive stereotypes. In the ADORA lan-
guage version of [Glin02b] the descriptive stereotypes were removed from the stereotype construct and introduced
as separate standardized property language construct.

87

Chapter 6

Analyzing and De�ning the ADORA
Language

There are various ways of describing graphical modeling languages. In [Xia04] several differ-
ent methods are discussed, such as the usage of string (textual) grammars, graph grammars or
graphical meta-models based on class modeling. According to [Xia04], graph grammars and
class meta-models tend to be very large and are therefore difficult to understand and tedious to
read for human beings. In contrast string grammars [Rech97, p. 81] are easier to read and un-
derstand. Therefore, a context-free string grammar is chosen as a basis for the definition of the
ADORA language. The ADORA grammar is discussed in Section 6.1 of this chapter.

In handling textual ADORA models, they need to be processed in various ways. Amongst
other things, ADORA models need to be analyzed, represented, transformed, and checked to see if
they are well-formed. The formal processing of ADORA models requires a formal representation.
This work uses concrete syntax trees to represent textual models. Furthermore, a set of functions
is needed which operate on these syntax trees. The concrete syntax trees and a set of basic
functions applied to on these syntax trees are discussed in detail in Section 6.2.

A context-free grammar is powerful enough to describe the (context-free) syntax of the
ADORA language, but it is not able to express the fact that a given element can only occur in the
context of particular elements of the language. To express this fact, a context-sensitive [Rech97,
p. 81] grammar is actually needed. To extend the context-free grammar to a context-sensitive
one, additional predicates called language constraints are introduced, which are covered in Sec-
tion 6.3.

Even though the definition of the ADORA language is done textually, the actual models are
represented graphically. This is necessary because large textual representations of ADORA mod-
els are difficult to read. For this reason, the main elements of the language, such as abstract
objects and object sets, are mapped to graphical counterparts. This mapping is done automat-
ically by a modeling tool. In Section 6.4, the mapping of textual ADORA models to graphical
elements is brie�y discussed.

Furthermore, the so-called dynamic semantics of a modeling language describes the mean-
ing of the model elements at runtime. A description of the dynamic semantics of ADORA can
be found in [Seyb06a, Xia04, Bern02, Glin02b, Joos99]. However, the runtime semantics is

88 Chapter 6. Analyzing and Defining the ADORA Language

rather irrelevant for this work, as all newly introduced aspect-oriented elements do not have a
dynamic semantics. They will rather be mapped by a model transformation (a so-called weaving
semantics) to conventional elements which have a dynamic semantics. Therefore, the dynamic
semantics is not discussed explicitly in this work.

6.1 ADORA Grammar
In this section, the structure of the context-free ADORA grammar is discussed. This grammar is
based on the previous work in [Joos99, Bern02, Glin02b, Xia04, Seyb06a].

The definition of the ADORA modeling language consists of two parts: (i) a language for
describing the actual model information and (ii) a description of the corresponding graphical
representation1. Issue (i) is the subject of this chapter. The language definition will be outlined
by discussing particular parts of the ADORA grammar. The full grammar can be found in Ap-
pendix B. Issue (ii) is beyond the scope of the present work and therefore will not be discussed.

The remainder of this section elaborates on several facets of the ADORA language. In Sec-
tion 6.1.1, an introduction to the ADORA grammar is given. The subsequent Section 6.1.2 shows
the general grammar structure and its application to textual models. In Section 6.1.4, the textual
representation of different relationships is discussed in detail. The following Section 6.1.5 deals
with the mechanisms for identifying and referencing model elements and Section 6.1.6 delin-
eates how connections are represented by textual ADORA models. Finally, Section 6.1.7 covers
the non-graphical elements of the language.

6.1.1 Grammar De�nition
A textual ADORA model adheres to the context-free grammar G which is specified as four-tuple
in Definition2 6.1. N is the set of non-terminal elements, T the set of terminal elements, P the
set of grammar production rules, and S ∈ N a non-terminal element indicating the start rule of
the grammar. The elements contained in N and T are used to compose the grammar rules in
P . Non-terminals N are indicated by a leading upper case letter. The terminal elements T are
enclosed by double quotes and written in bold typewriter letters, or they are indicated by angle
brackets when used in a grammar rule.

G = (N,T, S, P)
N = {SpecificationDefinition,Model , . . . ,Cardinality , InformalDescription}
T = {“partial”, “specification”, . . . , <INTEGER_LITERAL>, . . . , “(”, “)”}
S = SpecificationDefinition

P ⊆ N ×
[
N ∪ T

]∗
(6.1)

1The elements of the graphical representation include several attributes, e.g., the position and visibility of nodes,
etc.

2It is based on the general definition for grammars, cf. [Rech97] and [Cap93]. The asterisk in
[
N ∪ T

]∗
denotes

the Kleene Star operation. V ∗ is the set of arbitrarily concatenated sequences of the elements of V . Furthermore,
V ∗ contains the empty element ε.

6.1 ADORA Grammar 89

Table 6.1: Excerpt of the ADORA EBNF grammar showing the most important production
rules.

Production Name Production Rule
SpecificationDefinition ::= (“partial”)? “specification” (SpecialIdentifier)? Model (

Representation)? “end” “specification” (SpecialIdentifier)? <EOF>
Model ::= “model” ((ComponentDefinition | EnvironmentObjectDefinition |

AspectDefinition))* TypeDefinitions PropertyDefinitions
StereotypeDefinitions “end” “model”

ComponentDefinition ::= (“partial”)? (“external”)? (“start”)? “component”
ComponentName UniqueModelElementIdentifier (Cardinality)? (“is”
InheritedType)? ComponentParts FunctionalSpecification (
ComponentConnections)? “end” “component” ComponentName

ComponentName ::= SpecialIdentifier
EnvironmentObjectDefinition ::= (“partial”)? “environment” “object” EnvironmentObjectName

UniqueModelElementIdentifier (Cardinality)? (
EnvironmentObjectConnections)? “end” “environment” “object”
EnvironmentObjectName

ComponentParts ::= (“consists” “of” (ComponentDefinition | StateDefinition |
ScenarioDefinition | AspectDefinition)+ “end” “consists” “of”)?

StateDefinition ::= (“partial”)? (“start”)? “state” StateName
UniqueModelElementIdentifier StateParts (StateConnections)? “end”
“state” StateName

StateName ::= SpecialIdentifier
StateParts ::= (“consists” “of” (StateDefinition)+ “end” “consists” “of”)?

ScenarioDefinition ::= (“partial”)? ScenarioType “scenario” ScenarioName
UniqueModelElementIdentifier (“on” GuardPart)? (“iteration”
Expression)? (ScenarioConnections)? (TransformationElements)? “end”
“scenario” ScenarioName

TransitionDefinition ::= (“partial”)? “transition” UniqueModelElementIdentifier “to”
ElementReference (SimpleTransition | DecisionTableTransition)?

AssociationRoleDefinition ::= Role “of” “association” ElementReference
Role ::= “role” RoleName (Cardinality)?

AssociationDefinition ::= (“partial”)? “association” UniqueModelElementIdentifier “to”
ElementReference Role

RoleName ::= SpecialIdentifier
ScenarioConnectionDefinition ::= “scenarioconnection” UniqueModelElementIdentifier “to”

ElementReference
FunctionalSpecification ::= (“functional” “specification” (Provides)? (Requires)? (

Invariants | DataTypeDeclarations | AttributeDefinitions | OperationDefinition
)* “end” “functional” “specification”)?

InformalDescription ::= <INFORMAL_DESCRIPTION>

90 Chapter 6. Analyzing and Defining the ADORA Language

The grammar of ADORA as well as an explanation of the EBNF symbols are given in Ap-
pendix B and an excerpt of the most important rules can be found in Table 6.1.3 The syntax rules
are defined in an Extended Backus Naur Form (EBNF) [ISO 96].

6.1.2 Applying the Grammar to Textual ADORA Models

The so-called main production rules describe those modeling elements in the language which
have a graphical representation and which are uniquely identifiable (cf. Section 6.1.5) in the
textual model. Furthermore, they have a name with the suffix De�nition. The name of the
rule indicates the ADORA element which is described, e.g., ScenarioDe�nition defines what a
scenario node looks like in textual representation. Table 6.1 exemplifies some of the rules.4

Apart from the main production rules, there are several auxiliary rules which help to compose
the textual description of a main element. For instance, the production rule ComponentDe�ni-
tion5 refers to the auxiliary production rule ComponentName which defines what a component
name looks like.

Listing 6.1: Excerpt of a textual model example based on the model in Fig. 5.2.
1 speci�cation LibrarySystem
2 model
3 component LibrarySystem ’1.1’ (1,1) is type Root
4 consists of
5 ...

22 partial component BorrowManager ’1.1.3’ (1,1)
23 consists of
24 root scenario BorrowBooks ’1.1.3.1’
25 connections
26 scenarioconnection ’1.1.3.1.s.1’ to ’1.1.3.2’
27 ...
28 end connections
29 end scenario BorrowBooks
30 ...
46 end component BorrowManager
47 ...
56 partial component BookAdministration ’1.1.5’ (1,1)
57 connections
58 role GetFeedback (1,1) of association ’1.3.a.1’
59 association ’1.1.5.a.1’ to ’1.1.2’ role ManageCatalog (1,1)

3This appendix also contains the ADORA grammar comprising the aspect-oriented extensions of this work. A
discussion of these extensions can be found in Chapter 7.

4The main grammar rules are Speci�cationDe�nition, ComponentDe�nition, EnvironmentObjectDe�nition, Stat-
eDe�nition, ScenarioDe�nition, TransitionDe�nition, AssociationRoleDe�nition, and ScenarioConnectionDe�ni-
tion.

5Abstract objects and object sets are expressed by the same grammar rule ComponentDe�nition.

6.1 ADORA Grammar 91

60 association ’1.1.5.a.2’ to ’1.1.6’ role AuthenticateBookAdm (1,1)
61 end connections
62 end component BookAdministration
63
64 partial component Authorization ’1.1.6’ (1,1)
65 consists of
66 start state Wait ’1.1.6.1’
67 connections
68 transition ’1.1.6.1.t.1’ to ’1.1.6.2’
69 [not authenticated]
70 receive queued msg=authenticate(user : string, pw : string) over
71 AuthenticateBorrowing, AuthenticateBookAdm,
72 AuthenticateUserAdm | send getUserInfo(user, pw) over SendUserInfo
73 ...
96 end consists of
97 functional speci�cation
98 ...

100 operation authenticate(user : string, pw : string)
101 statements
102 send authorized() to msg.msgAnswerTarget
103 end operation authenticate
104 end functional speci�cation
105 ...
111 end component Authorization
112 end consists of
113 end component LibrarySystem
114 ...
121 environment object BookAdministrator ’1.3’
122 connections
123 association ’1.3.a.1’ to ’1.1.1.5’ role ManageBooks (1,1)
124 end connections
125 end environment object BookAdministrator
126 ...
133 end speci�cation LibrarySystem

The further discussion of the grammar is exemplified with the textual model that is based
on the LibrarySystem contained in Fig. 5.2. Listing 6.1 shows an extract of this model which is
presented fully in Appendix D.

6.1.3 Representing Informal Elements

Besides the formal syntax, a textual ADORA model may contain informal descriptions of the lan-
guage elements, which allows models to be specified with a variable degree of formality [Glin02b,
Seyb06a]. An informal description looks like the example shown in Listing 6.2 showing a part
of the model in Appendix D. The grammar rule InformalDescription in Table 6.1 specifies the

92 Chapter 6. Analyzing and Defining the ADORA Language

form of a informal description by the regular expression <INFORMAL_DESCRIPTION>6. An
informal description is introduced with /# and ended with #/.

Any language element may be annotated with an informal comment. Informal comments
may be placed anywhere in a textual model but this fact is not expressed explicitly, as it would
cause the grammar to become bloated. However, only the informal elements placed in front of
a textual main element are evaluated by the evolution and simulation mechanism presented in
[Seyb06a] and therefore relevant for the informal specification.

Listing 6.2: Example of a informal description: The object set is described by an informal
comment.

1 /# The set of books describes all books in the library.
2 A book object comprises the attributes ID, author,
3 title and ISBN #/
4 partial component Book ’1.1.2’ (0,n)
5 connections
6 role ReadCatalog (1,1) of association ’1.1.5.a.1’
7 association ’1.1.2.a.1’ to ’1.1.3’ role ReadCatalog (1,1)
8 association ’1.1.2.a.2’ to ’1.1.1’ role borrowedBy (0,1)
9 end connections

10 end component Books

6.1.4 Expressing Model Relationships by Nesting Textual Models
Expressing relationships between elements in a graphical model is an important issue. One
schematic means of relating one element to another is to nest them, which can be adopted for
textual models: by nesting text parts, they can be related to each other. In textual ADORA, there
are three types of relationship which are expressed by nesting:

1. Syntactic Relationship: The nesting of textual elements is used to relate them syntacti-
cally. This helps split up the complex grammar into grammar parts which have a manage-
able size and, therefore, it helps to cope with the complexity of the textual grammar.

2. Semantic Relationship: The nesting of textual elements is used to describe the following
semantic relationships:

(a) Hierarchical Decomposition: The hierarchical decomposition (cf. Section 5.1.2)
expressing a part-of-relationship is represented by nesting the corresponding textual
elements. The part-of relationship is expressed by the grammar rules Component-
Parts, StateParts, Speci�cationDe�nition and Model (cf. Table 6.1).

(b) Denoting the Source of a Connection: The relationship between a connection, such
as an association or a transition, and its source element is expressed by embedding
the textual connection in the textual description of its source element.

6The actual regular expression is abstracted in the given ADORA grammar rules. Instead a descriptive placeholder
is given.

6.1 ADORA Grammar 93

In the following, the two semantic relationships are discussed in more detail.

Hierarchical Decomposition

The part-of relationship is expressed by the grammar rules Speci�cationDe�nition, Model, Com-
ponentParts, or StateParts. For example in Listing 6.1, the description of the model in lines
2–132, is part of the ADORA specification (Speci�cationDe�nition between lines 1 and 133). For
a clear distinction between the parent and its children, most of the nestable elements are sepa-
rated by a header and a footer. Furthermore, some elements contain the name of the represented
element in the footer and the header, e.g. the lines 22 and 46 contain the name BorrowManager
of the component.

Another example for the part-of relationship in Listing 6.1 is given by the component Autho-
rization in lines 64–111 which is a part of the component LibrarySystem. Furthermore, there are
several states and one component which are a part of the component Authorization, e.g., the state
Wait in lines 65ff. The part-of relationship is specified by the production rule ComponentParts.
An example for a footer and header delimiting an element is given for the state Wait in the lines
65ff.

Denoting the Source of a Connection

Associations, transitions and scenario connections are called connections in ADORA. To express
the relationship between a connection and its source element, the textual description of the con-
nection is embedded in textual description of its source, as illustrated in lines 59 and 60. In this
example, two associations which originate in the component BookAdministration are specified.
Connections are embedded in the source element by enclosing them with the keywords connec-
tions and end connections (cf. lines 57 and 61). Besides the source-to-connection relationship,
there are several other issues concerning the textual specification of a connection, which are
discussed in Section 6.1.6.

6.1.5 Identifying ADORA Model Elements
When using nesting as the only means for expressing relationships, redundancy may occur in
textual ADORA models if several (semantical) elements, such as abstract objects, states, asso-
ciations, transitions, etc., have a unidirectional (semantical) relationship to the same semantical
element. For example, assume the elements B and C which have a relationship with the element
A. If using the nesting of elements is the only means for relating them, A has to be duplicated in
B and C to express the relationship between both, which in turn leads to redundancy.

For example, connections have a relationship to their target and their source elements. The
target and source elements have in turn a part-of relationship to an element in the decomposi-
tion hierarchy. Hence, either the connection, the source or the target element would have to be
redundant, if just a textual nesting were used.

To reduce redundancy to a minimum, ADORA uses identifiers and references. An identifier
tags a particular semantical language element, whereas a reference points to the element with the

94 Chapter 6. Analyzing and Defining the ADORA Language

corresponding identifier. Apart from reducing the redundancy in textual ADORA models, iden-
tifiers and references also help to identify, find, and extract a semantical element of an ADORA

model.
However, the introduction of identifiers and references leads to the need for a context-sensitive

language and, therefore, it demands the introduction of additional language constraints, which
are discussed in Section 6.3.

There are two different types of identifiers: so-called generated identi�ers and names which are
discussed in the following.

Generated identi�ers. A generated identifier is unique in the whole model and tags a main
element, e.g. an instance of a ComponentDe�nition (cf. Section 6.1.2). When being referenced,
a relationship between two model elements is established. Such a relationship is usually handled
by the ADORA tool. Thus, generated identifiers are not meant to be human-readable. They are
not shown explicitly by the tool, neither in the graphical, nor in the non-graphical model parts.
However, in the textual models of the present work, all generated identifiers are built upon an
alphanumeric classification (e.g. ’1.1.6’ in the example below) in order to be legible for the reader
of the present work.

The relationships constituted by a generated identifier and a corresponding reference must
always be consistent, as otherwise a model is not meaningful. For instance, the reference which
denotes the target of a transition (cf. Section 6.1.6) must always point to an existing and unique
target element which has the expected type. To enforce consistency, such a relationship may be
checked with a strictly enforced language constraint (cf. Section 6.3).

Line 60 of Listing 6.1 shows the textual specification of an association tagged with the gen-
erated identifier ’1.1.5.a.2’. It has a reference ’1.1.6’ to an element with the corresponding gen-
erated identifier. The referred element is the Authorization component which has the identifier
’1.1.6’ (cf. line 64).

Names. The second type of identifiers are names. In contrast to generated identifiers, names are
human-readable strings which are assigned manually by the modeler to a given model element.
As generated identifiers, names can be referenced. Names and the corresponding references are
used for describing modeler-maintained relationships in the model. Names occur in model parts
which are presented to the modeler as text. For example, a name is the variable defining the
functional specification or the name of a component. An example of a name is BorrowManager
in line 22 of the text model in Listing 6.1.

In previous work about ADORA, e.g., [Xia04, Seyb06a], names were used for establish-
ing relationships in the sense of the tool-maintained relationship described in the section about
generated identifiers. However, names are not necessarily unique, and they are subject to evolu-
tion [Seyb06a, p. 83ff], [Xia04] of an ADORA model. Hence, names can be imprecise, partial,
inconsistent, or even undefined, and therefore they are inappropriate for describing the tool-
maintained relationships described above.

6.1 ADORA Grammar 95

Grammar rules for identi�ers and names. Generated identifiers and names are described by
the four basic grammar rules Identi�er, SpecialIdenti�er, Quali�edIdenti�er and ExtendedQual-
i�edIdenti�er. An extended discussion of them can be found in Section B.4 of the appendix.

6.1.6 The Representation of Connections
Connections (transitions, associations and scenario connections) are constituted by a source and
a target element. In graphical models, connections are represented by a line drawn between the
source and the target. Mapping a connection, its source, and its target element to a text model
requires the introduction of identifiers and references to minimize redundancy, as discussed in
Section 6.1.5.

The source of a connection is specified by embedding the connection into the source element.
For example, the lines 59 and 60 in Listing 6.1 show the associations (AssociationDe�nition)
whose source element is the component BookAdministration. In contrast to the source element,
the target element of a connection is referred to by an generated identifier. For example, the
target of the association in line 59 is determined by the identifier ’1.1.2’.

Any of the two constituents of an association may be its source, i.e. the source is chosen
arbitrarily. However, associations may be attributed with two roles (cf. Section 5.2.2). One
role (Role) is associated with the direction from the source to the target, the other one with the
opposite direction. The source-to-target role is defined together with the association and therefore
embedded in the source. For instance in line 59, the source-to-target role ManageCatalog is
attached to the textual description of the association with the identifier ’1.1.5.a.1’. Note that this
role also specifies a cardinality (1,1).

In contrast to the source-to-target role, the target-to-source role is defined by the grammar
rule AssociationRoleDe�nition and is embedded in the target element.7 A role has a reference to
the association to which it belongs. The target-to-source role refers to the association with the
corresponding generated identifier. For example, line 58 denotes the target-source role for the
association ’1.3.a.1’ (cf. line 123) between the BookAdministration object and the BookAdmin-
istrator environment object.

Furthermore, scenario connections (ScenarioConnection, cf. Table 6.1) and transitions (Tran-
sitionDe�nition) are other types of textual connection descriptions. Line 26 and the lines 74ff,
respectively, exemplify these elements. In contrast to associations, scenario connections and
transitions do not have roles. However, a transition can have a guard, a message reception part,
and an operation either in a simple textual (SimpleTransition) or a tabular description (Deci-
sionTableTransition).

6.1.7 Non-Graphical Language Elements
Apart from the graphical main elements, there are several other model parts which are only tex-
tually described, such as stereotype (StereotypeDe�nition), type (TypeDe�nitions), and property

7More precisely, it is contained in the section describing the connections of the target element. See the rules Com-
ponentConnections, StateConnections, ScenarioConnections, and EnvironmentObjectConnections of the ADORA
grammar in the Appendix B.

96 Chapter 6. Analyzing and Defining the ADORA Language

definitions (PropertyDe�nition). These elements are discussed in Section 5.2.7 and more exten-
sively in the earlier work of [Joos99] and [Glin02b].

Furthermore, there is the so-called functional specification of components (cf. rule Func-
tionalSpeci�cation in Table 6.1 and [Joos99, Glin02b, Seyb06a]) which is used in this work for
aspect constructs, too. It is discussed brie�y in Section 5.2.6 and later with respect to aspects in
Section 7.8.

6.2 Formalizing the Model Data Structure and Operations
In the present work, the definition of language constraints and model transformations have a
paramount importance. Language constraints augment the context-free grammar rules of the
ADORA language given in Appendix B to a context-sensitive grammar, whereas model trans-
formations are needed for the weaving of aspect-oriented models (cf. Chapter 9). Using textual
ADORA models directly to define transformation and language constraints is too complicated,
ambiguous, tedious, and error-prone.

A more elegant and simpler way is to transform the textual models first into a formal data
structure which simplifies the handling of the input. The data structure employed in the present
work is the concrete syntax tree8 [Rech97] of the textual ADORA model. It can be simply derived
from the ADORA grammar described above.

The concrete syntax tree can be used to define functions that allow the retrieval of various
properties and particular model parts of the language input. By employing these functions, lan-
guage constraints, as well as model transformations, can be described in a simple way.

The syntax tree data structure as well as the corresponding functions are discussed in the
following.

6.2.1 A Data Structure for the Textual Representation of ADORA Models
A concrete syntax tree of a given textual ADORA model is a representation which is derived
from the grammar rules given in Appendix B. A syntax tree is ordered. The parent nodes9 (i.e.,
the nodes with child nodes) in the tree are labeled with the name of the producing syntax rule.
Only non-terminal symbols from the syntax can have children. The children of a parent node
are particular elements of the right-hand side of a production rule. A child node may either be
labeled with a terminal or a non-terminal symbol. Furthermore, a leaf node is always labeled
with a terminal symbol.

8Instead, abstract syntax trees could be applied. However, concrete syntax trees are closer to the (concrete)
ADORA grammar, used throughout this work.

9When talking about trees, the common genealogical terminology for trees is used, such as parent, direct descen-
dant (child), ancestor, and descendant.

6.2
Form

alizing
the

M
odelD

ata
Structure

and
O

perations
97

SpecificationDefinition

specification SpecialIdentifier

LibrarySystem

Model end specification

ComponentDefinition EnvironmentObjectDefinition

componentComponentName UniqueModelElementIdentifier

SpecialIdentifier

'1.1'

Cardinality is InheritedType ComponentParts end component ComponentName

(1 1)

consists of

,

ComponentDefinition ComponentDefinition ComponentDefinition ComponentDefinition ComponentDefinition ComponentDefinition

component

SpecialIdentifier

BorrowManager

ComponentName UniqueModelElementIdentifier

SpecialIdentifier

'1.1.3'

(1 1),

Cardinality ComponentStructure end component

SpecialIdentifier

BorrowManager

ComponentName

EnvironmentObjectDefinition EnvironmentObjectDefinition

::

:: :: ::

:: :: :: :: ::

Identifier

SpecialIdentifier

LibrarySystem

Identifier

Identifier Identifier

SpecialIdentifier

LibrarySystem

Identifier

SpecialIdentifier

LibrarySystem

Identifier

model modelend

partial

type

SpecialIdentifier

Root
Identifier

QualifiedIdentifier

Figure 6.1: An excerpt from the concrete syntax tree of the textual model in Appendix D. It shows mainly the syntax tree of
the component LibrarySystem shown between the lines 3 and 113.

98 Chapter 6. Analyzing and Defining the ADORA Language

Figure 6.1 shows an example of a concrete syntax tree representing the textual model given
in Appendix D. Note that this example tree is shown partially. Terminal nodes are printed in bold
typewriter font, whereas non-terminal nodes are printed normally. For example, line 1 of the
textual model in Listing D.2 given in Appendix D.1 is represented by the two left-most branches
of the tree’s root node which results in the terminals specification and LibrarySystem,
whereas line 133 results in the three right-most branches. Lines 2 to 132 are represented by the
subtree with the root node Model.

The set of all possible syntax trees is denoted by ∆ which is formally defined in Appendix E.1.
Each syntax tree in ∆ can be represented as nested tuple structure. Fig. 6.2 shows an excerpt from
the nested tuple structure of the syntax tree given in Fig. 6.1. Note that the tuple is also partially
shown.

(SpecificationDefinition, (specification, (SpecialIdentifier, (Identifier, (Li-
brarySystem))), (Model, (ComponentDefinition, (component, (ComponentName,
. . .), (UniqueModelElementIdentifier, . . .), . . .))), end, specification, (SpecialIdenti-
fier, (Identifier, (LibrarySystem)))))

Figure 6.2: The syntax tree of Fig. 6.1 written as a nested tuple structure.

As discussed in Section 6.1.2, ADORA models and their model elements can contain informal
descriptions. An informal comment (InformalDescription) may occur at any place in the textual
model. If an informal description is discovered in the language input by the parsing function ρ, it
is placed as the first child in the syntax subtree of the element following the informal description
in the language input. For example, the textual description of the component Books given in
Listing 6.2 results in the syntax tree illustrated in Fig. 6.3.

(ComponentDefinition, ((InformalDescription, (# The set of books ...title
and ISBN #)), component, (ComponentName, . . .), (UniqueModelElementIdentifier,
. . .), . . . , end, component, (ComponentName, . . .)))

Figure 6.3: An example tuple structure containing an informal comment. The model with
the textual description from Listing 6.2 is represented as a tuple structure.

6.2.2 Functions on Syntax Trees
To process the models in a simulation [Seyb06a], in model transformations (cf. Chapter 9), or
when checking language constraints (cf. Section 6.3), a set of functions is needed which allow
retrieval and manipulation of particular properties of a given ADORA syntax tree. The follow-
ing two sections brie�y introduce these functions. They are more extensively discussed in Ap-
pendix E.

6.3 Language Constraints 99

Primitive functions

There are several primitive functions that allow retrieval of basic properties and the execution of
some simple operations on syntax trees: the function insert allows new elements to be added in
a tuple of a syntax tree at a particular position, whereas the function delete is used to remove an
arbitrary element from a tuple. The number of elements contained in a tuple can be determined
by the function arity. An element in a tuple can be extracted by using the projection function.
The type of an ADORA subtree is denoted by the label of the tree’s root node. It can be retrieved
by the function type. The function child returns one specific child of the given tree’s root node,
whereas the function children returns all children in a tuple. A catalog of all primitive functions,
including their formal definitions, can be found in Section E.3 of the Appendix.

Complex functions

Complex functions are built upon the primitive functions discussed above. They are divided into
three categories. Basic functions allow retrieval of properties of the basic ADORA language as
it is defined by the previous work of [Joos99, Glin02b, Bern02, Xia04, Seyb06a]. Their catalog,
including their informal definitions can be found in Section E.4 of the appendix.

The second category of complex functions help to retrieve aspect-specific properties of mod-
els. They will be used in the main part of the present work, especially for the description of lan-
guage constraints and the transformation semantics. The aspect-specific functions are described
in detail in Section E.5 of the appendix.

The third category of complex functions are used to describe the model transformations for
the weaving transformation of aspect-oriented models. They are contained in Section E.6 of the
appendix.

6.3 Language Constraints

Most programming and modeling languages need to be formulated with a context-sensitive gram-
mar. However, the definition of context-sensitive grammar production rules is impractical or not
feasible. Therefore, these languages are usually defined with a context-free grammar that is com-
plemented by so-called language constraints, resulting in a context-sensitive grammar. Language
constraints are predicates that define how an instance of an element is connected meaningfully
with another element of the language [Xia04, p. 35]. Elements adhering to both, the context-free
syntax and the context-sensitive language constraints, are called well-formed [Xia04].

In [Xia04], there are two types of language constraints. One type is expressed by an attributed
grammar and is used for describing relationships between model elements, whereas the other type
describes the well-formedness of model views and is specified by a refinement calculus [Morg94],
a kind of operational semantics [Plot81].

The use of attributed grammars to define the well-formedness of relationships between model
elements, as it is done in [Xia04], is rather problematic. Using an attributed grammar is a tech-
nique which is preferably employed in implementing compilers of programming languages. An

100 Chapter 6. Analyzing and Defining the ADORA Language

attributed grammar propagates the evaluated results of a constraint evaluation to the parent gram-
mar rule. Therefore, it normally needs several parsing steps [Paak95, Page 208 ff] to compute
whether a constraint is satisfied or not. Each evaluation of a language constraint may therefore
rely on the result of a former constraint evaluation step. Hence, using an attributed grammar for
the definition of a modeling language can be counter-intuitive and less intelligible, as humans
can not manage too many time-delayed dependencies resulting from a multi-pass parsing and
constraint evaluation process. Thus, the resulting language constraints are not well suited for
being read by humans. However, this is one of the aims of the ADORA grammar. Consequently,
to obtain a clearer language definition, a multi-pass process should be avoided.

The present work focuses on the well-formedness of the relationships between model ele-
ments rather than on the consistency in the view transitions. Furthermore, constraints are neither
attributed to grammar rules nor expressed by an operational semantics. The constraints apply
rather to a given (sub)syntax tree of the ADORA model. For example, there are constraints that
apply to the subtrees of the types ComponentDe�nition or AssociationDe�nition, which may, for
example, check if the naming of a given component or an association role is correct.

6.3.1 Time-Dependant Enforcement of Constraints
A constraint must be satisfied at the latest at a predefined point in time. The point in time
may vary from constraint to constraint and depend on the kind of model properties that are
checked. This point-in-time-dependent checking is necessary in order to gain a higher �exibility
during the modeling [Cram07]. Based on the classification in [Cram07], there are mainly two
time-dependent types of constraints, which are summarized in Table 6.2: strictly and leniently
enforced constraints. A strictly enforced constraint Cs is checked before an operation that may
violate Cs is performed. Thus, before executing a potentially violating operation, the result of the
operation is anticipatorily calculated but not definitely committed. The operation is not permitted
to execute if the constraint is violated. Otherwise the result is committed.

Table 6.2: Points in time for evaluating language constraints.
Type Checking Time
Strictly
Enforced

• Immediately before operation

Leniently En-
forced

• Immediately after operation

• Before weaving

• Before simulation

• User-defined point in time

In contrast, a leniently enforced constraint Cl can be temporarily violated. However, there
may be a point in time when Cl also needs to be satisfied. The point in time depends on the
kind of model part that is checked. A constraint may be checked immediately after the execution

6.3 Language Constraints 101

A

B

C

r1

Figure 6.4: Illustration of a constraint violation: no association is allowed between A and C
because of constraint C1. Therefore, the shown association with the role r1 is actually not
allowed.

of a model-altering operation, which has a similar effect to a strictly enforced constraint. Other
leniently enforced constraints need to be satisfied before the execution of a model simulation
[Seyb06a], and others must be evaluated positively before performing a model transformation
(cf. Chapter 9). Finally, there are constraints which are checked at a user-defined time: the user
decides individually for each of them when they need to be satisfied.

The consistency of most of the tool-maintained relationships (cf. Section 6.1.5) is enforced
by strict constraints, i.e., they are checked immediately before an operation alters the model.
For example, connecting an association to another model element involves a tool-maintained
relationship. At no time, it makes sense to connect an association to a state. Therefore, this
constraint is strictly enforced.

The parts of a model which are subject to model evolution, e.g., modeler-maintained rela-
tionships, are mostly checked by leniently enforced constraints. For example, the references to a
component’s name (cf. Section 6.1.5) may be wrong until a formal simulation is started.

6.3.2 Example of a Constraint Description
The descriptions of constraints in this work follow a uniform pattern: they consist of a natural
language description and a formalized predicate. The predicate is based on the data structure
and the functions outlined in Section 6.2. Furthermore, each constraint specifies if it is strictly
or leniently enforced. If the constraint checking is lenient, the latest point in time when the
constraint must be satisfied is given. An example taken from [Xia04, p. 75f] will illustrate the
constraint specification scheme used in this work:

. . . if an object C is embedded in another object A (it can be one level embedded
or several levels embedded), an association connecting A and C is not allowed. . .

The situation illustrated in Fig. 6.4 violates this constraint. The textual description of the
model shown in Fig. 6.4 can be found in Listing 6.3. The natural language constraint described

102 Chapter 6. Analyzing and Defining the ADORA Language

above is defined formally in Constraint C1 where s represents the syntax (sub)tree describing the
association and t the syntax tree of the corresponding model.

Listing 6.3: The model from Fig. 6.4 as textual description.
1 speci�cation
2 model
3 component A ’1’ (1,1)
4 consists of
5 component B ’1.1’ (1,1)
6 consists of
7 component C ’1.1.1’ (1,1)
8 connections
9 association ’1.1.1.a.1’ to ’1’ role ’GetUserId’ (1,1)

10 end connections
11 end component C
12 end consists of
13 end component B
14 end consists of
15 end component A
16 end model
17 end speci�cation

The predicate of the Constraint C1 employs three different functions. The function descen-
dants takes the syntax tree δ of an ADORA model. It traverses the syntax tree model and adds
each visited subtree to the result set of the function. The function source returns the syntax tree
of a connection’s source element, the function target correspondingly returns the syntax tree
of the target element. These three functions are described in more detail in Section E.4 of the
appendix.

source(t, s) /∈ descendants(target(t, s)) ∧
target(t, s) /∈ descendants(source(t, s)) (C1)

The constraint is strictly enforced, i.e., it is checked before an altering operation is executed.
Thus, the model in Fig. 6.4 could not be created.

There are a lot of other constraints for the ADORA language. An extensive introduction
to language constraints can be found in [Xia04]. Furthermore, an up-to-date discussion with a
constraint catalog for the ADORA language version described in [Seyb06a] is given by [Cram07].

6.4 Graphical Mapping
Textual ADORA models tend to become very large and complex which makes them rather hard
to maintain manually. This is due to the fact that the textual ADORA language is designed not to
be edited directly by the modeler but constructed and modified in a graphical way. Nevertheless,

6.4 Graphical Mapping 103

there are a few textual parts with which the modeler gets in touch (cf. Section 6.1.7), e.g., the
functional specifications of components or the labels of transitions.

The graphical representation is produced by the ADORA tool that maps the textual ADORA

models to graphical elements and vice-versa10. The mapping defines a graphical representation
for each main element of the language which is described by a set of properties, such as the
position, size, visibility, etc. Each graphical representation references the corresponding model
element by its identifier. Furthermore, there may be more than one graphical representation
per model element which enables multi-user editing [Moda03, Seyb06a] or multi-view models
respectively.

The graphical representation is not within the scope of this work. However, the mapping
between the graphical shapes and the corresponding model grammar rules is discussed brie�y.
Table 6.3 gives an excerpt of the full graphical mapping taken from the Appendix C which is
based on [Seyb06a, Xia04] and discussed extensively in [Xia04].

For each mapped element, the textual representation of the corresponding model parts as well
as the name of the applied grammar rule from Appendix B are given. The first row of Table 6.3
shows the graphical mapping for an abstract object. The corresponding textual model extract is
produced by the grammar rule ComponentDe�nition, and is given in the third column, whereas
the fourth column shows a rectangular shape representing the abstract object. The name of the
object is visualized, whereas the generated identifier of the object is not. In the second row of
Table 6.3, the mapping of an object set is described. An object sets is visualized by a stack of
rectangles, and its cardinality differs from (1,1) and is shown in the lower left corner.

Besides the visualized shapes of the main elements, there are several other properties defined
by the grammar which are shown in the graphical representation. For example, in the third row,
a partial property of an abstract object is given. It is visualized by an ellipsis following the name.

The fifth column in Table 6.3 shows how an association with a role is graphically represented.
The role name r1 and the cardinality are visualized too, whereas the generated identifier of the
association is not shown.

10For example, when a model is stored, the graphical representation is tranformed to a textual mapping again.

104 Chapter 6. Analyzing and Defining the ADORA Language

Name Grammar Rule Textual Instance Graphical Mapping

Abstract
Object

Component-
Definition

/# Informal Description #/
component Name Identi�er (1, 1)
. . .
end component Name

Name

Object Set Component-
Definition

/# Informal Description #/
component Name Identi�er (n,m)
. . .
end component Name

Name

(n,m)

Partial
Abstract
Object

Component-
Definition

/# Informal Description #/
partial component Name Identi�er (1,1)
. . .
end component Name

Name...

Association
Association-
Definition

/# Informal Description #/
association Identi�er to target_identi�er
role Role (m,n)

Role (m,n) target_
identifierNameName

Table 6.3: Excerpt of the graphical mapping in Appendix C.

Part II

The Aspect-Oriented ADORA Modeling
Approach

This part presents an aspect-oriented modeling approach with the desired characteristics iden-
tified in Chapter 4. It is based on the the ADORA modeling language and aims at the reduction of
problem-exogenous complexity in requirements and architectural models by providing support
for aspect-orientation elements. The approach allows crosscutting concerns to be identified and
separated and enables the derivation of a conventional model with a composition mechanism
when a woven model is more useful than the aspect-oriented one.

The present part is structured as follows. In Chapter 7, a syntax extension for the current
ADORA approach is presented. It is discussed according to the ADORA EBNF syntax defini-
tion and the language definitions that are introduced earlier in this work. Chapter 8 discusses an
extension for the visualization and abstraction mechanisms presented in Chapter 5, in order to
enable it to handle the introduced aspect-oriented modeling elements. Chapter 9 presents a weav-
ing semantics for the defined syntax elements. Finally, Chapter 10 discusses how this modeling
approach supports an early identification and separation of crosscutting concerns.

107

Chapter 7

Aspect-Oriented Language Extension for
ADORA

In this Chapter, an aspect-oriented language extension to ADORA is introduced. The ADORA

language was chosen as a base language, because it is an integrated modeling language which
is better suited for the introduction of aspect-oriented modeling constructs than non-integrated
languages (cf. Chapter 4). Apart from that, the language innately possesses several other desired
characteristics for aspect-oriented modeling languages. In the following, a motivation and an
overview of the extension is given. Subsequently, the new language elements are discussed in
detail.

Note that for the sake of completeness, all newly introduced aspect-oriented syntax elements
are given in the following. However, in order to understand the concepts only the reading of the
first four sections is required. Nevertheless, an interested reader also may read the other sections.

7.1 Motivation

As discussed in the Chapters 3 and 4, decomposing software systems using a one-dimensional
modularization criterion may lead to a scattering and tangling of crosscutting concerns. This
effect can be also observed in conventional ADORA requirements models. The problem becomes
manifest in the structural and semantical redundancy of the model elements. Structural redun-
dancy means that the elements are equivalent in their structure, whereas semantical redundancy
means that the elements are equivalent in their semantics. For example, an element A is semanti-
cally redundant with another element B if A and B are differently represented, e.g. have different
names, but have the same meaning or fulfill the same purpose.

The example in Fig. 7.1 vividly illustrates the redundancy resulting from the modeling of
crosscutting concerns by conventional means. It shows a more evolved version of the library
system already used in Chapters 5 and 6. It contains some parts of the Authorization concern
which cuts across the system. The abstract object Authorization provides an authentication ser-
vice for the various components. Amongst others, the components BorrowManager and BookAd-
ministration use this service to authenticate and authorize their users (LibraryUser and BookAd-

108 Chapter 7. Aspect-Oriented Language Extension for ADORA

ministrator). For this purpose, the behavior description of the components contain the states
WaitForUserName, Authenticate, Authorized, and the corresponding transitions. This part of the
behavior is responsible for the communication with the Authorization component. It sends the
user identification and the password to the Authorization component and waits. The Authoriza-
tion then authenticates and authorizes the users of the library system and sends the authorized()
message back to the initiator of the authorization request.

Each failure to authenticate for an access-restricted functionality is recorded by a correspond-
ing mechanism that is provided by the AuthenticationLog component.

Apart from the actual authentication and logging functionality, each component implements
another functionality which allows a user to retrieve a forgotten password. The state group con-
sisting of the four states WaitForHintRequest, WaitForHintQuestion, WaitForHintAnswer, and
WaitForHintPassword in the component BorrowManager describes the behavior of this pass-
word retrieval mechanism. Note, that the model shown is partially viewed — the same behavior
description is also contained in BookAdministration but hidden. Apart from the behavior de-
scription for the password retrieval, each component contains a scenariochart which describes
the communication between the environment object and the password retrieval mechanism. This
is indicated by the partially viewed RequestPassword scenario in the components BorrowMan-
ager and BookManager.

Summarized, crosscutting concerns can have an impact on all views of a conventional ADORA

model:

• Behavioral View: In ADORA, crosscutting behavior becomes manifest in semantically
equivalent and therefore redundant parts in different statecharts. The redundant behavior
is either a statechart fragment or a complete statechart.

Example (7.1). In Fig. 7.1, a LibraryUser has to be authenticated before he or she can
borrow books. This behavior is described by the states WaitForUserName, Authenticate,
Authorized and the corresponding three transitions. A similar behavior description can be
found in the other components, e.g., BookAdministration, which are impacted by the same
crosscutting concern. The state group consisting of the states WaitForHintRequest, Wait-
ForHintQuestion, WaitForHintAnswer, and WaitForHintPassword belong to a complete
crosscutting statechart.

• Crosscutting behavior can delegate tasks to other components. There are two different
types of delegation. Either the task is delegated to an child component, which is also called
embedded component in the following, or to a server component. An embedded component
is exclusively used by one impact location of the crosscutting behavior. Thus, different
impact locations do not interfere. In contrast, a server component is shared commonly
between all impact locations of the crosscutting behavior and therefore it may interfere.

Example (7.2). In Fig. 7.1, the re�exive transition outgoing from the Authentication dele-
gates the task of logging a log event to the AuthenticationLog component. A task delega-
tion to a server component is exemplified by the transition between the state WaitForUser-

7.1 Motivation 109

BorrowManager...
BookAdministration...

Authorization...
AuthorizeBorrowing AuthorizeBookAdm

AuthenticateBookAdmAuthenticateBorrowing

receive list() |
send getList() over
ReadCatalogBM

receive borrow() |

receive
userPWEntered(
pw :string) |send
authenticate(
user,pw) over
AuthenticateBorrowing;
send log(user) to
AuthenticationLog

receive
borrowFinished() |

receive authorized()
over AuthorizeBorrow |

receive list() |
send getList() over
ReadCatalogBA

receive editingFinished() |

receive editBooks() |
send prepareEdit()

receive userPWEntered(pw : string) |
send authenticate(user, pw) over
AuthenticateBooksAdm;
send log(user) to AuthenticationLog

receive
deleteBooks() |
send prepareDelete()

receive deletionFinished() |

 |

receive authorized()
over
AuthorizeBooksAdm |

receive authorized()
over
AuthorizeBookAdm |

receive userPWEntered(pw : string) |
send authenticate(user, pw)
over AuthenticateBooksAdm;
send log(user) to AuthenticationLog

 |

 |

LibrarySystem...

receive
userNameEntered(
name : string) | call

receive userNameEntered(
name : string) | call

receive userNameEntered(
name : string) | call

Authentication
Log...

Authentication
Log...

SelectBooks... 1

BorrowBooks...

Authenticate...2

Register
Borrowing...

3

Request
Password...

Borrow
Books...

Wait...
Search
Books...

WaitFor
UserName

Authenticate

Authorized

Delete
Books...

Wait Search
Books...

WaitFor
UserName

WaitFor
UserName

Authenticate

Authenticate

Authorized

Authorized

Edit
Books...

SelectBooks... 1 DeleteBooks... 3

Authenticate...2

Remove
Books...

o

ManageBooks

SearchBooks...1

Authenticate...2

EditBooks... 3

EditBook
Data..

o

Request
Password...

receive requestHint(
name : string) |
send getHint(name)
over Authenticate

receive hint(hint : string)
over Authorize |
send showHint(hint)

receive
enterAnswer(
a : string) |
send verifyAnswer(a)
over Authenticate

receive result(
pwMsg : string)
over Authorize |
send
showPwMsg(
pwMsg)

WaitFor
HintRequest

WaitFor
HintQuestion

WaitFor
HintAnswer

WaitFor
HintPassword

LibraryUser
Book

Administrator

Figure 7.1: A partial view of the library system example showing the authentication concern
crosscutting several components of the system.

110 Chapter 7. Aspect-Oriented Language Extension for ADORA

Name and Authenticate which calls an operation1 that delegates the authentication to the
server component Authorization.

In either case of the delegation, redundancy is introduced, which affects one of the follow-
ing views:

– Basic View: In the case that a task is delegated from a crosscutting concern to an
embedded component, each component that is impacted by the crosscutting concern
contains its own embedded, and therefore redundant, component.

Example (7.3). In Fig. 7.1, the component AuthenticationLog appears in several com-
ponents of the model. Each of them is used by the authentication behavior to log the
authentication attempts independently for each component.

– Structural View: In the case where crosscutting behavior delegates tasks to a server
component, the same component is shared between all occurrences of the crosscutting
behavior. Therefore the server component is not redundant. However, the commu-
nication channels between the crosscutting behavior and the server component occur
redundantly in the model.

Example (7.4). In Fig. 7.1, the associations with the roles AuthorizeBorrowing and
AuthorizeBookAdm illustrate the problem. Both are semantically equivalent, i.e., they
have the same purpose, namely to facilitate the (same) communication between dif-
ferent impact locations of the crosscutting behavior and the service-providing com-
ponent Authorization.

• User View: As crosscutting behavior may demand the interaction with objects in the en-
vironment of the system, use cases may also be redundant. Crosscutting scenarios may
manifest either in fragmentary scenario descriptions or complete scenariocharts.

Example (7.5). In Fig. 7.1, this is the case for the scenarios that describe the authentica-
tion interaction between the system and the LibraryUser as well as the BookAdministrator.
Consequently, the corresponding scenario trees contain redundant elements, i.e., the node
Authenticate and its (hidden) sub-nodes. The scenario RequestPassword denotes a com-
plete scenariochart that is redundant.

• Context View: The environment objects of a system denote roles that interact with the
system. An environment object is connected to a scenariochart that describes the use cases
which can be performed by the environment object. The role represented by an envi-
ronment object can be split up into sub roles. In turn sub roles can be associated with
sub-scenarios. For instance, the role LibraryUser in Fig. 7.1 can be sub-divided into the
roles User who is searching for books, the user who is being authenticating by the system,
and the user who is registering the borrowed books. In the case that an environment object

1The operation is defined in the functional specification and therefore not shown in the graphical representation.
The call of an operation is denoted by the keyword call.

7.2 Overview of the new Aspect-Oriented Approach 111

contains a sub-role which is associated with a crosscutting scenariochart, the sub-role is
also crosscutting and redundant. However, a crosscutting role is implicit in a conventional
model and therefore it is not directly apparent from the model.

Example (7.6). The environment object BookAdministrator in Fig. 7.1 as well as Li-
braryUser contains a sub role User who retrieves a forgotten password, which is indicated
by the association connecting them with the scenario RequestPassword. Even though the
redundancy of the role does not in�uence the description of the environment object, the
meaning of the environment object is extended. As a consequence a part of the environ-
ment object’s semantics may be redundant compared with other environment objects which
comprise the same role.

• Functional View: Crosscutting behavior may cause redundancy in the functional view of
components. This is due to the fact that elements of the functional view referred to by
crosscutting behavior have to be replicated, too.

Example (7.7). In Fig. 7.1, this is the case for the operation called2 by the transition
between the WaitForUserName and the Authenticate state. The operation is replicated for
each location where the crosscutting behavior impacts.

7.2 Overview of the new Aspect-Oriented Approach
As discussed in chapters 3 and 4, various problems emerge when using a conventional language
to describe crosscutting concerns. The redundancy caused by non-modularized crosscutting con-
cerns may bloat software models, which compromises their comprehensibility. Apart from that,
the altering of crosscutting elements in such models is a tedious task, as the same changes have to
be accomplished for all redundant locations. Furthermore, it is difficult to implement traceability
for crosscutting concerns, as their elements are scattered all over the model. Hence, it is desirable
to reduce the redundancy as far as possible, which can be achieved by introducing elements that
support an aspect-oriented modularization of crosscutting concerns.

A corresponding modeling language has not only to consider the modularization of crosscut-
ting artifacts contained in the behavior description but also the crosscutting elements forming part
of other facets, such as the static structure, the relationships to other elements, etc. Therefore, an
aspect-oriented extension for a conventional language affects the base view, the behavioral view,
the structural view, the user view, and the functional view. Furthermore, to avoid unnecessary
bloating of the language, the aim is the aim to introduce new language elements as conservatively
as possible.

The remainder of this chapter introduces an aspect-oriented extension for the ADORA lan-
guage. The extension is based on the work in [Meie06, Meie07] and satisfies several desiderata
proposed in Section 4.2. Figure 7.2 is used to illustrate the details of the approach. It shows

2The operation call is indicated by the call keyword in the action part of the transition. It causes the calling of
an operation which is defined in the functional specification of the component.

112 Chapter 7. Aspect-Oriented Language Extension for ADORA

an aspect-oriented version of the model in Fig. 7.1 and gives an overview of the new language
elements by modularizing the crosscutting concern Authentication.

Listing 7.1: The Authentication aspect from Fig. 7.2 as textual specification.
1 aspect Authentication ’1.1.7’
2 consists of
3 state WaitForUserName ’1.1.7.1’
4 connections
5 transition ’1.1.7.t.1’ to ’1.1.7.2’
6 receive userNameEntered(name : string) | call
7 end connections
8 end state WaitForUserName
9 state Authenticate ’1.1.7.2’

10 connections
11 transition ’1.1.7.t.2’ to ’1.1.7.3’
12 receive authorized() over Authorized |
13 transition ’1.1.7.t.3’ to ’1.1.7.2’
14 receive userPWEntered(pw : string) |
15 send authenticate(user, pw) over Authenticate;
16 send log(user, pw) to AuthenticationLog
17 end connections
18 end state Authenticate
19 start state WaitForHintRequest ’1.1.7.3’
20 ...
24 end state WaitForHintRequest
25 ...
42 exit Authorized ’1.1.7.7’
43 end exit Authorized
44 root scenario Authenticate ’1.1.7.8’
45 connections
46 scenarioconnection ’1.1.7.8.s.1’ to ’1.1.7.9’
47 scenarioconnection ’1.1.7.8.s.2’ to ’1.1.7.10’
48 end connections
49 end scenario Authenticate
50 sequence 1 scenario EnterUsername ’1.1.7.9’
51 transform input userNameEntered(name : string)
52 end scenario EnterUsername
53 sequence 2 scenario EnterPassword ’1.1.7.10’
54 transform input userPWEntered(pw : string)
55 end scenario EnterPassword
56 partial component AuthenticationLog ’1.1.7.11’
57 end component AuthenticationLog
58 root scenario RequestPassword ’1.1.7.12’
59 ...
66 end scenario RequestPassword
67 ...

7.2 Overview of the new Aspect-Oriented Approach 113

73 end consists of
74 functional speci�cation
75 attributes
76 user : string;
77 operation userNameEntered(name : string)
78 statements
79 user = name
80 end operation userNameEntered
81 end functional speci�cation
82 connections
83 association ’1.1.7.a.1’ to ’1.1.6’ role ’Authenticate’
84 joinrelationship ’1.1.7.j.1’ from ’1.1.7.1’ to ’1.1.3.t.2’ before
85 joinrelationship ’1.1.7.j.2’ from ’1.1.7.1’ to ’1.1.5.t.2’ before
86 joinrelationship ’1.1.7.j.3’ from ’1.1.7.1’ to ’1.1.5.t.3’ before
87 joinrelationship ’1.1.7.j.4’ from ’1.1.7.4’ to ’1.1.3.3’ before
88 joinrelationship ’1.1.7.j.5’ from ’1.1.7.4’ to ’1.1.5.8’ before
89 joinrelationship ’1.1.7.j.6’ from ’1.1.7.4’ to ’1.1.5.11’ before
90 end connections
91 end aspect Authentication

As discussed in Chapter 6, ADORA models are described by a textual notation that is speci-
fied in an EBNF grammar and language constraints. A textual ADORA model can be mapped to
a graphical representation. Correspondingly, the graphically visualized aspect module Authenti-
cation given in Fig. 7.2 is in fact described by the textual model in Listing 7.1 and mapped to a
graphical representation.

For the introduction of aspect-oriented modeling elements in ADORA, the textual grammar
and the corresponding graphical mapping of the previous work in [Seyb06a] needs to be aug-
mented by several new language elements. In the following, the impact on the ADORA language
specification is discussed by presenting excerpts of ADORA EBNF and the complementary lan-
guage constraints. The graphical mapping for the language elements introduced is presented
along with the full extended ADORA grammar in Appendices B and C, respectively.

Furthermore, note that an execution semantics for the new language elements does not need
to be specified, as the aspect-oriented elements are not directly executable. However, the lan-
guage extension presented needs rather to define rather a weaving semantics which describes the
rules for transforming an aspect-oriented model into a conventional, i.e,. woven, model. Woven
models can then be executed by the semantics defined in [Seyb06b]. The weaving semantics is
discussed in Chapter 9.

The following sections describe the newly introduced aspect-oriented elements in more de-
tail.

114 Chapter 7. Aspect-Oriented Language Extension for ADORA

BorrowManager...
BookAdministration...

Authorization...

receive list() |
send getList() over
ReadCatalogBM

receive
borrow() |receive borrowFinished() |

receive list() |
send getList() over
ReadCatalogBA

receive editingFinished() |

receive editBooks() |
send prepareEdit()

receive deleteBooks() |
send prepareDelete()

receive deletionFinished() |

receive authorized()
over Authorize |

receive userPWEntered(pw : string) |
send authenticate(user, pw) over
Authenticate; send log(user, pw) to
AuthenticationLog

Authentication

Authorized

LibrarySystem...

before

before

before

before

before

before

LibraryUser

Authorize

Authenticate

Aspect Container Exit Point Join Relation

receive
userNameEntered(
name: string) | call

Authentication
Log...

receive requestHint(
name : string) |
send getHint(name)
over Authenticate

receive hint(hint : string)
over Authorize |
send showHint(hint)

receive
enterAnswer(
a : string) |
send verifyAnswer(a)
over Authenticate

receive result(
pwMsg : string)
over Authorize |
send
showPwMsg(
pwMsg)

WaitFor
HintRequest

WaitFor
HintQuestion

WaitFor
HintAnswer

WaitFor
HintPassword

Authenticate

SelectBooks...1
Register

Borrowing...
2

Borrow
Books...

Wait

Borrow
Books...

Search
Books...

Wait

Edit
Book...

Search
Books...

Delete
Books...

SearchBooks...1

EditBooks... 2

EditBooks... o

Manage
Books

Remove
Books...

o

SearchBooks...1

DeleteBooks...2

Enter
Username...

1
Enter

Password...
2

Authenticate

WaitFor
Username

Receive
Hint...

1

Enter
Answer...

2

GetPassword...3

Request
Password

Authenticating
User

Book
Administrator

Figure 7.2: An example ADORA model that contains aspect-oriented elements (based on
[Meie06])

7.3 Aspect Module 115

7.3 Aspect Module
An aspect module3 encapsulates the elements belonging to a crosscutting concern, such as the
crosscutting behavior, crosscutting scenarios and other elements. An aspect module belongs to
the main elements (cf. Chapter 6) in ADORA, hence it has a unique identifier and a graphical
mapping. The aspect may have a name that helps to indicate its purpose. Like any other ele-
ment, it may be augmented by informal descriptions. In Fig. 7.2 the beveled rectangle named
Authentication denotes an aspect module.

Various elements may be encapsulated by an aspect module. For example, it may comprise
a behavior description (cf. Section 7.4) and a crosscutting scenario description (cf. Section 7.5).
An aspect module can also possess a functional specification describing datatype declarations,
attributes, and operations of the crosscutting concern (cf. Section 7.8). Moreover, it may be
connected by associations to components, or it may contain components (cf. Section 7.9). Join
relationships express the impact of an aspect on other concerns and define the way the aspect is
woven with its targets (cf. Section 7.6).

Two language features of aspect modules support the evolution of an aspect-oriented ADORA

model. An aspect may be marked as partial (cf. Chapter 5), which expresses the intentional
incompleteness and therefore a further model evolution. The other feature is the embedding of
aspects in aspects. Embedding an aspect A in an aspect B expresses a refinement of A by B (cf.
Section 7.9). It is useful for aspects which originate in non-functional requirements. The use of
both language features is discussed in detail in Chapter 10.

7.3.1 Grammar Production Rules

Two extensions are needed in order to extend the ADORA EBNF for the support of aspect mod-
ules. The first extension concerns the aspect modules themselves and the second the embedding
of the aspects in the model.

AspectDe�nition Production Rule

The rule for the textual description of an aspect module is presented in Table 7.1 by the produc-
tion AspectDe�nition. An aspect module is a main element, thus it contains a name (AspectName)
and a unique identifier (UniqueModelElementIdenti�er). The lines 1–91 of Listing 7.1 illustrate
the textual description of an aspect module, which adheres to the rule AspectDe�nition.

The production rule AspectParts specifies the elements which can be a part of the aspect.
Parts may be components, scenarios, states, exit points, and aspects.

Embedding of Aspects in ADORA Models

Aspects can occur at different locations in ADORA models. The tables 7.1 and 7.2 show the
grammar production rules for the elements which may contain an aspect as a part. Aspects

3In this work aspect modules are also just called aspects.

116 Chapter 7. Aspect-Oriented Language Extension for ADORA

Table 7.1: The EBNF grammar which describes aspect modules. Excerpt from Appendix B.
Production Name Production Rule

AspectDefinition ::= (“partial”)? “aspect” AspectName
UniqueModelElementIdentifier AspectParts FunctionalSpecification
AspectConnections “end” “aspect” AspectName

AspectParts ::= (“consists” “of” (ComponentDefinition | StateDefinition |
ScenarioDefinition | AspectDefinition | ExitPointDefinition)+)?

AspectName ::= SpecialIdentifier

Table 7.2: Syntax rules describing the embedding of aspects in components and the root of
an ADORA model. Excerpt from Appendix B.

Production Name Production Rule

Model ::= “model” ((ComponentDefinition | EnvironmentObjectDefinition |
AspectDefinition))* TypeDefinitions PropertyDefinitions
StereotypeDefinitions “end” “model”

ComponentDefinition ::= (“partial”)? (“external”)? (“start”)? “component”
ComponentName UniqueModelElementIdentifier (Cardinality)? (
“is” InheritedType)? ComponentParts BodyElements (
ComponentConnections)? “end” “component” ComponentName

ComponentParts ::= (“consists” “of” (ComponentDefinition | StateDefinition |
ScenarioDefinition | AspectDefinition)+)?

(AspectDe�nition) may be embedded in the root of an ADORA model (Model) or they may also
be either a part of a component (ComponentParts) or an aspect (AspectParts).

7.3.2 Language Constraints
For the sake of consistency in the textual description, the name in the header and the footer (i.e.,
lines 1 and 91 in Listing 7.1) must be equal.4 This constraint is leniently enforced at a user-
defined point in time. The constraint is given formally in Definition C2 in Section F.1 of the
appendix.

7.4 Crosscutting Behavior
An aspect-oriented method must allow the separation of crosscutting behavior without altering
the logical ordering of the transition sequence triggered when executing the system’s behavior.

4Moreover, all the other constraints on names introduced in the previous work of [Seyb06a, Xia04, Joos99] need
to be satisfied, too.

7.4 Crosscutting Behavior 117

In aspect-oriented ADORA, there are two ADORA constructs which allow this:

1. A so-called behavior chunk specifies a fragmentary crosscutting behavior description.

2. A crosscutting statechart is a self-contained behavior description which is executed con-
currently with the behavior chunks in the aspect.

Behavior chunks. A behavior chunk is a fragmentary statechart which amends the behavior
in the target module. It consist of atomic and complex states, components and transitions. The
meaning of these elements is the same as for conventional ADORA statecharts (cf. Chapter 5).
Nevertheless, a behavior chunk is not a self-contained description of behavior. It does not have a
start state and it is not a complete behavior description. Furthermore, the behavior is crosscutting,
i.e., it occurs in a conventional model at several locations.

Each behavior chunk contains two types of junctions: so-called entry and exit points. One
or more entry points designate where the crosscut behavior enters the behavior chunk. The entry
point is denoted as a state or a component with an out-going join relationship (cf. Section 7.6).
A behavior chunk has usually just one entry point5 but does not need to have one. If a behavior
chunk has no entry point, i.e., no outgoing join relationship, the crosscutting behavior has no
impact on a target.

In contrast to an entry point, an exit point defines where the behavior chunk is left and the
crosscut behavior is reentered. There must be exactly one exit point which is connected by one
or more in-coming transitions with the behavior chunk. An exit point is visualized graphically
as a rounded rectangle with a double outline.

Behavior chunks are state groups (cf. Section 5.2.3). In order to constitute behavior chunks,
the original definition for state groups needs to be extended. Besides states, abstract objects and
object sets, exit points are also allowed as vertexes.

A behavior chunk is defined as state group which contains exactly one exit point, and which
has no node that is marked with a start state indicator.

An aspect may contain one or more behavior chunks. Nevertheless, an aspect that contains
more than one behavior chunk may contain too many responsibilities. Too many responsibilities
may worsen the understandability of the model. Therefore they should be split up into multiple
aspect modules.

For example in Fig. 7.2, the behavior chunk is constituted by the states WaitForUserName
and Authenticate, the exit point Authorized and the transitions between them. An exit point is
denoted by a rounded rectangle with a double outline. The WaitForUserName state is the entry
point of the behavior chunk.

Crosscutting statecharts. Another kind of crosscutting behavior is described by so-called
crosscutting statecharts. In contrast to a behavior chunk, a crosscutting statechart is a self-

5Note that in [Meie06] it is mentioned that an entry point must be unique. In fact, it does not need to be unique.
Nevertheless, for the sake of a coherent usage and an easy understandability of the crosscutting behavior, just one
entry point should be used for all join relationships outgoing from the behavior chunk.

118 Chapter 7. Aspect-Oriented Language Extension for ADORA

contained behavior description which is interrelated with at least one behavior chunk. It is
concurrently executed with other statecharts and chunks contained in the aspect.

A crosscutting statechart is described by the same syntax and semantics as used for describing
the behavior of a component. Hence, it consists of a start state, atomic states, complex states,
components and transitions. More formally, a crosscutting statechart is a state group which has
exactly one start state, no entry points (i.e., they do not have join relationships which are out-
going from a state or a component and no exit points).

The model in Fig. 7.2 shows a crosscutting statechart whose functionality allows a user to
retrieve a forgotten password by requesting and answering a password hint question. The mech-
anism comprises the states WaitForHintRequest, WaitForHintQuestion, WaitForHintAnswer, and
WaitForPassword, as well as the corresponding transitions. Apart from the concurrent behavior,
a so-called crosscutting scenariochart with the root node RequestPassword (cf. Section 7.5) is
also introduced in this figure. It describes the communication protocol between the correspond-
ing environment object and the crosscutting statechart.

7.4.1 Production Rules

The behavior description of an aspect is specified by the syntax rules in Table 7.3. Aspect-
oriented behavior descriptions are similar to conventional behavior descriptions of components,
except that they may also contain exit points. Thus, a behavior description of an aspect may be
formed of components (ComponentDe�nition), states (StateDe�nition), exit points (ExitPoint-
De�nition) and transitions (TransitionDe�nition). The former three elements are embedded as a
part in an aspect which is specified by the grammar rule AspectParts in Table 7.1. Components
and states may in turn contain outgoing transitions.

Transitions connect nodes of the behavior descriptions (i.e., exit points, states and compo-
nents) to state groups. A transition is specified according to the grammar rule TransitionDe�ni-
tion in Table 7.3 which is referred to by components (in the rule ComponentConnections) and
states in the rule (StateConnections), respectively.

Note that components which have at least one ingoing or outgoing transition belong to a
behavior description of an aspect. In contrast, components which have no ingoing or outgoing
transitions do not belong to a state group.6 Consequently, they are not part of an aspect’s behavior
description and therefore they are seen as embedded components, which is discussed in detail in
Section 7.9.

An example of the textual elements of a behavior chunk is given in Listing 7.1 where the
lines 3–18 describe the states of a behavior chunk of the Authentication aspect. The exit point of
the behavior chunk can be found in lines 42 and 43. The lines 5–6 and 11–16 illustrate textual
transition descriptions of the behavior chunk. The crosscutting statechart is shown between lines
19 and 41.

6This fact is implicit and therefore not apparent from the syntax.

7.4 Crosscutting Behavior 119

Table 7.3: EBNF syntax rules describing the behavioral view of an aspect. Excerpt from
Appendix B.

Production Name Production Rule

ComponentDefinition ::= (“partial”)? (“external”)? (“start”)? “component”
ComponentName UniqueModelElementIdentifier (Cardinality)? (
“is” InheritedType)? ComponentParts FunctionalSpecification (
ComponentConnections)? “end” “component” ComponentName

ComponentConnections ::= “connections” (AssociationDefinition | AssociationRoleDefinition
| TransitionDefinition)* “end” “connections”

ExitPointDefinition ::= “exit” StateName UniqueModelElementIdentifier “end” “exit”
StateName

StateDefinition ::= (“partial”)? (“start”)? “state” StateName
UniqueModelElementIdentifier CompoundStates (StateConnections)?
“end” “state” StateName

StateName ::= SpecialIdentifier

StateParts ::= (“consists” “of” (StateDefinition)+)?

StateConnections ::= “connections” (TransitionDefinition)* “end” “connections”

TransitionDefinition ::= (“partial”)? “transition” UniqueModelElementIdentifier
“to” ElementReference (SimpleTransition | DecisionTableTransition
)?

7.4.2 Language Constraints

Several language constraints need to be specified to get well-formed behavior descriptions of an
aspect module. They complement the EBNF rules presented above.

State Groups Must Be Well-Formed

Each state group in an aspect module must be either a well-formed behavior chunk or a well-
formed crosscutting statechart. Besides the syntactical correctness, a well-formed behavior
chunk must have exactly one exit point and no start state, whereas a crosscutting statechart must
comprise exactly one start state and no exit point. Figure 7.3 (a) and (b) show situations which
satisfy this constraint, whereas (c), (d), (e), (f), and (g) show models which violate it. Situation
(c) violates the constraint because a state group must either be a crosscutting statechart (indicated
by a start state) or a behavior chunk (denoted by an exit point) but not both. Situation (d) has two
start states, whereas (e) has none. The behavior chunk in situation (f) contains two exit points,
which is also not allowed. Situation (g) is wrong because an exit point is missing.

This constraint is leniently checked before the aspect-oriented model is woven. Its formal
specification is given in Definition C3 in Section F.2 of the appendix.

120 Chapter 7. Aspect-Oriented Language Extension for ADORA

YX
a|b

A

X

y

a|b

c|d

A

X a|b Y

A

X

y

a|b

c|d

A

y

e|f

g|h

X

y

a|b

c|d

A

y

e|f

g|h

YX
a|b

A

ZW

c|d d|e

X

y

a|b

c|d

A

y

e|f

g|h
k|l

S T

C

X

y

a|b

c|d

A k|l
S T

C

c)a) b) d)

X

y

a | b
A

k|l
S T

Cf)

i)

e)

h)

g)

i|j

f|g

Figure 7.3: Examples violating and satisfying the constraints of an aspect’s behavior descrip-
tion. In (a) and (b) no constraint is violated. All other situations violate one of the behavior
constraints.

No Out-Going Join Relationships from Crosscutting Statecharts

No state or component which is part of a crosscutting statechart may have an out-going join
relationship. In Fig. 7.3, the situation (h) illustrates the violation of this constraint. It connects
a crosscutting scenariochart by a join relationship to a transition. This constraint is strictly en-
forced, i.e., it is checked before a join relationship is inserted in the model. It is formally specified
by Definition C4 in Section F.2 of the appendix.

No Crossing of the Aspect Border by Transitions

The transitions of a behavior chunk or a crosscutting statechart may not cross the border of the
aspect module. In Fig. 7.3, situation (i) shows the violation of this constraint. This constraint is
strictly enforced and specified formally in Definition C5 in Section F.2 of the appendix.

Transitions Can Be Connected to Exit Points

In the conventional ADORA modeling language, transitions are only allowed to be connected
either to states or to components. However, with the introduction of aspects, transitions may also
have exit points as targets. Therefore the corresponding constraint defined in the previous work
has to be relaxed. It is given by the formal Definition C6 in Section F.2 of the appendix. This
constraint is strictly enforced.

7.5 Crosscutting User View 121

Other Language Constraints

There are language constraints restricting the behavior view of a component, defined by the
previous work in [Seyb06a, Xia04, Bern02, Glin02b, Joos99, Cram07]. They also apply to the
behavior description of an aspect.

7.5 Crosscutting User View
As discussed in Section 5.2.4, the user view describes the protocol of the interaction between
environment objects and particular components in the system, i.e., the use cases of the system,
by means of scenariocharts. Use cases can be crosscutting too, and therefore, they need to be
introduced also for aspects. There are two different types of crosscutting use cases:

1. Scenario Chunks: The interaction between an environment object and a behavior chunk
is described by a scenario chunk.

2. Crosscutting Scenariocharts: The interaction protocol between a crosscutting statechart
and an environment object is described by a conventional scenariochart embedded in the
aspect module.

Scenario chunks. Environment objects may interact with a behavior chunk (cf. Section 7.4) of
an aspect. A scenario chunk is a fragmentary use case of an aspect which describes the interaction
protocol between an environment object and a behavior chunk of an aspect. It complements a
use case description of the crosscut module and can consists of nodes and connections forming
a tree. Its syntax and semantics is similar to a scenariochart (cf. Section 5.2.4). Nevertheless, a
scenario chunk is not self-contained, i.e., it is a fragmentary description, as it does not describe
a full interaction between an environment object and a system part.

Scenario chunks normally interact with a behavior chunk, as they describe a part of the com-
munication between environment objects and the behavior chunk. However, a scenario chunk
need not have a corresponding behavior chunk as a counterpart and vice-versa.

A well-formed scenario chunk is a scenario group (cf. Section 5.2.4). In contrast to a scenar-
iochart, a scenario chunk may not be connected by an association to an environment object. The
root node of the scenario chunk is rather connected by an out-going join relationship (cf. Sec-
tion 7.6) to a target scenario node. The target scenario node indicates where the scenario chunk
crosscuts the target scenario. However, there is no need to have an out-going join relationship.
In this case, the scenario chunk has no impact on a target.

Each node in a scenario chunk has a specific scenario type, which follows the same type
schema as for conventional scenariocharts (cf. Section 5.2.4). Note that in [Meie06], it was
claimed that the type of the behavior chunk’s root node must have the same type as the target
scenario node and its siblings. However, there is no need for this constraint, as it would restrict
the reusability of a scenario chunk too much. Therefore this constraint is relaxed: the root node
of a scenario chunk has to be of the type Root. In a woven model, the type of the behavior

122 Chapter 7. Aspect-Oriented Language Extension for ADORA

chunk’s root node is adapted to have the same type as its target node and its siblings. This issue
is also discussed in Chapter 9.

Figure 7.2 illustrates a scenario chunk comprising the three scenario nodes Authenticate, En-
terUsername and EnterPassword. The latter two nodes represent sub-scenarios of Authenticate.
It describes the interaction between the internal behavior for the authentication mechanism and
the environment objects in the target. The out-going join relationships indicate the target of the
(crosscutting) scenario chunk. In the example, there are three target nodes which describe the
deletion (DeleteBooks), the editing (EditBooks), and the borrowing (RegisterBorrowing) of the
registry records of books.

Crosscutting scenariochart. Apart from scenario chunks, crosscutting scenariocharts can de-
scribe the interaction between an environment object and the behavior description of an aspect.
A crosscutting scenariochart is a self-contained description of the interaction between an envi-
ronment object and a crosscutting statechart (cf. Section 7.4). A crosscutting scenariochart may
not have any out-going join relationships, but it must be connected by an association from their
root node to an environment object.

Figure 7.2 illustrates the use of a crosscutting scenariochart in an aspect. In this example, a
mechanism for retrieving lost passwords (cf. Section 7.4) is given, which is specified as a cross-
cutting scenariochart. As the behavior of this mechanism needs to interact with an environment
object, the interaction protocol must be described. In the example, this protocol is specified by
the crosscutting scenariochart constituted by the nodes RequestPassword, ReceiveHint, EnterAn-
swer and GetPassword, where the latter three are the sub-scenarios of RequestPassword. The
root node of the crosscutting scenariochart is connected by an association to the environment
object LibraryUser.

7.5.1 Production Rules

Table 7.4 contains the set of grammar rules which specify the textual description of scenario
nodes (ScenarioDe�nition) and connections (ScenarioConnections and ScenarioConnectionDef-
inition). The textual description of scenario connections are embedded in their source node (cf.
rule ScenarioDe�nition). The nodes of scenario chunks and crosscutting scenariocharts are parts
of an aspect module, which is defined by the grammar rule AspectParts in Table 7.1.

Lines 44–55 of Listing 7.1 give an example of the textual specification of a scenario chunk.
They describe the scenario nodes Authenticate, EnterUsername and EnterPassword textually.
The scenario connections between the Authenticate scenario and the other two nodes are illus-
trated by lines 46–47. The definition of the crosscutting scenariochart can be found between the
lines 58 and 72.

7.5.2 Language Constraints

In order to enforce well-formed ADORA models, the syntactical syntax elements presented above
must be complemented with several language constraints.

7.5 Crosscutting User View 123

Table 7.4: EBNF syntax rules for the user view of an aspect.
Production Name Production Rule

ScenarioDefinition ::= (“partial”)? ScenarioType “scenario” ScenarioName
UniqueModelElementIdentifier (“on” GuardPart)? (
“iteration” Expression)? (ScenarioConnections)? (
TransformationElements)? “end” “scenario” ScenarioName

ScenarioName ::= SpecialIdentifier

ScenarioType ::= (“alternative” | “sequence” (<INTEGER_LITERAL>
)? | “parallel” | “root” (Cardinality)?)

ScenarioConnections ::= “connections” (ScenarioConnectionDefinition |
AssociationDefinition | AssociationRoleDefinition)* “end”
“connections”

ScenarioConnectionDefinition ::= “scenarioconnection” UniqueModelElementIdentifier
“to” ElementReference

No Crossing of the Aspect Border by a Scenario Connection

As defined by the language constraint described in [Xia04, p. 52], the connections of a scenario-
chart may not cross the border of a component. Analogously, this constraint applies for aspects.
The connections of a scenario group may not cross the border of the aspect in which the scenario
group is embedded. This means that any scenario child of a root node that is part of an aspect A
must also be embedded in A, or in one of A’s embedded components.

The figures 7.4 (a) and (b) illustrate this constraint. Situation (a) shows a well-formed model,
where two scenario connections do indeed cross the border of the embedded components (cf.
Section 7.9). However, they do not cross the border of the aspect, therefore the constraint is not
violated. In contrast, situation (b) is malformed as a scenario connection crosses the border of
the aspect. This language constraint is strictly enforced and formally specified by Definition C7

in Section F.3 of the appendix.

Well-Formed Scenario Chunks

A well-formed scenario chunk is a scenario group which has to satisfy one the following two
conditions. First, if there is a join relationship outgoing from the scenario group, there may be
no associations connected to any node in the scenario group. Second, there does not have to be
any out-going join relationship, but if there is one, it has to originate from the root node of the
scenario group.

Figure 7.4 (c)–(f) describe situations which satisfy or violate this constraint. The model in
(c) describes a scenario chunk which does not have an out-going join relationship; nevertheless,
it is well-formed. The situation (d), where the root node is connected by a join relationship to
a target node, is also well-formed. In contrast, figure (e) shows an malformed model, as the
join relationship is not outgoing from the root of the scenario chunk. Situation (f) violates the

124 Chapter 7. Aspect-Oriented Language Extension for ADORA

b) CUA

C D

A

E

UA

A
C

UA

a) c)

f)

g) h)

d) e)

V 1 W 2

UA

V 1 W 2
X 3

V 1

W 2 X 3

A

V 1 W 2

U

U

A
C

V 1 W 2

U
A

B 1

C

V 1 W 2

U

EE

Y 4

B 1 B 1

V 1 W 2 V 1 W 2

i)

AA

A

B 1

C

V 1
W 2

UA

D

j)
A

B 1

C

V 1
W 2

UA

D

X
c|d

Figure 7.4: Examples violating and satisfying the constraints. Situations (a), (c), (d), (g), and
(i) satisfy the user view constraints. All other situations violate one of them.

constraint as the root node is connected by a join relationship and an association. This constraint
is strictly enforced and formally specified in Definition C8 in Section F.3 of the appendix.

Well-Formed Crosscutting Scenariocharts

A well-formed crosscutting scenariochart must satisfy three conditions. First, the root node
of the scenariochart must be connected to at least one environment object. Second, no join
relationships may originate in the nodes of the scenario group, and third, non-root nodes may not
have an association connected to another node.

Figure 7.4 (f)–(h) illustrate situations which violate or satisfy this constraint. Situation (f)
neither denotes a well-formed crosscutting scenariochart nor a well-formed scenario chunk, be-
cause the root node is connected by a join relationship and an association. The model in (g)
shows a well-formed crosscutting scenariochart. In contrast, situation (h) is malformed as it con-
nects the environment object to a non-root scenario node. This constraint is strictly enforced and
specified formally in Definition C9 in Section F.3 of the appendix.

Disallowed Embedding of a Scenario Node in a Component Belonging to a Statechart

A scenario node can be part of components. However, it is not allowed to embed a scenario
node in a component which is part of a statechart. This is due to the fact that this may otherwise

7.6 Join Relationships 125

lead to contradictions in the modeling, as well as when performing weaving transformations on
the aspect-oriented model. Figure 7.4 (i) shows a model satisfying this constraint, (j) a situation
which violates it. This constraint is leniently enforced before the aspect-oriented model is woven.
Its formal specification can be found in Definition C10 in Section F.3 of the appendix.

Other User View Constraints

Apart from the given language constraints above, there are several others from the previous work
in [Joos99, Glin02b, Bern02, Xia04, Seyb06a, Cram07] restricting the modeling of scenarios,
e.g., that each scenario group must be a tree. These language constraints were defined for the user
view of conventional ADORA models, nonetheless they also apply to the user view of aspects.

7.6 Join Relationships
One major concept of aspect-oriented software development is the decoupling of modules by
crosscutting relationships (cf. Chapter 3). A crosscutting relationship is unidirectional between
two artifacts A and B, where A constrains B and B has no in�uence on the way it is constrained
by A. In systems where crosscutting concerns are modularized, crosscutting relationships specify
where an aspect has an impact on the target, i.e., crosscutting relationships are the main means
of decoupling aspects from other modules.

Some aspect-oriented modeling and programming approaches, e.g., AspectJ [Kicz01b], do
not specify crosscutting relationships explicitly. Mostly, they use some kind of quantification
expression which implicitly defines where the aspect crosscuts the modules of the other con-
cerns. However, for a graphical modeling approach, an explicit definition and the showing of the
crosscutting relationship is desirable.

Therefore, aspect-oriented ADORA uses an explicit join point model, where the crosscutting
relationships are explicitly defined and shown. Pattern matching or other ways of implicitly
denoting a crosscutting relationships is deliberately not used, because this reduces the effective-
ness of a visual model and increases the cognitive effort needed to read it. Apart from that,
unintentional (i.e., wrong) matches may occur when using pattern matching mechanisms. In the
aspect-oriented ADORA approach, crosscutting relationships are called join relationships.

In Fig. 7.2, several join relationships are part of the given model. For example, one of them
points from the state WaitForUserName to the transition between SearchBooks and BorrowBooks
in the BorrowManager component.

Partial vs. concrete join relationships. Join relationships may be partial or concrete. A partial
join relationship displays an intentionally incomplete, i.e., not fully evolved, join relationship
between an aspect and a target. In contrast, a concrete join relationship denotes a fully evolved
join relationship.

Partial join relationships are one of the two syntactical elements supporting the identification,
separation and evolution of crosscutting concerns by a guided process.7 In ADORA, partial is

7The other syntactical element is the aspect refinement mechanisms (cf. Section 7.9).

126 Chapter 7. Aspect-Oriented Language Extension for ADORA

also called manually abstracted, or even less precisely, just abstract. Note that there are also
visually abstracted join relationships, i.e., join relationships that are shown in a partial view (cf.
Section 8.1.2).8

A partial join relationship allows the connecting of various combinations of source and target
nodes. The source node may either be an aspect, a state of a behavior chunk or a node of a
scenario chunk, whereas the target is either a component, a state, an association, a scenario
node or a transition. As mentioned above, a partial indicator that is set expresses an unfinished
evolution of the join relationship between its source and the target element. A detailed discussion
of the possible combinations of elements which can be connected by join relationships can be
found in Section 7.6.2. Furthermore, the use of abstract join relationships in a evolutionary
requirements process is discussed in more detail in Chapter 10.

In contrast, a concrete join relationship denotes a finished evolution. It connects concrete
pieces of behavior, scenario descriptions, or crosscutting scenarios. This is discussed in detail in
the constraints section.

Apart from the partial property, a join relationship may incorporate three additional attributes
which are crucial to the meaning of an aspect-oriented model. There is an ordering descriptor, a
priority and a context map.

Ordering and priority attributes. The ordering may be optionally specified and indicates the
weaving order between the target element and the aspect-oriented element. It is specified by
either of the three keywords before, instead, or after. If no ordering is given, the before ordering
is taken as the default value. A detailed discussion of the ordering descriptor’s weaving semantics
can be found in Chapter 9.

Besides the ordering descriptor, a join relationship may be attributed with a priority which
denotes the precedence of two competing aspects during the weaving process. Two aspects
are competing if both target the same element with the same ordering. A priority is a number
between 1 and 10, where 1 is the lowest priority and 10 the highest. If no priority is given, 1 is
chosen as default. If two aspects with the same priority are in competition, one of them is chosen
non-deterministically to be woven first into the target.

Context map. Sometimes aspects need to access information in the context of their target for
fulfilling their intended function. For example, an aspect which logs data needs to access the
information of the crosscut modules. The problem is illustrated with the situation in Fig. 7.5 (a)
where a Logging aspect and the crosscut component BookAdministration of the partially viewed
LibrarySystem are given. Suppose that the following requirements are documented by the model
presented:

• There should be a mechanism for enabling and disabling the logging aspect, which is
realized by the transitions between the state StartLogging and the exit point EndLogging.
They are triggered by a guard evaluating the attribute logEnabled.

8In general, abstraction is the superordinate concept for partial modeling and partial viewing.

7.6 Join Relationships 127

functional specification
 attributes
 user : string;
 ...

a) b)

context map
 x : ident;
 y : user;
end context map

Logging...

BookAdministration...

Start
Logging

End
Logging

Search
Books...

Delete
Books...

receive
deleteBooks(ident : integer) |
 send prepareDelete()

[logEnabled] |
send log(id, user, “del books”)
to Log

LibrarySystem...

Signature
Reader...

after

[not logEnabled] |

Logging...

BookAdministration...

Start
Logging

End
Logging

Search
Books...

Delete
Books...

receive
deleteBooks(ident : integer) |
send prepareDelete()

LibrarySystem...

Signature
Reader...

after

[not logEnabled] |

Log...

Log...

[logEnabled] |
send log(x, y, “del books”)
to Log

Figure 7.5: Example motivating the usage of a context map.

• The logging must protocol the deletion of book records by journalizing the book ids.

• The user which committed the deletion must also be recorded.

The recording of this information is done by the Log component which is part of the aspect.
It adds a log entry as soon as a message log(elementId : integer, user : string, msg : string) is
received.

On the one hand, a book is identified by the id parameter of the message deleteBooks(id
: integer) which triggers the transition between SearchBooks and DeleteBooks. On the other
hand, the name of the user who is currently executing the delete operation has been stored in
the attribute user. This attribute is part of the functional specification of the BookAdministration
object. The functional specification is hinted at by the gray box in Fig. 7.5 (a).

For the logging task, the question is how the crosscutting behavior can access the attribute id
and user which are defined in the context of the target BookAdministration but not as elements
in the aspect. A naive approach for accessing these context elements by an aspect would be to
refer to them by simply using the names and the namespace of the target’s context. This would
be possible, as the elements of an aspect are woven with a target and therefore are actually in the
same namespace as the elements in the target. For example, in the crosscutting behavior given in
Fig. 7.5 (a), the aspect elements refer directly to the elements id and user in the send statement
(send log(id, user, “deleteBooks”)). However, this attempt to access the elements in the context
of the target BookAdministration con�icts with the idea that aspects are strongly decoupled from

128 Chapter 7. Aspect-Oriented Language Extension for ADORA

their targets. Therefore it compromises their reusability, since for each crosscut module, there
may be differently named elements which have to be accessed by the aspect.

When referring to elements in the target context, the way to decouple an aspect from its
target elements is to use a proxy variable. This proxy variable needs to be mapped to context
elements for each target. The mapping is defined for each join relationship individually as a join
relationship is the only place where a crosscutting concern and its target are coupled, and where
target-specific information, e.g., the ordering of the aspect with respect to the target is introduced.
The mapping is defined by an expression referring to context elements. This expression may
compute an arbitrary value.

In Fig. 7.5 (b), an example of a mapping for the situation described in Fig. 7.5 (a) is defined.
In the send statement of the aspect’s crosscutting behavior in Fig. 7.5 (b), the proxy variables x
and y are used instead of accessing directly the elements in the context. Furthermore, a mapping
table, which is visualized as a gray box9, is defined for the join relationship. It defines how
both these variables are used by the aspect. The mapping consists of a proxy variable x and
a replacement expression after the colon. The proxy variable is used as a placeholder in the
behavior description of the aspect which is substituted by the replacement during the weaving.
In the example, the replacement expression consists simply of the variable with the name id. This
means that all occurrences of the variable x in the woven crosscutting behavior are substituted by
id. Correspondingly, the proxy variable y is mapped to the user variable.

7.6.1 Production Rules

Table 7.5 shows the syntax rules which define join relationships and the elements belonging to
them. The rule AspectDe�nition in Table 7.1 refers to the AspectConnections rule in Table 7.5
which allows an aspect to have between zero and several join relationships.

Join relationships are defined by the rule JoinRelationshipDe�nition. Join relationships are
the only kind of connections in ADORA which have a textual representation that is not embedded
in their source element (cf. Section 6.1.4 and 6.1.6).10 Join relationships are rather embedded
in the aspect which is the parent of their source. As a consequence, a join relationship not only
references its target but also its element of origin. Hence a constraint is needed which ensures
that the source node of the join relationship is a part of the aspect in which the relationship’s
textual specification is embedded (see below). Furthermore, another constraint for checking the
correct type of the source is needed (see below).

A join relationship is a main element of ADORA, i.e., it has a unique model element iden-
tifier and is graphically visualized. The textual description of a join relationship contains four
optional elements: a partial indicator, a priority (Priority), an ordering keyword, and a context
map (ContextMap, ContextMapping).

9Note that the mapping is normally not visualized in the graphical model.
10This is due to practical reasons when designing the language. Locating the EBNF rule for the join relationship

in each actual source element would require the definition of many more language constraints.

7.6 Join Relationships 129

Production Name Production Rule

AspectConnections ::= (“connections” (AssociationDefinition |
AssociationRoleDefinition | JoinRelationshipDefinition)* “end”
“connections”)?

JoinRelationshipDefinition ::= (“partial”)? “joinrelationship”
UniqueModelElementIdentifier “from” ElementReference “to”
ElementReference (“before” | “instead” | “after”)? (Priority
)? (ContextMap)?

Priority ::= <INTEGER_LITERAL>

ContextMap ::= “context” “map” ContextMapping (ContextMapping)* “end”
“context” “map”

ContextMapping ::= Identifier “:” Expression “;”

Table 7.5: EBNF grammar defining join relationships.

7.6.2 Language Constraints

In order to enforce well-formed aspect-oriented models, it is necessary to complement the syntax
rules for join relationships by a set of language constraints. Among its other characteristics,
a join relationship is not embedded in its source but rather in the aspect to which it belongs,
and therefore, additional language constraints are required. Furthermore, the join relationship
syntax rules in Table 7.5 allow the connection of an arbitrary type of source and target element.
However, a join relationship is restricted in how it is connected to a constituent node.

Constituents of Non-Partial Join Relationships

In the case of a concrete join relationship, three combinations of the source and target elements
are allowed. First as illustrated in Fig. 7.6 (a), a join relationship can connect a component or state
of a behavior chunk (cf. Section 7.4) with a transition in the target. Second, a join relationship
can connect a scenario chunk node (see Section 7.5) and a scenario node in the target, which is
illustrated by Fig. 7.6 (b). Third, two environment objects can be connected by a join relationship
(c)11, which has the meaning that one actor crosscuts the other (cf. Section 7.7). The constraint
which handles the possible constituent nodes of non-partial join relationships is strictly enforced
and formally specified in Definition C11 in Section F.4 of the appendix.

Constituents of Partial Join Relationships

As mentioned above, a join relationship with a partial �ag describes an unfinished evolution. In
this case, a join relationship can connect the following source and target types:

11The black parts of the model illustrate the actual situation. The gray parts may be substituted with any other
well-formed model parts.

130 Chapter 7. Aspect-Oriented Language Extension for ADORA

beforea|b

c|d
before

Y

b)

beforec | d

before

d) e)
before

f)

T
T

T

Sh) Ta|b

before

g)

S

a|bk)

S

j)

S

A B

before
i) S B

before
Sl)

A

before

before

c)

x|y a|b

O1 O2

X

A B X

Y1 Z2

A

B1 C2

X

Y1 Z2

X Y

Z CY

X

A

B

A B

A B
B1 C2

A
before before

Figure 7.6: Allowed use of partial and concrete join relationships. This figure illustrates the
allowed situations for partial and non-partial join relationships.

First, Fig. 7.6 (d)–(f) exemplifies the possible type of sources. The source may either be a
state (d), a scenario node (e), or an aspect module (f). In each of these examples the target is a
component (printed in gray) and may be substituted with any of the target types defined in the
following.

Second, the type of possible target nodes of a partial join relationship are depicted by Fig. 7.6
(g)–(l). The target may either be a transition (g), an aspect module (h), a component (i), an
association (j), a state (k), or a scenario (l). In each of these examples, the source is an aspect
(printed in gray). However, any type of source node defined above can be used.

Apart from the above defined types for the source and the target of a join relationship, the
source must either be a child element of the aspect or the aspect module itself. In addition
to the cases described above, if an actor has an outgoing partial join relationship, it can only
be connected with another actor. This constraint is strictly enforced and specified formally in
Definition C12 of Section F.4 of the appendix.

Join Relationships Connecting to Scenariochart Root Nodes

A concrete join relationship may connect a node of a scenario chunk with the root node of
a target scenario group. This represents a special case as the join relationship must have the
ordering instead, because before and after are not meaningful in this situation. Therefore, the
correct ordering keyword of a join relationship that points to a root scenario node must be ensured

7.6 Join Relationships 131

a)

A

B 1

C

V 1 W 2

UA instead
A

B 1

C

V 1 W 2

UA afterb)

Figure 7.7: Concrete join relationships connected to the root node of a scenariochart. Figure
(a) shows a well-formed situation, whereas situation (b) is malformed.

VU

a|b

c|d

before

S T

a)

YX
e|f

before

PO
i|j

before

b)

NM
g|h

before

RQ
k|l

before

A

B

C

E

D

F O1

D

Y e|f

A

a|bS

C

c)

Vc|d

before

B E

O1

T

U X

Figure 7.8: Model which exemplifies cyclic that join relationships are not allowed. Model (a)
is well-formed and situation (b) malformed. Situation (c) shows a cycle of join relationships
between environment objects and is therefore also malformed.

by a language constraint. Figure 7.7 (a) satisfies and (b) violates this constraint. It is leniently
enforced before the aspect-oriented model is woven and formally specified in Definition C13 in
Section F.4 of the appendix.

No Cycles in Join Relationships

Aspects may also crosscut aspects: for instance, a transitive crosscutting of aspects occurs when
an authentication must be logged. If the logging functionality is also used at other locations
in the system, the logging is (strictly) crosscutting, besides others, the authentication concern.
Fig. 7.8 (a) illustrates such a transitive crosscutting, where an aspect A crosscuts aspect B that in
turn crosscuts component C.

That an aspect can crosscut aspects implies two facts: (i) The weaving semantics for circular
join relationships, as exemplified in Fig. 7.8 (b), is not defined, and consequently, cycles of
crosscutting aspects are not allowed. This applies also for circular join relationships between
crosscutting environment objects, as shown in the malformed model of Fig. 7.8 (c). (ii) For the
same reason, no re�exive join relationships are allowed.

The corresponding constraint that ensures non-circular join relationships is strictly enforced
and specified formally in Definition C14 in Section F.4 of the appendix.

132 Chapter 7. Aspect-Oriented Language Extension for ADORA

VU

a|b

c|d
before

A B

a) C

VU

a|b

c|d

before

A B
b)

C

Figure 7.9: A join relationship may not cross the border of the aspect’s parent. Model (a)
is well-formed as the source aspect and the target of the aspect are located in the same com-
ponent. Model (b) is malformed as the source aspect has a parent that is different from the
parent of the target module.

Border Crossing of a Join Relationship

A join relationship may not cross the border of the aspect’s parent. Hence, a target of a join rela-
tionship must be a sibling of the aspect or a child of a sibling. Therefore, the situation illustrated
in Fig. 7.9 (a) is allowed, whereas the model in Fig. 7.9 (b) is malformed. This constraint is
strictly enforced and specified formally in Definition C15 in Section F.4 of the appendix.

Priority within the Range of 1–10

According to the grammar production rule in Table 7.5, a priority for a join relationship can be
literally any integer. However, the specification above stipulates that the priority must be between
1 and 10. This must be ensured as a constraint. This constraint is leniently enforced before the
weaving of the model. It is specified formally in Definition C16 in Section F.4 of the appendix.

Well-Formed Context Mapping

The context mapping of a join relationship may contain arbitrary expressions. For a meaningful
model, the element names used in the context map must be defined in the corresponding target,
which can be solved by using symbol tables (cf. also Section 7.8.2). Furthermore, a context
mapping may only be applied to a variable, such as an attribute or a message argument. However,
a detailed formal definition of the constraints describing the well-formedness of context-maps is
not at the focus of this work.

7.7 Crosscutting Environment Objects
An environment object can be seen as a role which is linked by an association with a specific
scenario of the system. The scenario specifies in which order the environment object sends
stimuli to the system and receives the generated responses.

Furthermore, a scenario can be split into a set of logically cohesive sub-scenarios. For exam-
ple, the scenario borrowing books of a library system can consist of the sub use cases authenti-

7.7 Crosscutting Environment Objects 133

Table 7.6: EBNF grammar rules of the join relationships of crosscutting environment objects.
Production Name Production Rule

EnvironmentObjectDefinition ::= (“partial”)? “environment” “object”
EnvironmentObjectName UniqueModelElementIdentifier (
Cardinality)? (EnvironmentObjectConnections)? “end”
“environment” “object” EnvironmentObjectName

EnvironmentObjectConnections ::= “connections” (AssociationDefinition |
AssociationRoleDefinition | JoinRelationshipDefinition)*
“end” “connections”

cate, choose books, checkout books. Correspondingly, the role represented by the environment
object can be split into sub-roles. In the library system example, the user who borrows the books
may have different sub-roles responsible for the authentication, the selection, and the reception
of books.

An environment object may have a crosscutting sub-role because it has an association to
a crosscutting scenariochart. When describing such a situation with aspects, the crosscutting
sub-role is separated from the actual environment object. It is represented by a crosscutting
environment object, i.e., an environment object which is connected by a join relationship to one
or more other environment objects. The join relationship denotes that the crosscutting sub-role
actually belongs to another environment object. When weaving, the crosscutting environment
object is woven with its targets, which is explained in detail in Section 9.2.6.

Note that even though external components are similar to environment objects (cf. Sec-
tion 5.2.5), they are not in the context but a part of the system. Therefore, they do not actually
represent a role and cannot crosscut other environment objects or external components.

An example is given in the library system of Fig. 7.2. AuthenticatingUser is a crosscutting
sub-role which results from the proper separation of concerns. It is connected with the cross-
cutting scenariochart describing the interaction with the password retrieval mechanism. This
crosscutting sub-role is actually part of other environment objects, such as the LibraryUser but
due to the separation of concerns, it is separated in the aspect-oriented model.

The join relationships used with crosscutting environment objects may be attributed with an
ordering keyword, a priority and a context map. However, these attributes do not have a meaning
for the weaving of the model.

7.7.1 Grammar Production Rules

The EBNF rules for describing the join relationships between environment objects is given in
Table 7.6. The rule EnvironmentObjectConnections defines all connections, including join rela-
tionships, which can be outgoing from the environment object.

134 Chapter 7. Aspect-Oriented Language Extension for ADORA

before

x|y
a|b

O1 O2

Z CY

X

A

B

before

x|y
a|b

O1 O2

Z CY

X

A

B

a) b)

before

x|y
a|b

O1 O2

Z CY

X

A

B

c)

x|y

O1 O2

ZY

X

e)

u|v

WU

V

S

beforex|y
a|b

O1 O2

Z CY

X

A

B

d)

W

Figure 7.10: Illustration of the constraints for crosscutting environment objects. The situation
in Fig. (a) is allowed whereas the models in (b), (c) and (d) are malformed.

7.7.2 Language Constraints
Two constraints concerning crosscutting environment objects and join relationships are defined
in Section 7.6.2: there may be no cycles of join relationships between environment objects, and a
join relationship outgoing from an environment object may only connect to another environment
object. Apart from these two, the following constraints on environment objects are also required
to ensure well-formed ADORA models.

Only One Join Relationship between Two Environment Objects

More than one join relationships pointing from an environment object A to the environment B
is not meaningful, and therefore, maximally one is allowed. Fig. 7.10 (a) shows a situation
which satisfies this constraint, whereas the model in (b) is malformed. This constraint is strictly
enforced and specified more formally by Definition C17 in Section F.5 of the appendix.

Crosscutting Environment Objects Must Be Connected To a Scenariochart

A crosscutting environment object must be connected with a crosscutting scenariochart. Fig. 7.10
(c) shows a malformed situation, as there is no association between Z and O1. The corresponding
constraint is leniently enforced before the weaving of a model. It is formally described in C18 in
Section F.5 of the appendix..

No Association of a Crosscutting Environment Object to More than One Aspect

A crosscutting environment object may be connected to more than one crosscutting scenari-
ochart. However, these crosscutting scenariocharts must be contained within the same aspect.
This is due to the fact that the role represented by a crosscutting environment object does not
usually belong to more than one aspect.

7.8 Crosscutting Functional Specification 135

An example of a correct model is given by Fig. 7.10 (d). The crosscutting environment
object is connected to two scenarios which are located in the same aspect. In contrast, (e) shows
a situation which is malformed, because the scenarios are located in different aspects. This
constraint is leniently checked before weaving a model. It is formally described in Definition C19

in Section F.5 of the appendix.

7.8 Crosscutting Functional Speci�cation
Components are modules in conventional software systems. They may contain a functional
specification which allow the definition of properties such as attributes, data type definitions,
operations, etc. (cf. Section 5.2.6). Similar to components, aspects are modules encapsulating
crosscutting concerns. For example, they contain crosscutting behavior and scenario descriptions
which may refer to a set of properties that are common to the whole aspect.

For instance, crosscutting statecharts or behavior chunks are not able to store information,
except the one represented by a state. However, more complex information cannot be repre-
sented by a state, as this would result in too complex and unmanageable models. Consequently,
to retrieve complex data later when it is needed, it is necessary to save more of it in distinct
storages, i.e., attributes, of the aspect module. Furthermore, it is convenient to encapsulate a set
of actions in operations, which facilitates an easy execution in a behavior chunk or a parallel
behavior description. Operations reduce the complexity of behavioral descriptions and lead to
more comprehensible models.

Generally speaking, all elements of a component’s functional specification (cf. Section 5.2.6)
also make sense for aspects. Thus, the elements that may be contained in the functional specifi-
cation of an aspect are:

• Export Declaration: The export declaration defines the elements which are visible outside
of the aspect.

• Import Declaration: The import declaration defines the elements which are imported
from other functional specifications.

• Invariants: The invariant section is part of the aspect’s contract and consists of one or
more expressions describing a logic predicate which must hold before and after the execu-
tion of a crosscutting operation.

• Standardized Properties: Standardized properties allow the definition of user-definable
structures for stating goals, constraints, configuration information, notes, etc.

• Data Type Declarations: A data type declaration defines a new data type which can be
used to encapsulate or structure data. Thus, they help to simplify the handling of data
values.

• Attribute Declarations: Attributes are storages which can be used by the aspect to save
and retrieve data values.

136 Chapter 7. Aspect-Oriented Language Extension for ADORA

• Operation De�nition: Operations define sequences of actions (send events or assign-
ments). Furthermore, they might define contract elements, such as preconditions and post-
conditions.

Examples for these elements and a deeper discussion of them is given Section 5.2.6 where
the functional specification for components is discussed in detail. An example of a functional
specification in an aspect can be found in lines 74–81 of Listing 7.1.

7.8.1 Grammar Production Rules
The following discussion sketches the syntactical structure of the functional specification ele-
ments brie�y. In Table 7.7, the production rule FunctionalSpeci�cation describes the functional
specification of both aspects and components. It references rules for all elements listed above:
imported and exported elements, invariants, data type declarations, attribute and operation def-
initions. The import and export section are declared at the beginning of the specification, the
other elements can follow in an arbitrary order.

Import and Export Declaration

An aspect may specify imported and exported elements in its functional specification. Imports
and exports are specified by the rules Requires and Provides in Table 7.7. As they are eventually
woven into the target elements, they have to be seen with respect to the namespace of the aspect’s
target elements. For example, suppose an aspect A crosscuts the component C0, C1, . . . , Cn. The
elements provided or required by A are seen as if they were provided or required directly by the
component Ci, where 0 ≤ i ≤ n.

Provided elements are listed by their unqualified name in the provides section of the aspect.
In contrast, required elements are listed in the requires section with a qualified name, i.e., a name
containing an access path to the element (cf. Section 6.1.5). The access path of provided elements
is either relative or absolute. The aspects have an impact on various components that may be
embedded at different levels of the decomposition hierarchy. Therefore, a relative qualified name
is rather inadequate. As a consequence, imported elements are better specified by their fully
qualified name.

Nonetheless, importing and exporting elements may enormously increase the coupling be-
tween aspects and other modules. Hence, the use of this language feature is discouraged.

Invariants

Aspects are modules of crosscutting concerns, whereas components are modules of conventional
concerns (cf. Chapter 3). Both types of modules share a lot of characteristics. Amongst others,
both of them have a specified behavior and a well defined interface. Consequently, the concept
of the axiomatic specification for components can be applied to aspects, too. It is possible to
define invariants, i.e., predicates which have to be true before and after an operation of an aspect
is executed. In Table 7.7, the production rule Invariants describes how an invariant has to be
composed.

7.8 Crosscutting Functional Specification 137

Table 7.7: EBNF grammar rules for the functional specification of an aspect.
Production Name Production Rule

FunctionalSpecification ::= (“functional” “specification” (Provides)? (Requires)? (
Invariants | DataTypeDeclarations | AttributeDefinitions | Property |
OperationDefinition)* “end” “functional” “specification”
)?

Provides ::= “provides” Identifier (“,” Identifier)* “;”

Requires ::= “requires” QualifiedIdentifier (“,” QualifiedIdentifier)* “;”

Invariants ::= “inv” (Expression “;”)+

DataTypeDeclarations ::= “data” “type” (DataTypeDeclaration)+

DataTypeDeclaration ::= DataTypeName “:” DataTypeDefinition “;”

DataTypeDefinition ::= (PrimitiveType | EnumerationTypeDefinition |
DesignedTypeDefinition)

AttributeDefinitions ::= “attributes” (VariableDefinition “;”)+

VariableDefinition ::= VariableNameList “:” DataTypeReference (“=” ExtendedTypeLiterals
)?

VariableName ::= Identifier

VariableNameList ::= VariableName (“,” VariableName)*

Property ::= “property” Identifier (<INTEGER_LITERAL>)? TypeLiteral “;”

OperationDefinition ::= (AsyncOperationSignature | SyncOperationSignature) (“is” “set”
“operation”)? (LocalVariableDefinitions)? (PreConditions)? (
PostConditions)? (Statements)? “end” “operation”
OperationName

OperationName ::= Identifier

AsyncOperationSignature ::= “operation” OperationName “(” (Parameters)? “)”

SyncOperationSignature ::= “syncoperation” OperationName “(” (SyncParameterList)? “)”
(“:” DataTypeReference)?

LocalVariableDefinitions ::= “var” (VariableDefinition “;”)+

PreConditions ::= “pre” (Expression “;”)+

PostConditions ::= “post” (Expression “;”)+

Statements ::= “statements” Statement (“;” Statement)*

Statement ::= (GuardPart)? (Assignment |MessageSend |MetaFunction)

Assignment ::= ExtendedQualifiedIdentifier “=” Expression

MetaFunction ::= (StructureMetaFunction | QueryMetaFunction |
ObjectSetMetaFunction)

138 Chapter 7. Aspect-Oriented Language Extension for ADORA

Data Type Declarations

Like aspects, these can contain behavioral descriptions. As for the components, the use of user-
defined data types in aspects is helpful to simplify the events of the behavior (cf. Section 5.2.6).
In Table 7.7, the syntax for user defined data types is given by the rules DataTypeDeclarations,
DataTypeDeclaration and DataTypeDe�nition. The rule DataTypeDe�nition refers to the rules
PrimitiveType, EnumerationTypeDe�nition, and DesignedTypeDe�nition.

Attribute De�nitions

The idea of attributes can be transferred to aspects, thus an aspect can contain attributes defining a
storage for complex data. In Table 7.7, the production rules AttributeDe�nition and VariableDef-
inition describe what an attribute definition looks like.

Operation De�nitions

Aspects benefit from the specification of operations because they help to simplify behavior de-
scriptions. Table 7.7 shows the syntactical structure of operations. The production rule Op-
erationDe�nition specifies the syntax of an operation in ADORA. The operation signature is
specified by the rule OperationDe�nition. Synchronous operations may have one or more output
values beside input values. In contrast, asynchronous operations may only get input values. This
fact is re�ected by the two production rules AsyncOperationSignature and SyncOperationSigna-
ture.

An operation can be working on an object set rather than on a single element. In this case, it
is an object set operation which may call object set meta functions12, such as create and dispose
that manipulate the object set. However, this kind of operation is rather meaningless for aspects,
as their use implies that all target modules of the aspect must be object sets.

Furthermore, an operation may define local variables, used as temporary storage for cal-
culations. In Table 7.7, the production rules LocalVariableDe�nitions and VariableDe�nition
describe what such a local variable definition looks like. Pre- and postconditions are specified
by the rules PreConditions and PostConditions. The production rules Statements and Statement
define how the block of statements is composed. A statement can consist of a variable assign-
ment, the sending of a message or the call of a meta-function.

7.8.2 Language Constraints

There are several language constraints belonging to the syntax rules of the functional specifica-
tion. Most of them involve a symbol table, as it is used in [Seyb06a, Section 6.1]. However,
these constraints are not at the focus of this work, as they were the subject of previous work on
the functional specification [Joos99, Glin02b, Xia04, Seyb06a].

12See the production rule ObjectSetMetaFunction in the full ADORA grammar in Appendix B.

7.9 Aspect Decomposition 139

7.9 Aspect Decomposition
The decomposition of an aspect is desirable for the following two reasons: first, for improving
the cohesion of an aspect, which has an in�uence on the understandability of the model, and
second for the refinement of an aspect during the evolution of a model.

Improving cohesion. As discussed in Chapter 3, aspect-oriented modularization techniques
decrease the coupling of the software artifacts at any stage of the software process. However,
just introducing a new kind of module for crosscutting concerns is not enough because an aspect
may comprise a wide spectrum of responsibilities that reduce its cohesion [Scha96, p. 138, ff.]
and which in turn increases its complexity. As a consequence its understandability is hampered.
Thus, it makes sense to decompose a complex aspect into a set of smaller modules, each with a
higher cohesion, which fosters also the understandability of the model. The cohesion problem is
mastered by introducing the following two decomposition mechanisms for aspects:

1. Server Components: A server component may provide a service for an aspect which is
accessed over an association13. The same server component instance is shared amongst all
target modules of a crosscutting concern.

2. Embedded Components: An embedded component is a part of an aspect. Consequently,
each target module contains its own embedded component. The aspect and the embedded
component communicate over the part-of relationship.

Server components differ also from embedded components by their number of woven in-
stances. A server component has only one instance in the woven system, i.e., the crosscutting
concern uses exactly one instance. In contrast, there is an instance of an embedded component
for each module that is crosscut.

As a consequence, the use of a server component and an embedded component has a different
semantics. A server component may be used if a service is used in collaboration with all locations
impacted by a crosscutting concern. Thus, the server component provides a common state and
common attributes to all crosscut modules. On the other hand, embedded components are used if
each crosscut module is amended by a independent crosscutting part which has its own state and
attributes. An embedded component is therefore independently used by each crosscut module.

The use of server components creates the need for synchronizing the behavior. This is due
to the fact that a server component provides its service to several different crosscut targets in the
woven system which concurrently access it. The behavior description in the server component
must take this into account by synchronizing the behavior where needed, as otherwise the results
may be unpredictable. In the cases where a synchronization of the concurrent behavior is needed,
the ADORA synchronization mechanism (cf. Section 5.2.3 and [Meie09a]) can be used. A deeper
discussion of this issue and its relation to the weaving of models can be found in Section 9.2.8.

13In [Meie06], a restriction on such associations is postulated. They may only be connected to an abstract object
and not to an object set. However, in this work, this restriction is relaxed, thus it is also allowed to use object sets as
server components.

140 Chapter 7. Aspect-Oriented Language Extension for ADORA

Furthermore, note that embedded components of an aspect may not be connected by associa-
tions to other components that are outside the aspect, i.e., an association may not cross the border
of the parent aspect. However, embedded components of the same aspect may communicate over
associations with each other.

Figure 7.2 illustrates the differences between server and embedded components. The com-
ponent AuthenticationLog is an embedded component which is part of the aspect Authentication.
For each crosscut component there is an instance of the embedded component AuthenticationLog
in the woven system, which logs the authentication events independently for each crosscut com-
ponent. On the other hand, the component Authorization is a server component which provides a
service to the aspect Authentication. In contrast to the embedded component AuthenticationLog,
there is exactly one instance of the server component Authorization which has one common state
for all locations impacted by the crosscutting concern.

Aspect re�nement. Like any other model parts, aspects may be subject to evolution. They
may evolve from an abstract level to a more concrete level during the software process. Aspect
refinement is another kind of decomposition mechanism which supports and guides the evolution
and which improves the understandability of the evolved model. It is mainly used for evolving
and particularizing non-functional requirements [Meie07].

To express an aspect on different levels of evolution, an aspect may be refined, i.e., specified,
by embedding more concrete and specialized aspects in it. For example, an aspect B embedded
in the aspect A means that B is evolved from A. B satisfies parts of the more general requirements
specified by A, and therefore, it is more concrete than A. The aspect B does not necessarily
detail the whole aspect A but just a part of it. There may be more than one sub-aspects which
particularize together the parent aspect. Furthermore, there may be an arbitrary number of aspect
nesting levels, i.e., the sub-aspects may be decomposed and detailed further. The innermost
aspects represent the most concrete ones.

An aspect comprising sub-aspects may not contain any other elements which are directly
embedded. Thus, for example, scenario chunks or behavior charts are not allowed in a refined
aspect. Figure 7.11 (a) illustrates an example of an aspect refinement as it might occur during the
model evolution of the library system. The abstract Security aspect can be refined, for example,
to the more detailed aspects Logging and Authentication. A more detailed discussion of the
evolution of aspects in ADORA models can be found in Chapter 10.

7.9.1 Grammar Production Rules

There are several production rules in the ADORA grammar which are involved in the decompo-
sition of aspects. Table 7.1 contains the rule AspectParts which defines the refinement of aspects
by referring the rule AspectDe�nition. Furthermore, the fact that server components can be con-
nected by associations with aspects is specifically defined in several grammar rules throughout
the ADORA grammar. The grammar rule ComponentParts in Table 7.2 and the grammar rule
Model in Table 6.1 describe where server components (i.e., ComponentDe�nitions) can be em-
bedded. Moreover, the rule AspectConnections in Table 7.5 shows the grammar rules specifying

7.9 Aspect Decomposition 141

A

A1

A2

B

C 1 D 2

YX
c|d

Security...

Authenti-
cation...

Logging...

A

C1 C2

A

C1 C2

A
C

A1 A2

a) b) c)

d) e) f)

Figure 7.11: Illustration of the language constraints for the aspect refinement. Situations (a),
(c) and (e) are well-formed, whereas the models in (b), (d) and (f) are ill-formed.

the associations (AssociationDe�nition) or association roles (AssociationRoleDe�nition) which
are used to connect an aspect module and a server component.

7.9.2 Language Constraints
The syntax rules discussed above are not self-contained for describing a well-formed ADORA

model. They have to be complemented by several language constraints which are given in the
following.

Aspect-Re�ned Aspect Modules May Contain only Aspect Modules

An aspect module which is refined by aspect modules may only comprise aspects as parts. Thus,
besides embedded aspects, no Scenario nodes, no states, no exit points and no components are
allowed.

Figure 7.11 (a) illustrates a refinement situation which satisfies this constraint. In contrast
Fig. 7.11 (b) violates this constraint, as the aspect A contains the aspects A1 and A2 as well as a
scenario and a behavior chunk. This constraint is strictly enforced and formally specified by the
Definition C20 in Section F.6 of the appendix.

Associations Originating within an Aspect May not Cross the Border of the Aspect

An association whose source is a direct or indirect child of an aspect must have a target which
is a direct or indirect child in the same aspect. Hence, an association which is connected to an
element that is part of an aspect is not allowed to cross the border of the aspect.

Figure 7.11 (c) shows a well-formed situation for using an association within a decomposed
aspect A: the components C1 and C2 are linked by an association. In contrast, Figure 7.11
(d) shows an malformed model, as the association between C1 and C2 crosses the border of

142 Chapter 7. Aspect-Oriented Language Extension for ADORA

the aspect. This constraint is strictly enforced and formally expressed by the Definition C21 in
Section F.6 of the appendix.

Components and Aspects Must Be Connectable

In the conventional ADORA language, only elements of a specific type can be connected by an
association. This constraint must be overridden in order to take into account aspect modules
which may also take part in an association. Thus, associations may either connect a component
with a component, an aspect with a component, a scenario with an environment object, an envi-
ronment object with an environment object, or a scenario with a component having its external
property set. All other combinations are not allowed.

Figure 7.11 (e) shows a well-formed situation which has an association between an aspect A
and a server component C. In contrast, the situation in (f) shows a malformed model, as associ-
ations between aspects are not allowed. This constraint is strictly enforced and formally defined
in Constraint C22 in Section F.6 of the appendix.

Other Constraints

With regard to associations, there are several language constraints from the previous work [Joos99,
Glin02b, Xia04, Seyb06a, Cram07], e.g. correctly referred role names, etc., which apply also to
the associations between server components and aspects.

7.10 Summary and Discussion

This chapter has demonstrated how to extend the existing requirements specification modeling
language ADORA with an aspect-oriented extension. It has been shown that an extension impacts
all different facets of a model, such as the behavior, the structure or the environment of the
system.

The approach presented aims at providing a better way to represent crosscutting concerns
in requirements models by specifying the elements of a crosscutting concern in an aspect mod-
ule. Consequently, the understandability can be improved and the elements of the crosscut-
ting concern can be maintained more effectively and efficiently. On the other hand, the aspect-
oriented modularization may introduce additional complexity, which decreases the understand-
ability. Therefore the presented language extension is designed to allow switching between the
aspect-oriented and the conventional view of the system, in order to provide a more convenient
view of the modeled system. This will be discussed in Chapter 9.

The aspect-oriented and the conventional representation of a model are the means for reduc-
ing the problem-exogenous complexity and thus for overcoming the communication gap between
the different stakeholders of a project.

Furthermore, the presented syntactical elements support a controlled evolution and a gradual
completion and formalization of the aspect-oriented model, which is discussed in Chapter 10.

7.10 Summary and Discussion 143

The aspect-oriented approach presented can be categorized according to the categories in
Section 3.2.1. It is a linguistic, rather asymmetric14, general-purpose approach which uses a
static composition mechanism. The choice of a linguistic, general-purpose approach seems to be
logical for describing software requirements. However, the reason for choosing an asymmetric
approach needs to be commented on.15

There is work, such as [Ossh01, Harr02, More05a, More05b] and [Stan02, Sutt03, Sutt04]
which argues that core and crosscutting concerns should be seen as symmetric. They regard
crosscutting and non-crosscutting concerns as peers and propose to handle concerns uniformly,
i.e., by the same modular descriptions. However, aspect-oriented descriptions inherently deal
with asymmetric descriptions.

There are two reasons for this. First, the (unidirectional) crosscutting relationship is inher-
ently asymmetric. Second, the description of overlapping concerns is also inherently asymmetric.
It is purely a matter of definition which concern of a given set of overlapping concerns contains
the overlapping, i.e., the crosscutting, parts. Thus, in the end, one of the modules representing the
overlapping concerns must contain the overlapping part with the least redundancy as possible.
Thus, there are always modules which are not self-contained parts and therefore asymmetric.

Describing asymmetric modules with symmetric constructs leads to gaps in the concern de-
scription which have to be filled by additional and artificially introduced elements that act as a
makeshift to ensure that the crosscutting concern modules are self-contained.16 These additional
constructs may lead to a higher effort when handling crosscutting concerns and can worsen the
understandability of a description. For this reason, the present work uses an asymmetric descrip-
tion.

14The visualized specification of the crosscutting relationship is separate from the aspect, which is rather typical
for symmetric approaches. Nevertheless, comparing the structure of aspect modules with the structure of compo-
nents indicates clearly an asymmetric approach.

15The reason for the use of an asymmetric approach is argued in Section 9.6.
16This is the case for the modules in the HyperJ approach, where each aspect is described by conventional Java

classes. As a consequence, the Java classes must be made artificially self-contained by adding abstract methods (cf.
Section 3.2.2).

145

Chapter 8

Visualization of Aspect-Oriented Model
Elements

ADORA is a integrated visual modeling language (cf. Section 5.1.3), and therefore, the visual
representation of models can become fairly large if all its elements are shown at the same time.
To cope with the size of the model, it is possible to apply abstraction mechanisms to it. They
allow the reduction of the size of the model’s visual representation by hiding elements which are
not at the focus of interest. Elements can be vertically abstracted, i.e., the child elements of a
node can be zoomed out. The horizontal abstraction mechanism allows the elements that belong
to a particular facet of the model to be hidden, and the crosswise abstraction mechanism allows
toggling the visibility of arbitrary elements.

The changes performed in the view when applying one of these three abstraction mechanisms
is described by a view transition semantics [Xia04]. The following discussion sketches the ex-
tension of the view transition semantics for the aspect-oriented language elements introduced in
the previous chapter. However, the present approach does not focus on the visualization of mod-
els and, therefore, the following discussion does not deal with details. Furthermore, no formal
description is given. An interested reader may read the corresponding parts in [Xia04].

The remainder of this chapter is structured as follows. Section 8.1 illustrates how the seman-
tics of the three abstraction mechanisms is extended so as to be capable of handling the view
transitions of aspect-oriented elements. In Section 8.2, two new views are introduced. They con-
tain the aspect-oriented language elements presented in the previous chapter. Furthermore, it is
also possible to weave an aspect-oriented model and to create the conventional view. However,
this topic is discussed in the next chapter.

8.1 Applying Abstractions to Aspects

To support the ADORA abstraction mechanisms, it is necessary to define a view transition seman-
tics. A view transition semantics specifies the effects on the representation of the aspect-oriented
language elements when one of the three abstraction mechanisms is applied. For conventional
models, the following two view transition rules apply:

146 Chapter 8. Abstraction Mechanisms

• A hidden node N which is part of another node A is indicated by an ellipsis after the name
of A. Bear in mind that the ellipsis is used for partially viewed models, as well as for
intentionally incomplete models.

• There are connections which are allowed to cross the border of the parents of their consti-
tuting nodes. As soon as one of the constituting nodes is hidden, the relationship becomes
implicit. For conventional ADORA language elements, this is the case for associations,
for scenario connections, and for transitions. The information expressed by an associa-
tion is valuable, as it describes a relationship between two components. Therefore, there
arises the concept of a calculated abstract association (cf. Section 5.2.2). A calculated
abstract association preserves this information as far as possible.1 by visualizing the im-
plicit relationship as a bold line between the parent of the hidden constituent and the other
constituent.

Analogously to the conventional ADORA modeling elements, hidden elements in an aspect
module or the hidden aspect module itself must be indicated in the visual representation of the
model. Like associations, join relationships are allowed to cross the border of the parents of their
constituent. As the information of the join relationship is valuable to the reader of the model, a
concept similar to the calculated abstract association is used.

8.1.1 View Transition Semantics for Aspect Modules
The children of an aspect module can be hidden by any of the three abstraction mechanisms
mentioned above. Hidden nodes of an aspect are indicated by a trailing ellipsis in the aspect’s
name. Figures 8.1 (a)–(e) illustrate several situations where one or more nodes of an aspect are
hidden. Situation (a) shows an aspect with no nodes hidden. In (b), a crosswise abstraction is
applied, where the node X of the behavior chunk is hidden. The ellipsis after the name of the
aspect indicates that one or more elements are hidden, i.e., in this case, this is caused by X. In
situation (c), the two sub-nodes of the scenario chunk are hidden, whereas in (d), the scenario
view is hidden by a horizontal abstraction. Finally in (e), the content of the aspect is zoomed out
(vertical abstraction).

Furthermore, an aspect itself may be hidden. In this case, the parent of the aspect indicates
the hidden aspect by a trailing ellipsis.2 Figure 8.2 illustrates this case. In (a) the initial situation
is given, whereas in (b) the aspect module is hidden and the ellipsis in the name is shown instead.

The view transition semantics for the conventional ADORA language is defined formally by
the formalism presented in [Xia04, Section 3.4]. Since the semantics of the view transition for
the aspect-oriented elements behaves similarly to those for the conventional ADORA model ele-
ments, the view transition semantics rules can correspondingly be applied to the aspect-oriented
elements of the language.

1However, there is no abstract scenario connection or abstract transition. The information about scenario con-
nections and transitions is not perceptible from the model representation when one of the two constituents is hidden.

2An exception to this rule exists for the root node of a model. The root node does not indicate any of its hidden
child nodes.

8.1 Applying Abstractions to Aspects 147

c|d
Aspecta) b) c)

d)
Aspect...

e)

X Y

Q 1

P

P 2

Aspect...

Y

Q 1

P

P 2

c|d
Aspect...

X Y

P...

c|d
Aspect...

X Y

Figure 8.1: Several situations illustrating the hiding of a node in an aspect.

a)

Aspect

Component
b)

Component...

Figure 8.2: View transition when hiding an aspect module.

8.1.2 Join Relationships

When a constituting element of a join relationship, i.e., a scenario node, a state, or a transition,
is hidden, the corresponding join relationship can no longer be shown, as it would then be half
dangling. The model shown in Fig. 8.3 (a) is used to illustrate the problem. The constituents of
the join relationship are the state A in the Aspect and the transition with the label a | b. Suppose
that A is hidden by applying one of the abstraction mechanisms mentioned above. In this case,
the join relationship cannot be shown any more.

Actually, this is the same problem as with associations. A join relationship crosses3 the
border of the parents of its constituents.4 For example, when hiding the constituent A in Fig. 8.3
(a), the parent of A, i.e., the Aspect, is still visible and has an implicit relationship with the other
constituent of the join relationship, i.e., the transition a | b. However, this relationship is no
longer visible. Therefore it is meaningful to introduce a substitute to preserve this information.
This substitute is called (calculated) abstract join relationship and is drawn between the parent
of the hidden constituent A and the other constituent as a dashed bold arrow. The situation is

3In fact, a join relationship must cross the border of the aspect module, to be well-formed (cf. Section 7.6.2).
4In the example, the parents of the constituents are Aspect and Component.

148 Chapter 8. Abstraction Mechanisms

a)

d)

e)

Component

f)

Aspect

a | b
c | dx | y

b)

c)

A

B A

Y

ComponentAspect...

a | b
c | d

B
X

Y

Component...Aspect...

B

Component

Aspect... a | b
c | dX

Y

Aspect

x | y
A

B

Component...
Aspect... Component...

Y

Figure 8.3: Examples of calculated abstract join relationships.

depicted in Fig. 8.3 (b), where the abstract join relationship is drawn between Aspect and the
transition a | b.

The situations (c)–(e) may occur analogously. In (c), the transition a | b, is also hidden. In
situation (d), the content of the aspect is zoomed out. A similar situation is given in (e) where the
target component is zoomed out. Finally in (f), the content of both the aspect and the component
is hidden.

The hiding of nodes may result in more than one abstract join relationship between an aspect
and a target component. Suppose the situation in Fig. 8.4 (a), which shows an aspect that has
two outgoing join relationships impacting a target Component. When zooming out Component,
two abstract join relationships result, because the target constituent of both join relationships are
hidden, which is shown in Fig. 8.4 (b). A similar case is shown in (c), where the content of the
aspect is hidden. Since there may not be more than one abstract join relationship between two el-
ements, zooming out the Component in situation (c) results only in one abstract join relationship
as shown in Fig. 8.4 (d).

Furthermore, a calculated abstract join relationship does not have any properties, such as an
ordering keyword or a context map.5

As mentioned above, calculated abstract join relationships behave similarly to calculated
abstract associations (cf. Section 5.2.2). A formal description of the refinement calculus for
associations can be found in [Xia04, Section 2.2 and Section 3.4]. This calculus can be adopted
for join relationships. However, in contrast to associations, there are no interrelationships (cf.
page 5.2.2) between abstract join relationships that are constituted by nodes on different levels
in the decomposition hierarchy.

5There is only one case when an abstract join relationship, representing one or more hidden join relationships,
might show properties: when all properties of all the represented (concrete) join relationships are equal. However,
since this is a rare situation, it is neglected by the view transition rules.

8.2 Extending the View Concept 149

u|v
Aspect

a)

E

a|b

c|d

b)

E

Component

Component...

Aspect...

c) d)

E

Component...

Q 1 R 2

P

XY

C 1
D 2

B

A B u|v
Aspect

Q 1 R 2

P

XY

E

a|b

c|d

Component

C 1
D 2

B

A B Aspect...

Figure 8.4: Further examples of calculated abstract join relationships.

8.2 Extending the View Concept
The language elements introduced in Chapter 7 are a major extension to the ADORA language.
They introduce two new facets to the modeling language which result from the modularization
of crosscutting concerns. These facets are visualized by the corresponding views:

• The join relationship view consists of all join relationships in an aspect-oriented model. A
join relationship explicitly represents a crosscutting relationship. A large number of such
relationships can make a model more complex. To prevent the modeler from suffering a
cognitive overload, the join relationship view can be hidden with the horizontal abstraction
mechanism.

• The aspect view contains all aspect modules of a model. The horizontal abstraction is
employed to hide all aspect modules and their child elements. After hiding this view, the
model shows only the core concerns.

Since join relationships originate from aspects, hiding the aspect view also hides the join
relationship view. Moreover, associations between aspects and server components are also
hidden. The server components (cf. Section 7.9) are also hidden in the case that they
are only connected to aspects but not to components of the core concerns. In this case, the
server component is a pure decomposition of one or more aspects and, therefore, it belongs

150 Chapter 8. Abstraction Mechanisms

to one or more crosscutting concerns and is also hidden. However, if server components
are also connected by associations to components of the core concern, they are not hidden.

Figure 8.5 illustrates hiding the aspect and the join relationship view. In (a) the initial situa-
tion is shown, Fig. (b) shows the model of Fig. (a) with a hidden join relationship view. In (c),
the aspect view, and, consequently, the join relationship view are hidden.

Note that the existing views can be used independently of the aspect view. For example,
hiding the behavioral view and subsequently hiding and showing again the aspect view still does
not show the behavioral view.

Furthermore, the conventional views defined by the non-aspect-oriented ADORA approach
can also be applied to aspect elements. An aspect can contain behavioral elements, structural
elements, and elements of the user view. They can be hidden and displayed by applying the
corresponding horizontal abstraction mechanism. Figure 8.5 demonstrates the application of the
horizontal abstraction mechanism for the conventional views in aspect modules. In (d) the user
view is hidden, whereas in (e) the behavioral view is not shown. The hiding of structural view
elements in an aspect module is not illustrated here, but works analogously.

8.3 Discussion
The aspect-oriented elements of the present approach fit well into the visualization of ADORA.
However, it is the view concepts especially that can be extended in order to provide a more
fine-grained abstraction mechanism for the filtering of the aspect-oriented elements. These view
concepts only work on the set of aspect modules and join relationships. That means that the
aspect modules and/or the join relationships can be hidden altogether but not particularly for one
specific crosscutting concern.6 Nevertheless, it would make sense to abstract just one or more
particular concerns and not only all crosscutting concerns together.

An extension of the view concept may allow an assignment of each of the aspect modules
and components to one or more particular concern. The aspects usually belong to one or more
crosscutting concerns, the components either to one or more crosscutting or core concern.7 The
abstraction mechanisms can be applied to one or more specific concerns, allowing the conceal-
ment or display of the modules belonging to a specific concern.

Using this type of mechanism allows the independent visualization of particular concerns and
therefore results in similar advantages to those of having a multidimensional concern space, such
as the one used in CORE [More05a, More05b] (cf. Section 3.2.5). However, this extension may
become a focus of interest for future research on the present approach.

6Note that a crosscutting concern may consist of different aspect modules and (server) components.
7Note that there may be more than one core concern.

8.3 Discussion 151

a)

d)

e)

u|v
Aspect

E

a|b

c|d

Component

Q 1 R 2

P

XY

C 1
D 2

B

A B

u|v
Aspect...

E

a|b

c|d

Component...

XY A B

Aspect...

E

Component...

Q 1 R 2

P

C 1
D 2

B

u|v
Aspect

E

a|b

c|d

Component

Q 1 R 2

P

XY

C 1
D 2

B

A B

b)

c)

E

a|b

c|d

Component

C 1
D 2

B

A B

Figure 8.5: Illustration of the effects when hiding the behavioral view, the user view, the
aspect view, and the join relationship view. Fig. (a) shows all views of the model, in (b) the
join relationship view, and in (c) the aspect view is hidden. In (d), the user view is hidden and
in (e) the behavioral view.

153

Chapter 9

Composing Aspect-Oriented ADORA
Models

Sometimes, it is necessary to transform an aspect-oriented to a conventional ADORA model.
The process of such a transformation is called weaving. There are mainly two purposes for the
weaving of an aspect-oriented ADORA model:

i. In certain situations, an aspect-oriented ADORA model introduces additional complexity
compared with conventional models (cf. Section 3.1.7). Therefore, it is desirable to switch
between the aspect-oriented and the conventional representation of a model.

ii. Some of the aspect-oriented language elements do not have an execution semantics. Thus,
they cannot be executed directly, e.g., in a simulation. A weaving transformation has to be
performed first, which results in a conventional model.

Purpose (i) has already been discussed extensively in Section 3.1.7. The modularization
of crosscutting concerns and their separated visualization helps in understanding crosscutting
artifacts better, because they are disentangled in an additional modularization dimension. Conse-
quently, changes to crosscutting concerns are easier to accomplish because their elements are not
scattered across the whole model. However, depending on the situation, aspect-oriented models
can be more difficult to understand than their conventional counterparts [Meie05]. This is due to
the fact that the additional modularization dimension introduces a new form of complexity.

Purpose (ii) emerges from the design of the aspect-oriented ADORA language. As sketched in
Section 7.2, some aspect-oriented ADORA elements have no execution semantics. For example,
aspect containers are just some sort of capsules for the crosscutting elements but have no meaning
at runtime. Moreover, behavior and scenario chunks are not self-contained and can only be
executed meaningfully in the context of the crosscut elements. In contrast, each conventional
ADORA construct has an execution semantics. As a consequence, an aspect-oriented ADORA

model must be transformed first to a conventional model before it can be executed, e.g., by a
simulation (cf. [Seyb06a]).

In order to gain the advantages from a weaving transformation as stated for Purpose i, the
weaving semantics has to satisfy given premises:

154 Chapter 9. Composing Aspect-Oriented ADORA Models

a. The meaning1 of a model as intended by its creator has to be preserved when a weaving
transformation is executed.

b. The number of changes in the model performed during the weaving has to be minimized.

c. The number of changes in the resulting visual representation of the woven model must
preserve the secondary notation as far as possible.

The need for satisfying Premise (a) is obvious. Premise (b) is desirable, because the more
changes are performed by a model transformation, the more difficult is it for the reader of the
model to relate the aspect-oriented elements with the conventional counterparts in the woven
model. If Premise (b) is ignored by the transformation rules, the resulting advantages for intelli-
gibility may get lost.

Finally, Premise (c) demands that the visual representation of the mental map, known as the
secondary notation [Petr95] of a model (cf. Section 5.1.4), should be altered as little as possible
when performing an automatic change in the layout of the model. When transforming or weaving
a model, changes may impact the visual representation of the model. Ignoring Premise (c) in this
case leads to difficulties for the reader of the model in finding his bearings and therefore in
comprehending the model after the transformation.

A weaving semantics consisting of a set of transformation rules that follow the above premises
is needed for performing the actual set of transformation steps. This chapter will elaborate on
the corresponding weaving semantics rules for all model elements defined in Chapter 7. The
chapter also discusses related problems, such as the changes in the visualization. The content of
the chapter is based on [Meie06, Meie07], where the corresponding ideas are roughly outlined.

The remainder of the chapter deals with the weaving semantics. In Section 9.1, an overview
of the actual weaving transformation process is given. As it works fundamentally differently
depending on whether it deals with partial or non-partial model elements, the discussion of the
weaving semantics is split into two separate parts. In Section 9.2, the transformation semantics
for non-partial aspect-oriented elements is elaborated, whereas Section 9.3 presents the weaving
semantics for partial elements. Both chapters discuss the weaving semantics only informally.
Section 9.4 sketches how the weaving semantics is formally described. The actual formal de-
scription of the whole weaving semantics is given in Appendix G. Furthermore, Section 9.5
sketches brie�y how the layout information is handled by the weaving process. Finally, in Sec-
tion 9.6 the content of this chapter is summarized and discussed.

9.1 Weaving Process Overview
The weaving semantics describes the transformation from an aspect-oriented to a conventional
ADORA model. An aspect-oriented model is described by the set of grammar rules P defined

1The meaning of a model is defined by the execution semantics. Two different models with the same initial state
have the same execution semantics if they respond to the same sequence of system-external stimuli with the same
output.

9.1 Weaving Process Overview 155

C

A

a|b

x|y

C
x|yafter

Model

Aspect A

parts connections

State B Exit
Point C

Join
Relationship

Component C

parts

State X State Y

Transition

a | b

Model

Component C

parts

State X State Y

Transition

a | b
Transition

x | y

State B

Transition

x | y

Transformation

connectionsconnections

connectionsconnections

X

C

Y

B

X B Ya|b

Figure 9.1: Illustration of the effects on a model/syntax tree when executing a weaving
operation. On the left hand side, the visual representation of the aspect-oriented model and
the corresponding (abstract) syntax tree are given. On the right hand side the woven model
and corresponding syntax tree are shown.

in Appendix B. A conventional ADORA model is specified by a subset of rules Ps ⊂ P , where
P \ Ps contains the syntax rules which describe aspect-oriented elements.

A weaving transformation is the syntactical rewriting of a model which adheres to P to a
model that can be described with the rules given by Ps. The syntactical transformation leads to a
restructuring of the corresponding model syntax tree. Figure 9.1 illustrates such a rewriting. On
the left hand side, the aspect-oriented model and the equivalent abstract syntax tree are given.2

On the right hand side, the woven model and the corresponding syntax tree are shown.
The weaving process consists of a sequence of executed operations. The executed operations

can be roughly divided into two distinct phases which are not necessarily executed in a sequential
order:

1. Preparation: The model is checked and analyzed. This can be subdivided into the follow-
ing sub-activities:

2Note that for the sake of simplicity, an abstract syntax tree is given here. However, the remainder of this work
uses concrete syntax trees.

156 Chapter 9. Composing Aspect-Oriented ADORA Models

(a) Checking of constraints.

(b) Determining the order for the weaving of the join relationships.

(c) Determining the end target modules.

2. Transformation: The actual transformation operations gradually transform the aspect-
oriented model into the conventional one. A transformation operation may be one of the
following sub-activities:

(a) Weaving of join relationships.

(b) Weaving of so-called single instance elements: these are crosscutting statecharts,
crosscutting scenariocharts, embedded components, crosscutting environment ob-
jects, functional specifications, and server components. They are called single in-
stance elements because there is only one copy of them woven into a target module.

(c) Removal of aspect modules in a post processing step.

9.1.1 Weaving Preparation
Checking constraints.

Before any weaving transformation can be performed, the leniently enforced language con-
straints for the aspect-oriented elements defined in Chapter 7 must be satisfied by the model.3

These constraints must be satisfied as otherwise the resulting model is meaningless, or the trans-
formation process may even break down.

Weaving order of join relationships.

The order in which the join relationships have to be woven must be determined. An aspect-
oriented ADORA model may consists of a complex network of join relationships. The join re-
lationships may either connect two elements, such as behavior chunks with transitions, scenario
nodes with scenario nodes, or any other element specified in Section 7.6. A path through the
network of join relationships starts with an aspect A and ends with an end target module M. A
is said to transitively crosscut C if there is a path which consists of more than one join relation-
ship.4 The join relationships in such a network must be woven in a specific order, as otherwise
the weaving process may result in a model with an unintended meaning.

The model in Fig. 9.2 is used to illustrate the problem. It shows the aspects A1, A2, A3, and
the components C1 and C2, and a network of join relationships that connects them. For purposes
of referring to the join relationships in the following discussion, they are enumerated by Greek
characters. The aspects A3 and A1 directly impact the component C1 over the join relationships
α and γ, respectively. C1 is also transitively crosscut by A1 and A2. Transitively crosscutting

3Remember that there are also strictly enforced constraints. However, they are already satisfied during the
modeling (cf. Section 6.3).

4Remember that a network of join relationships may not contain any cycles (cf. Section 7.6.2).

9.1 Weaving Process Overview 157

C1

A1

g|h

i|j

a|b
A2 c|d

A3
e|fbefore, 1

before, 2

after before

α
β δ

γ

G

F

H

E

CA B D

a|b
X Y

C2 i|k

n|m
J

K

after

ω

Figure 9.2: Illustration of a complex network of join relationships.

aspects in�uence the weaving order of the join relationships: the weaving of γ depends on the
β and δ, i.e., β and δ have to be woven first. Apart from the transitive crosscutting of aspects,
there are other properties of a aspect-oriented ADORA model which in�uence the weaving order
of join relationships.

The ordering property determines the weaving order of join relationships impacting the same
target. It is defined by one of the keywords before, instead, or after (cf. Section 7.4 and 7.5).
For example, the order of β and δ is given by (δ,β). This is due to the fact that the chunk which
is the origin of δ must be executed before the chunk which is the origin of β. Furthermore, the
ordering of both chunks is with respect to the action f of the crosscut transition, i.e., the chunk δ
is woven before f and β after f.

Another property which in�uences the weaving order of the join relationships is the priority.
It is used to determine which one of two competing join relationships is woven first. Two join
relationships are competing, if they impact the same target with the same ordering. The higher
priority indicates the precedence of the corresponding join relationship. If the two competing
join relationships have the same ordering, one of them is non-deterministically chosen to be
processed first. For example, α and γ in Fig. 9.2 impact the same transition and have the same
ordering. However, transition γ is woven first, as it has the higher priority. Thus, the eventual
weaving order that results in a correctly woven model is (δ, β, γ, α, ω).5

Topological sort. The weaving order is computed by executing a topological sort on the
model’s join relationships. The sort algorithm takes the transitive weaving order, the ordering
with respect to a target, and the priority of the join relationships into account. However, not all
join relationships are considered by the sorting process. Join relationships between crosscutting
environment objects are handled differently because they are used to denote crosscutting roles

5Nevertheless, ω has no dependencies to the other join relationships, and therefore, it can be woven at any point
in time in the weaving process.

158 Chapter 9. Composing Aspect-Oriented ADORA Models

rather than to show the impact of behavior/scenario chunks. Therefore, the join relationships
between crosscutting environment objects are handled differently, which is discussed in detail in
Section 7.7.

The topological sort algorithm first sorts the join relationships according to their target. Thus,
the join relationships with the same target belong to the same target group. A target can either be
a scenario node, a transition or, if the join relationship is partial, any of the elements discussed
in Section 7.6.2, except an environment object.

In turn, the target groups are subgrouped according to their ordering property. Three sub-
groups result from this step: one containing all before, one containing all instead, and another
one containing all after join relationships for the same target. In the next step, the join relation-
ships of each ordering subgroup are sorted in a descending order by their priority.

In the final step of the topological sort, the list of target groups, is sorted according to the
predecessor relationship, which is needed in order to get the correct weaving order of transi-
tively crosscutting aspects. There are two cases which define that a join relationship jp is the
predecessor of ji:

i. the target element tp of jp is contained in the same aspect A as the source element of ji, or

ii. the join relationship jP is connected to the aspect module A in which tp is contained.

Note that case (ii) can only occur if jp is partial, because partial join relationships can also
be connected directly to aspect modules. Figure 9.2 illustrates the predecessor relationship, for
example γ has the predecessors β and δ. The topological sort algorithm checks each group of
targets gi as to whether it contains a predecessor with respect to a join relationship contained in
another group of targets gk. If gi contains a predecessor it is inserted before gk in the resulting
list. A formal description of the topological sort algorithm as pseudo-code can be found in
Section E.6 of the Appendix.

Determining the End Target Modules of an Aspect

Apart from the weaving order of the join relationships in a model, the end target modules of an
aspect need to be determined. This is necessary in order to weave the aspect’s single instance
elements, such as crosscutting statecharts. An aspect may have multiple end target modules.
There may be multiple join relationship paths from an aspect A to an end target module C.
However, a single instance element of A is just woven once into C.

An end target module can either be a component or an aspect. The latter is the case if a
join relationship path ends in an aspect, but no join relationships originate from it. As all aspect
modules are removed at the end of the weaving process, end target aspects are irrelevant and,
therefore, aspects are not seen as end target modules in the following.

The model of Fig. 9.2 exemplifies these concepts. In total, there are four different paths of
join relationships, namely (α), (β, γ), (δ, γ), and (ω). Consequently, the aspect A2 has two end
target modules, namely C1 and C2, the former is crosscut transitively over the aspect A3. C1 is
the only end target module of the aspect A1. Even though there are the two paths (α) and (β, δ)

9.1 Weaving Process Overview 159

from aspect A1 to the end target module C1, the crosscutting statechart contained in A1 is woven
only once into C1.

The end target modules of a model can be determined by the following procedure. A given
aspect denotes the beginning of a join relationship path. The join relationships which are out-
going from it or from any of its children are determined. A join relationship belongs to a join
relationship path if it connects (i) either an entry point of a behavior chunk with a transition, or
(ii) a scenario chunk root node with a scenario node. It does not matter if the join relationship is
partial or not. However, partial join relationships which do not fulfill either condition (i) or (ii),
e.g., when connecting an aspect with a component, do not belong to a join relationship path, as
these kinds of join relationships are handled differently (cf. Section 7.6).

For finding the end target modules, each found join relationship j is followed. If the target of j
is part of an aspect, all outgoing join relationships are determined as described above. Each found
join relationship which fulfills condition (i) or (ii) builds a new join relation path in combination
with the path to which the incoming join relationship belongs, and so on. If no outgoing join
relationships are found, the target of j is an end target module and is stored in a result list. Even
though the given start aspect may have various join relationship paths to the same end target
module, the end target module is only added once to the result list.

A formal description of the algorithm which determines the end target modules of an aspect
can be found in Section E.5 of the Appendix.

9.1.2 Weaving Transformation
The actual weaving transformation consists of n weaving steps. Each step has an intermediate
model as outcome, i.e., n− 1 intermediate models are created during the transformation process.
The model after the kth step is denoted in the following by tk. Furthermore, t0 denotes the initial
aspect-oriented model and tn the resulting conventional model. The model tk−1 is changed to
the model tk by the transformation operation φk. Summarized, the process can be depicted as
follows:

t0
φ17−→ t1 . . .

φk−17−→ tk−1
φk7−→ tk . . .

φn7−→ tn (9.1)

Note that φ0 denotes the constraints checking operation which is executed before any model
transformations are done. The weaving operation φk is either an operation that weaves a join
relationship or one that weaves a single instance element.

There are various dependencies between the weaving operations, which require them to be
executed in a certain order. As a consequence the weaving process can be divided into two
major phases. In the first phase, all join relationships must be woven, e.g., weaving the behavior
and scenario chunks. In the second phase, the single instance elements such as the crosscutting
statecharts and the environment objects are injected into the end target elements. The actual
weaving semantics is described in the two subsequent sections.

The weaving operations are distinguished according to whether they work on non-partial or
partial elements, because the corresponding weaving semantics can differ. Therefore the corre-
sponding transformation semantics is discussed in two different sections. Section 9.2 deals with

160 Chapter 9. Composing Aspect-Oriented ADORA Models

the weaving semantics of non-partial aspect-oriented elements, whereas the next Section 9.3 dis-
cusses the weaving of partial elements. The order in which the weaving semantics is discussed
follows the order that needs to be followed in order to get the intended woven models. The weav-
ing semantics is delineated informally in both sections. The formal weaving semantics is brie�y
discussed in Section 9.4 and the full formal description can be found in the Appendix G.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model
Elements

This section delineates the transformation of non-partial aspect-oriented model elements to con-
ventional model elements. The weaving semantics of behavior and scenario chunks is discussed
in Section 9.2.1 and 9.2.2, respectively. Three are several single instance elements that are
handled in the following: crosscutting statecharts (Section 9.2.3), crosscutting scenariocharts
(Section 9.2.4), embedded components (Section 9.2.5), crosscutting environment objects (Sec-
tion 9.2.6), functional specification (Section 9.2.7), and server components (Section 9.2.8). Sec-
tion 9.2.9 sketches the weaving of context elements as well as the handling of naming con�icts
that may occur during the weaving. Finally, Section 9.2.10 discusses brie�y the post-processing
of the weaving transformation.

Note that for the sake of completeness, the weaving semantics of all non-partial elements
are presented in the following. However, for the general understanding of the concepts, it is
recommended that the first three subsections 9.2.1, 9.2.2, and 9.2.3 should be read. Of course,
an interested reader may read the other sections too.

The presented weaving semantics is exemplified by means of the aspect-oriented library sys-
tem model in Fig. 9.3 and its woven version in Fig. 9.4. The model shows a partial view of the
same model as given in Fig. 7.2 — it visualizes only the aspect Authorization and the component
BookAdministration.

9.2.1 Weaving Semantics of Behavior Chunks
An aspect can contain a behavior description which consists of behavior chunks and crosscutting
statecharts (cf. Section 7.4). Behavior chunks are fragmentary statecharts which are used to
augment another behavior description. The impact location is indicated by the join relationship
(cf. Section 7.6) which connects the entry point of the behavior chunk with the transition that is
crosscut. The exit point of the behavior chunk, visualized by a rounded rectangle with a double
outline, denotes where the crosscutting behavior is left and the crosscut behavior is entered
again.

Weaving Semantics

The weaving semantics of behavior chunks is controlled by the attributes of the join relationship.
During the weaving, the crosscut transition is split and the ordering keywords before, instead
and after guide how the action part of the crosscut transition is arranged with respect to the

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 161

BookAdministration...

Authorization...

receive list() |
send getList() over
ReadCatalogBA

receive editingFinished() |

receive editBooks() |
send prepareEdit()

receive deleteBooks() |
send prepareDelete()

receive deletionFinished() |

receive authorized()
over Authorize |

receive userPWEntered(pw : string) |
send authenticate(user, pw) over
Authenticate; send log(user, pw) to
AuthenticationLog

Authentication

Authorized

LibrarySystem...

before
before

before
before

Authorize

Authenticate

receive
userNameEntered(
name: string) | call

Authentication
Log...

receive requestHint(
name : string) |
send getHint(name)
over Authenticate

receive hint(hint : string)
over Authorize |
send showHint(hint)

receive
enterAnswer(
a : string) |
send verifyAnswer(a)
over Authenticate

receive result(
pwMsg : string)
over Authorize |
send
showPwMsg(
pwMsg)

WaitFor
HintRequest

WaitFor
HintQuestion

WaitFor
HintAnswer

WaitFor
HintPassword

Authenticate

Wait

Edit
Book...

Search
Books...

Delete
Books...

SearchBooks...1

EditBooks... 2

EditBooks... o

Manage
Books

Remove
Books...

o

SearchBooks...1

DeleteBooks...2

Enter
Username...

1
Enter

Password...
2

Authenticate

WaitFor
Username

Receive
Hint...

1

Enter
Answer...

2

GetPassword...3

Request
Password

Authenticating
User

Book
Administrator

Figure 9.3: A partial view of the aspect-oriented library system model. It shows the authen-
tication and password retrieval mechanism which has already been presented in Fig. 7.2.

162 Chapter 9. Composing Aspect-Oriented ADORA Models

BookAdministration...

Authorization...

Authorize1

Authenticate1

receive list() |
send getList() over
ReadCatalogBA

receive editingFinished() |

receive editBooks() |
send prepareEdit()

receive userPWEntered(
pw : string) | send
authenticate(user, pw) over
Authenticate1;
send log(user) to
AuthenticationLog

receive
deleteBooks() |
send prepareDelete()

receive deletionFinished() |

receive authorized()
over
Authorize1 |

receive authorized()
over
Authorize1 |

receive userPWEntered(pw : string) |
send authenticate(user, pw)
over Authenticate1;
send log(user) to AuthenticationLog

 |

 |

LibrarySystem...

receive userNameEntered(
name : string) | call

receive userNameEntered(
name : string) | call

Authentication
Log...

Delete
Books...

Wait Search
Books...

WaitFor
UserName

WaitFor
UserName

Authenticate

Authenticate

Authorized

Authorized

Edit
Books...

SearchBooks...1 DeleteBooks...3

Remove
Books

o

ManageBooks

SearchBooks...1
Authenticate 2

EditBook... 3
EditBook

Data..
o

Request
Password

Book
Administrator

Receive
Hint

1

Enter
Answer

2

GetPassword3

receive requestHint(
name : string) |
send getHint(name)
over Authenticate1

receive hint(hint : string)
over Authorize1 |
send showHint(hint)

receive
enterAnswer(
a : string) |
send verifyAnswer(a)
over Authenticate1

receive result(
pwMsg : string)
over Authorize1 |
send
showPwMsg(
pwMsg)

WaitFor
HintRequest

WaitFor
HintQuestion

WaitFor
HintAnswer

WaitFor
HintPassword

Enter
Username

1 Enter
Password

2

Enter
Username

1 Enter
Password

2

Authenticate 2

Figure 9.4: The woven model of the library system from Fig. 9.3

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 163

behavior chunk: the behavior chunk is either inserted before, instead, or after the action part of
the crosscut transition.

There may be two or more join relationships that may crosscut the same transition. This kind
of situation may lead to a race between join relationships with the same ordering keyword. The
competition between them is resolved by the priority, specified by a number between 1 (lowest)
and 10 (highest), which defines the precedence of competing join relationships. If nothing is
specified, the lowest priority is taken as default value. The join relationship with the higher
priority is woven first. If more than one join relationship has the highest priority, one of them is
chosen nondeterministically for weaving.

Effectively, both the ordering keyword as well as the priority are used to sort the join rela-
tionships in the topological order in which they are woven (cf. Section 9.1).

Weaving Semantics Illustration

Fig. 9.5 explains the weaving semantics of behavior chunks more precisely for the simple case
where just one join relationship crosscuts a transition. On the left hand side, there is the aspect-
oriented model t0, whereas on the right hand side, the woven version tn is given.

Figure 9.5 (a) describes the weaving semantics for a before join relationship. The transition
between A and B is crosscut by the behavior chunk contained in the aspect. It has a label a|b,
where a denotes the guard and the message reception part. The letter b represents the action part.
When weaving, the crosscut transition is reconnected to the woven behavior chunk. Furthermore,
the action b is separated from the transition a|b and then added to the outgoing transition of the
state Z. The state Z is additionally introduced and is named according to the exit point Z.6 The
state Z facilitates a clearer model as it visually separates the operation z from the action part b
of the crosscut transition. An alternative way of weaving would be to add the operation b at the
action part z of the exit transition. However, such a solution would lead to an unclear model, as
the reader has to search for the action part b. In contrast, the proposed solution is clearer, as it
can be easily perceived that the inserted crosscutting behavior is executed before the action part
b.

Figure 9.5 (b) describes the weaving semantics of an instead join relationship. It indicates
that the action b of the transition between A and B in the crosscut behavior is removed and
the entry point, i.e., state Y, of the behavior chunk is connected to the crosscut transition. The
transition exiting the behavior chunk is connected to the state B.

Figure 9.5 (c) describes an after join relationship which declares that the entry point of the
behavior chunk is inserted as the new target state of the crosscut transition a|b. The exit transition
y|z of the crosscutting behavior is connected to the state B of the crosscut statechart.

In all three cases (a)–(c), the join relationship is in the end removed from the model as a final
step.

A concrete example for the weaving of behavior chunks is given in the library system model
of Fig. 9.3 and 9.4. The behavior chunk of the authentication is woven in the behavior of the
component BookAdministration at two different locations with a before semantics. Figure 9.4

6If the exit point is anonymous, an artificial name is given.

164 Chapter 9. Composing Aspect-Oriented ADORA Models

a)

b)

c)

A a|b B

y|z
ZY

before A a| BY y|z Z |b

A a|b B

y|z
ZY

instead A a| BY y|z

A a|b B

y|z
ZY

after A a|b BY y|z

t0 tn

Figure 9.5: Illustration of the weaving semantics for behavior chunks. Part (a) - (c) show the
weaving semantics for the situations where only one before, instead, or after join relationship
impacts a transition.

shows the result of the weaving.
Apart from the simple case with only one join relationship, there can be the more complex

case, where more than one join relationship targets the same transition. The topological sort
algorithm (cf. Section 9.1) determines the weaving order by the keyword and the priority. After
weaving the first join relationship with the target transition, some properties of the remaining
join relationships targeting the same transition must be altered. This is necessary in order to get
a logically correct model at the end of the weaving.

After the weaving of one join relationship, the necessary changes to the remaining join rela-
tionships depend on their ordering. As one join relationship is woven after the other, the possible
cases that have to be distinguished can be listed as pairs of join relationships which are repre-
sented by their ordering keywords before, instead, and after. The following combinations may
occur: (before,before), (before,instead), (before,after), (instead,instead), (instead,after), and (af-
ter,after).7 These cases are shown by Fig. 9.6 and 9.7. The columns t0, t1, and tn in the figures
denote the transformation states of the model during the weaving. Hence, model t0 denotes the
(unprocessed) aspect-oriented model, t1 an intermediate state of the transformation and tn the
resulting woven model.

Figure 9.6 (a) illustrates the weaving semantics for two before join relationships impacting
the same transition. As the ordering keyword is the same, their precedence is determined by

7Other combinations, such as (instead,before) or (after,instead), end also in the cases mentioned above, because
of the topological sorting of the join relationships (cf. Section 9.1). For example, the case (instead, before), results
in (before, instead).

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 165

A a|b

w|x

before, 2

X

a)
B

W

y|z
ZY

before, 1

A a| W X
w|x

y|z
ZY

before, 1

B
|b

A a| W X
w|x

B|b y|zY
|

Z

t

A a|b

w|x

before

X

b)
B

W

y|z
ZY

instead

A a| W X
w|x

y|z
ZY

instead

B
|b

A a| W X
w|x

By|zY
|

A a|b

w|x

before

X

c)
B

W

y|z
ZY

after

A a| W X
w|x

y|z
ZY

after

B
|b

A a| W X
w|x

By|zY
|b

0 t1 tn

Figure 9.6: Illustration of the weaving semantics for multiple behavior chunks impacting the
same target transition. The model in (a) shows the semantics for two competing before join
relationships. Situation (b) illustrates the case of a before and an instead join relationship,
and (c) the case for a before and an after join relationship.

their priority. Therefore, the join relationship with the higher priority of 2 between the state W
and the transition a|b is woven first. The result is shown in the model t1. In order to get an
intuitively correct model in the end of the weaving process, the target of the remaining before
join relationship must be relocated to the transition |b which exits the crosscutting behavior.
The other combinations of join relationships, shown in Fig. 9.6 (b)–(c) and Fig. 9.7 (a)–(c), are
handled similarly.

The case where two instead join relationships are crosscutting the same transition in Fig. 9.7
(a) needs special attention. After weaving the first join relationship, i.e., in the intermediate
model t1, the remaining instead join relationship needs to change the ordering keyword. This
is due to the fact that the action part b has already been replaced. Therefore, any remaining
instead join relationships must be interpreted with an after ordering. This ensures that the further
weaving process does not accidentally remove the x action part from the crosscutting behavior.

The case with two join relationships can be generalized for the case where more than two join
relationships crosscut the same transition. Suppose, the tuple J represents an ordered list that
contains all join relationships impacting the same transition ji. After weaving the j0 = π0(J),
all remaining join relationships πi(J), where i ∈ N ∧ 1 ≤ i < arity(J), have to be relocated

166 Chapter 9. Composing Aspect-Oriented ADORA Models

A a|b

w|x

instead, 2

X

a)
B

W

y|z
ZY

instead, 1

A a| W
w|x

y|z
ZY

after, 1

B A a| W
w|x

By|zY

t

A a|b

w|x

instead

X

b)
B

W

y|z
ZY

after

A a|b

w|x

after,2

X

c)
B

W

y|z
ZY

after,1

A
a|b

W
w|x

y|z
ZY

after,1

B A W
w|x

By|zY

0 t1 tn

A a| W
w|x

y|z
ZY

after

B A a| W
w|x

By|zY

a|b

Figure 9.7: Illustration of the weaving semantics for multiple behavior chunks impacting
the same target transition. The model in (a) shows the semantics for two competing instead
join relationships, (b) a competing instead and an after join relationship. Finally in (c), the
weaving of two competing after join relationships is illustrated.

to the transition which exits the crosscutting behavior.8 Furthermore, if π0(J) is an instead join
relationship, the ordering of all remaining instead join relationships must be changed to after.

9.2.2 Weaving Semantics of Scenario Chunks
An aspect can contain crosscutting use case descriptions which are defined in terms of scenario
chunks and scenariocharts (cf. Section 7.5). The weaving semantics of scenario chunks is dis-
cussed in the following.

Weaving Semantics

A root node of a scenario chunk can be connected by a join relationship to a node of another
scenario tree. The join relationship can be attributed with the ordering keywords before, instead

8The function π denotes the projection, and the function arity returns the number of elements in a tuple (cf.
Section E.3 of the Appendix).

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 167

or after. In the case that the target node and its siblings are of type sequence9, the keywords before
and after in�uence the weaving order. Moreover, in the case of a target of the type sequence, the
root node of the woven scenario chunk gets a sequence number and the sequence numbers of the
sibling nodes must be adapted accordingly.

In contrast to nodes of type sequence, sibling scenario nodes of the type parallel, alternative,
and root have no order in the scenario tree, as they are executed either alternatively, concurrently,
or solely, respectively. The keywords before and after can be specified for the target nodes of the
types parallel and alternative, but they do not in�uence the weaving order. In contrast, the type
root is not allowed to be targeted by a before or after join relationship (see below). However,
all scenario types, including alternative, parallel and root, can be crosscut by an instead join
relationship. The instead ordering directs the weaving process to replace the target node and all
of its children with the given scenario chunk.

For the weaving of scenario chunks, the priority of the join relationship is used to solve
con�icts. It defines the precedence of competing10 scenario chunks targeting the same scenario
node with the type sequence. Thus, the priority is used similarly as for behavior chunks (cf.
Section 9.2.1). The join relationship with the highest priority is woven in first, followed by the
one with the second highest priority and so on. If join relationships have the same priority, they
are woven in a nondeterministic order. Actually, the ordering keyword and the priority are used
by the topological sort algorithm (cf. Section 9.1) to create an ordered list of join relationships.
This list specifies the weaving order and thereby resolves any con�icts.

Root nodes of a scenario tree can also be crosscut by a scenario chunk but this situation is
treated as a special case. Root nodes can only be the target of a join relationship with an instead
ordering. Attributing them with before and after is not allowed because root nodes may not
be part of a sequence (cf. constraints definitions in Section 7.5). Furthermore, there may be a
situation where more than one instead join relationship is targeting the root node of a scenario
tree. In this case, only the join relationship with the highest priority is woven, the others are
omitted. If there are several join relationships with the same priority, one of them is chosen
nondeterministically.

Note that a node of a scenario chunk may be contained in an embedded component. In this
case, the nodes of the crosscutting scenariochart are woven in two steps. First, the node is woven
as a direct child into the target module. Second, the scenario node is moved into the embedded
component, as soon as it is also woven (cf. Section 9.2.5).

Finally, before the next weaving step is taken, the join relationship between the woven sce-
nario chunk and the target scenario is removed from the model.

Weaving Semantics Illustration

Figure 9.8 illustrates the case where just one join relationship crosscuts a sequentially executed
target scenario node. On the left hand side, there is the aspect-oriented model t0, while the woven

9As discussed in Section 7.5, there are the types root, alternative, sequence, and parallel. As discussed in
Section 5.2.4, all siblings of a scenario node must have the same type.

10Two scenario chunks are competing if their join relationship target the same scenario node with the same
ordering.

168 Chapter 9. Composing Aspect-Oriented ADORA Models

version can be found in model tn on the right hand side. The weaving semantics depends on the
ordering and the type of the target scenario node:

Figure 9.8 (a) describes the before case for a scenario target node of the type sequence. The
weaving process inserts the root node of scenario chunk X before the target scenario node B. The
inserted node gets the sequence number of the target node. The sequence numbers of the target
node and its subsequent siblings are incremented by 1.

Figure 9.8 (b) shows a situation where the scenario chunk crosscuts the root node A of the
target scenario tree. In this case, the join relationship must specify an instead ordering. When
weaving this constellation, the target scenario node and all its children are replaced by the sce-
nario chunk.

Figure 9.8 (c) exemplifies the weaving semantics for an instead join relationship in the case
that the target is a non-root scenario node of type sequence. In this case, the target node and its
direct and indirect children are replaced by the scenario chunk and the sequence number of the
target node is taken over. This instead semantics applies also to nodes which are not of the type
sequence. However, for these nodes, no sequence number is taken over from the inserted chunk
root node.

Figure 9.8 (d) depicts an after join relationship in the case of a target node with the type
sequence. The root node of the scenario chunk is inserted after the specified target node B. The
sequence number of node B is preserved whereas the root node of the inserted scenario chunk
gets the subsequent number. The indices of all following nodes are increased by 1.

Figure 9.8 (e) shows the situation where the target scenario node B has the type alternative.11

In this case, there is no ordering between the target node and its siblings. Therefore, any after or
before keyword of the join relationship is meaningless, but not forbidden.12 In the example, the
join relationship does not specify any ordering keyword. The root node X of the scenario chunk
is inserted as an alternative to B and C.

Another example of the weaving semantics for scenario chunks is given by Fig. 9.3 and 9.4.
In Fig. 9.3, the communication between the authentication mechanism and the authenticating
user is described as a scenario chunk in the aspect. Correspondingly, the woven chunk can be
found in Fig. 9.4.

There may be more than one join relationship targeting the same node. This case is handled
similarly to the case of behavior chunks. The ordering keyword, as well as the priority are used to
decide in which order the scenario chunks are woven into the target scenario tree. The topological
sort algorithm (cf. Section 9.1) determines the weaving order by the ordering keyword and the
priority. After weaving the first join relationship into the target scenario tree, some properties of
the remaining join relationships may have to be altered. The necessary changes depend on the
ordering of the remaining join relationships.

The different cases of join relationship combinations can be distinguished as pairs of the or-
dering keywords before, instead, and after, which results in the following combinations: (before,
before), (before, instead), (before, after), (instead, instead), (instead, after), and (after, after).13

11The weaving semantics for target nodes of the type parallel is equivalent to the case shown.
12The only meaningful ordering keyword that in�uences the weaving is instead.
13Cases such as (after, before) are also handled by the cases above, because they are ordered by the topological

sort algorithm. For example (after, before) results in (before, after).

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 169

before

a)

d)

c)

e)

b)

E

X

Y 1 Z 2

A

B 1 C 2

after

E

X

Y 1 Z 2

A

B 1 C 2

instead

E

X

Y 1 Z 2

A

B 1 C 2

E

X

Y 1 Z 2

A

B o C o

instead

E

X

Y 1 Z 2

A

B 1 C 2

A

E

B 2
C 3X 1

Y 1
Z 2

A

E

B 1 C 3

X 2
Y 1 Z 2

A

E

C 2X 1

Y 1 Z 2

A

E

B o
C oX o

Y 1
Z 2

E

X 1

Y 1 Z 2

t0 tn

Figure 9.8: Weaving semantics for scenario chunks crosscutting a target scenario node. Fig.
(a), (c), (d) illustrate the weaving semantics for sequential scenario targets with a before (a),
instead (b)–(c), and after (d) ordering. Moreover, in (b), the semantics for an instead join
relationship targeting a scenario root node is shown. In (e) the weaving semantics for a target
node of the type alternative is illustrated.

170 Chapter 9. Composing Aspect-Oriented ADORA Models

before,2

a)

b)

c)

E

X A

B 1
C 2

A

E

B 3

C 4
X 1

t0 tn

Y before,1

A

E

B 2
C 3X 1

t1

Y
before,1

Y 2

before

E

X A

B 1
C 2

Y after Y
after

A

E

B 2
C 3X 1

A

E

B 2

C 4
X 1

Y 3

before

E

X A

B 1
C 2

Y instead

A

E

B 2
C 3X 1

Y
instead

A

E

Y 2
C 3X 1

Figure 9.9: Weaving semantics for more than one join relationship targeting the same sce-
nario node of type sequence. Fig. (a) shows the case where two before join relationships
crosscut the same scenario node. In (b), a before and an instead join relationship, and in (c) a
before and an after join relationship target the same scenario node.

Figure 9.9 (a) shows the case where two before join relationships impact the same scenario
node B. Hence, the order in which they are woven is determined by their priority. The scenario
node X is woven first, as its join relationship has the higher priority 2. The first weaving step
results in the model t1. In the next step, the second node Y is woven. The final model is shown
as tn.

The situations shown in Fig. 9.9 (b) and (c) illustrate the combinations of a before/instead
and a before/after join relationship. The are handled similarly to the case shown in (a).

Figure 9.10 (a) illustrates the weaving semantics for two instead join relationships impacting
a root scenario node. The join relationship which is woven first is the one between X and A,
since it has the higher priority 2. The remaining instead join relationship is deleted, as the
corresponding scenario chunk cannot be injected meaningfully into the target module. This
leads to the situation described by model t1. The final model resulting from the weaving process
is shown in column tn.

Figure 9.10 (b) shows the weaving semantics for two instead join relationships impacting
the same non-root target scenario node. In a first step, the instead join relationship with the
higher priority is woven first. Thus, the scenario node X replaces the node B in the component.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 171

instead,2

b)

c)

d)

E

X A

B 1
C 2

t0 tn

Y
instead,1

A

E

X 1 C 2

t1

Y

after,2

E

X A

B 1
C 2Y

after,1 Y
after,1

A

E

B 1 C 3

X 2

A

E

B 1 C 4

X 2 Y 3

instead

E

X A

B 1
C 2Y

after

A

E

X 1
C 2Y

after
A

E

Y 2
C 3X 1

A

E

X 1 C 3

instead,2a) E

X A

B 1
C 2Y

instead,1

E

Y
X

E

X

after

Y 2

Figure 9.10: Further cases with more than one join relationship targeting the same scenario
node. The model in (a) shows the case where two instead join relationships crosscut the same
root scenario node. In (b), the same situation is given for a non-root scenario node. In (c) and
(d), the combinations with instead/after and after/after join relationships are illustrated.

Furthermore, the weaving mechanism changes the ordering of the remaining join relationship
between Y and X to after. This is necessary in order that the woven node X is not replaced by
Y. The resulting model is shown in the intermediate model t1. Subsequently, the remaining after
join relationship is woven. The final model is shown in column tn.

Figure 9.10 (c) and (d) show the weaving semantics for an instead/after and after/after join
relationship targeting the same node. They are handled similarly to the case of Fig. 9.10 (b).
However, in case (d), a change of the target for the remaining join relationship is needed (cf.
t1). This is necessary in oder to get a logically correct woven model at the end of the weaving
process.

9.2.3 Weaving of Crosscutting Statecharts

Apart from behavior chunks, aspect containers may include crosscutting behavior that is con-
currently executed with the behavior chunks. This kind of behavior is modeled by conventional

172 Chapter 9. Composing Aspect-Oriented ADORA Models

ADORA statecharts which are called crosscutting statecharts (cf. Section 7.4). Crosscutting stat-
echarts are single instance elements (cf. Section 9.1), i.e., they are woven just once per end target
module.

Weaving Semantics

A crosscutting statechart S contained in aspect module A is woven into the module E, if E is
crosscut, either transitively or directly, one or more times by the join relationships originating
in A. After the weaving, only one clone copy14 of S is contained in E, no matter if there are
one or more join relationships between A and E. Note that it does not matter whether the join
relationship path between A and E weaves a behavior chunk or a scenario chunk.

Weaving Semantics Illustration

Figure 9.11 exemplifies the weaving semantics for crosscutting scenariocharts; on the left hand
side the aspect-oriented model t0 is given, whereas the right hand side depicts the woven model
tn. The dark printed model parts show the elements which are at the focus of interest, i.e., the
crosscutting statecharts.

Figure 9.11 (a) shows the situation where a crosscutting statechart is injected from an aspect
which contains a behavior chunk. The resulting model is shown by tn. Figure (b) shows a similar
situation to (a). However, in (b) the injection of the crosscutting statechart is caused by the join
relationship originating from a scenario chunk. The result is shown by model tn.

Finally, Fig. 9.11 (c) shows a situation where an aspect crosscuts a target at two different
locations. Even though there are more than one join relationship paths (cf. Section 9.1) between
the aspect and the target, only one copy of the crosscutting statechart is injected into the target,
as shown by model tn.

Another example of the weaving semantics of a crosscutting statechart is given in Fig. 9.3
and 9.4. In Fig. 9.3, the password retrieval mechanism for forgotten passwords is described by a
crosscutting statechart. The woven model in Fig. 9.4 contains correspondingly only one instance
of the statechart, although there are four join relationships targeting the BookAdministration
component.

9.2.4 Crosscutting Scenariocharts

Apart from the scenario chunks, aspects can also contain crosscutting scenariocharts. A cross-
cutting scenariochart (cf. see Section 7.5) specifies the interaction between an environment object
(or an external component) and a crosscutting statechart (i.e., crosscutting functionality that is
concurrently executed to other crosscutting functionality in a system). They are described in
terms of conventional scenariocharts.

14All parts of the clone copy and the original crosscutting statechart match, except the unique model element
identifiers.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 173

a|b
c|d

after
a|b c|d

e | f

g | h

before
b)

a)

a|b f|g

after

a|b f|g
c)

d|e

after

f|gd|e

A B
X Y

G H

X

Y 1 Z 2

e | f

g | h
G H

E

A

B 1 C 2

A X B

e | f

g | h
G H

Y 1 Z 2

X 1

B 2
C 3

e | f

g | h
G H

A

E

A B

C D

X Y
e | f

g | h
G H

Y X1 B

C X2 D

e | f

g | h
G H

t0 tn

Figure 9.11: Weaving semantics for crosscutting statecharts. Situations (a) and (b) illustrate
that the weaving of a crosscutting statechart can result from a join relationship that originates
either from a scenario or a behavior chunk. The situation in (c) shows that a crosscutting
statechart is just woven once into the target module, no matter if there is more than one join
relationship path between the aspect and the target.

Weaving Semantics

Crosscutting scenariocharts belong to the single instance elements (cf. Section 9.1). Thus, a
crosscutting scenariochart S contained in aspect A is woven just once into a target module M, no
matter how many join relationship paths exist between A and M. Moreover, it does not matter
whether the join relationship path has its origin in a scenario chunk, or a behavior chunk.

In order to be well-formed, the root node of a scenario needs to be connected by at least one
association to an environment object (or an external component). When weaving the crosscutting
scenariochart, the association connecting it to an environment object must be cloned. Hence, the
cloned association connects the original environment object and the cloned crosscutting scenari-
ochart in the woven model.

A node of a crosscutting scenariochart can either be contained as a direct child of in the as-
pect module itself or in one of its directly or indirectly embedded components. In the case, where
a node is contained in an embedded component, it is woven in two steps. In a first step, the clone

174 Chapter 9. Composing Aspect-Oriented ADORA Models

before
a)

c|d
after

b) a|b

e|f

after

E2
X

Y 1 Z 1 A

B 1
C 2

Q 1
R 1

P

E1

X Y

A B

DC

X 1

B 2 C 3

Y 1
Z 2

A

Q 1 R 1
P

E2

a|b
A

c|d
X1 B

e|f DC
c|d

X2

t0 tn

E

E

E1

A

A

C C

CC

Q 1
R 1

P

Q 1
R 1

P

Figure 9.12: Example for the weaving semantics of crosscutting scenariocharts. Fig. (a)
and (b) show the weaving semantics for a crosscutting scenariochart. In (a) the weaving is
triggered by the join relationship between a scenario chunk and a target scenariochart. In
(b), a situation is illustrated where more than one join relationship crosscuts a target module.
Moreover, the situation exemplifies also that the weaving of a crosscutting scenariochart can
also be caused by join relationships between behavior chunks and behavior descriptions.

of the node is just added as a direct child in the target module. Then, after weaving the corre-
sponding embedded component, the woven scenario node is moved into it (cf. Section 9.2.5).

Weaving Semantics Illustration

Figure 9.12 illustrates the weaving semantics for crosscutting scenariocharts. Model t0 on the
left hand side is the aspect-oriented model. The woven model tn is given on the right hand
side. Figure 9.12 (a) shows the situation where one join relationship crosscuts the target module.
A clone of the crosscutting scenariochart is injected into the target module, as shown by tn.
Figure 9.12 (b) illustrates the case where more than two join relationships crosscut the same
target module. Nonetheless, only one clone of the crosscutting scenariochart is injected into
the target module. Moreover, the figure also exemplifies that it does not matter that the join
relationship causing the injection connects behavioral elements.

Figure 9.13 illustrates the weaving semantics for crosscutting scenariocharts in more detail.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 175

t

E2

X

A

B 1

E1E3

D P

0
t

E2

X

A

B 1

E1E3

X

g

X 2

t

E2

X

A

B 1

E1E3

X

m + 1

X 2

α α

γ

instead

β
E2

A

B 1

E1E3

X

X 2

γβ

t n

P

PP
P P P

A A

A

C

C C

B B

B
B

C

D

after

D

D DD

Figure 9.13: Illustration of the weaving process for crosscutting scenariocharts. The fig-
ure shows different steps during the weaving. Model t0 is the initial aspect-oriented model.
Model tg shows the model after weaving all join relationships. In tm+1, all crosscutting sce-
nariocharts are woven into the target module. The final model is shown in tn.

Model t0 is the initial aspect-oriented model. After all join relationships are woven in the in-
termediate model tg, the crosscutting scenariochart, which consists only of one scenario node P
contained in an embedded component D, is woven into both target components C and B. The
intermediate model tm+1 shows the resulting model. At this point in time, the node P is not
contained in the clone of the embedded component D, as D is not woven yet. The clone of P is
moved later into the corresponding embedded component, which is illustrated by the model of
tn.

Figure 9.13 also illustrates the cloning of the associations connected to a crosscutting scenar-
iochart. The original association15 α between the environment object E1 and the scenario node
P, given in t0 is cloned two times. The association clones β and γ are connected to the woven
crosscutting scenariocharts contained in the target modules C and B. This situation is shown by
model tm+1. The original association α is deleted at the end, as shown in tn.

A further example of the weaving semantics for crosscutting scenariocharts is given in the
library system model of Fig. 9.3 and 9.4. The interaction protocol between the Authenticating-
User and the password retrieval mechanism is specified as a crosscutting scenariochart. The
woven model in Fig. 9.4 shows the component BookAdministration which comprises the woven
crosscutting scenariochart.

15The Greek letters are used to refer to the associations but they are not part of the model.

176 Chapter 9. Composing Aspect-Oriented ADORA Models

9.2.5 Weaving of Embedded Components

An aspect module can contain embedded components (cf. Section 7.9).16 An embedded compo-
nent is a single instance element (cf. Section 9.4.2). Therefore, an embedded component is just
woven once per end target module, no matter how many join relationship paths lead from the
aspect to the end target module.

When an embedded component C is woven, any scenario nodes contained in C or in the
children of C are removed. This is necessary due to the fact that scenario nodes contained in
embedded components have already been replicated by the operation which weaves scenario
chunks or crosscutting scenariocharts (cf. Section 9.2.2 and 9.2.4), respectively. The woven
scenario nodes have been placed as direct children in end target module M, and they are relocated
into the corresponding embedded components after the embedded components have been woven
into M.

Illustration of the Weaving Semantics

Figure 9.14 illustrates this weaving semantics. The aspect-oriented model t0 is shown on the left
hand side, the woven model tn on the right hand side. In situation (a), an embedded component
C is contained together with a scenario chunk in an aspect. When weaving this model, a clone of
C is woven into the target component, as shown in model tn. The model in Fig. 9.14 (b) shows
a similar situation, but the weaving of the embedded component is caused by a behavior chunk.
Moreover, (b) also illustrates that even though the same target component is crosscut twice by
the same aspect, the target module in the final model tn contains only one copy of the embedded
component C.

Figure 9.15 shows the process for the weaving of embedded components and how scenario
nodes are handled by the weaving operation.17 The initial model is given in t0. After weav-
ing all join relationships and the crosscutting scenariocharts, model tm+1 results. The nodes of
the crosscutting scenariocharts are located in the target module itself. After the weaving of the
embedded components, the nodes of the crosscutting scenariochart are moved into the corre-
sponding embedded components.18

The library system given in Fig. 9.3 also exemplifies the weaving semantics of embedded
components. The component AuthenticationLog, which is used to log security-related events,
is contained in the aspect Authentication. In Fig. 9.4, the woven view of this system model is
given and the AuthenticationLog is woven into the corresponding targets. Note that although the
component BookAdministration is crosscut by four different join relationships, there is only one
instance of the component AuthenticationLog in the target after the weaving.

16Remember the difference between embedded components and components which are part of a behavior chunk.
The latter are not handled as embedded components but as states of the behavior description (cf. Section 9.2.1).

17It shows the same example as in Fig. 9.13.
18The moving of scenario nodes belonging to a scenario chunk is not illustrated here, but works in the same way.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 177

before

a)

c|d afterb)
a|b

e|f

after

E2

X

Y 1 Z 1

A

B 1
C 2

X Y A B

DC

X 1

B 2 C 3

Y 1 Z 2

A

E2

a|b
A

c|d
X1 B

e|f DC
c|d

X2

t0 tn

C...
C...

C...

C...

Figure 9.14: Example of the weaving semantics for embedded components. The aspect-
oriented model t0 is given on the left hand side, the woven version tn on the right hand
side. Figure (a) shows the weaving of the embedded component caused by a join relationship
between a scenario chunk and a target scenario. In (b), multiple join relationships from a
behavior chunk crosscut the target behavior. However, the embedded component C is just
woven once into the target component.

9.2.6 Weaving Environment Objects

As discussed in Section 7.5, well-formed crosscutting scenariocharts must be connected by an
association to an environment object (cf. Section 7.7). Such an environment object can crosscut
another environment object, which is expressed by a join relationship connecting to the crosscut
environment object. Join relationships between crosscutting environment objects are not handled
like other join relationships, such as the ones used for weaving behavior or scenario chunks.

Weaving Semantics

When weaving a model containing an environment object E1 that crosscuts another environ-
ment object E2, all associations connected to E1 are cloned and connected to E2. As multiple
environment objects can be crosscut, the associations may be replicated as often as there are
join relationships outgoing from E1. After weaving, the environment object E1, the associations
connected to E1, and the join relationships are removed from the model.

In contrast to crosscutting environment objects, non-crosscutting environment objects are
neither removed from the resulting model, nor are their associations cloned and assigned to
another environment object.

178 Chapter 9. Composing Aspect-Oriented ADORA Models

t

E2

X

A

B 1

E1E3

D P

0

α

instead
A

C

Bafter

D

E2

A

B 1

E1E3

X

X 2

γβ

t n

P P

B
C

DD

t

E2

X

A

B 1

E1E3

X

m + 1

X 2

γβ
PP P

A

C

B

D

Figure 9.15: Illustration of the weaving process for embedded components. Model t0 shows
the initial model, tm+1 the model after the weaving of the crosscutting scenariocharts and tn
the model with the woven embedded components.

Weaving Semantics Illustration

Figure 9.16 exemplifies this weaving semantics. The left hand side shows the aspect-oriented
model t0, the right hand side the conventional model tn.

Figure 9.16 (a) shows the situation where a non-crosscutting environment object E1 is con-
nected to a crosscutting scenariochart. When weaving, E1 is still extant in the resulting model,
being connected to the woven crosscutting scenariocharts. In contrast, Fig. 9.16 (b) shows the
situation where an environment object E1 crosscuts another environment object E2. The asso-
ciations of E1 are cloned and connected to E2, which is shown in the woven model tn. The
association between E1 and P, the join relationship, as well as the crosscutting environment
object E1 are deleted from the resulting model.

Another example for the weaving of crosscutting environment objects can be found in the
aspect-oriented library system model in Fig. 9.3, where the environment object role Authenti-
catingUser crosscuts the environment object BookAdministrator. In the woven model shown by
Fig. 9.4, the association originally connected to the environment object Authenticating User is
incorporated in the crosscut environment object BookAdministrator.

Figure 9.17 illustrates how the weaving of crosscutting environment objects interplays with
the other steps of the weaving process. Model t0 shows the situation before the scenario chunk
is woven. The intermediate model t1 shows the woven scenario chunk. The model tu−1 contains
the woven crosscutting scenariocharts of the aspect. The woven scenario node is connected by
two associations γ and δ that are clones of α and β, respectively.19 The original associations

19The Greek characters are only used to refer to the associations. They are not part of the model.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 179

b)

beforea)

0 tn

X

Y 1

E1

E2

Z 2

Q 1 R 2

P

A

B 1 C 2

before
X

Y 1

E1

E2

Z 2

Q 1 R 2

P

A

B 1 C 2

E1

Q 1 R 2

P

E2

A

B 1 C 2

Y 1

Z 2

X 1

Q 1 R 2

P

E2

A

B 1 C 2

Y 1

Z 2

X 1

t

Figure 9.16: Example of the weaving semantics for a crosscutting environment object. Figure
(a) exemplifies the weaving semantics for a non-crosscutting environment object E1. The
model in (b) illustrates the weaving semantics for an environment object E1 crosscutting E2.

α and β have been removed from the model when weaving the crosscutting scenariocharts (cf.
Section 9.2.4).

The actual weaving of crosscutting environment objects is carried out in several substeps.
The crosscutting environment objects belonging to one aspect are processed step by step for
each target module. In the example, the join relationship between E1 and E3, as well as between
E1 and E2 are woven in the same step. The associations γ and δ are cloned as many times
as there are join relationships outgoing from E1. The associations ω and σ, which are clones
of γ and δ, are created and connected with the root nodes P and Q and E2. Similarly this is
done for η and ϕ, P, Q and E3. Finally, the cloned associations γ and δ, introduced when
weaving the crosscutting scenariocharts (cf. Section 9.2.4), as well as the join relationships, and
the crosscutting environment object E1, are removed from the model tu.

9.2.7 Weaving the Functional View of an Aspect
An aspect is a module, and therefore, it can also contain a functional specification (cf. Sec-
tion 7.8). It defines the properties of an aspect, such as attributes and operations, on which the
behavior or the scenario descriptions may rely. The functional specification must also be woven
in the crosscut module.

180 Chapter 9. Composing Aspect-Oriented ADORA Models

after

t

E2

X

A

B 1

E1E3

D P Q

0 t

E2

X

A

B 1

E1E3

D P Q

1

X 2

t

E2

X

A

B 1

E1E3

D P Q

u - 1

X 2

P Q

t

E2

X

A

B 1

E3

D P Q

u

X 2

P Q

α
β

α
β

γ δ
ω σ η ϕ

Figure 9.17: Illustration of the weaving steps for crosscutting environment objects. The
figure shows four subsequent steps, including the stages before and after the weaving of the
crosscutting environment object E1.

A

receive a() |
call iC B

receive x() |
call iMC ZY

after

A BY

C

A

C receive x() |
call iMC

receive a() |
call iC

t0 tn

Figure 9.18: Model illustrating the weaving semantics of the functional specification.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 181

Weaving Semantics Illustration

The corresponding weaving semantics is demonstrated by means of the model in Fig. 9.18. It
contains an aspect-oriented model t0 and the woven version tn. Listing 9.1 shows the functional
specification of component C and Listing 9.2 that of aspect A.

The elements of an aspect’s functional specification are woven by simply appending them
to the elements in the functional specification of each end target module of an aspect. In the
case of naming con�icts, the weaving operation has to rename the con�icting element, which is
discussed in Section 9.2.9. Listing 9.3 shows the resulting woven functional specification of the
two listings 9.1 and 9.2.

Listing 9.1: The functional specification of the component C of model t0 in Fig 9.18.
1 functional speci�cation
2 provides c;
3 requires B.d;
4 data type c : constrained x : integer (x >= 0);
5 property req_source 1 "W. Miller";
6 attributes counter : c = 0;
7 inv c < d;
8 operation iC()
9 statements

10 counter = counter + 1
11 end operation counter
12 end functional speci�cation

Listing 9.2: The functional specification of the aspect A of model t0 in Fig 9.18.
1 functional speci�cation
2 provides m;
3 requires B.k;
4 data type m : constrained x : integer (x >= −1 and b <=1);
5 property author "D. Cunningham";
6 attributes modcount : m = −1;
7 inv modcount < k;
8 operation iMC()
9 statements

10 /∗
11 if modcount over�ows,
12 it starts again with −1
13 ∗/
14 modcount = modcount + 1
15 end operation counter
16 end functional speci�cation

182 Chapter 9. Composing Aspect-Oriented ADORA Models

Listing 9.3: The functional specification of the woven component C of model tn in Fig 9.18.
1 functional speci�cation
2 provides c, m;
3 requires B.d, B.k;
4 data type
5 c : constrained x : integer (x >= 0);
6 m : constrained x : integer (x >= −1 and b <=1);
7 property req_source 1 "W. Miller";
8 property author "D. Cunningham";
9 attributes counter : c = 0;

10 modcount : m = −1;
11 inv c < d;
12 modcount < k;
13
14 operation iC()
15 statements
16 counter = counter + 1
17 end operation counter
18
19 operation iMC()
20 statements
21 /∗
22 if modcount over�ows,
23 it starts again with −1
24 ∗/
25 modcount = modcount + 1
26 end operation counter
27 end functional speci�cation

9.2.8 Weaving Server Components Connected to Aspects
Similarly to embedded components, server components (cf. Section 7.9) allow the decomposition
of aspects and the delegation of responsibilities. A server component C is connected by an
association R to the aspect A and makes it possible to share a common state and common data
amongst all crosscut modules.

Weaving Semantics

In order to get a correct model at the end of the weaving process, the aspect-oriented model con-
taining server components must fulfill several preconditions before a weaving can be performed.
The weaving of server components consists of three steps. First, each association R between A
and C is cloned for each end target module. Thus, each end target module is connected by a clone
of R with C after the weaving. Second, the role names of each cloned association are adapted
in order to be unambiguous. Third, the behavior description and the scenario nodes contained

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 183

in the target modules and in the server component may refer to the role names of the cloned
associations. These references must be adapted accordingly.

Illustration of the Weaving Semantics

The weaving semantics for server components is illustrated by Figure 9.19. Model t0 shows the
aspect-oriented model where the aspect A is connected to a server component C. A crosscuts two
components M1 and M2. The right hand side of the figure shows the woven model tn.

Preconditions. Before executing the weaving, a model containing server components must
satisfy two preconditions:

a. The behavior of the server component must use the concurrency control mechanism sket-
ched in Section 5.2.3 and discussed in detail in [Meie09a].

b. The behavior description of the server component must use the redundancy reduction
mechanism also sketched in Section 5.2.3 and elaborated in [Meie09a].

Precondition (a) must be fulfilled because after the weaving, several end target modules Mi

(0 < i ≤ n), crosscut by the aspect A, access C concurrently. Without a concurrency control,
this may cause a race condition. Thus, all behavioral elements of C providing a service for the
crosscutting behavior in A need to be part of a critical section. In the woven model, a messagemc

initiates the provision of a service and is sent from one of the crosscut modules Mi. To indicate
the start of a critical section, this message mc has to be marked as queued in the corresponding
receive part in the aspect. The end of the critical section has to be indicated by a transition
leading back to the state where the transition receiving mc is originated.

The satisfaction of Precondition (a) is illustrated by the server component C in model t0 of
Fig. 9.19. The statechart in C provides a service for the aspect A. The message initiating the
provision of the service is x(), therefore it has to be marked as queued. The critical section
consists of the state X and the corresponding in- and outgoing transitions.

Precondition (b) deals with the avoidance of redundancy in behavior descriptions. It is
strongly intertwined with the problem of the concurrency control and emerges also when us-
ing server components [Meie09a]. If the model were woven without the redundancy reduction
mechanism, the behavior describing the service in C would have to be replicated for each com-
munication channel between a service-consuming component Mi and the server component C .
This is due to the fact that the communication channels have to be specified statically in ADORA,
which in turn causes redundancy. However, introducing redundancy for handling concurrent ac-
cess can affect the understandability of the model [Meie09a]. Therefore precondition (b) must
be fulfilled by using the proposed mechanism. This mechanism allows the message properties of
mc to be stored, and in turn, allows them to be used to dynamically determine the answer channel
of the message when sending the result back to the service consumer.

The satisfaction of precondition (b) by Fig. 9.19 is illustrated by model t0. The behavior of the
server component C receives one message x() initiating the provision of a service. This message

184 Chapter 9. Composing Aspect-Oriented ADORA Models

receive a() |
send b()

after

 |send x()
over a

M1

C

A

receive c() |
send d()

M2

receive y()
over b|

a
b

receive queued
msg=x() over a |
send w() to F

F...
receive z() from F |
send y() over
msg.msgAnswerTarget

after

receive a() |
send b()

 | send x()
 over a1

M1

C
receive queued msg=x()
over a1, a2 | send w() to F

receive z() from F | send y()
over msg.msgAnswerTarget

 receive y()
 over b1 |

receive c() |
send d()

 | send x()
 over a2

M2 receive y()
 over b2 |

a1
b1

a2
b2

A B

V

T U

D E

W X

F...

A T1 U1 B

D ET2 U2

W X

t0
tn

Figure 9.19: Illustration of the weaving semantics for server components.

is received by the transition between the state W and X. The message x() is sent from the behavior
chunk contained in A, and therefore, it is sent from any crosscut component Mi in the woven
model. The answer message is z() which is sent back to A by firing the transition between X and
W. For using the redundancy reduction mechanism, the incoming message x() must be stored in
the variable msg.20 Furthermore, the answering channel must be determined dynamically by the
expression msg.msgAnswerTarget in the send statement of the second transition.

Violating Precondition (a) or (b) can lead to a woven model which has an unpredictable
behavior when being executed by a simulation. Nevertheless, there is no automatic check of
these preconditions, thus, the modeler is responsible for ensuring that they are satisfied.

Weaving associations. Before the associations between an aspect A and a server component C
can be woven with the target module Mi, all join relationships between A and Mi, the crosscut-
ting statecharts, the crosscutting scenariocharts, and the embedded components must have been
woven.

Then, each association Rl (where 0 ≤ l < d, where d ∈ N0) connecting A and C is replicated
for each end target moduleMi. The source-to-target role rl,s and target-to-source role rl,t attached
to the cloned association are also replicated.

Associations between aspects and server components are handled as single instance elements
when being woven. Thus, each of them is only replicated once, no matter if there are multiple
join relationship paths to the target module.

The resulting cloned association Ri
l connects the target modules Mi with the server compo-

nent C. After the weaving, the original association Rl between A and C is deleted.

20This variable is declared in the functional specification of C.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 185

Figure 9.19 illustrates the weaving of the associations. The association between the server
component C and the aspect A in t0 is replicated two times. In the woven model, the first as-
sociation clone connects C with M1, the second clone connects C and M2, as shown in model
tn.

Changes in the behavior of the model Each cloned association Ri
l between Mi and C has a

source-to-target role rl,s and a target-to-source role rl,t. Just using these role names in the model
results in ambiguities. For example in Fig. 9.19, if the associations between A and C were just
cloned when the model is woven, the two resulting associations between M1 and C, and M2
and C would have two roles a and b each. These two roles would be referenced by the send
and the receive statements in the behavior description of A and C, to send and receive messages
over the corresponding communication channels. However, just using references to a and b in
the behavior description of C would be ambiguous and may lead to side effects. Therefore, apart
from the cloning of the associations, the role names of each associationRi

l and the corresponding
references to them must be adapted:

i. The role names rl,s and rl,t have to be renamed uniquely for each cloned association Ri
l .

ii. The corresponding role names referred to in the behavior description of C have to be
adapted.

iii. The corresponding role names referred to in the woven crosscutting behavior of each Mi

have to be adapted.

The adaptation stipulated in (i) is achieved by renaming the roles rl,s and rl,t uniquely for
each Rl

i to the roles ril,s and ril,t, where i may be, for instance, a unique index that is prepended
or appended to the labels of role name.

The result of this step is illustrated in Fig. 9.19. The role labels are renamed uniquely. In the
example, the disambiguation is done by adding a unique index to the original role names a and
b. The resulting association role names are a1, b1, a2, and b2 shown in model tn of Fig. 9.19.

For the adaptation of the server component’s behavior21, each occurrence of the role la-
bel rl,s in the receive statements of the behavior has to be replaced by a comma-separated list
rxl,s, . . . , r

y
l,s, . . . , r

z
l,s comprising all receiving roles contained in ril,s(0 ≤ i < n) of all cloned as-

sociations Ri
l . Each occurrence of rl,t in the receive statements of the behavior has to be adapted

accordingly.
In Fig. 9.19, the result of this weaving step is also exemplified. Each occurrence of the

association role a or b in the reception part of a transition in C is replaced by a list of roles
comprising all corresponding role names of the cloned associations between C and M1 and C
and M2, respectively. There is only one reception part in the model t0 of Fig. 9.2.1 which
comprises the reference to a. In tn, this role is replaced by the list of roles a1, a2. This list
denotes the channels over which the messages can be received, either from M1 or from M2. The

21The adaptations do not only affect the behavior but also the transform expressions in scenario nodes. However,
for the sake of simplicity the example model demonstrates the problem with the behavior description only.

186 Chapter 9. Composing Aspect-Oriented ADORA Models

answer channel b for the answering message z() is dynamically determined by the expression
msg.msgAnswerTarget. However, this does not need any adaptations when weaving.

Furthermore, in the last step of weaving a server component, each occurrence of the role
labels rl,s and rl,t in a target module Mi has to be substituted by the corresponding role name
ril,s and ril,t, respectively. This is illustrated by Fig. 9.19. All occurrences of a and b in the
send and receive statements are replaced by the corresponding roles. In the component M1, each
occurrence of role a is replaced by a1 and each occurrence of role b by b1. The roles in M2 are
replaced correspondingly by a2 and b2.

The weaving semantics of server components is also exemplified by the library system ex-
ample in Fig. 9.3 and Fig. 9.4. Figure 9.3 comprises the server component Authorization con-
nected to the aspect Authentication with the two association roles Authenticate and Authorize. In
Fig. 9.4, the roles are replicated and renamed accordingly. The references to the role contained
in the crosscutting behavior as well as the behavior in the Authorization component are adapted
correspondingly.22

9.2.9 Solving Naming Con�icts, Handling Context Mappings, and Adjust-
ing Scope

The description of the weaving semantics in the previous sections does not cover three issues:
naming con�icts caused by the weaving, the mapping of context variables, and adjusting the
scope of message arguments. All three problems as well as how they are handled during the
weaving are sketched in the following.

Naming con�icts Naming con�icts occur if the woven elements, such as variables, states,
components, etc. are named like elements that already occur in the target module. The trans-
formation must avoid naming con�icts, because they may result in ambiguities and malformed
models, which may result in a decreased understandability. The problem is illustrated in Fig. 9.20
(a). The left hand side shows the aspect-oriented model t0, the right hand side the woven model
tn. A naming con�ict is caused when weaving by the state A of the aspect. When weaving this
state, its name con�icts with the name of an existing state in the target component. The problem
is solved by renaming the con�icting state names in a unique way. Any references to the changed
names must also be adapted accordingly.

Context mapping and scope extension A join relationship of an aspect can define a context
map (cf. Section 7.6) which consists of entries that are composed of a left and a right hand side.
The left hand side contains a variable name occurring in the aspect and the right hand side an
expression that is composed of element names appearing in the target module of the aspect. The
weaving process must substitute every occurrence of such a left hand side variable with the right
hand side expression.

22Note that there are also other end target modules of the aspects the BookAdministration. However, they are not
shown in Fig. 9.3 and Fig. 9.4. Their Behavior is adapted correspondingly.

9.2 Weaving Semantics of Non-Partial Aspect-Oriented Model Elements 187

context map
 g : i;
end context map

receive
m1(i : integer) |
send m2(i)

C...

A B

receive m3() |
send m4(g)
to X

ZY

before
A

receive msg=
m1(i : integer) |

C...

A Z

| send
m2(msg.i)

Y

receive m3() |
send m4(msg.i)
to X

B

t0 tn
a)

A a|b B

y|z
CA

instead A1 a| BA2 y|z

b)

Figure 9.20: Example for the handling of naming con�icts, the weaving semantics of a
context map, and the scope extension of message arguments. Fig. (a) shows the problem of a
naming con�ict and how to handle it. The model in (b) illustrates the weaving semantics of a
context mapping and the scope extension of a message parameter.

Apart from the context mapping, the weaving process must take care of the message argu-
ments which are accessed by the action part of the transition. They must still be accessible after
the weaving.

Figure 9.20 (b) illustrates the weaving semantics for the context mapping as well as for the
scope extension of the message argument. In model t0, an aspect A crosscuts a target component
C. The join relationship defines a context map (shown in the gray box) which maps the term g to
i. Element i is a parameter of the message m1 and has therefore a scope which is restricted to the
transition. Parameter i is also referred to by the action part of the transition.

The transition is split during the weaving, because the join relationship has a before seman-
tics, and therefore, the receive part is separated from the action part. The weaving process must
ensure that the variable i stays visible for the action part. Moreover, it must take care of the
substitution of the proxy variable g. Therefore, the weaving process has to extend the scope
of i, which is achieved by employing the message storing mechanism presented in [Meie09a]
and Section 5.2.3. The message m1 is stored in the variable msg,23 as the stored properties of a
message allow reception of the parameters of a message [Meie09a]. Thus, the references to i are

23This variable is defined in the functional specification of C.

188 Chapter 9. Composing Aspect-Oriented ADORA Models

substituted by the term msg.i. Correspondingly, the context term g used in the aspect A, as well
as the reference i in the action part of C are substituted by msg.i.

Handling the issues The weaving process must employ a symbol table which allows existing
names of elements to be looked up. It must also provide a way to resolve the left hand side and the
right hand side of a context mapping. As the solution to these problems is rather implementation
specific, they are not described in detail here.

9.2.10 Post processing
After the weaving, the aspect modules must be removed to complete the weaving. This must
be done in the final step of the weaving transformation. Figure 9.3 and Fig. 9.4 exemplify this
post-processing. The aspect module of model Fig. 9.3 is removed in the woven model of Fig. 9.4.

9.3 Weaving Semantics Involving Partial Aspect-Oriented El-
ements

The weaving semantics discussed in Section 9.2 only deals with highly evolved aspect-oriented
elements. However, the weaving of partial aspect-oriented elements may have a different out-
come. Actually, the weaving semantics depends on the type of aspect-oriented element and
whether the element is partial. The following cases can be distinguished:

i. A partial join relationship between a state of a behavior chunk and a transition extends the
weaving semantics for the corresponding non-partial case presented in Section 9.2.1.

ii. A partial join relationship between a scenario node and another scenario node extends the
weaving semantics of the corresponding non-partial case in Section 9.2.2.

iii. Any other case24 of partial join relationships, except for cases (i) and (ii), have a weaving
semantics which works on the informal model description of the elements.

iv. The weaving semantics of a partial join relationship between environment objects extends
the weaving semantics presented in Section 9.2.6.

v. The weaving semantics of a partial aspect module extends the weaving semantics presented
in Section 9.2.

Note that other partial elements, such as partial states of behavior chunks or partial scenario
nodes of scenario chunks do not in�uence the weaving semantics: they are woven as they are.
The same happens with partial embedded components contained in an aspect. The weaving
semantics for the cases (i)–(v) is discussed in the following sections.

24See also Fig. 7.6 in Section 7.6.

9.3 Weaving Semantics Involving Partial Aspect-Oriented Elements 189

a)
A a|b B

y|z
ZY

after A a| b BY y|z

t0 tn
C

C...

b)
after

E

X

Y 1 Z 2

A

B 1 C 2

A

E

B 1
C 3

X 2

Y 1
Z 2

C C...

Figure 9.21: Illustration of the weaving semantics for an abstract join relationship connecting
a behavior chunk with a transition and a scenario chunk with a scenario node, respectively.

9.3.1 Partial Join Relationship Connecting Scenario/Behavior Chunks with
a Scenario/Transition

A join relationship between a behavior chunk and a transition, or between a scenario chunk and
scenario node can be partial.

Weaving Semantics

The weaving semantics for non-partial join relationships, as presented in Section 9.2.1 and Sec-
tion 9.2.2, also applies for partial join relationships connecting behavior/scenario chunks with
transitions/scenarios. However, this semantics needs to be extended due to the fact that the
abstract join relationship is not finally evolved. When weaving the partial join relationship, it
becomes a part of the target module, and therefore, its partiality is propagated to the target. Con-
sequently, the partial property of the target module is set. Note that partial join relationships
connecting behavior/scenario chunks with transitions/scenarios may also form part of a join re-
lationship path (cf. Section 9.1). Consequently, they have an in�uence on the weaving of single
instance elements.

Illustration of the Weaving Semantics

Figure 9.21 illustrates this weaving semantics. The left hand side shows the aspect-oriented
model t0 and the right hand side the woven model tn. Fig. 9.21 (a) shows the situation where
an abstract join relationship connects a behavior chunk with a transition, Fig. (b) exemplifies a
similar case for a scenario chunk. The target module in the resulting model tn is partial.

190 Chapter 9. Composing Aspect-Oriented ADORA Models

9.3.2 Partial Join Relationship Connecting Other Elements

Apart from partial join relationships between behavior/scenario chunks and transitions/scenarios,
there may be a partial join relationship between other elements, such as aspects and associations,
behavior chunks and components, or aspects and components, etc. (cf. Section 7.6).

Weaving Semantics

This kind of abstract join relationship may occur at earlier stages of an aspect and describes
its unfinished evolution and the corresponding partial join relationship. The partial join rela-
tionship denotes in this case a fuzzy relationship between the aspect and the crosscut element,
which cannot be handled by the weaving semantics delineated in Section 9.3.1, Section 9.2.1
and Section 9.2.2. Due to its fuzziness, such a partial join relationship cannot be a part of a join
relationship path. As a consequence, single instance elements, such as crosscutting statecharts,
cannot not be woven due to the occurrence of this kind of join relationship.

However, the information contained in the aspect from which the join relationship originates
is highly valuable for the reader of the woven model. It consists of crosscutting model parts
that are already modeled, as well as informal descriptions (cf. Section 6.1.3) which may contain
information about the future evolution of the aspect. This information must not be lost after the
weaving.

To avoid such a loss of information, the weaving process creates a textual representation of
the aspect module and its parts, which also contains the informal description of the elements.
Both, the textual model representation, as well as the informal description are injected into the
informal description of the target element. The ordering keyword (before,instead,after) of the
abstract join relationship is used to determine the precedence of inserted textual description when
more than one aspect impacts the same target. This allows the reader of the informal comment
in the woven model to determine the precedence of the aspect-oriented requirements. However,
the priority is not taken into account, i.e., competing textual description with the same ordering
can have an arbitrary order. Apart from the woven textual representation of the aspect, the partial
property of the target element is set to indicate the incompleteness injected by the crosscutting
concern.

Illustration of the Weaving Semantics

Figure 9.22, 9.23 and 9.24 exemplify the weaving semantics for three different situations where
a partial join relationship is involved. The left hand side contains the aspect-oriented model t0,
the right hand side the woven model tn.

Fig. 9.22 shows a situation where a partial join relationship between an aspect and a com-
ponent is given. The gray boxes denote the informal description contained in the aspect A and
the component C, respectively.25 The component C in the woven model tn shows the informal
description and the textual model representation of the aspect inserted before the informal de-

25Note that the informal description is usually not visualized in the graphical representation of the model.

9.3 Weaving Semantics Involving Partial Aspect-Oriented Elements 191

before
CA...

/# Informal
comment
on aspect A #/

/# Informal
comment
on component C #/

t0 tn

C...

/# Informal
comment on aspect A
partial aspect A
....
end aspect A
Informal comment
on component C
#/

Figure 9.22: Illustration of the weaving semantics for a join relationship between an aspect A
and a component C. The left hand side shows the aspect-oriented model t0, the right hand side
the woven model tn. The gray boxes denote the informal description of the corresponding
elements. The informal description of the aspect and its textual representation are woven
before the informal description of C.

scription of the component. Moreover, the component is set to partial (indicated by the ellipsis
trailing the name of C).

Fig. 9.23 shows a similar situation where an aspect is the source and an association the target
of the join relationship. The instead ordering of the join relationship causes the replacement of
the association’s informal description by the textual representation of the aspect and its informal
description. Moreover, the association is set to partial. Correspondingly, in Fig. 9.24 a situation
is shown, where a partial after join relationship connects a behavior chunk with a component.

Partial join relationships impacting the same target are handled according to the ordering
keyword which is used by the topological sort algorithm (cf. Section 9.1) for getting the correct
weaving order of the formal comments. However, the priority is not taken into account for the
resolution of the competition between join relationships having the same ordering. Furthermore,
the handling of multiple partial join relationships with an instead ordering needs special atten-
tion. Only the first one is handled with an instead ordering, the others are woven with an after
ordering, as otherwise only the last instead would be injected into the informal description of the
target element.

9.3.3 Weaving Semantics of Partial Join Relationships Between Environ-
ment Objects

A join relationship between two environment objects denotes the crosscutting of a role in the
environment of a system with another role. Such a join relationship can be partial and describes
in this case an uncertainty about whether the join relationship is finally evolved or not.

192 Chapter 9. Composing Aspect-Oriented ADORA Models

A...B C

instead

/# Informal
comment
on association
 #/

/# Informal
comment
on aspect A #/

A B

/#
Informal comment
on aspect A
partial aspect A
....
end aspect A
#/

t
0 tn

Figure 9.23: Illustration of the weaving semantics for an abstract join relationship between
an aspect A and an association. The informal description of A and its textual representation
are woven instead the informal description of the association.

c | d after
CXY

A...

t
0

tn
/# Informal
comment
on aspect A
 #/

/# Informal
comment
on component C #/

C...

/# Informal
comment on component
C Informal comment
on aspect A
partial aspect A
 consists of
 state X

end aspect A
#/

Figure 9.24: Illustration of the weaving semantics for the abstract join relationship between
a behavior chunk in aspect A and a component C. The informal description of A as well as its
textual representation are appended to the informal description of C in the woven model.

9.3 Weaving Semantics Involving Partial Aspect-Oriented Elements 193

0 tn
before

X

Y 1

E1

E2

Z 2

Q 1 R 2

P

A

B 1 C 2

Q 1 R 2

P

E2...

A

B 1 C 2

Y 1

Z 2

X 1

t

Figure 9.25: Illustration of the weaving semantics for an abstract join relationship connecting
two environment objects. The target environment object must be partial after the weaving.

Weaving Semantics

The weaving semantics for environment objects presented in Section 9.2.6 applies also in the
case where the join relationship is partial. However, it has to be extended. The partial indicator
of a join relationship between the environment objects denotes its unfinished evolution. When
weaving, the corresponding uncertainty has to be propagated to the target environment object.
Thus, after the weaving, the target environment object has to be partial, which means that it is
not yet certain whether the crosscut environment object also comprises the injected crosscutting
role or not.

Illustration of the Weaving Semantics

Figure 9.25 illustrates this weaving semantics. The left hand side shows the aspect-oriented
model t0 and the right hand side the woven model tn. After the weaving, the target environment
object E2 is set to partial, because the corresponding join relationship is partial.

9.3.4 Weaving Partial Aspects
An aspect module can be partial, which indicates its non-finished evolution. The corresponding
fuzziness must also be propagated to the crosscut modules. As a consequence, the target module
of the aspect is set to partial. Furthermore, the aspect’s informal description is appended to the
informal description of the target module, as it may contain valuable additional information about
the future evolution of the aspect.26 This weaving semantics only applies in the case where the
aspect is the origin of a join relationship between a behavior/scenario chunk and a transition/s-
cenario. However, it does not matter if the join relationship is partial. Thus, the present weaving

26Note that the ordering whereby the informal description is injected into the target module is neither in�uenced
by the ordering keyword nor by the priority of the join relationship.

194 Chapter 9. Composing Aspect-Oriented ADORA Models

a | b c | d

after

YXA B
A...C

a | b
A B

C...
c | dX

t0 tn

/# Informal
comment
on aspect A
 #/

/# Informal
comment
on component C #/

/# Informal
comment on component
C Informal comment
on aspect A
#/

Figure 9.26: Weaving semantics of a partial aspect. When weaving a partial aspect module,
the target module is set to partial and the aspect’s informal description is appended to the
informal description of the target module.

rule only applies when the aspect is set to partial in the cases described in Sections 9.2.1, 9.2.2,
and 9.3.1. In contrast, the present weaving rule does not apply when the aspect is partial and the
join relationship connects a behavior/scenario chunk with a transition/scenario, which is already
covered by Section 9.3.2.

Illustration of the Weaving Semantics

Figure 9.26 illustrates the weaving semantics for a partial aspect module. The left hand side
shows the aspect-oriented model and the right hand side the woven model. The gray boxes denote
the informal descriptions of the corresponding elements. After the weaving, the target module is
partial and the informal description of the aspect is appended to the informal description of the
target module.

9.4 Formal Weaving Semantics

This section covers how the previously presented informal weaving semantics can be formally
described. For this reason, the most obvious techniques to specify the weaving semantics are
evaluated brie�y in Section 9.4.1. In Section 9.4.2, the weaving process is revisited and the
specification schema which is used to define the transformation rules is presented. Finally, in
Section 9.4.2, an example for the formal description of a small part of the weaving semantics is
presented.

9.4 Formal Weaving Semantics 195

9.4.1 A Description Schema for the ADORA Weaving Semantics
The detailed description of implementation of the weaving transformation is not at the focus
of the present work. Nevertheless, a concise but abstract specification of it should be given.
Techniques which can be potentially used to describe the weaving semantics in a precise and
formal way are brie�y assessed in this section. The following criteria are used to select the most
appropriate method:

• The method must support a precise and unambiguous description of the weaving seman-
tics.

• It should be simple to use and easy understandable.

• The resulting weaving transformation specification should be compact.

• It should abstract from unimportant facts and implementation details.

• The technique should be easily applicable to the EBNF-based model description of the
ADORA language.

There are various means to describe the semantics of the operations executed during a weav-
ing transformation. The methods either originate from the field of the formal description of
programming languages or from the field of model transformations.

Graph Transformations

Graph transformations [Roze97, Heck06]27 deal with the representation of computation states as
graphs. Further steps in the computation of a system are represented as transformation rules on
these graphs. A transformation rule consists of an original graph L and a replacement graph
R which are instance graphs describing a particular pattern before and after a transformation,
respectively. L is also called left hand and R the right hand side of the transformation rule.

Formally, a graph transformation is a homomorphism defining a rule p : L → R. In order
to transform a given graph G with the rule p, the left hand side L has to match the graph G. R
describes a pattern, what L looks like after executing the transformation operation. Thus, ap-
plying G 7→ (G\(L\R) ∪ (R\L)) results in H which is the transformed graph G. Furthermore,
additional constraints on the described transformation need to be defined to ensure that the re-
sulting graph is well-formed [Heck06]. Several rules can be executed in sequence, which allows
the creation of complex transformations.

Graph transformations especially became of interest in the field of model-driven software de-
velopment [Schm06, OMaG03a], where user-specified transformations in the application domain
play a key role in the development process of a software. Graph transformation rules are espe-
cially well suited in this case, as they can be expressed by visually modeled instance graphs that
are easier for users to understand than more abstract concepts such as the Axiomatic Semantics
which is described below.

27Graph transformations are sometimes called graph rewriting systems [Schu98].

196 Chapter 9. Composing Aspect-Oriented ADORA Models

There are two reasons why a graph transformation approach is not considered for describing
the ADORA weaving semantics formally: first, the pattern descriptions with example instances
may end up in a large number of rules which are hard to handle and which may result in complex
transformation systems, especially for semantically rich graph languages. Thus, formulating the
ADORA weaving semantics with graph transformations may be tedious. Second, for describing
the left hand and the right hand side of a transformation rule, a particular pattern language is
needed. It must be based on the language that is transformed and must introduce some kind of
wildcards instead of concrete language elements. Therefore the realization of such a language is
beyond the scope of the present work.

However, a graph transformation approach may be of interest for ADORA when allowing the
user to define their own transformations. These may either be domain-speci�c weaving transfor-
mations, or other types of model transformations in the application domain. Therefore, graph
transformations in ADORA may be a future research topic.

Denotational and Structured Operational Semantics

Denotational semantics as well as structured operational semantics (SOS) are approaches which
originate from the formalization of the semantics of programming languages.

The denotational semantics was originally introduced by [Scot71] (cf. also [Tenn76]). It
concerns the construction of mathematical objects (called denotations) which describe the mean-
ings of expressions in the specified languages. For this purpose, the syntactical elements of a
language are strictly separated from the mathematical structures representing the meaning of the
language. The syntax elements are then mapped to the semantics domain. Examples can be
found in [Tenn76].

The structured operational semantics approach was originally mentioned in [Plot81]. The
approach is based on a transition system (S,A,→), where S denotes a set of states, A a set of
actions, and a relation→: S × A × S representing the transition in the system. It describes the
transition from an original state s ∈ S to a subsequent state s′ ∈ S if the action a ∈ A occurs.
S consists of the set of statements of a language L. For each statement s, there exists an action
which reduces the statement s to s′. In turn s′ may be reduced again, resulting in a concrete value
at the end of all the steps.

Both denotational semantics as well as the SOS approach are designed for describing the se-
mantics of computer languages. Using one of them for specifying the ADORA weaving semantics
formally, would require the specification of a formal syntax for describing the transformation of
the ADORA models. However, as stated in the section on graph transformations, specifying such
a language is beyond the scope of this work.

Algorithmic Description

An obvious way to describe the semantics of a transformation is the use of an algorithmic de-
scription. However, pure algorithmic descriptions can anticipate an implementation and, thus,
they can result in suboptimal solutions. Furthermore, they can get rather detailed, complex and
unclear. Hence, pure algorithmic descriptions are rejected for the present work.

9.4 Formal Weaving Semantics 197

Axiomatic semantics

Axiomatic semantics is an approach based on mathematical logic that can be used to prove the
correctness of computer programs for a given specification [Hoar69]. Several other approaches,
such as specification of abstract datatypes [Gutt77] and design by contract [Meye92] are based
on the axiomatic semantics approach. The specification consists of two assertions given by a
precondition P which has to be satisfied in order that the given program C executes and results
in a satisfied postcondition Q. P and Q are predicates usually expressed in a first-order predicate
logic.

Pre- and postconditions allow the semantics to be formally specified without using an im-
perative algorithmic description, i.e., the operation is specified as a black-box. This allows an
implementation-independent specification of the weaving operations. Furthermore, it is compact
and more understandable than bloated algorithms. However, there are parts which are difficult to
express in a first-order logic.

9.4.2 Description Schema of the ADORA Weaving Semantics

As discussed above, denotational semantics, SOS and graph transformations are inadequate, and
therefore, they are not considered for the formal description of the weaving operations. The for-
mal description employs rather an axiomatic semantics which is complemented with algorithmic
specifications. It is in some ways similar to the refinement calculus used in [Xia04]; however, it
does not use the same syntax for the description of the rules. The schema and the types of the
operations used are discussed in the following.

Weaving Operations Described by Pre- and Postconditions

An axiomatic semantics uses pre- and postconditions to describe the meaning of an operation
φk. Pre- and postconditions are described for each transformation operation in a fixed schema.
First, the given elements are delineated. Second, the precondition is defined. It is a predicate
that specifies what must be satisfied in order that φk executes properly. Third the postcondition
is specified. It describes the changes in the transformed syntax tree, i.e., the semantics of the
operation φk. The predicates of the pre- and postconditions use functions, which are usually
specified as algorithms, returning specific properties of the syntax tree (see also Appendix G).

Weaving Process Revisited

As discussed in Section 9.1, a weaving transformation can be distinguished into two major
phases. In the first phase, each join relationship, except the ones between environment objects,
are processed by weaving their constituting elements. A join relationship is removed after it has
been woven. In the second phase, the single instance elements, such as crosscutting statecharts,
etc., are woven.

For referring to the major steps in the weaving process, the letters g, m, p, q, u, v, w, and n
are reserved as the indices. Step g denotes the weaving of a join relationship, step m the weaving

198 Chapter 9. Composing Aspect-Oriented ADORA Models

Crosscutting
statecharts

woven

Join relationship
weaving

Crosscutting scenario-
charts woven

Embedded
Components

Woven

Functional
Specification

Woven

Post
Processed

φt
g-1 t

g

More join relationships

g

[No more
join relationships]

φt
p-1 t

pp

φt
u-1 tuu φt

v-1 tvv

Server Component
Woven

φt
q-1 tqq

φt
w-1 tww

φt
n-1 tnn

Crosscutting
Environment

Objects Woven

φt
m-1 t

mm

Figure 9.27: Illustration of the weaving process. The weaving process is described as
statechart-like diagram.

of the statecharts into the end target modules, step p the weaving of crosscutting scenariocharts,
step q the weaving of embedded components, step u the weaving of crosscutting environment
objects, step v the weaving of the functional specification, step w the weaving of the server
components, and step n the post processing of the model. Moreover, there may be intermediate
steps between major steps.

For example, φg denotes the operation which weaves a join relationship, φm an operation
which weaves the crosscutting statecharts of the model, and so on. The model before the execu-
tion of φg is given by tg−1, the model after its execution by tg.

Figure 9.27 depicts the actual weaving process as a statechart. For example, the operation φg
takes the model tg−1 as input and creates a new model tg. The operation converts the original
model tg−1 to the resulting model tg, which is expressed by the notation tg−1 → φg → tg in the
action part of the transition.

Weaving operations may depend on an intermediate state and the corresponding data struc-
tures used in the previous transformation steps. Therefore, it is sometimes necessary that a
weaving operation is able to access the data structures used by another weaving operation. An
element from another step can be accessed by referencing it with the unique index of the weaving
step. For example, a term called rootAssociationsh, where h denotes the unique index, allows
the accessing of the data structures represented by the term rootAssociation at the weaving step
h.

Note also that the presented formal description abstracts from the handling of naming con-
�icts, the handling of the context mappings, and the adjusting of the name space of message
arguments. They are not included, as this would result in a more complex formal description,

9.4 Formal Weaving Semantics 199

which is not helpful in the understanding of the weaving rules. These issues can be dealt with at
the implementation stage.

9.4.3 Illustration of the Formal Weaving Semantics

The formal definition of the weaving semantics is exemplified in the following by a small ex-
cerpt showing a part of the axiomatic specification for the weaving of behavior chunks (cf. Sec-
tion 9.2.1). The formal description uses functions that allow the retrieval of properties of ADORA

syntax trees (cf. Chapter E of the Appendix).

Given elements

The formal description usually first introduces a set of given elements, i.e., terms that are used to
define the pre- and postconditions of the operation described. The following example illustrates
the given elements. They are used for formally describing the weaving semantics of behavior
chunks.

The operation which weaves behavior chunks is φg, the model tg−1 is the input, and tg the
output model.28 The term jrlist defined in Formula (9.2) denotes the topologically sorted list
of join relationships contained in tg−1. The current join relationship j is defined by the formula
given in (9.3). Furthermore, the entry point of the behavior chunk is given by the term entryState
specified in Formula (9.4). A short hand targetTransition for the target of j, i.e., the transition
which is crosscut by the behavior chunk, is defined in Formula (9.5).

jrlist = topologicalJrSort(tg−1) (9.2)
j = firstJr(jrlist) (9.3)
entryState = source(tg−1, j) (9.4)
targetTransition = target(tg−1, j) (9.5)

Precondition of φg.

In the next step, the precondition of the operation is defined. It describes what conditions have to
be satisfied in order that the weaving operation can be executed properly. The following example
illustrates this by means of the precondition for the weaving of a behavior chunk.

For the correct working of the operation φg, the precondition in (9.6) must be satisfied. As
described in this predicate, the join relationship must be connected from a state or a component
to a transition.

28The model φg−1 is either an intermediate model resulting from a previous weaving of a join relationship, or it
is the initial aspect-oriented model.

200 Chapter 9. Composing Aspect-Oriented ADORA Models

(
type(entryState) = StateDefinition ∨

type(entryState) = ComponentDefinition
)
∧

type(targetTransition) = TransitionDefinition

(9.6)

Postcondition of φg.

The postcondition usually consists of several predicates which are implicitly connected by a
logical And operation. Apart from these predicates several helper terms may be defined. They
are used to simplify the predicates. The following example illustrates this by means of a part of
the postcondition for the weaving operation of a behavior chunk.

The terms defined in the formulae given in (9.7)–(9.11) are used to simplify the predicates in
the following: stateGroup is a set of syntax trees describing the nodes and the connections of the
behavior chunk which will be woven by φg into the target module.29 The expression exitPoints
specifies the set of exit points of the behavior chunk.30 The target module tModule denotes the
aspect or component which contains the target transition targetTransition after the weaving of
the behavior chunk. The term exitState denotes the target state of the crosscut transition.

stateGroup = findStateGroupMembers(tg−1, ∅, entryState) (9.7)
exitPoints = exitPoints(stateGroup) (9.8)
tModule = identicalElement(tg, targetModule(tg−1, j)) (9.9)
exitState = target(tg−1, targetTransition) (9.10)

The term cloneMap defined by Formula (9.11) denotes a tuple which contains the mapping
between the original states, components, and transitions of the behavior chunk and the corre-
sponding clone copies. Two different cases have to be distinguished. In the case where the
join relationship j has a before ordering, an additional state and transition have to be intro-
duced apart from the clones of the other behavior chunk elements. This is done by the function
createAdditionalExitStateClone . The resulting map contains a mapping between the exit point
of the behavior chunk and an extra state. In the instead and after case, only the states, compo-
nents, and the transitions without the exit point are cloned. Thus, in this case it does not contain
a mapping between the exit point and an extra state.

cloneMap =

createCloneMap(tg−1, stateGroup\exitPoints , if ordering(j) =

createAdditionalExitStateClone(tg−1, exitPoints)) before

createCloneMap(tg−1, stateGroup\exitPoints , ∅) if ordering(j) 6=
before

(9.11)
29The (source) nodes also contain the transitions which form the state group.
30Even though it is a set, there can only be one exit point, as defined by the language constraint in Section 7.4.2.

9.4 Formal Weaving Semantics 201

The actual postcondition of φg consists of several predicates. The first predicate in (9.12)
specifies that copies of the states and the corresponding transitions of the behavior chunk are
found in the target module after weaving.

(
∀x ∈ stateGroup\exitPoints :

identicalElement(tg, findClone(x, cloneMap)) ∈ parts(tModule)
)
∧(

ordering(j) = before⇒ ∀x ∈ exitPoints :

identicalElement(tg, findClone(x, cloneMap)) ∈ parts(tModule)
) (9.12)

The predicate in (9.13) specifies how the cloned behavior chunk is connected to the crosscut
behavior in the case that j is a before join relationship (cf. Fig 9.5 (a)). The extra state created
in the clone map is part of the target module. It has an outgoing exit transition that has no
condition part but the same action part as the crosscut transition. The exit transition is connected
to the target state (exitState) of the crosscut transition. Furthermore, the crosscut transition is
reassigned to the entry point of the cloned behavior chunk and its action part is deleted.

ordering(j) = before⇒(
∀x ∈ exitPoints :(
∀y ∈ connections(findClone(x, cloneMap)) :

∃z = identicalElement(tg, y) :

target(tg, z) = identicalElement(tg, exitState) ∧
actionPart(z) = actionPart(targetTransition) ∧
conditionPart(z) = ε))

∧
(
∃reassignedTransition = identicalElement(tg, targetTransition) :

conditionPart(reassignedTransition) =

conditionPart(targetTransition) ∧
actionPart(reassignedTransition) = ε ∧
target(tg, reassignedTransition) = findClone(entryState, cloneMap))

(9.13)

Apart from the before case, there are the instead and the after that need to be described.
Moreover, the case where multiple join relationships impact the same transition must also be
specified. The full description for the weaving semantics of a behavior chunk is delineated in
Section G.1.1.

202 Chapter 9. Composing Aspect-Oriented ADORA Models

Complete Formal Description of the Weaving Semantics

The full formal weaving semantics is specified in Appendix G. The weaving semantics of non
partial elements can be found in Section G.1 and the one of the partial elements in Section G.2.4.

9.5 Weaving the Layout Information
The sections before discuss the weaving of the actual model information, but they do not delin-
eate how the layout of a model is handled by the weaving process. The layout information of the
crosscutting elements and the crosscut elements must somehow be merged when performing the
weaving. One possible way to achieve this is to create a new layout using an automatic mecha-
nism, such as the one described in [Eigl04]. However, this usually leads to a total rearrangement
of all model elements, which ends in the loss of the model reader’s bearings. As a consequence,
the reader has problems in finding the link between the aspect-oriented and the corresponding
woven elements in the resulting model, which in turn decreases the advantages gained from the
weaving. Thus, premise (c) for the weaving, which is discussed at the beginning of Chapter 9, is
violated.

The actual problem is caused by the destruction of the secondary notation, which is also
known as visual layout of the user’s mental map (cf. Section 5.1.4). At the time of writing,
there were no model transformation or weaving approaches which satisfactorily handle the vi-
sual information of models.31 In order to circumvent the problems that arise from using an
automatic layout algorithm, the weaving process must try to create a fused visual representation
that preserves the secondary notation as far as possible. A rudimentary, straightforward solution
is presented in the following.

Approach. The approach is based on the following idea. Crosscutting elements such as behav-
ior chunks or crosscutting scenariocharts, must be inserted at a position where the reader of the
model expects those elements after the weaving. Consequently, the nodes of the inserted state
groups and scenario groups, such as the states and scenarios nodes, should keep their absolute
distance to each other.

Figure 9.28 (a) illustrates how this is achieved for behavior chunks. Before weaving a be-
havior chunk, the bounding box of the elements to weave is computed. It is indicated by a gray
box in the figure and has the dimensions ∆x and ∆y. In an intermediate step, shown in model
t′g − 1, extra space of the size (∆x, ∆y) is allocated between the end point of the transition and
the state B. The crosscut transition is the point where the reader of the model probably expects
the behavior chunk to be inserted. For the allocation of the required space in the target module,
the layout algorithm from [Rein07] (cf. Section 5.1.4) is employed.32 When weaving a chunk
into the target, it is inserted in the allocated space. The elements of the chunk preserve their
absolute distance to each other, which is shown by the woven model tg. This ensures that the

31Note that the weaving of the layout is also of interest in the field of model-driven software development, where
model transformations play a key role.

32This algorithm is also used to implement the abstraction mechanisms of ADORA.

9.5 Weaving the Layout Information 203

a)
A a|b B

y|z
ZY

after

B

y|z
ZY

after

A a|b BY y|zA a|b B

y|z
ZY

after
y|zY y|z

Y y|z

b)

instead

E

X

Y 1 Z 2

A

B 1 C 2

A

E

C 2X 1

Y 1
Z 2

instead

E

X

Y 1 Z 2

X

Y 1 Z 2

A

B 1 C 2B 1 X 1

Y 1
Z 2

tg-1 tg

y|zy|zy|zYYY y|zy|zy|z∆y

∆x

X

Y 1 Z 2

∆x

∆y

∆x

∆y

∆x

∆y

t‘g-1

Figure 9.28: Model illustrating the visual weaving of behavior and scenario chunks.

inserted chunk keeps its size. Figure 9.28 (b) shows the corresponding steps for the weaving of
a scenario chunk.

Apart from chunks, the layout for single instance elements such as crosscutting scenariocharts
and embedded components must be computed appropriately. Figure 9.29 shows an example
which illustrates how this is done for a crosscutting statechart.33 As for chunks, the bounding
box for the crosscutting statechart is calculated, which is shown by ∆x and ∆y in model t0.
Furthermore, the distance x and y of the bounding box from the left upper corner and the height
and width of the aspect module are determined. The position where the crosscutting statechart
is inserted in the target module is given by its relative position (x′, y′) from the upper left corner
of the aspect, which is shown by the intermediate model t1. Thus, the equations x′

width′
= x

width

and y′

height′
= y

height
apply.34

The required space is allocated with the dimension (∆x,∆y) at the position (x′, y′) by the
algorithm described in [Rein07]. Thereby, any occlusions between the allocated space and exist-
ing nodes are resolved. That means that the inserted allocated space in the model, where G and B
are inserted later, is shifted away from A, X, and B. Then, the crosscutting statechart is inserted in
the reserved area, which results in the model tn. Correspondingly to this example, crosscutting
scenariocharts and embedded components are visually woven.

33For crosscutting scenariocharts and embedded components, it is done analogously.
34The coordinate (x’,y’) is calculated by x′ = x

width width ′ and y′ = y
height height ′.

204 Chapter 9. Composing Aspect-Oriented ADORA Models

a|b

after

A B

e|f

g|h
G H

a|b
A c|dX B

e|fe|f

g|hg|h
G H

t0 tnt1

A a|b c|dX B

h
ei

g
h

t’

width’

c|d

e|f

g|h

X Y

G He|fe|f

g|hg|h
G H

x

y

width

h
ei

g
h

t

∆x

∆y

∆x

∆yx‘

y‘

Figure 9.29: Model illustrating the visual weaving of crosscutting statecharts, crosscutting
scenariocharts, and embedded components.

However, a counterintuitive layout may result when having multiple single instance elements,
such as crosscutting statecharts, that are subsequently inserted into the same target module. This
is due to the allocation of space and the resolution of occlusions. Elements which are occluded
by the reserved space are shifted away. Hence, previously inserted single instance elements may
also be shifted away and may finally be located at another position than expected by the reader of
the model. To avoid this problem, the aggregated space of all single instance elements is allocated
at once in the module and the single instance elements are inserted in this space together.

Apart from chunks and single instance elements, such as crosscutting scenariocharts, associ-
ations may also be woven, e.g. when weaving server components or environment objects. In this
case, the ratio between left and top corner and the point where the association crosses the border
of the shape is preserved.

Drawbacks of the approach. The presented visual weaving approach does not cover all prob-
lems. There may be situations which still lead to unclear models. The main issue emerges from
the fact that elements, such as statecharts and scenario trees have a user-specified orientation.
Suppose the model t0 in Fig. 9.30 (a). The transition between state A and B in the component
of the model t0 has an orientation which is from right to left. In contrast, the transition of the
behavior chunk in the aspect has a reverse orientation. Thus, when weaving t0 with the presented
approach, the resulting model tn has an unclear visualization, as two different orientations are
mixed in the same diagram. The effect is amplified when having various crosscutting elements
for the same target with a various directions. The problem can also be observed for other ele-
ments, such as crosscutting scenario chunks, as for instance shown in the example of Fig. 9.30
(b), where a scenariochart with a particular orientation is crosscut by a scenario chunk with
another orientation.

The presented visual weaving approach is only partially satisfactory. Especially models with
a higher number of woven elements having a different orientation can become unclear. A proper

9.6 Summary and Discussion 205

a)
Aa|bB

w|xY
after

Z

A
a|b

B

b)

before

E

X

Y 1 Z 2

A
B 1

C 2

t0 tn

A

y|z

w|xY A

y|z

E

Y 1
Z 2

A

B 1

C 3

C 2

Figure 9.30: Illustration of the open issues in the visual weaving of ADORA models. The
algorithm does not take into account the orientation of the chunks and the targets.

visual weaving must consider the handling of different orientations. The corresponding heuristics
to handle these situations are subjective and have to be addressed by a future investigation of the
topic.

9.6 Summary and Discussion

This chapter has presented the weaving semantics for the transformation of aspect-oriented to
conventional ADORA models. The semantics is described formally and informally. The formal
description employs an axiomatic semantics for the specification of the weaving steps. Even
though the semantics specification is compact and quite well readable, it has the disadvantage
that it cannot be directly interpreted by a software. To obtain an executable transformation in a
tool, it has to be implemented manually according to the axiomatic specification (See also the
Section 11.4). As long as the weaving transformation is language specific, the axiomatic se-
mantics is adequate. However, if there is a need for a user to be able to create domain-specific
weaving transformations, the axiomatic description is inadequate. In this case, a graph transfor-
mation approach is probably better suited, as the specified semantics can be defined by abstract
models and then directly executed on the models.

The presented weaving transformation allows switching between the aspect-oriented and the
conventional view of a model. Nevertheless, the weaving is a unidirectional transformation, i.e.,
an aspect-oriented model can be transformed to a conventional model, but the transformation can-

206 Chapter 9. Composing Aspect-Oriented ADORA Models

not be reverted, because it is a one-to-many mapping of the crosscutting elements to conventional
model elements. Consequently, changes in the woven model cannot easily be back-propagated
to the corresponding aspect-oriented model.

Currently, an implementation (cf. Chapter 11) of the presented weaving transformation needs
to save the original aspect-oriented model. When the user switches back, the saved copy has to
replace the woven model again. Therefore, changes in the woven model are not allowed, as they
would otherwise get lost.

The problem originates in the fact that a software tool cannot decide automatically whether
a change in the woven model belongs either to an aspect or to a conventional model part. As an
example, suppose that you connect an additional transition and state to a (woven) behavior chunk
in a woven model. A software tool cannot decide if the added behavior belongs to the chunk or
to the core behavior. Moreover, if the change belongs to a crosscutting element, it would have
to be propagated to the locations crosscut by the aspect, which may in turn cause inconsistencies
in the model. The problem of back-propagating changes from the woven to the aspect-oriented
model is also strongly related to the traceability issue and the round trip engineering problem
and needs the attention of the future research.

This chapter also presented also a straightforward approach for the weaving of the layout
information in the model. Even though the approach works quite well for simple models, it may
produce a rather confusing layout for more complex ones. As discussed above, an improvement
of the visual weaving mechanism may also become a focus for future research.

207

Chapter 10

Applying the Aspect-Oriented ADORA
Approach

The foregoing chapters presented the syntax as well as the weaving semantics of an aspect-
oriented extension for the requirements modeling language ADORA. The approach supports
the elicitation and evolution of requirements by way of several language features, such as the
support for a variable degree of formality and the syntactical annotation of partial and semi-
formal elements. However, a proper use of them demands some guidance in the form of a
process.

This chapter sketches and illustrates a possible process framework and describes the use of
the syntactical elements. Section 10.1 gives an overview of the process. In Section 10.2, the pro-
cessing of a functional requirements increment is delineated. Section 10.3 discusses how to iden-
tify and extract functional crosscutting concerns from the evolved requirements. In Section 10.4,
the elicitation and evolution of non-functional requirements is depicted. Finally, Section 10.5
summarizes and discusses the present chapter.

10.1 ADORA Modeling Process Overview

A process for the elicitation and evolution of requirements is presented in [Seyb04a, Seyb06a].
It is based on a semi-formal simulation technique which uses the ADORA language. The present
chapter sketches an extension to this process in order to enable it to handle crosscutting non-
functional and functional concerns. As shown in Fig. 10.1, the process is iterative and consists of
two increments in one cycle. The first increment deals with the elicitation and the refinement of
the functional requirements. Once the functional requirement increment is considered complete,
the non-functional requirements which refer to the previously elaborated functional requirements
are identified and then refined.1 The whole process ends when the functional and non-functional
requirements are considered complete and at sufficiently risk-free.

1The non-functional increment follows the elicitation of the functional requirements because non-functional
requirements are easier to identify when the functional requirements are already identified.

208 Chapter 10. Applying the Aspect-Oriented ADORA Approach

Functional
requirements
model
increment (1)

Non-Functional
requirements
model
increment (2)

Yes: Requirements
phase finished,

start with architecture
No: Start next

model increment

Requirements
considered complete
and all stakeholders
have contributed? (3)

Figure 10.1: Overview of the requirements process

Note that the size of an increment as well as the scope of the increment has to be defined by
the requirements engineer. Moreover, a requirements cycle may be intertwined with other phases
of the software process depending on the software process model that has been chosen.

The process is exemplified in the following by means of the library system employed as an
illustrative model in the preceding chapters.

10.2 Functional Requirements Model Increment
The detailed process for the elicitation/refinement of the functional requirements is presented in
Fig. 10.2. It starts with the identification and elicitation of the coarse functional requirements,
which can be done by any one of a number of state-of-the-art techniques. In the following, a use-
case-driven approach is employed. The process is usually driven by one or more requirements
engineers who iteratively elicit and refine, and simulate a model.2

All direct stakeholders3 are involved in the process in a round robin manner. In step (1.1),
a stakeholder describes functional requirements in terms of use cases which are modeled as an
ADORA scenariochart at the top level of the system. Furthermore, additional requirements may
be captured as high-level comments in the existing components. In the following step (1.2),
these informal descriptions are analyzed, identifiers of system parts are extracted, and the corre-
sponding system parts, such as components and behavior descriptions are created. The detailed
process is described in [Seyb06a, p. 76f]. The nodes of the elicited use cases are associated with
the components to which they belong. This is done by placing them as parts into the components.

During the elicitation/refinement and the modeling phase, the stakeholder can amend already

2The concurrent working of several requirements engineers working on the same model is enabled by the multi-
user capabilities of ADORA [Moda03].

3There are also indirect stakeholders who are not involved directly in the project.

10.2 Functional Requirements Model Increment 209

Functional requirements model increment (1)

Elicit/refine/
correct functio-
nal Require-
ments (1.1)

Modelling
(1.2)

Simulation
(1.5)

Revalidation
(1.7)

Identify/
separate
Crosscutting
Concerns (1.4)

Problems during
the validation?

Error during
the revalida-

tion?

Yes: correct the
problem

No

Yes: discuss/
 with customer

No

 Conflicts between
stakeholder

requirements or
open issues?

No

Yes: discuss/
negotiate with

stakeholders

(1.6)

(1.3)

(1.8)

Figure 10.2: Elicitation and refinement process for functional requirements.

existing use cases which have been raised by another stakeholder previously. There may be
con�icts (1.3) between the currently elicited functional requirements and the prior requirements
introduced by another stakeholder. In this case, the con�icts are resolved by negotiating between
all the stakeholders involved. After a successful remodeling of the requirements increment,
functional crosscutting concerns (cf. Section 3.1.9) are identified and separated (1.4), which
is done by applying a set of heuristic rules. The details on identifying functional crosscutting
concerns are discussed in the following Section 10.3.

In the subsequent step, the newly elicited/model parts are executed by semi-formal simulation
(1.5).4 The semi-formal simulation enables a dynamic validation of model parts which are either
not fully formalized, inconsistent, or which contain errors. All these problems can be discovered

4In order to execute the model by the semi-formal simulation, the aspect-oriented parts have to be woven first,
as motivated in Chapter 9.

210 Chapter 10. Applying the Aspect-Oriented ADORA Approach

and resolved by various means.
A so-called driver-and-stub simulation can be used to mock up non-existing parts [Seyb04a].

For this purpose, the person who drives the simulation has to manually complete the action and
reaction of the missing parts. The recorded protocol of the mocked up behavior can subsequently
be used for semi-automatically completing the missing model parts [Seyb06a]. Furthermore,
inconsistencies and errors in the model can be revealed by the simulation process, which also
suggests ways of handling those problems. Consequently, the semi-formal simulation allows the
engineers to refine, complete the model, correct it, and make it consistent.

When changing a model, it is necessary to show that the already fixed requirements have
not been accidentally changed and do not cause a con�ict with newly introduced model parts.
Therefore, a revalidation (1.7) has to be done. It can be accomplished by a so-called regression
simulation [Seyb04a, Seyb06a]. For this purpose, the simulation sessions of already fixed re-
quirements can be recorded: that means that all input stimuli of the executed use cases and the
corresponding outputs are logged. The recorded input stimuli can be injected during the revalida-
tion phase. If the fixed model parts are correct, the resulting output must be equal to the recorded
output (1.8). Models which do not pass the revalidation must be scrutinized and corrected, if
necessary, with the help of the stakeholders involved.

Example (10.1). Figure 10.3 shows the first elicitation steps of the library system. The basic use
cases of the system are identified (1.1) in collaboration with the stakeholder and are then elabo-
rated in the following steps. During the modeling (1.2) of the system there may be several steps.
In Fig. 10.3 (a), the basic system and the identified use cases are modeled in an intermediate step.
After a further refinement, the basic components in the system have been identified as shown in
Fig 10.3 (b). As the system is at that time not highly evolved, there are not yet any con�icts (1.3)
and no functional crosscutting concerns can be identified (1.4). Furthermore, the system has not
yet been simulated (1.5), nor has it been revalidated.

10.3 Detection of Functional Crosscutting Requirements
Crosscutting concerns are hard to discover in functional requirements, because crosscutting rela-
tionships are not initially apparent. This is due to the fact that functional requirements are usually
not complete from the beginning. As a consequence, crosscutting relationships are concealed,
and therefore they cannot be identified before the corresponding parts of the requirements are
elaborated fully. Therefore, crosscutting functional requirements cannot be identified and sepa-
rated from the beginning but only during the course of the elicitation.

Crosscutting concerns are initially documented by conventional means, i.e., by using conven-
tional relationships between dependent concerns, as discussed in Section 3.1.3. Consequently,
they are scattered over the whole model, and tangled with the modules of the core concerns.

Nevertheless, at a later stage, when all functional requirements involved have been elicited,
the crosscutting concerns can be identified and separated into aspects. In this case, the require-
ments engineer has to decide whether to separate identified crosscutting concerns. However, not
every separation of a crosscutting concern accrues benefits. For example, separating a concern

10.3 Detection of Functional Crosscutting Requirements 211

Library
User

User
Administrator

Book
Administrator

Borrow
Books...

Manage
Users...

Manage
Books...

LibrarySystem...

Library
User

User
Administrator

Book
Administrator

Borrow
Books...

Manage
Users...

Manage
Books...

LibrarySystem...

Borrow
Manager...

User
Administra-
tion...

Book
Administra-
tion...

Library
User

User
Administrator

Book
Administrator

Borrow
Books...

Manage
Users...

Manage
Books...

LibrarySystem...

Borrow
Manager...

User
Administra-
tion...

Book
Administra-
tion...

Performance...

Security...

Maintainability...

1) The user executing an
operation must be
idenfiable.
2) The system
must guarantee the
integrity of the data, ...

a) b)

c)

Figure 10.3: Example of the first few steps in an evolutionary process creating the model of
a library system.

which has only one crosscutting relationship to another concern will probably neither improve
the understandability nor help to simplify the handling of the crosscutting requirements.

In the approach presented, the identification and separation of functional crosscutting con-
cerns has to be done manually. There are several heuristics to identify a crosscutting concern,
two of which are listed in the following:

1. Components which provide a service for other components may be an indicator for func-
tional crosscutting concerns. A service is usually provided by the same protocol (of
events), which is the same for all consumers. In accessing the service, each consuming
component must implement the same behavior. This in turn causes redundancy, which can
be seen as a functional crosscutting concern.

2. There may be parts of statecharts or scenariocharts located in different components which
have the same purpose/semantics. These cases may also indicate a scattered crosscutting
concern. Moreover, this kind of redundant scenario/behavior descriptions may refer to

212 Chapter 10. Applying the Aspect-Oriented ADORA Approach

child components. In this case, the refereed components may also be part of the crosscut-
ting concern.

Currently, the patterns mentioned above must be searched for in person in the model; the
present approach does not provide a way to identify such patterns automatically or at least semi-
automatically.

The automated discovery of potential crosscutting structures would require checking for sim-
ilar structures within ADORA models, which is also known as the subgraph isomorphism prob-
lem. Although the problem is NP complete, there are algorithms which allow the processing of
at least small graphs, such as [Corn70] and [Ullm76]. Furthermore, there are efficient algorithms
for special cases of graphs, such as trees [Kell57]. As ADORA models can be represented as
trees, the graph isomorphism problem can be solved with an adequate performance.

However, the subgraph isomorphism problem is not the only problem that must be tackled if
functional crosscutting concerns in models are to be found automatically. When several people
are working on the same requirements models, they may employ different ways to represent
semantically equal model parts. They may also have different ontologies of the modeled problem
in mind. Both these factors may result in models where a search for isomorphic sub-model
parts does not necessarily lead to success, although there are sub-parts in a model which are
semantically equivalent. The automatic discovery of crosscutting model parts may be addressed
in future research on this approach.

10.4 Eliciting/Re�ning Non-functional Requirements
High-level non-functional requirements are represented in this approach by aspect modules, as
delineated in Section 3.1.9. Compared with functional crosscutting concerns, non-functional
crosscutting concerns can be kept separate right from the time when they are elicited at the be-
ginning of the process. They subsequently co-evolve with the functional requirements. Fig. 10.4
shows how the process for the elicitation of non-functional requirements is carried out.

Non-functional requirements are identified by using categorizations, such as proposed in
[ISO 01], or catalogs, such as used in [Chun00]. They are discovered by going through these
catalogs together with the stakeholders involved (step 2.1). Usually, the elicited non-functional
requirements relate to the functional requirements determined in the preceding steps.

After finding the non-functional requirements, they are modeled as aspects (step 2.2). Each
non-functional requirement is represented as a partial aspect that may be amended by an in-
formal description which specifies its purpose in more detail. Join relationships connect the
non-functional aspect with the impacted elements and therefore indicate what requirements are
in�uenced by the non-functional requirement.

During the modeling, con�icts between non-functional requirements may be discovered.
Con�icts can either be caused by the different viewpoints of the stakeholders regarding the mean-
ing, the purpose, or the impact location of an aspect. Furthermore, there may be a competition
between different aspects crosscutting the same target, which is indicated by join relationships
in the ADORA model pointing at the same target. The competition between different aspects

10.4 Eliciting/Refining Non-functional Requirements 213

Non-functional requirements model increment (2)

Elicit/refine/cor-
rect non-func-
tional Require-
ments (2.1)

Modeling
(2.2)

Simulation
(2.4)

Revalidation
(2.6)

Problems during
the validation?

Error during
the revalida-

tion?

Yes: discuss with customer,
correct the problems

No

Yes: discuss
with customer /

correct the
problem

No

No

Yes: discuss/
negotiate with

stakeholders

 Conflicts between
stakeholder re-

quirements need
to be refined?

(2.3)

(2.5)

(2.7)

Figure 10.4: Elicitation and refinement process for non-functional requirements.

has to be resolved by defining a priority for the corresponding join relationships. Con�icts be-
tween the viewpoints of the stakeholders as well as competing impact locations of the aspect
(decision 2.3) have to be negotiated by involving all the stakeholders who have contributed to the
non-functional requirement currently being refined.

Some of the non-functional crosscutting concerns may need a further refinement. A refine-
ment step may either concern the aspect itself or one of its outgoing join relationships. An aspect
may be refined by splitting it into sub-aspects that describe the non-functional requirement on
a more detailed level. For example, a high-level non-functional security requirement may be
split into a requirement which demands that the transmission of data must be done securely and
another requirement which states that a user must be authenticated in order to access particular
functions in the software. Moreover, the hierarchical decomposition of aspects also allows for a
simple backward and forward traceability of non-functional requirements.

The actual target of the aspect may become clearer during the course of the refinement.
Therefore, the join relationships also have to be refined. A join relationship may be relocated or
even split into several join relationships.

For the refinement of aspects, three different types of non-functional requirements can be
distinguished, as delineated in Section 2.1.2 and in [Meie07]. A non-functional requirement of
type (i) can be operationalized to a functional requirement, i.e., it becomes manifest in a piece

214 Chapter 10. Applying the Aspect-Oriented ADORA Approach

of code. For example, an authentication mechanism may be a result of type (i). Non-functional
requirements of type (ii) do not result in additional functionality, but in restrictions on how the
system performs. An example may be the demand for a minimal throughput. Non-functional
requirements of type (iii) neither contribute to the functional requirements of a system, nor do
they in�uence how the system performs. They rather result in a decision which in�uences the
software process or the form of the resulting software artifacts. An instance of this type is the
decision to use a particular schema to document the code artifacts.

The refinement of non-functional requirements is continued until they are fully concretized.
The point in time when the refinement stops depends on the type. It may be the case that a non-
functional requirement cannot be refined any more during the requirements phase, because it is
a decision which is not realized until a later phase in the software process, e.g., the architectural
or the implementation phase. Aspects describing non-functional requirements of type (ii) and
(iii) usually remain partial during the requirements phase. A non-functional requirement is fully
evolved when it is not marked as partial and the corresponding aspect module neither has any
more partial elements nor outgoing partial join relationships.

After the refinement steps of the non-functional increment have been carried out, the semi-
formal simulation must be executed (step 2.4), which is preceded by a weaving of the aspect-
oriented model. The simulation must execute the model parts that have been added recently.
It may help to concretize non-functional requirements of type (i) which result in functionality.
As the simulation aims at the refinement of the functional system description, non-functional
requirements of type (ii) and (iii) are usually not refined by the semi-formal simulation and must
be elaborated manually.

The refined non-functional crosscutting elements of type (i) must be manually propagated
back to the aspect-oriented model because the proposed weaving transformation, presented in
Chapter 9, does not allow this to be done automatically.

After the simulation, previously recorded simulation runs have to be executed in order to
revalidate the model by a regression simulation (step 2.6). Any failure during the revalidation is
a hint of a problem in the newly introduced non-functional requirements or a con�ict between
them and other requirements. In this case, the problems have to be corrected in another elicitation
and requirements cycle (decision 2.7).

Example (10.2).
Figure 10.3 (c) shows the first step of the elicitation in the non-functional requirements for the
library system. There are three non-functional requirements represented by aspects. Each of
them may be described in more detail by an informal description, as alluded to by the gray
box for the security concern. The abstract join relationships between the aspect modules and
the system indicate the impact location of the non-functional requirements. Initially, the non-
functional requirements relate to the library system; however, in the course of the further system
elicitation they may be refined and then point to parts of the library.
Figure 10.5 shows a later stage of the further elicited model, where the security and the main-
tainability aspect have been evolved further. Moreover, the join relationships have been refined,
too.
The refinement of Security and Maintainability is indicated by its decomposition into sub-aspects.

10.5 Discussion 215

Library
User

User
Administrator

Book
Administrator

Borrow
Books...

Manage
Users...

Manage
Books...

LibrarySystem...

Borrow
Manager...

User
Administra-
tion...

Book
Administra-
tion...

Performance...

Security...

Maintainability...

Authentication...

Secure Communi-
cation...

Easily pluggable
components...

Well-
documented
aritfacts...

Figure 10.5: Some further steps in the evolution of the example.

These sub-aspects describe a specific part of the parent aspect in more detail. For example, the
Security and its sub-aspect may be refined to the level of functionality, i.e., a type (i) outcome, in
the course of the requirements stage. Correspondingly, the join relationships originating in the
sub-aspects may be refined. In contrast, Performance and Maintainability result in decisions, for
example, at the architectural stage. Thus, their further refinement stops at a certain point of the
requirements and is continued at a later stage.
During the further refinement of the model, the functionality as well as the non-functional ele-
ments are refined. At the end of the requirements phase, a detailed requirements model as shown
in Fig. 7.2 may result. Note that the hierarchical decomposition of the aspects Security and Main-
tainability as shown in Fig. 10.5 may be dissolved, as was done in Fig. 7.2. However, in doing so,
the backward and forward traceability of the non-functional aspects gets lost and so the source
at least from which the aspect parts of the non-functional requirements originate, i.e., particular
stakeholder, must be documented.

10.5 Discussion
This chapter has sketched a process which shows how to use the syntactical elements and the
weaving mechanism presented in the previous chapter. However, the process serves rather as
an example of how to use them and, correspondingly, there are several open issues that are not
covered by the present work: the outlined process has to be elaborated in more detail and to be
validated through deployment in real world projects.

Another open issue is the identification and separation of functional crosscutting concerns
that currently has to be done by a person. Furthermore, the interplay between the semi-formal
simulation and the aspect-oriented elements must be investigated thoroughly in future research.
To find a mechanism that allows changes to be propagated back (cf. Section 9.6) to the aspect-
oriented model is a primary desideratum.

Part III

ADORA Tool Implementation and
Validation

This part of the work delineates some facets of the practical realization of the concepts pre-
sented in a Software-Tool (Chapter 11). Moreover, it presents the results of an experimental
validation (Chapter 12) of some of the approach that has been proposed in this work.

219

Chapter 11

Tool Implementation

An implementation of the concepts presented is desirable for various reasons. First, an imple-
mentation allows the feasibility of the proposed concepts to be verified and their weaknesses
to be identified and corrected. Second, requirements engineering and modeling are practically
motivated by real world software development. To be useful in practice, the proposed theoretical
concepts have to be validated in the real world. However, practitioners are more likely to adopt
new ideas if they are supported by a tool. Third, the concepts, such as the integrated modeling,
the abstraction mechanism (cf. Section 5.1.3), and the weaving transformations (cf. Chapter 9)
are only helpful if they are supported by a software tool. Using them without software support
would be too tedious and result in an inefficient handling of ADORA models.

The work of [Seyb06a] presents a prototypical implementation of the introduced ADORA

concepts. It is a proof-of-concept implementation, not optimized for a real world use and
therefore rather complicated to handle and difficult to use. Consequently, the concepts of the
present work have been embodied in a completely redesigned and reimplemented ADORA tool
implementation. The resulting version 1.1 of the ADORA tool is based on the Eclipse platform
[Ecli07a] and Java [Sun 07a].

The Eclipse platform provides a very stable and mature Mode-View-Controller framework
[Reen79] for the implementation of graphical model editors, called Graphical Editing Framework
(GEF) [Ecli07b]. In contrast to the self-made MVC framework used in the previous ADORA tool
versions, GEF is very powerful and maintained by the Eclipse community. Using GEF for the
ADORA tool relieves the development from the costly maintenance of an ADORA-specific MVC
implementation.

Furthermore, the Eclipse platform uses third-party libraries and provides basic libraries for
recurring implementation tasks, which reduces the maintenance work and improves the usability
of the tool implementation. Usability is especially important, since the more user-friendly the
tool, the more easily it can be applied in a real world project or be used in a tool-based validation
procedure (Chapter 12).

Moreover, the plug-in architecture allows the Eclipse platform itself, as well as existing plug-
ins to be extended in a simple way. Using the plug-in mechanism also facilitates a good modu-
larization.

The remainder of this chapter presents several selected facets of the current ADORA tool

220 Chapter 11. Tool Implementation

architecture and its implementation. In Section 11.1 the coarse architecture is introduced. Sec-
tion 11.2 presents how the BNF language description is mapped to an object-oriented meta-model
implementation, and Section 11.3 discusses the checking of the language constraints. Finally,
Section 11.4 deals brie�y with the implementation of the model weaver.

11.1 Tool Overview

The reimplementation of the ADORA tool was extended by several new features and is based on a
completely new architecture. The current version 1.1 can be freely downloaded from [RERG07].

11.1.1 Features of the ADORA Tool

The tool provides modeling capabilities for the ADORA language as well as the corresponding
navigation and abstraction mechanism presented in Chapter 5. Furthermore, the aspect-oriented
concepts discussed in Part II of the present work are also realized in the prototype: the tool
provides all the proposed aspect-oriented language elements (cf. Chapter 7) as well as the corre-
sponding weaving mechanism (cf. Chapter 9).1 It also implements the abstraction and navigation
mechanism for the aspect-oriented modeling elements (cf. Chapter 8).

Fig. 11.1 shows a screen shot of the ADORA tool. The tool has its own perspective in Eclipse,
i.e., the tool windows that are shown together with the main model editor window can be freely
composed and the configuration of the last session is restored after the start of the Eclipse envi-
ronment. The model editor is shown in the center of the Eclipse window. It provides a drawing
canvas and a palette of tools for drawing the elements and navigating through the model. The
tool windows, called views in Eclipse terminology, surround the main editor window.

There is a project explorer view in the upper left section of the window that allows the user
to browse through project files and to open ADORA models. The property editor in the lower
left, shows the properties of the currently selected element and provides editing capabilities.
The middle lower section of the Eclipse window displays several tabs: the Syntax Problems
tool window displays the syntax errors of the textual descriptions contained in the current model.
The hidden tabs Manage Constraints and Checked Constraints Tree are used, respectively, for the
administration of language constraints and displaying the model elements which violate them.

The tool bar below the menu of the Eclipse window provides buttons for changing the view
of the model. There is a button for weaving an aspect-oriented model, and others for showing
and hiding the different views of a model (cf. the horizontal abstraction mechanisms discussed
in Section 5.1.4 and Section 8.2). The outline view on the right-hand side shows the tree of
the hierarchical decomposition of the model. It can be employed to navigate through the model
by choosing a corresponding node and also enables crosswise abstraction (cf. Section 5.1.4) by
allowing the showing and hiding of each model node separately. Note that the vertical abstraction
(zooming of nodes) can be performed directly on the model canvas using a zoom tool.

1Except for the weaving semantics for partial elements. The implementation of this part has been omitted for
this work and will have to be implemented in a future version.

11.1 Tool Overview 221

Figure 11.1: A screen shot of the ADORA tool.

11.1.2 Architecture of the ADORA Tool
The architecture of the ADORA tool version 1.1 is given as an ADORA model2 in Fig. 11.2 which
shows an instantiation of the tool. The minimal editor configuration consists of several required
plug-ins and libraries:

• Graphical Editing Framework. The Graphical Editing Framework (GEF) is an imple-
mentation of the Model-View-Controller (MVC) pattern and comes with the Eclipse plat-
form. The GEF core package provides the abstract implementation for controllers and
Draw 2D contains the abstract elements for the graphical representation of a model el-
ement. Apart from the MVC pattern, GEF provides a set of standard functionalities for
graphical editors which reasonably augment the usability of an implemented graphical ed-
itor.

• Eclipse Platform. The Eclipse Platform provides a lot of elementary libraries which sim-
plify the recurring tasks occurring during the implementation of a piece of software. For
example, Eclipse contains a platform independent implementation to build graphical user

2For the sake of better readability, the decomposition levels are alternately colored with a gray or white back-
ground.

222 Chapter 11. Tool Implementation

interfaces (JFace and SWT); it has built-in Team collaboration functionality3; a framework
for a context sensitive help; and many more features which are not mentioned here.

• ADORA Meta-model Implementation. The meta-model implementation of the ADORA

tool is object-oriented and incorporates the EBNF syntax discussed in Chapter 6 and 7.
The meta-model implementation is discussed in detail in Section 11.2. Each element in
the model is represented by an object providing the model information.

• Editor Core Plug-in. The Editor Core Plug-in implements view and controller classes of
the MVC pattern in order to provide the editing functionality for graphical ADORA models.
Each Model Element object of the ADORA Meta-model Implementation has exactly one
View and one Controller object as a counterpart. View objects are responsible for the
graphical representation of a model element, whereas controller objects handle the inputs
of the editor user and translate them into actions on the model element object. Controller
and view elements in the ADORA editor use and extend the abstract controller and view
elements of the GEF.

• Zooming Plug-in. The zooming plug-in provides the ADORA fisheye zoom algorithm. It
is used to effect the abstraction mechanisms discussed in Section 5.1.4. The concepts of
the zoom algorithm are presented in [Rein07].

• Line Routing Plug-in. Apart from the zooming mechanism, the proper routing of the
connections between nodes, i.e., the routing of associations, transitions, etc., in ADORA

models is crucial in order to obtain a higher comprehensibility of the model. The approach
implemented in this plug-in is based on [Rein06].

• XStream. XStream is a third-party library which is used to store ADORA models in an
XML format.

Apart from the required libraries and plug-ins to run the ADORA editor, it can be extended
by the following plug-ins:

• ADORA Help Plug-in. The ADORA help plug-in provides manual as well as context
sensitive help for the ADORA editor.

• Constraint Checker Plug-in. This plug-in is used to check leniently enforced constraints
of the ADORA language, e.g., the ones defined in Chapter 7. A check of the constraints is
executed by the Aspect Weaver Plug-in before a model is woven. A constraint check is also
initiated by the Simulation Plug-in to check whether a formal simulation can be executed
properly [Seyb06a]. A discussion of this plug-in can be found in Section 11.3.

• Aspect Weaver Plug-in. The aspect weaver plug-in performs a model transformation
weaving the crosscutting elements of aspects into the crosscut concerns. Beside the weav-
ing of the model, the plug-in performs also a weaving of the visual information. It is
delineated in more detail in Section 11.4.

3Such as support for the Concurrent Versions System [Cede05].

11.1 Tool Overview 223

Eclipse Plattform

Help

Team

Graphical Editing Frame-
work (GEF)

ADORA Modeling Tool

uses

uses

Plug-in
Developer

Environment
(PDE)

Java
Development

Tooling
(JDT)

Constraint
Checker
Plug-in

Aspect Weaver
Plug-in

Editor Core Plug-in

View

1:n

Controller

1:n

Integrity
Constraints

Language (ICL)
Compiler

Apache
RegExp : external

uses

uses

usesuses

XStream :
external

Empirical Test
Plug-in

HSQL DB :
external

uses

Line
Routing
Plug-in

Zooming
Plug-in

Simulation
Plug-in...

Versioning...

uses

usesuses

uses

uses

uses

uses

uses
uses

uses

Draw 2D

GEF
Core

uses

ADORA Metamodel
Implementation

Model
Element

1:n

uses

uses

uses

ADORA
Help Plug-in

Workbench

SWT

JFace

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

Figure 11.2: The architecture of version 1.1 of the ADORA tool.

224 Chapter 11. Tool Implementation

• Empirical Test Plug-in. The empirical test plug-in helps when conducting experiments on
ADORA models. It allows a questionnaire to be presented together with particular models.
Answers to the questions presented, as well as the time used to respond to the answers are
stored. This plug-in was used for the experiment presented in Chapter 12.

• Simulation Plug-in. The formal and semi-formal simulation approach [Seyb06a] is cur-
rently not implemented in the ADORA editor 1.1. However, an implementation is planned
as a separate plug-in.4

• Versioning. The versioning concept proposed by [Moda03] has currently not been mi-
grated from the old prototype. Nevertheless, it is planned that it also should be imple-
mented as an Eclipse plug-in.

The ADORA language specification, consisting of an Extended Backus Naur Form (EBNF)
grammar definition, the language constraints, and the weaving transformation are the central
concepts of this work. For this reason, the remainder of this chapter discusses their practical
realization in the ADORA tool.

11.2 Meta-Model Implementation
In Chapter 6, parts of ADORA meta-model are presented. The ADORA language is defined as
EBNF that is complemented with language constraints. An ADORA model is actually a well-
formed textual description which is mapped to a graphical representation. The following section
discusses what the meta-model implementation of ADORA looks like.

11.2.1 Choosing an Appropriate Design for the Meta-model Implementa-
tion

An interactive tool must be high-performance, so that an operation on a model is executed with
an adequate response time. There are three different design/implementation alternatives for a
meta-model implementation of the ADORA tool:

i. ADORA models can be handled as textual representation only, i.e., the graphical represen-
tation is directly built from the textual specification of a model. In turn, every change is
propagated to the textual description of the model. Even though this solution seems to be
reasonable, direct manipulation of the textual model is complex and an implementation for
such a mechanism is error prone and has a poor performance.

ii. Instead of manipulating the textual representation of a model directly as discussed in (i),
it is possible to transform a textual model first into a syntax tree, which is then easier to
manage than straight text. Thus, before a change on a model is performed, a syntax tree
is created by parsing the text (cf. Chapter 6). The changes are performed on the elements

4Therefore the partial indicator, i.e., the ellipsis trailing the plug-in name, is set.

11.2 Meta-Model Implementation 225

of the syntax tree. In the end, the syntax tree is transformed back to a textual represen-
tation. The graphical representation is still mapped on the syntax tree. This approach
simplifies the handling of the textual representation. Nevertheless, it does not improve the
performance of the operations on the model, as the parsing step as well as the back trans-
formation are complex operations. This is especially problematic with graphical elements
that are modified by a user-tool-interaction.

iii. It is possible to completely omit the textual representation of a model and to use only
the corresponding syntax tree. This means that there are no intermediate transformations
from the textual model to the tree and back. Instead, the syntax tree is directly mapped to
graphical elements and changes in an ADORA model are directly executed on the syntax
tree. However, all operations on the syntax tree have to ensure that the resulting syntax
tree adheres to the ADORA grammar rules.

The design alternative (iii) has a better performance than (i) and (ii) and is therefore chosen
for the implementation of the ADORA tool. However, the meta-model implementation approach
(iii) is only used in the case of graphically visualized ADORA language elements. Textual parts,
such as the functional specification of components or the transition labels are still handled by
approach (ii), i.e., they are stored textually and only transformed to a syntax tree, if they need to
be processed, e.g., for the simulating or weaving of a model. This is due to the fact that the user
of the ADORA tool is supposed to change these textual representations directly.

11.2.2 Grammar Mapping
As with most contemporary graphical modeling tools, the ADORA tool is implemented within
an object-oriented paradigm. Consequently, the syntax tree will be represented by an object
structure in which each node in the tree is mapped to an object.

The syntax trees used for the discussion of the concepts in Chapter 6 and 7 are concrete: they
are representations of a decomposed textual model which adheres one-to-one to the concrete
ADORA grammar. However, working directly with concrete syntax trees is tedious because a lot
of extra work has to be done when manipulating them. This is due to the fact that a semantical
unit, such as a component or an aspect module, is scattered over several nodes of the syntax
tree. Hence, for most model operations, it is necessary to involve multiple nodes of the concrete
syntax tree which need to be handled when manipulating the semantical unit. Moreover, there are
nodes in a concrete syntax tree which have a purely syntactic but not a semantic meaning, e.g.,
semicolons. Thus, they are unnecessary ballast in the syntax tree when interpreting its semantics.

226
C

hapter11.ToolIm
plem

entation

Node

partial : boolean
name : String

EnvironmentObject Scenario
Container

parts() : Vector
stateGroups() : Vector

Aspect Component

scenarioGroups() : Vector

external : boolean
start : boolean
functionalSpecification : String
type : String

State

ExitPoint

Connection

Transition Association JoinRelationshipScenarioConnection

Cardinality

min : char
max : charcontains

1 1

sourceConnections
1 sourceNode 0..*connection

targetConnections1 targetNode 0..*connection

parts

1

0..*

contains
1

1

contains
1

contains
1

Figure 11.3: A coarse overview of the meta-model implementation showing a simplified excerpt of the meta-model.

11.2 Meta-Model Implementation 227

Hence, it is better to simplify the concrete syntax tree by merging all nodes which belong
to a semantic unit and to put them into one node that contains several attributes. Furthermore,
nodes representing purely syntactical nodes can be omitted from the resulting data structure.
Consequently, an abstract syntax tree results. In an object-oriented implementation, a node of an
abstract syntax tree is represented by an object in the system. Note that the actual data structure
for storing an ADORA model is not a tree in the strict sense because there are cross-references
between the elements of different paths in the tree, e.g., an association node may refer to a
component node.

Consequently, the ADORA EBNF rules belonging to the same semantic unit are mapped to
the same class. The corresponding mapping is discussed in the following.

A Class Model Describing the ADORA EBNF

The mapping between the EBNF and the corresponding meta-model classes is exemplified by
some of the EBNF rules given in Table 11.1 and the excerpt form the meta-model in Fig. 11.3.
The table contains the ADORA grammar rule ComponentDe�nition and related rules, whereas the
figure shows a coarse and simplified extract of the structure of the meta-model implementation.

The class Component in Fig. 11.3 represents an abstract object or an object set, i.e., it encap-
sulates the information described by the EBNF rule ComponentDe�nition in Table 11.1. For the
sake of less redundancy in the implementation of the meta-model, properties which are common
to more than one class are generalized in a superclass. For example, the classes Node and Con-
tainer contain common relationships, attributes, and operations of the corresponding subclasses.
The class Node is the superclass of all node elements in the ADORA language. Attributes may be
generalized, too. For instance, the attributes partial and name are properties which are available
in all types of nodes in an ADORA model.

For instance, the aggregation relationship parts is common to aspects, states, and compo-
nents, since these elements can contain parts. For this reason, this relationship is specified by
the superclass Container. Another example is given by the associations targetConnections and
sourceConnections which are associations between the classes Node and Connection. Both as-
sociations represent the target and the source constituent of a connection, respectively.

Description of the Visual Representation in the Object-Oriented Meta-model

The part of the meta-model implementation presented above neither deals with the spatial layout
nor with the visibility information of the ADORA language elements. However, the graphical vi-
sualization of a model element, as well as the abstraction mechanisms presented in Section 5.1.4
need this kind of information.

The visualization information is contained in a strongly separated class hierarchy. Each class
of this hierarchy represents the visualization of a particular element, such as a component or an
association, and is in turn associated with the corresponding model class. As the visualization of
models is not a focal concern of this work, the details of how visual information is represented is
not elaborated on here. An interested reader can find more details on how the visual information
is represented in Section H.1 of the Appendix.

228 Chapter 11. Tool Implementation

Constraints on the Class Model

As discussed above, the implementation of the syntax tree makes use of a generalization to reduce
redundancy and simplify the implementation. However, the generalization of class properties
results in an object-oriented meta-model which sometimes allows the creation of models that are
not syntactically correct with respect to the ADORA EBNF grammar: there is a tradeoff between
a simple, low-redundancy implementation, and the proper mapping of the language definition.
For example, according to the class structure in Fig. 11.3, the aggregation parts implies that any
Container object, can contain any node. For instance, this means that a component can contain
an environment object, which is actually not correct. Another divergence between the ADORA

EBNF and the meta-model can be exemplified for source and target connections with respect
to exit points of behavior chunks. Exit points may actually have only incoming connections.
Thus, exit points can only be the target but not the source of a connection, and consequently, the
sourceConnections relationship in the class meta-model must be constrained to be valid only for
non-exit points.5

All operations applied to a syntactically correct ADORA model must also produce again a
syntactically correct syntax tree. Therefore, implementation-specific syntax constraints must be
introduced in order to inhibit such syntax violations. These constraints are only part of the imple-
mentation, i.e., there is no corresponding language constraint for the EBNF grammar. Neverthe-
less, in contrast to syntax constraints that only apply to the class meta-model, there are language
constraints which are needed for constraining the EBNF as well as the class meta-model defini-
tion. An example constraint that occurs in both is that an association cannot connect a component
with a state.

Mapping of the EBNF Grammar and the Syntax Tree Operations to the Class Model

There are particular rules for mapping the parts of the EBNF grammar to an object-oriented
meta-model implementation. These mapping rules are discussed in more detail in Section H.2 of
the Appendix.

Furthermore, the functions working on ADORA syntax trees (cf. Section 6.2.2 and Ap-
pendix E), can be mapped to methods in classes of the meta-model implementation.6 The im-
plemented methods are assigned to the class definitions where they most belong. Some of those
functions are shown in Fig. 11.3, for example scenarioGroups() in the class Component, as well
as the methods parts() and stateGroups() in the class Container.

The mapped functions can be used by the ADORA tool to process the model instances, e.g.,
when executing a simulation or a weaving transformation on a model. Moreover, the imple-
mentation of the language constraints, which is discussed in Section 11.3, utilizes the mapped
functions extensively.

5The corresponding constraint is not shown in the model.
6The functions are originally defined for working on a concrete syntax tree (cf. Section 6.2.2). However, the

object-oriented implementation describes an abstract syntax tree of the ADORA meta-model. Thus the functions
have to be adapted accordingly. Moreover, performance issues have to be taken into account.

11.2 Meta-Model Implementation 229

Table 11.1: Excerpt of the ADORA EBNF grammar rules defining a component.

Production Name Production Rule

ComponentDefinition ::= (“partial”)? (“external”)? (“start”)?
“component” ComponentName
UniqueModelElementIdentifier (Cardinality)? (“is”
InheritedType)? ComponentParts
FunctionalSpecification (ComponentConnections)?
“end” “component” ComponentName

ComponentName ::= SpecialIdentifier

UniqueModelElementIdentifier ::= SpecialIdentifier

InheritedType ::= “type” QualifiedIdentifier

ComponentParts ::= (“consists” “of” (ComponentDefinition |
StateDefinition | ScenarioDefinition | AspectDefinition
)+ “end” “consists” “of”)?

ComponentConnections ::= “connections” (AssociationDefinition |
AssociationRoleDefinition | TransitionDefinition)*
“end” “connections”

FunctionalSpecification ::= (“functional” “specification” (Provides)? (
Requires)? (Invariants | DataTypeDeclarations |
AttributeDefinitions | OperationDefinition)* “end”
“functional” “specification”)?

Cardinality ::= “(” (<INTEGER_LITERAL> | <IDENTIFIER>)
“,” (<INTEGER_LITERAL> | <IDENTIFIER>)
“)”

11.2.3 Tool Support for the Mapping of the Meta-model

The mapping between the ADORA language definition and the corresponding meta-model imple-
mentation can be performed semi-automatically by using tools. For example, JavaCC [Sun 07b]
allows generating of a parser as well as the corresponding abstract syntax tree from a given gram-
mar. The abstract syntax tree can be employed as object-oriented meta-model in the tool. The
parser can be used to transform the textual parts of a model, e.g., the functional specification, to
a syntax tree. The resulting syntax tree can be used for the weaving or the simulation of models.

11.2.4 Discussion of the ADORA Tool Implementation

In [Xia04], it is claimed that a language definition for a wide spectrum modeling language that is
based on an EBNF, such as ADORA, may be easier to read and understand than a language defi-
nition based on a (object-oriented) class model. This is probably true to some extent. However,

230 Chapter 11. Tool Implementation

most of these languages can only be handled by a tool, and therefore, the primary goal of the
corresponding language definition is that it supports an easy implementation — the specification
must be mappable as simply as possible to an implementation (cf. the general quality charac-
teristics of software specifications in Section 2.2.1). Nowadays tools are mostly implemented
by using an object-oriented7 paradigm, and consequently, a language description in an object-
oriented manner is better suited to facilitate its the implantation in a piece of software than an
EBNF. However, the ADORA language is specified by a textual EBNF and additional constraints,
i.e., the language specification is not object-oriented, although it is finally realized as an object-
oriented implementation. The two different paradigms clash when implementing the support for
the ADORA language, which is also known as impedance mismatch [Cono99, p. 736].

Summarized, the EBNF approach for specifying the ADORA language shows a weakness
when trying to map the language definition to an object-oriented implementation: a notable effort
is needed to find such a mapping. Moreover, the structure of the implementation also differs
significantly from the structure of the language specification, which has a negative in�uence
on the maintainability of the language and the tool implementation. Hence, an object-oriented
specification of the language would ease the corresponding implementation.

11.3 Constraints Checking
To obtain well-formed ADORA models, it is necessary that the language constraints are satisfied
(cf. Section 6.3). However, a constraints checking implementation must not be too strict, as oth-
erwise the modeling process would be hindered [Cram07, Section 3.6]. For example, enforcing
all language constraints immediately after or before a modification is problematic as it restricts
the user of the software too strongly, or it even prohibits the execution of certain modeling ac-
tions.

Therefore, it makes sense to categorize constraints according to the point in time when they
need to be satisfied. As discussed in Section 6.3, there are two different categories of constraints.
Strictly enforced constraints are checked before a modification is executed on a model. If the
change ends in a malformed model, its execution is prohibited. In contrast, leniently enforced
constraints are allowed to be temporarily violated. Nevertheless, at a specific point in time of
the modeling process, they need also to be satisfied, more concretely, either before weaving, or
before the simulation of a model, or at a user speci�ed time.

Not all of the constraints specified in the language definition of ADORA are mapped to the
implementation. Some of them are specific to the textual representation of a model.8 Further-
more, there are constraints which occur only in the implementation of the tool but not in the
language definition (cf. the syntax constraints in Section 11.2.2).

Constraints in the ADORA tool implementation are enforced by two different mechanisms:

7This includes also aspect-oriented approaches that are based on object-oriented systems.
8One example is the constraint given in Section 7.3.2 on page 116, which ensures that the name in the header

and the footer of the textual description of an aspect module is consistent. This constraint is not needed in the meta-
model implementation, since only the name in the header is represented in the object-oriented (abstract syntax) tree
of the meta-model implementation.

11.4 Model Transformations 231

There are hard-coded language constraints as well as constraints that are dynamically compiled,
loaded and checked.

Dynamic Constraints vs. Hard-Coded Constraints As shown in the architectural model in
Fig. 11.3, the constraint checking plug-in uses the Integrity Constraints Language (ICL) compiler
presented in [Sche98]. The ICL language allows the formulation of first order logic expressions
to declare predicates on object structures in the Java language. The compiler translates con-
straints written in ICL language [Sche98] to corresponding pieces of Java code, which are then
dynamically loaded into the editor. The constraint checking plug-in allows its user to dynami-
cally write, compile, and use language constraints for the ADORA language. Thus, they are not
hard-coded and, therefore, they are decoupled from the rest of the implementation. This allows
a user of the tool to modify the restrictions on the ADORA language, i.e., to introduce restrictive
prototypes [Bern99a] to adapt the language.

This dynamic constraint checking in the ADORA tool is only applied to leniently enforced
constraints. In contrast, strictly enforced constraints are statically defined and therefore hard-
coded in the current version 1.1 of the ADORA tool. This is due to the fact that the current
implementation of the ICL compiler is not optimized for performance.9 Most of the strictly
enforced constraints need to be satisfied in the context of interactive operations between the user
and the tool, and they need to be checked very often. In contrast, leniently enforced constraints
are not checked as often as strictly enforced constraints. Thus, using the constraint plug-in for
strictly enforced constraints would severely slow down the editor and hinder the modeler.

Moreover, there are also syntax constraints (cf. Section 11.2.2) which need to be implemented
by the ADORA tool, so that an abstract syntax tree describing a model corresponds with the EBNF
syntax of the ADORA language definition. A syntax violation of the model cannot be tolerated
at any point in time. Therefore, they need to be checked before the execution of an operation.
Consequently, they are also hard-coded, like strictly enforced constraints.

Section H.3 of the Appendix, discusses in more detail what the leniently enforced constraints
look like and how they are evaluated by the constraints checking plug-in of the ADORA tool.

11.4 Model Transformations

The weaving of aspect-oriented models is handled by the aspect weaver plug-in shown in the
architectural model of Fig. 11.2. It implements the transformation process described in Sec-
tion 9.1. Before the transformation is performed, the model is checked for violations of the
leniently checked constraints presented in Chapter 7. They have to be satisfied in order that the
weaving creates a syntactically and semantically correct resulting model. If one or more of them
fail, the weaving process is not started.

The actual weaving process consists of a sequence of transformation operations which are

9However, there are optimization techniques for first order languages, which allow better performance results to
be achieved. This performance optimization is subject to future development of the ICL language and compiler.

232 Chapter 11. Tool Implementation

implemented according to the pre- and postconditions specifications defined in Chapter 9.10 Fur-
thermore, the layout of the model is woven according to the approach presented in Section 9.5.

10Note that the transformation description given in Chapter 9 uses concrete syntax trees. However, the implemen-
tation of the transformations is based on abstract syntax trees.

233

Chapter 12

Experimental Validation of the
Aspect-Oriented Modeling Approach

In Section 3.1.7, it was hypothesized1 that the ability to switch between the aspect-oriented and
the corresponding conventional view is useful for improving the understanding of the model.
This chapter aims at testing this hypothesis and finding a legitimation for aspect-oriented models
and the weaving mechanism.

This mechanism allows the reader of the model to choose the view which is more adequate for
performing a particular task on a model. The type of view which is more appropriate depends on
the type of focus which is set on the crosscutting concerns in the model. There are two different
types of focus:

1. An isolated focus2 is a decoupled view of the concerns. An isolated focus does not deal
with the interaction between crosscutting and core concerns.

2. In contrast, an interrelated focus3 on a crosscutting concern deals with the interplay be-
tween the crosscutting concern and other concerns.

Depending on the type of focus, the use of an aspect-oriented model4 affects the understand-
ability of the model:

Having an isolated focus on the concerns in an aspect-oriented model improves the under-
standability. This is due to the fact that modularized crosscutting concerns are strongly decoupled
from the other concerns. Therefore, the parts of crosscutting concerns are not scattered in the
system but rather concentrated in one module and the reader of the model does not need to seek
for the crosscutting model parts.

However, having an interrelated focus on crosscutting concerns in an aspect-oriented model
does not improve the comprehensibility. This is due to the fact that the reader of the model has

1The basic idea for this hypothesis was formulated in [Meie05].
2In [Meie05] this type of focus is called local. However, in this work it is called more adequately isolated focus.
3In [Meie05] this type of focus is called global. In this work it is called more adequately interrelated focus.
4In the aspect-oriented view of a system, crosscutting concerns are modularized, i.e., described as aspects.

234 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

a|b

e | f

after

a|b e|f

a)

b)

c|d

c|d e|f

after

C1 C2

C2C1

A1

A B B D

X Y

A X B XC D

Figure 12.1: Example used for illustrating the isolated and the interrelated focus on a cross-
cutting concern. (a) shows an aspect-oriented view of a model, (b) the conventional view. For
the sake of simplicity, the reception and the action part are simply denoted by letters and not
by the full syntax as used in ADORA.

to integrate the crosscutting and the conventional modeling parts in his mind to understand how
they interplay. In fact, it may even result in a worse understandability of the model.

Fig. 12.1 (a) and (b) is used to exemplify the concept of interrelated and isolated foci on a
crosscutting concern. Situation (a) shows the aspect-oriented and (b) the conventional view of
the same model. For example, suppose that the engineer who is maintaining the model needs to
make a change in the requirements of the crosscutting concern. For instance the action part f of
the crosscutting concern’s behavior needs to be changed to h. This is a task which has an isolated
focus on the crosscutting concern. In view (a), where the crosscutting concern is modularized as
aspect A1, the engineer can simply locate the element which needs to be changed by searching
for the action part in the aspect-container. In contrast, the engineer needs to locate in view (b)
all occurrences first. Then he can perform the changes at each location. Thus, using (a) for
performing the changes on the crosscutting concern makes it easier to perform the task.

In contrast, suppose the reader of the model needs to interpret the system behavior, e.g., what
is the execution order of the action parts in the runtime instance of component C1. Using view
(a) requires the reader first to integrate the model in mind and then to determine the order of the
actions, i.e., b, f. However, model (b) allows the viewer to directly grasp the order of the action
part. Hence, in this case, using model (b) is less complex than using view (a).

Thus, the discussion above results in the assumption that there exists a correlation between
the type of focus, the type of view used, and the performance of an executed task. This correlation
is summarized in Table 12.1. The cells with a gray background indicate tasks with a higher
performance.

235

Table 12.1: Impact on the performance of tasks resulting from different combinations of
focus type and the type of view.

Aspect-Oriented Model Conventional Model
Isolated Focus High Performance Low Performance

Interrelated Focus Low Performance High Performance

The type of focus depends on the executed task. There are various tasks which can be per-
formed on a model containing a crosscutting concern. When performing a task, the model is
either read/interpreted or modified. Each modification task also contains a read/interpret sub-
task. A few examples of tasks and their focus on the concerns are given in Table 12.2. Note that
locating the elements of a crosscutting concern is a subtask which has to be performed for all
tasks with an isolated focus.

Table 12.2: Some examples of tasks with an isolated or an interrelated focus on a crosscutting
concern.

Focus Task (m)odify
(r)ead

Isolated Locating crosscutting behavior. r

Isolated Locating crosscutting scenarios. r

Isolated Locating components which are used by cross-
cutting behavior to delegate responsibilities.

r

Isolated Editing crosscutting scenarios. m

Isolated Interpreting the responsibilities of the core con-
cern.

r

Isolated Interpreting the responsibilities of the crosscut-
ting concern.

r

Isolated Identifying the other components which pro-
vide a service to the crosscutting concern, e.g.,
an embedded or a server component.

r

Interrelated Interpreting the interplay of the crosscutting be-
havior and the crosscut behavior.

r

Interrelated Interpreting the interplay of the crosscutting
scenarios and the crosscut scenarios.

r

...
...

...

236 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

As argued above, it is desirable to be able to switch between the aspect-oriented and the
conventional model, and thereby to select the more adequate view to perform a given task. This
claim can be formulated more formally by the following two hypotheses:

Hypothesis 1 Tasks with an isolated focus on a crosscutting concern can be performed more
ef�ciently on an aspect-oriented model.

Hypothesis 2 Tasks with an interrelated focus on a crosscutting concern can be performed more
ef�ciently on a conventional model.

Both hypotheses contain claims that have to be confirmed by an experiment. In the remainder
of this chapter, such an experiment is presented together with the results. Section 12.1 introduces
the experimental setup and how it was conducted. Section 12.2 presents the results and discusses
the validity of the experiment.

12.1 Experiment
The claims of hypotheses 1 and 2 concern subjective matters. Therefore, the evidence for their
correctness can only be provided by conducting experiments. In this section, the setup and the
execution of such an experiment is presented. The experiment aims at measuring the performance
of tasks executed on given models and testing both hypotheses against the data collected. The
models are based on two different case studies which are both given as an aspect-oriented and
a conventional view. For the sake of simplicity, just some of the tasks listed in Table 12.2 are
tested, e.g., modification tasks are not included in the experiment. The tasks are given in terms
of multiple-choice questions. In the experiment, there are objective and subjective questions.

Objective questions. Objective questions ask facts about the models shown which must be
answered by the individuals tested. They allow the experimenter to deduce the performance of
the answer. The performance depends mainly on two factors: the efficiency and the effectiveness.

The ef�ciency can be measured indirectly by determining the time used to respond to the
answer. Although the resulting values for single samples may vary enormously from subject to
subject answering the question, the average time needed to answer the question will converge to
the mean of the population for bigger samples. Therefore, the sample must be heterogenous and
its size must be large enough to avoid a bias in the results.

The effectiveness of a task can be measured by determining the average accuracy of the
answers. In the case of multiple choice answers this is the ratio5 between the multiple choice
items that are correctly answered and the items that are wrongly answered.

To determine the performance, the so-called performance points are calculated. They are
calculated by the ratio Correctness

TimeUsed
and indicate the number of correct items per time unit, which

5It is expressed as a percentage value.

12.1 Experiment 237

is an measure for the performance of the answering. The performance points can be used for
testing hypotheses 1 and 2.

For the hypothesis test, two different groups of people are needed/required. One group is
the comparison group which answers the objective multiple choice questions by using only the
conventional model. The other group is the actual test group which answers the same questions
for the aspect-oriented case. Due to the fact that the concept proposed in this work allows switch-
ing between the aspect-oriented model and the conventional model, the aspect-oriented model
is always provided together with the conventional one. An intermediate question after each ob-
jective question allows the experimenter to determine to what extent the aspect-oriented and the
conventional model are actually used in answering a question.

Subjective questions. Subjective questions ask about the test person’s impression of the use-
fulness of the aspect-oriented model.

12.1.1 Planning and Preparation of the Experiment

There are four different elements in the empirical experiment: the case studies, the questionnaire,
the individuals tested, and the test environment.

12.1.2 Case Studies

If questions are to be meaningful and objective, the quality of the case study models is crucial.
A case study model must fulfill several requirements:

1. It must admit questions with both isolated and interrelated foci on crosscutting concerns.

2. It must admit questions of various complexity.

3. It must not be too complex, as the experiment has to be performed within a rather narrow
time frame.

Furthermore, there are two sources at bias which need to be eliminated. First, a bias may be
caused by a learning effect. Therefore, two different case studies are used. After a certain amount
of time, the case studies are exchanged. Second, both case studies have never been used before,
neither for previous research on ADORA nor for educational purposes. Therefore, no participant
of the experiment has ever seen the models of the case study before.

The case studies chosen for the experiment are a banking system and a badge system. The
banking system consists of an automated teller machine and bank counters for withdrawal of
money. The badge system specifies the access control system for the security doors of a building
and the cashless payment of food at vending machines.

The models of the case studies, as well as their description, can be found in the Appendix
of [Meie09a]. Both case studies are specified as an aspect-oriented, as well as a semantically

238 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

equivalent conventional model.6 To become feasible within the time frame of the experiment,
some parts of the case studies are partial.

The details about the case studies as well as the corresponding figures can be found in
[Meie09b].

Questionnaire

The questionnaire used can be found in the appendix of [Meie09b]. It consists of four types of
questions:

• Personal Information: The first type of question asks for personal information about the
test person, e.g., the age and the gender of the test person.

• Objective Questions: The second type of question asks about objective facts in respect
of the model. The questions are used to measure the performance of the executed tasks
using the aspect-oriented and the conventional models, respectively. Furthermore, the cor-
responding questions can be subdivided into two subsets. The first subset has a local and
the other an interrelated focus.

• Use of Model Types: The third type of question inquires about the extent to which the
aspect-oriented and the conventional model were used by a test person to answer an objec-
tive question. This type of question is shown only to the group which answers the questions
presented together with an aspect-oriented model.

• Subjective Questions: The fourth type of question is subjective and asks the subject about
the usefulness of having an aspect-oriented model beside the conventional model.

There are two requirements for the questionnaire: first, the objective questions must be fair,
i.e., questions need to be correct and answerable within an adequate amount of time. Second, the
experiment is conducted anonymously. Thus, the questionnaire must not allow the identification
of the test persons participating in the experiment as otherwise the results may be biased.

Participants

The range of people participating in the experiment must re�ect the potential users of the ADORA

language and its aspect-oriented extension. For a realistic representation, the individuals tested
should have different and broadly ranging modeling skills. Moreover, the number of people with
the same modeling skills should be equally distributed in the two test groups of the experiment.

6At the time of the experiment, the weaving had not been implemented. Therefore, the weaving of the aspect-
oriented model was simulated by providing the conventional model, too.

12.1 Experiment 239

Figure 12.2: Screen shot of the empirical testing environment of the ADORA tool.

Test Environment

To calculate the performance points, it is necessary to measure the time used for answering a
question. However, conducting the experiment by manually measuring manually the time needed
for answering each question is not feasible. Therefore, the experiment has to be performed with
tool support.

For this purpose, the ADORA modeling tool [RERG07] allows inquiries to be made by means
of an electronic questionnaire. The questionnaire shows a sequence of models and for each
model a couple of questions are asked. The answers given to a question as well as the time used
to respond are stored. After the test, the database can be used to retrieve and analyze this data.
Figure 12.2 shows a screen shot of the questionnaire environment of the ADORA tool. In the
left-most part of the application window, the questions are displayed, whereas the corresponding
models are shown in the center.

240 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

12.1.3 Realization of the Experiment
The experiment was conducted within a restricted time frame of about three and a half hours.
This time span also included an introduction to the ADORA language and its aspect-oriented
extension. To assure that the results gathered during the testing are not biased by surrounding
conditions, the following measures are taken:

• For conducting the experiment a standard hardware and software combination was used:

– Computer: Apple iMac computer with a 24 inch wide screen.

– Eclipse 3.2.1 with the ADORA editor version 1.0.

• The different use of the abstraction mechanisms, i.e. the hiding and showing of modeling
elements, might have caused a bias. Therefore, the test persons were not allowed to use
them.

• Each model was shown several times. For each question, the models displayed were
reloaded, showing the same initial situation and positioning of the model.

• To avoid a bias due to the exhaustion of the subjects, the time-taking was paused between
the answering of the objective questions. During this intervals the test subjects had the
opportunity to take breaks.

Test subjects. The experiment was conducted with a total of 13 participants on two different
dates. On the first date of the experiment, eight subjects took part; on the second date five
people. They were recruited from MSc and doctoral computer science students of the University
of Zurich, which re�ects well the population of the potential users of modeling techniques in real
world projects. However, all the test subjects had no or just a little experience with the ADORA

language. Therefore, all individuals tested underwent training in ADORA and the ADORA tool
(see below) so as to be able to read ADORA models using the tool.

The first eight subjects were MA/MSc students in computer science who were participating
in the experiment as part of a requirements engineering class. As preliminary homework, they
had to read the papers [Glin02b], [Glin07c] and [Meie06]. Moreover, they had to model the
requirements of a small aspect-oriented case study of an electronic tourist guide which was based
on [Davi01]. To assure that the students had approximately the same experience with ADORA

and the aspect-oriented extension, both were discussed in class again for about an hour just before
the experiment. Furthermore, they were given a short introduction and some training in the use
of the ADORA tool.

The subjects of the second session consisted of MSc and PhD students from the department
of informatics at the University of Zurich. They were given an intensive 3-hour introduction to
ADORA, its aspect-oriented extension, and the editor tool.

On both dates, the participants were randomly divided into two groups. However, it was
ensured that each group contained approximately the same number of subjects. Furthermore,

12.1 Experiment 241

 0

 1

 2

 3

 4

No Low Medium High Expert

N
um

be
r o

f A
ns

w
er

s

Self-Assessed Modeling Skills

Answers

 0

 1

 2

 3

 4

 5

No Low Medium High Expert

N
um

be
r o

f A
ns

w
er

s

Self-Assessed Modeling Skills

Answers

Figure 12.3: Modeling skills of the test persons

Introduction
ADORA and

aspect-oriened
Notation

(Group 1 + 2)

Questionaire
Demonstration

Group 1 + 2

Objective
Questions for

Aspect-Oriented
Banking
System

(Group 1)

Objective
Questions for
Conventional

Banking
System

(Group 2)

Objective
Questions for
Conventional

Badge
System

(Group 1)

Objective
Questions for
Conventional

Badge
System

(Group 2)

Subjective
Question for

Aspect-Oriented
Model

(Group 1)

Subjective
Question for
Conventinal

Model
(Group 2)

Introduction
ADORA
Editor

Subjective
Question for
Conventional

Models
Group 1

Subjective
Question for

Aspect-Oriented
Models

Group 2

Finish

Figure 12.4: Process of the validation experiment.

care was taken that the female and male probands in both groups were approximately equally
distributed.

The subjects self-assessed their modeling skills at the beginning of the experiment. The
results are shown in Fig. 12.3. The detailed figures fort the test subjects can be found in the ap-
pendix of [Meie09b]. All test persons rated their modeling skills in the self-assessment between
a value of 2 and 4, where 1 denotes low and 5 high modeling skills. The resulting distributions
for the modeling skills of group 1 and 2 are approximately equal.

Conducting the experiment. The experiment was conducted according to the process given in
Fig. 12.4. The experiment started with a training phase during which the subjects were introduced
to the ADORA language, its aspect-oriented extension, the ADORA editor, and the course of the
experiment. After the training phase, the test subjects started answering a set of the introductory
questions. They were asked for their age, their gender and their self-assessed modeling skills.

Subsequently, the first block of objective questions was posed. These questions dealt with
the banking system case study. The first group answered the questions while having both the
aspect-oriented and the conventional models, whereas the second group was the comparison
group answering the same questions only with the conventional model. After the first block of

242 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

objective questions, group 1 and 2 were asked about their subjective impression of the helpfulness
of the aspect-oriented model for answering the questions about the banking system.

A block of objective questions for the badge system followed. The roles of both groups were
now exchanged, the first group was the comparison group having only the conventional model.
The second group was now the test group having both the aspect-oriented and the conventional
models. This block of objective questions was followed by another subjective question about
the helpfulness of the aspect-oriented model when answering the preceding questions about the
badge system.

For each person tested, all their answers and their response times were automatically logged
by the test environment. The assembled data can be found in the appendix of [Meie09b].

12.2 Analysis of the Results
Objective answers. The performance values gathered from the answers to the objective ques-
tions can be used to test the hypotheses formulated above. As mentioned in Section 12.1.1, the
questions can be divided into two sets. The first set of questions has an isolated focus on cross-
cutting concerns, whereas the second set has an interrelated focus. Correspondingly, the first
set is used to test Hypothesis 1, and the second set is used to test Hypothesis 2. The detailed
performance data for the experiment can be found in the appendix of [Meie09b].

Figures 12.5 (a) and (b) show the average of the performance points achieved by each group
for each question. Figure (a) presents the results of the questions about the case study 1, where
group 1 used the aspect-oriented model and group 2 had only the conventional model. In (b) the
results for case study 2 are given, where group 2 used the aspect-oriented model and group 1
used only the conventional model.

The results in (a) are as expected — the performance of the people in group 1 using the
aspect-oriented model is better than the performance of the people in group 2. However, it must
be shown that the differences in the performance of group 1 and group 2 are significant, which is
subject to the hypothesis test presented below.

The averages shown in (b) are contrary to expectations: group 2, which had used the aspect-
oriented model for case study 2, performed worse than group 1. As discussed in [Meie09b], there
may have been various reasons for this. There is evidence that the test may have been biased by a
too short training phase which may have in�uenced the performance on the more complex badge
system model.

In Fig. 12.6, the average performance points achieved by each group for the questions are
shown. In (a) the only relevant question of case study 1 is Q7. According to Hypothesis 2, tasks
with an interrelated focus should perform worse on an aspect-oriented model. However, the
people of group 1 using the aspect-oriented model performed slightly better, which is contrary
to expectations. The results shown in (b) are as expected: the people of group 2, who used the
aspect-oriented model, performed worse or approximately equal to the people of group 1.

Hypotheses 1 and 2 can be statistically tested with the performance data resulting from the
experiment. The corresponding hypothesis tests for the objective questions can be found in the
appendix of [Meie09b]. Both Hypotheses 1 and 2 were tested against the performance data with

12.2 Analysis of the Results 243

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Q1 Q3 Q5 Q9

Av
g.

 P
er

fo
rm

an
ce

 P
oi

nt
s

Answers

Avg Group 1
Std Dev. Group 1

Avg Group 2
Std Dev. Group 2

(a) Tasks performed on the banking system, group 1 used the aspect-
oriented model

 0

 1

 2

 3

 4

 5

Q12 Q14 Q20 Q24

Av
g.

 P
er

fo
rm

an
ce

 P
oi

nt
s

Answers

Avg Group 1
Std Dev. Group 1

Avg Group 2
Std Dev. Group 2

(b) Tasks performed on the badge system, group 2 used the aspect-
oriented model

Figure 12.5: Average performance results per question for the objective questions with an
isolated focus on the crosscutting concerns. The dark gray bars show the results of the first
group, the light gray bars the results of group 2. The error bars denote the standard deviation
around the mean, i.e., longer bars show a higher variance in the results.

244 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

 0

 1

Q7

Av
g.

 P
er

fo
rm

an
ce

 P
oi

nt
s

Answers

Avg Group 1
Std Dev. Group 1

Avg Group 2
Std Dev. Group 2

(a) Tasks performed on the banking system, group 1 used the aspect-
oriented model

 0

 1

 2

Q16 Q18 Q22 Q26

Av
g.

 P
er

fo
rm

an
ce

 P
oi

nt
s

Answers

Avg Group 1
Std Dev. Group 1

Avg Group 2
Std Dev. Group 2

(b) Tasks performed on the badge system, group 2 used the aspect-
oriented model

Figure 12.6: Average performance results per question for the objective questions having an
interrelated focus on the crosscutting concerns. The dark gray bars show the results of the first
group, the light gray bars the results of group 2. The error bars denote the standard deviation
around the mean, i.e., longer bars show a higher variance in the results.

12.2 Analysis of the Results 245

 0

 1

 2

 3

 4

++ + 0 -

N
um

be
r o

f A
ns

w
er

s

Helpfulness of the Aspect-Oriented Model

Answers

(a) Answer of Group 1 for the banking system.

 0

 1

 2

 3

 4

 5

 6

++ + 0 -

N
um

be
r o

f A
ns

w
er

s

Helpfulness of the Aspect-Oriented Model

Answers

(b) Answer of Group 2 for the banking system.

 0

 1

 2

 3

 4

 5

++ + 0 -

N
um

be
r o

f A
ns

w
er

s

Helpfulness of the Aspect-Oriented Model

Answers

(c) Answer of Group 1 for the badge system.

 0

 1

 2

 3

 4

 5

++ + 0 -

N
um

be
r o

f A
ns

w
er

s

Helpfulness of the Aspect-Oriented Model

Answers

(d) Answer of Group 2 for the badge system.

Figure 12.7: Subjective answers about the usefulness of the aspect-oriented modeling view.
(++) means the aspect-oriented model is helpful, (+) means that the aspect-oriented model is
partially helpful, (0) means that the aspect-oriented model is not helpful but it also does not
hinder the work, and (-) means that the aspect-oriented hinders the work with the model.

an error probability of 5%. According to the hypothesis test, Hypothesis 1 is confirmed for simple
models, such as the one in Fig. 12.5. However, for more complex models, e.g., models which
consist of transitively crosscutting concerns, Hypothesis 1 cannot be confirmed. As discussed
in the appendix of [Meie09b], this may be the result of the rather short training phase for the
ADORA language and its aspect-oriented extension, which may have biased the results of the
aspect-oriented model. Therefore, Hypothesis 1 cannot be rejected totally for more complex
models. In contrast, Hypothesis 2 is fully confirmed by the data gathered from the experiment.

Subjective answers. The detailed results of the subjective questions can be found in Fig. 12.7
(a)–(d). The majority in both groups of test persons appreciated having an additional aspect-
oriented model, which is shown by the high agreement that the aspect-oriented model is helpful
in answering the given questions.

246 Chapter 12. Experimental Validation of the Aspect-Oriented Modeling Approach

12.2.1 Validity of the experiment
Summarizing, the following guidelines were followed during the experiment so that it would
yield valid results:

• The case studies should adequately re�ect the occurrence of crosscutting concerns in mod-
els.

• The models used should be of good quality, i.e., the aspect-oriented models and the con-
ventional models must be consistent and the models must be meaningful.

• Every effort was made to ensure that the questionnaire should consist of fair questions with
various levels of difficulty.

• All participants should have (approximately) equal training in ADORA and the aspect-
oriented extension. Thus, their skills in reading ADORA models were comparable.

• The subjects should be randomly divided into groups with an approximately equal number
of members and the number of male and female subjects each group was guided to be
equal.7

• The results of the experiment should be collected anonymously.

• Each subject should answer the questionnaire under the same conditions.

However, two factors may have in�uenced the results: first, the results of the case study may
have been biased by a rather short training phase for the ADORA language and its aspect-oriented
extension, as discussed in [Meie09b]. Despite a possible bias, the results confirm Hypothesis 1
partially, and Hypothesis 2 fully.

Second, for a good re�ection of the statistical population, a large sample is desirable. How-
ever, the experiment was conducted with rather small groups of test persons which could possibly
lead to statistical outliers in the data, as the sample of subjects might only re�ect a specific cluster
of the population.

12.3 Summary
In this chapter, an experiment and its results for testing Hypotheses 1 and 2 were presented. The
results of the experiment confirm Hypothesis 1 partially and Hypothesis 2 fully. Moreover, both
hypotheses are also supported subjectively by the participants.

For the sake of simplicity, the presented experiment focused only on the reading and inter-
preting of models containing crosscutting concerns. Reading and interpreting are the basic tasks
(cf. Table 12.2) on models containing crosscutting concerns which must be performed for any
more complex task, such as manipulating the behavior of crosscutting concerns or adding a new

7Note that the number of female participants was rather small.

12.3 Summary 247

impact location in the model. Therefore, the experiment covered a major part of the effort spent
on performing tasks on models containing crosscutting concerns. However, it would be desirable
to test Hypotheses 1 and 2 also on manipulation tasks, since the resulting performance might
differ from the tested cases. Moreover, it would be desirable to conduct more experiments in
order to reproduce and confirm the above results.

Two further issues must be taken into account for future experiments on aspect-oriented re-
quirements modeling. First, the models used for the experiment presented in this chapter are
rather small. Thus, it would be desirable to test the hypotheses on real world models. Sec-
ond, in future experiments, a more extensive training phase for the ADORA language and the
aspect-oriented extension should be considered so as to eliminate possible biases in the results.

Part IV

Conclusions

251

Chapter 13

Conclusions

The majority of contemporary requirements methods suffer from the communication gap caused
by problem-exogenous complexity (cf. Section 1.1) arising from a suboptimal way of describing
the requirements. The communication gap contained in software requirements specifications is
especially critical because it has negative impacts on the software project, such as poor intelli-
gibility or higher maintenance costs. Furthermore, there are various types of software project
stakeholders, such as customers, who are usually non-experts in the field but who are indis-
pensably involved. Thus, software requirements specifications must be as simple as possible but
should not omit any important information. Consequently, they must minimize unnecessary com-
plexity. Aspect-oriented requirements approaches help to avoid issues of tangling and scattering
by describing crosscutting concerns modularly. Therefore they reduce the problem-exogenous
complexity and overcome the resulting problems.

However, there are not only advantages that accrue from the use of aspect-oriented techniques
at the requirements phase. Aspect-orientation introduces a new form of complexity, as a system
is more highly modularized than with conventional techniques, which introduces more relation-
ships between modules. Trying to follow the complex interplay between core and crosscutting
concerns may prove to be as much or even more of an obstacle to understanding the system, as
compared to using a conventional modularization of the system. Consequently, there is a need
for a composition mechanism so as to switch between the aspect-oriented and the conventional
description, which allows the user to choose the more adequate view of a system.

Some of the existing approaches, such as the the aspect-oriented development with use cases
[Jaco03, Jaco05], do not posses an explicit composition mechanism. Moreover, current aspect-
oriented requirements approaches suffer from several other problems (cf. Chapter 4): some of
them use a representation which is rather difficult to read, understand, and communicate, such
as the aspect-oriented requirements engineering with Arcade [Rash03] or the Concern-Oriented
Requirements Engineering approach [More05a, More05b]. Other approaches, such as ARGM
[Yu04] or Theme/Doc [Bani04c, Bani04a, Clar05] have representations that do not scale well
for larger requirements specifications. Scenario modeling with aspects (SMA) [Arau04, Whit04]
or Aspect-oriented software development with use cases (AOSD/UC) [Jaco03, Jaco05] do not
adequately address non-functional requirements which are inherently crosscutting.

252 Chapter 13. Conclusions

13.1 Discussion and Contribution of the Present Work
The approach presented here overcomes the problems delineated above. It is based on the re-
quirements modeling language ADORA, which innately possesses several characteristics that are
desirable for an aspect-oriented approach.

ADORA is a modeling approach which is based on abstract objects. It is well suited as a means
for describing and communicating software requirements. Furthermore, it allows the recording
of requirements on various levels of formality by a mixture of formal and informal descriptions.
The use of abstract objects is a good means for communicating system requirements. Moreover,
it enables their hierarchical decomposition which in turn allows the requirements to be displayed
in an integrated visualization.

Abstraction mechanisms, such as a zoom mechanism and the view management, help to
manage the hiding of model elements that are not at the focus of interest. The hierarchical de-
composition and the abstraction mechanisms allow reduction of some of the problem-exogenous
complexity in the requirements, as it simplifies the way a modeler can integrate single model
parts in his mind (cf. Section 4.1). Furthermore, the formal and semi-formal simulation tech-
niques presented in [Seyb06a] allow an engineer to dynamically validate, evolve and revalidate
the behavior of a system.

The approach presented extends the ADORA language to an asymmetric1 general-purpose
aspect-oriented approach (cf. Section 3.2.1). The weaving semantics allows switching between
the aspect-oriented view and the conventional view of a software model.2

13.1.1 Summary, Discussion, and Contribution

To allow a comparison with the other presented state-of-the-art aspect-oriented requirements
approaches discussed in Section 4.1, the assessment of the proposed approach is based upon the
evaluation schema presented in Table 4.1.

Concern handling. The aspect modules introduced in Chapter 7 allow the modeler to properly
separate and modularly describe functional as well as non-functional crosscutting concerns in
ADORA. Aspect modules are self-contained containers that allow the encapsulation of parts of a
crosscutting concern, such as behavior chunks or crosscutting statecharts, and scenariocharts. A
join relationship expresses that an aspect crosscuts another aspect module or a component.

The aspect-oriented ADORA approach overcomes the problem of fragile join points as it
does not allow the formulation of quantifications which are used to dynamically determine the
the target of an aspect. Fragile join points are problematic in most of the approaches discussed in
Section 4.1. Instead, the impact locations are explicitly defined by join relationships. Critics may
object that this is not useful as there are too many of them. However, the resulting number is still

1However, as the approach describes crosscutting relationships separately from the aspects, it can also partially
be seen as a symmetric approach.

2The weaving mechanism is currently implemented as a static composition mechanism but may be extended to
a dynamic composition in future.

13.1 Discussion and Contribution of the Present Work 253

manageable, as requirements are on a quite abstract level. Moreover, the abstraction mechanisms
presented in Chapter 8 help to reduce unnecessary information.

The crosscut elements are oblivious (cf. Section 3.1.8) of the crosscutting elements, which is
also achieved by the join relationships and the mapping of any accessed elements in the context
to a independent variable. However, the approach does allow a breaking of the information
principle: the crosscut elements can be manipulated by the crosscutting modules so that the
software contracts are no longer valid. However, an approach which might mitigate the problem
is brie�y sketched in Section 13.2.

Composability. The proposed approach specifies a weaving semantics which allows an au-
tomated composition of aspect-oriented requirements models. Therefore, it allows switching
between the aspect-oriented and the corresponding conventional view, depending on which view
is better suited for the reader/writer of the model. Hence, this mechanism facilitates better un-
derstandability and an easier validation/verification of the requirements.

In contrast to other state-of-the-art methods, the present approach also employs a visual com-
position for graphical models which tries to preserve the secondary notation of the model as far
as possible. This is especially important for the easy comprehensibility of automatically trans-
formed models. It allows the reader of the model to grasp the interrelationships between the
elements of the aspect-oriented model and their counterparts in the conventional model more
easily. This is necessary if any advantages are to be gained from a composition mechanism.

Trade-off and decision support. There are two kinds of con�icts that may occur when using
crosscutting concerns. The first con�ict occurs if a crosscutting concerns has a (cyclic) impact
on itself, which must not be allowed because this is not meaningful. The present approach does
not allow such cyclic crosscutting, and avoids this by employing a strictly enforced language
constraint. The violation of the constraint is indicated to the modeler immediately before the
offending operation is executed. A modeler recognizes this type of con�ict during the modeling
of complex crosscutting concern structures and may be able to find a resolution at an early point
in time.

The second con�ict occurs if a target is impacted several times by different join relation-
ships having the same weaving order on the target. Even though the con�ict resolution must
be done manually, the solving of these con�icts is supported by the explicit visualization of the
join relationships. In contrast, con�icts are more difficult to find in presented state-of-the-art
approaches which describe crosscutting relationships with implicit quantification mechanisms.
The con�ict is resolved by using the priority of the join relationship which defines the weaving
order precedence of the crosscutting elements.

Mapping. Aspect-oriented ADORA is well suited for being mapped to approaches at later
stages of the software process. As it is based on object-oriented modeling techniques, it is pre-
destined for being mapped at later stages to aspect-oriented approaches that are also based on
object-oriented techniques. However, due to its clear separation of concerns, a mapping to other

254 Chapter 13. Conclusions

aspect-oriented technologies is also possible. Furthermore, the resulting artifacts can be mapped
easily to a symmetric approach at a later stage although the ADORA approach is asymmetric.

Modi�ability and Evolvability. The hierarchical decomposition and the aspect-oriented ele-
ments of the present approach facilitates good modularization which, in turn, fosters easy mod-
ifiability. Easy modifiability is also supported by the use of a consequently employed decom-
position, the integrated visualization, and the abstraction mechanisms. The latter allows con-
centrating on the facts that are currently at the focus of interest, without the danger of being
overwhelmed by a huge amount of information. Furthermore, the checking of language and user-
defined constraints allows inconsistencies in the model to be found more easily. The abstraction
mechanism and the language constraints checking are tool-supported, which is necessary for an
efficient handling of the models.

A simple evolvability is fostered by the partial indicator which helps to plan the evolution.
Setting the partial indicator of components and aspect modules (cf. Chapter 7 and 10) specifies
that the elements are intentionally incomplete and need some further elaboration. Similarly, asso-
ciations or join relationships may be partial (called abstract) and indicate an incompleteness. The
partial indicator for aspects and join relationships facilitates the early separation and evolution
of crosscutting concerns. Moreover, the decomposition of aspect modules can be used to evolve
non-functional crosscutting concerns. Moreover, aspects can be hierarchically decomposed into
sub-aspects and can therefore be used to express the operationalization of non-functional require-
ments. This feature allows the relation of the more evolved non-functional requirements to the
corresponding high-level non-functional requirement. Furthermore, the approach is also accom-
panied by a very coarse-grained process framework described in Chapter 10 that can be seen as a
rough guideline on how to modify and evolve models. The process also employs the semi-formal
simulation techniques presented in [Seyb06a].

The language elements presented together with the outlined process support the separation
of non-functional crosscutting concerns at the first round of the software process. In contrast,
the identification of functional crosscutting concerns is not supported explicitly: crosscutting
concerns are evolved by the simulation process presented in [Seyb06a] and therefore at first
tangled with the core concerns. After that, they need to be identified, e.g., by some sort of
aspect mining, and separated manually. However, the improvement of the identification and
separation of functional crosscutting concerns will be at the focus of future research on the topic
(cf. Section 13.2).

Scalability. Scalability is supported by the hierarchical decomposition, the integrated visual-
ization, and the abstraction mechanisms of the ADORA approach. These three mechanisms have
been extended in order to be able to handle aspect-oriented elements discussed in Chapter 7.

The hierarchical decomposition allows a modeler to separate and modularize the require-
ments of a complete system into small and manageable system parts. The integrated visualiza-
tion allows a reader to comprehend a model more easily than with a non-integrated visualization
of a model, which is due to the fact that there are no separated parts that have to be integrated in
mind. Finally, the vertical, horizontal, and crosswise abstraction mechanisms (cf. Section 5.1.4)

13.2 Outlook 255

allow parts of the model that are currently not at the focus of interest to be hidden, but without
losing the context of the element that is at the focus.

Understandability. Just as for scalability, the intelligibility is fostered by the hierarchical de-
composition, the integrated visualization and the abstraction mechanisms.

Aspect-oriented elements (cf. Section 7) and the composition mechanism (cf. Chapter 9)
allow improved understandability when crosscutting concerns are involved. The aspect-oriented
elements improve the understandability of the model when the reader of the model has a local
focus on the concern. In the case that the reader of the model has an interrelated focus, the
conventional view is better suited. This can be generated by the composition mechanism.

The formal and semi-formal simulation techniques presented in [Seyb06a] also support the
understandability of the model by allowing models to be executed and the semantics of the mod-
eled content to be apprehended by dynamic means. This is also a means for non-expert stake-
holders to grasp the meaning of the software.

Validation. The manual validation of aspect-oriented ADORA models is supported by the same
means as discussed for their understandability. The hierarchical decomposition, the integrated vi-
sualization, and the abstraction mechanisms allow the easy comprehension and therefore the easy
validation of an aspect-oriented ADORA model. Moreover, the strict separation of crosscutting
concerns allows an easier understanding of a model when having a local focus on the crosscut-
ting concerns. The model woven by the composition mechanism presented in Chapter 9 helps
to validate the understanding of the interrelationships between crosscutting concerns. Further-
more, the simulation of formal and semi-formal models support the automatic or semi-automatic
validation and revalidation of models [Seyb06a].

Traceability. There is no explicit support for traceability in aspect-oriented ADORA. Never-
theless, some of the existing concepts facilitate traceability in a straight-forward way. Multi-user
editing [Moda03] also enables forward and backward traceability of ADORA models in general.
Moreover, the ability to decompose aspects allows in particular a forward and backward tracing
of non-functional concerns. Standardized properties (cf. Section 5.2.5, p. 80) allow the stake-
holders who are responsible for a requirement to be recorded. Cross-referencing of elements is
inherently provided by the ADORA modeling language. Nevertheless, automatic mechanisms
which exploit the traceability data to improve the modeling process are currently not part of the
approach.

13.2 Outlook

The present work covers a very broad topic, and consequently, it has not been able to analyze all
the details that may be of interest. The corresponding open issues that may be part of the future
research on the present approach are outlined in the following.

256 Chapter 13. Conclusions

Composition. There are several issues with respect to the composition of aspect-oriented mod-
els which may be improved in the future. First, the composition mechanism presented for aspect-
oriented models is unidirectional, which means that aspect-oriented models can be transformed
to conventional models but not vice-versa. However, a back transformation would be desirable
as it would allow changes made in the conventional model to be propagated back to the aspect-
oriented model.

Second, the visual weaving mechanism presented works satisfactorily for smaller models.
Nevertheless, models with a more complex layout may end up requiring major changes in the
secondary notation (cf. Section 5.1.4). One of the major causes for these problems is the missing
inclusion of the model elements’ orientation (cf. Section 9.5) during the weaving. A future
investigation must research certain heuristics which could cope with this problem.

Third, when executing a model, it has to be woven first. However, it would be useful to
weave dynamically on the �y, i.e., during the execution of the model. This would also allow a
quasi-direct execution of an aspect-oriented ADORA model. This kind of dynamic weaving may
become the topic of the future research.

Visualization. The visualization and abstraction mechanisms presented could be improved in
several ways. First, the current mechanisms are only designed to hide or show no or all join
relationships together (cf. Chapter 8). However, it would also be desirable to hide and show join
relationships individually, or to show and hide any other connection in the model.

Second, the aspect-oriented visualization of the present approach only distinguishes between
the modules of crosscutting concerns and core concerns. However, readers of the model would
benefit from a mechanism which allows them to classify to which concern a module belongs.
This classification would allow them to hide and to show only the modules which belong to
particularly selected concerns. This kind of mechanism would help to achieve a multidimen-
sional visualization/separation of the concern space, as proposed by HyperJ [Tarr99] and CORE
[More05a, More05b] (cf. Section 3.2.5), which would help to improve the understanding of a
model, too.

Improving the aspect-oriented concepts presented. There is an investigation of the useful-
ness of the presented aspect-oriented visualization concepts in order to improve the understand-
ing of the models (cf. Chapter 8). Even though the results show that the concepts presented tend
to be useful, it is necessary to do additional empirical tests to adduce evidence for the usefulness
of the approach. First, the results presented have to be reproduced again by similar experiments.
Second, there are several tasks where the usefulness of aspect-oriented constructs still needs still
to be shown, such as when editing models.3

Preserving the information hiding principle. The introduction of aspect-oriented constructs
can lead to the breaking of the information hiding principle and consequently result in problems

3In contrast, the experiments presented concentrated only on the reading of the models.

13.3 Conclusion 257

for a design by contract (cf. Section 3.3.3). Both issues also become evident for the aspect-
oriented ADORA approach. However, these problems are not explicitly covered by the present
work.

Having a look at the problem reveals that a contract of a crosscut module may only be broken
by a crosscutting aspect if the aspect alters the state of the crosscut target module. A resolution or
at least a mitigation of the problem may be an extension of the current concept which introduces
abstract annotations for the crosscut targets (cf. Section 3.3.4). Abstract annotations denote
particular points in the crosscut module where an aspect may cut across. Aspects that modify
the state of the target are only allowed to crosscut at these specified points. In contrast, aspects
that only read the state of the target may still crosscut anywhere. Furthermore, the annotations
may specify a contract stating under which conditions a modification of the target module state is
allowed by an aspect. An aspect must not violate the specified crosscutting contract. The contract
may be defined in a similar fashion to contracts as given by the design-by-contract principle using
pre- and postconditions.

Using this kind of mechanism is a compromise between losing obliviousness and �exibility
(see also Section 3.3.4). However, future research on the topic must fully work out this idea.

Other open issues. There are some more research issues that have not been covered by the
present work. First, the process sketched in Section 10.1 must be refined and validated to be use-
ful for practical employment, and the interplay between the process and the semi-formal simula-
tion mechanism must be elaborated in more detail. Furthermore, the present approach assumes
that functional crosscutting concerns are manually discovered and separated during the evolution
of crosscutting concerns. However, an automatic discovery by an aspect mining approach could
support the modeler with this task.

The present approach implicitly supports traceability. Nevertheless, it does not provide any
mechanisms to follow the traceability links. A mechanism which allows the automatic tracing of
requirements and concerns in a forward, backward, cross-referencing manner would be desirable.

Furthermore, it has been shown that the present approach can be also extended [Stoi07,
Stoi08] in order to be used for handling variable software requirements.

13.3 Conclusion
From the author’s point of view the approach presented has the potential to greatly simplify
models that contain complex crosscutting concern structures on the requirements level. However,
aspect-oriented techniques at the requirements stage are not necessarily useful in every case. In
simple cases where just a few crosscutting concerns are part of a described system or where
the system itself is rather simple4, using aspects does not lower the complexity, or may even
introduce a higher degree of complexity. However, in other cases, such as the use for software
variability, the presented approaches may bring advantages over the use of conventional methods.

4Most of the examples in this work are rather simple.

Part V

Appendix

261

Appendix A

Discussion of Aspect-Oriented
Requirements Approaches

In the past, plenty of conventional and aspect-oriented requirements approaches have been pro-
posed. Based on the surveys of [Chit05, p. 19–113], [Arau05], and [Bono04], several aspect-
oriented and conventional requirements approaches are evaluated in the following. First, a set
of evaluation criteria is derived from the characteristics of a good specification in Section 2.2.1
and the criteria given in [Chit05]. Second, the approaches are presented brie�y and evaluated
according to those criteria.

A.1 Evaluation Criteria
The criteria presented in Table A.1 are used to judge the quality of the requirements approaches
under evaluation. The evaluation criteria are derived from the characteristics in [Chit05, p. 19–
113] and the general quality characteristics of requirements documents in Section 2.2.1.

Table A.1: Criteria for the evaluation of aspect-oriented requirements approaches.

Criteria Description
Traceability How well can requirements be traced through the software process? The support

for traceability can consist of the recording of the source of requirements as
well as the sources for changes in the requirements. Forward traceability
allows an interested party to trace the refinement of requirements to the resulting
architectural, design and implementation artifacts. Backward traceability allows
the artifacts created in later stages of the software process to be traced back
to the originating requirements. Cross referencing allows the tracing of
the dependencies of artifacts between the requirements on the same level of
abstraction/refinement.

Continued on the next page . . .

262 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Criteria Description
Composability Is there explicit support for decomposing crosscutting concerns and for composing

them to a set of integrated artifacts? Is there a mechanism which allows automatic
composition?

Modifiability and
Evolvability

How well can changes be introduced in the requirements artifacts? Are there
features which support the change of the requirements document, such as integrity
checking mechanisms?

Scalability How well does the approach scale? Is the provided process capable of handling the
requirements of a small scale as well as large scale project? Are the corresponding
artifacts describing the requirements able to describe small scale as well as large
scale software?

Understandability How difficult is the approach to understand for any stakeholder? Are the
artifacts produced by the approach easy to understand, can they easily be used
to communicate with a stakeholder, e.g., during validation? Usually, an approach
which uses concepts that are related to the domain, such as objects or work �ows,
is easier to understand than an approach that uses more abstract concepts.

Trade-off How well is the identification and resolution of trade-offs between different
overlapping concerns (non-orthogonal aspects) supported by the approach?

Mapping How well can requirements artifacts be mapped to following stages? Does the
approach provide such a mapping? Does the paradigm used at the requirements
stage support a simple mapping?

Verification and
Validation

How easy is it to conduct a validation or verification with the artifacts resulting
from the requirements process? Usually, dynamic means of validation or
veri�cation are more convenient and more efficient in finding problems, than
static means of validation and veri�cation.

Concern handling How well is the identi�cation and separation of functional and non-functional
crosscutting concerns supported? Are all concerns treated in the same way or
are there differences between non-functional and functional concerns? Can both
types be represented adequately?

A.2 Conventional Approaches

A.2.1 PREView
Viewpoint-oriented approaches [Fink92, Fink96] take up a stakeholder-centric perspective on the system
to be developed. Such a perspective is called a viewpoint. As an example, PREView [Sawy96] is discussed
brie�y.

There are two main artifacts in PREView: concerns and viewpoints. Concerns denote an overall
matter of interest in the software and cut across all viewpoints. Nevertheless, concerns are usually of a
non-functional nature.1 A concern can imply external requirements, constraints or questions. External

1In PREView, the term concern does not have exactly the same meaning as the term concern in the aspect-
oriented approaches.

A.2 Conventional Approaches 263

requirements are directly derived from a concern and cannot be in�uenced by a stakeholder and may even
override the requirements of stakeholders. Questions are used to check the consistency of requirements.
Constraints can be formulated for each concern to reveal inconsistencies during the (usually) iterative
process.

In contrast to a concern, a viewpoint is a stakeholder-centric perspective on the system, which is used
as a starting point to find the user requirements. Thus, after elicitation, a viewpoint may be assigned
requirements, i.e., usually functional requirements imposed by the stakeholder.

PREView is supported by its own requirements process. It starts by finding the concerns, which are
then refined to a set of external requirements, constraints and questions. Subsequently, the stakeholders
and their viewpoints are identified. In the following discovery phase, new requirements for the viewpoints
are found. The interactions between the viewpoints are then analyzed and inconsistencies resolved, which
may result in feedback cycles. The feedback may in�uence the already found concerns and viewpoints.
The evaluation of PREView can be found in Table A.2.

Table A.2: Evaluation of the PREView approach.

Criteria Description
Traceability A viewpoint template has a focus and a source, which allows its origin

to be identified. Concern and viewpoint templates have a history section
which allows backward traceability. The origins of external requirements
and viewpoint requirements are traceable to the corresponding concerns and
viewpoint, respectively.2

Composability Even though PREView decomposes some of the crosscutting concerns of a
system,3 there is no composition mechanism. The (crosscutting) requirements
of concerns and the requirements of the user viewpoints are handled separately.
Thus, if the composition of the artifacts is needed, it has to be done manually.

Modifiability and
Evolvability

PREView does not actively support a simple change management and evolution
of artifacts. Thus, broader changes in the concerns can lead to severe changes
to the requirements derived from the viewpoints, especially when there are many
concerns and viewpoints (cf. Scalability). Nevertheless, the approach supports
constraints which can help in finding inconsistencies during the process.

Scalability The more viewpoints and concerns there are that need to be handled by the
approach, the more con�icts occur between crosscutting and base requirements.
Since the approach does not provide sufficient means to resolve con�icts,
PREView can be used only with a small number of concerns and viewpoints (cf.
Modifiability).4

Continued on the next page . . .

2This is achieved by unique identifiers.
3Due to the non-functional nature of the term concern in the approach, it is especially the non-functional

requirements that are handled.
4In [Chit05, p. 100], PREView is said to encounter problems with more than six concerns.

264 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Criteria Description
Understandability For a small number of artifacts, the approach is unproblematic. However, for

systems with a larger number of concern and viewpoint artifacts the relationships
between the artifacts can become unclear. This is due to the fact that the contextual
linkages between the requirements originating in concerns and the requirements
originating in viewpoints as well as their relationships cannot be determined
easily.

Trade-off Organizational concerns and external requirements take precedence over
viewpoint requirements, which may result in suboptimal solutions.

Mapping In PREView, there is no predefined way for mapping the requirements artifacts to
later stages.

Verification and
Validation

The approach does not directly support the validation or the verification of the
software. Nevertheless, this may be important to the approach, as there may be a
lot of con�icts between external requirements and user requirements.

Concern handling The approach considers the non-functional concerns (organizational concerns)
as primary artifacts. Functional concerns are secondary artifacts. Crosscutting
functional concerns are not considered in the approach. The approach
partially supports the discovery of crosscutting concerns. The concern concept
of PREView deals with non-functional requirements which are inherently
crosscutting. Nevertheless, the elements belonging to the NFR can scatter over
different artifacts. Moreover, functional crosscutting concerns are not detected by
the approach.

A.2.2 NFR Framework
Goal-oriented approaches generate requirements from objectives that must be achieved by a system. The
goal-oriented approaches KAOS, I* and the NFR Framework are brie�y sketched and evaluated in the
following.

The Non-Functional Requirements Framework (NFR) [Chun00] concentrates on the representation
and analysis of non-functional requirements. The framework uses soft goals to represent non-functional
requirements and provides a catalog for a refinement of soft goals. Refined soft goals are satisfied by
operationalizing soft goals which represent a set of design or implementation solutions. Furthermore,
claim soft goals can be used to represent domain characteristics in the decision process. Correlations
denote relationships between NFRs which either express the support or the con�ict of a NFR by another
NFR.

Soft goals, re�ned soft goals, operationalizations of soft goals, and claim soft goals together form the
soft goal interdependency graph (SIG). The approach aims at finding the configuration in the SIG which
satisfies best a given goal. Operationalization links allow the best solution for an NFR to be connected
with the functional requirements. The NFR process defines how a SIG is created and the best variant of
the SIG is found. Refinement catalogs support the and guide the process. The evaluation for the NFR
approach is given in Table A.3.

A.2 Conventional Approaches 265

Table A.3: Evaluation of the NFR approach.

Criteria Description
Traceability The SIG allows the tracing of the dependencies of the artifacts resulting from the

refinement, the operationalization, and relationships to claim soft goals. The links
between the FR and the NFR allows the dependencies to be traced between both.
However, the origin of the high-level soft goals is not recorded.

Composability The approach does not allow the composition of the artifacts. However, indirectly
the links between the artifacts can be created and used for a manual composition.

Modifiability and
Evolvability

The approach allows a refinement/evolution of the SIG elements by means
of catalogs which guide the refinement and operationalization of elements.
Nevertheless, changing a soft goal can have a major impact on the SIG which
in turn may cause major changes in the artifacts.

Scalability The approach works only for small systems, as the SIG can become unclear rather
quickly and therefore unmanageable for larger systems. Nevertheless, the catalogs
provided by the approach help in handling larger systems.

Understandability The concepts behind the NFR approach are goals which are rather abstract
concepts that are far removed from the actual domain concepts. This may lead
to problems in the communication with stakeholders.

Trade-off There are correlation catalogs which help in understanding the effects on
impacted non-functional requirements. Furthermore, the SIG helps interested
parties to visualize and understand the relationships between non-functional
requirements and alternative operationalizations. Thus, the trade-off analysis and
the corresponding decision taking is well supported.

Mapping There are no specific guidelines for the mapping of requirements artifacts to
artifacts in later stages. However, the catalogs support systematic decomposition
and linking to the functional requirements. Indirectly, this linking also simplify
indirectly simplifies the mapping to artifacts in later software stages.

Verification and
Validation

There is no specific means for validating/verifying the artifacts of the NFR
approach. However, it is possible to visually inspect and assess the SIG and the
other artifacts.

Concern handling The framework mainly supports non-functional concerns, which are inherently
crosscutting. However, there is no clear-cut way to identify non-functional
requirements.

A.2.3 KAOS Approach
The Knowledge Acquisition in Automated Specification (KAOS) approach [Dard93, Dari97] deals with
acquisition of requirements and handling formal specifications. The approach provides a conceptual model
for acquiring requirements and supporting languages, as well as a set of elaboration strategies.5 One of the
conceptual meta-models that can be chosen is goal-directed. It comes with the corresponding requirements

5The choice of the appropriate strategy is supported by an automated assistant.

266 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

acquisition strategy. A knowledge base comes with predefined heuristics and tactics for the requirements
acquisition and also provides domain specific knowledge.

Goal-decomposition trees are artifacts resulting from a goal-directed strategy. The goal acquisition is
driven by a process which first identifies goals and the objects concerned, the potential agents and their
capabilities. In the subsequent process the goals are operationalized, actions and objects refined. There
may be feedback cycles which strengthen other objects and actions as a consequence of the refinement.
Subsequently, the responsibilities of agents are determined and the corresponding actions are assigned to
the responsible agents. The evaluation criteria for KAOS are discussed in Table A.4.

Table A.4: Evaluation of the KAOS approach.

Criteria Description
Traceability The decomposition graph allows the artifacts to be linked on different abstraction

levels. It is possible to create links to interview transcripts, so that the source of
a goal can be traced. The traceability to artifacts later in the software process
is not directly supported. Nevertheless, tasks are assigned to agents, which may
facilitate the traceability of artifacts at later stages.

Composability There is no direct support for artifact composition in KAOS. However, the
structure of the decomposition tree allows the parts which belong together to be
collected manually.

Modifiability and
Evolvability

KAOS allows the reuse of knowledge, which facilitates the evolution. The
approach also allows analysis of the dependencies resulting from the relationship
of agents, which in turn allows analysis and understanding of the impact of
changing, removing, or adding requirements.

Scalability In KAOS, scalability is reduced since this approach can result in a huge effort
invested in formalizing a task (pre-, postcondition, etc.). This is not practical
for the majority of large systems. Moreover, the huge database of domain data
collected may be a hindrance to better scalability.

Understandability The approach uses a rather abstract goal concept which is far from most
application domains it describes. Therefore, the approach may feel less tangible
for stakeholders. Moreover, there are many formal elements, which may lead to
difficulties in understanding for non-experts.

Trade-off Trade-offs between goals are solved by priorities assigned to the goals.
Furthermore, trade-off decisions are supported by a broad knowledge base, tactics
and heuristics.

Mapping The decomposition catalogs help to map non-functional as well as functional goals
to artifacts in later stages of the software process. Tasks could possibly be directly
mapped to procedures and functions in the system, which facilitates the mapping.

Verification and
Validation

The informal decomposition graph can be used for reviews. Moreover, formal
artifacts such as pre- and postconditions can be subject to an automatic
verification.

Continued on the next page . . .

A.2 Conventional Approaches 267

Criteria Description
Concern handling NFRs as well as FRs are equally important in KAOS. Thus, NFRs which are

inherently crosscutting concerns are handled automatically by KAOS. However,
crosscutting functional concerns are not treated adequately and in general there
are no specific tactics for handling them.

A.2.4 I* Approach
I* [Yu01] is another goal-oriented approach which is based on the modeling of relationships between
agents, goals, tasks, and resources. The strategic dependencies (SD) part analyzes actors and their de-
pendencies. It aims at the understanding of the business process of a domain, and how it is affected if a
dependency fails. The strategic rational (SR) part aims at finding different configurations of agents and
their dependencies.

Both the SD as well as the SR part make use of different model types. The strategic dependency
diagram describes the dependencies of goals, resources, soft goals, tasks and the corresponding agents.
Goals represent objectives that can be achieved in various ways. Soft goals represent either non-functional
properties or functional properties which are not clear-cut at the time of representation. Tasks are actions
that must be achieved in a fixed manner. The SR diagram is used to study the dependencies between
agents and other elements in a range of alternative situations.

The I* process starts with the identification of agents involved in a given system. Subsequently, the
SD diagrams are constructed and further elaborated into SR diagrams. The alternatives for achieving
goals identified in the SR and SD diagrams need to be analyzed for vulnerabilities and problems. For the
decomposition of the goals, the process provides catalogs similar to the NFR approach. The evaluation of
I* is given in Table A.5.

Table A.5: Evaluation of I*

Criteria Description
Traceability The source traceability is not covered explicitly in the approach. The traceability

to artifacts of the later software process is also not explicitly supported but can
be implicitly achieved by following the dependencies between functional and
non-functional goals. The functional goals can give a hint as to where the
corresponding functionality can be found in later stages.

Composability The approach does not provide means for composing the artifacts.

Modifiability and
Evolvability

The approach aims at being used in volatile environments and therefore supports
modifiability quite well. It is especially supported through the framework which
primarily allows analysis of different situations that may have an impact on a
system.

Scalability The approach is suited for smaller problems. Working with bigger I* graphs is
rather cumbersome, even with tool support.

Continued on the next page . . .

268 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Criteria Description
Understandability I*, as is the case with the other similar goal-oriented approaches, operates on a

rather abstract level. The artifacts of the system to be build, i.e., the goals, are
usually remote from the domain and therefore less tangible. This can result in
difficulties when communicating with non-expert stakeholders.

Trade-off The trade-off analysis is well supported by the strategic dependency and strategic
rational graphs. I* allows the use of weights and priorities that help to decide
which solution is better suited.

Mapping The approach is used to identify major parts of a software architecture by agents
and top-level goals and thus suited for identifying a high-level mapping. However,
a detailed mapping of the I* artifacts to artifacts at later stages is not provided.

Verification and
Validation

The approach allows a step by step verification or validation by walking through
the SD and SR graphs.

Concern handling Goals represent either functional or non-functional properties of a system; thus
both are addressed equally. Apart from that, the approach allows the use of soft
goals for non-functional properties. Thus, I* does handle non-functional concerns
which are inherently crosscutting. Nevertheless, it does not clearly distinguish
between crosscutting and core functional concerns.

A.2.5 Use Case Method
Use cases are defined as a sequence of actions “performed by a system, which yields an observable result
that is typically valuable for one or more actors or other stakeholders of the system” [Jaco05, p. 404]. The
sequence of actions is usually initiated by an actor. It can contain branches and iterations. Instantiated use
cases are called scenarios and describe one single path through a use case. Use cases follow the “natural”
work �ow of a task in an application domain. They are intelligible for stakeholders and can therefore be
easily understood. In the following the Use Case Method is discussed as a representative of all use case
based approaches.6

The Use Case Method [Jaco92] employs use cases as its main artifacts. They are presented in textual
form describing the stimulus initiating the sequence of actions as well as the actors involved.7 Alternate
�ows and extension points (see below) are separately described. There are three different types of rela-
tionship between use cases: specialization, inclusion, and extension. Specialization allows functionality
to be added to the inherited use case. Inclusions calls another use case at a particular point in the action
sequence. Extension use case allows extending a use case A by any other use case B, where B is not known
to A. However, the extension of A is allowed only at predefined extension points defined by A. Use cases
and their relationships to other use cases as well as actors can be visualized by a UML use case diagram
[Rumb05, Chapter 18].

The process of the use case method initially identifies all the actors in a system. Subsequently, the
high-level system functionality needed by each actor is identified and decomposed up to an adequate level
of detail.8 Finally, the use cases are validated, e.g., through reviews in collaboration with the stakeholders

6Another use case approach is the method of misuse cases [Alex03], which is not discussed here.
7Example (3.2) sketches such a textual use case.
8A use case should not result in a functional decomposition which reveals the details of system functionality.

A.2 Conventional Approaches 269

to ensure completeness and consistency. The evaluation of the use cases method is given in Table A.6.

Table A.6: Evaluation of the Use Cases Method approach.

Criteria Description
Traceability There is no explicit means for managing the source of use cases or the source

of changes. However, as use cases are usually handled in structured text, it is
conceivable for the source as well as the source of changes to be handled in a
history associated with the textual use case. Furthermore, use cases usually cannot
be properly traced to artifacts of the later stages in the architecture as they disperse
over several units when they are mapped to artifacts of later stages, e.g., classes.
Moreover, there is no direct support for tracking changes to the use case document.

Composability The inclusion and extension relationships are a means for decomposing
(functional) crosscutting concerns. There is usually no automatic composition.
The composition is rather done manually at the architectural or design stage, when
the use cases are mapped to a class structure.

Modifiability and
Evolvability

Use cases can be enriched simply by new use cases with include or exclude
relationships. Changes to the functionality described by a use case can be made by
locating the use case and by simply changing the corresponding content. However,
to maintain the consistency of the use cases, which are usually formulated in
natural language, may require a validation even after smaller changes.

Scalability For systems with a lot of use cases, it is easy to lose track of the use cases. The use
case diagram provides only limited help in this regard, as it lacks expressiveness
and decomposition.

Understandability Use cases provide a good tool for communication with stakeholders, as they are
easy to understand. However, the overview given by a use case diagram can result
in difficulties in understanding, as crucial information, such as the order in which
included or extended use cases are executed, is not visualized.

Trade-off The use case approach does not consider con�ict analysis. This has to be done at
a later stage of the software process.

Mapping There are some guidelines for mapping use cases to later stages in the software
process. Furthermore, the UML collaboration construct can be used.

Verification and
Validation

Text-based use cases are well suited for manual validation with stakeholders.
However, natural language can be imprecise and ambiguous. Such problems are
not necessarily found by an interpersonal validation process.

Concern handling Non-functional concerns as well as functional crosscutting concerns are not
identified by the process. However, the extension relationship provides the ability
to decouple crosscutting (functional) concerns from the other concerns. Non-
functional concerns cannot be represented adequately in use cases. They are either
scattered as annotations over the use cases or not described at all.

Thus, each sequential step of a use case should stay on an abstract level.

270 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

A.3 Aspect-Oriented Approaches

A.3.1 AORE with Arcade
Aspect-Oriented Requirements Engineering (AORE) [Rash03] with Arcade9 is an approach which can
be used with any requirements technique. In [Rash03], the approach is used together with the PREView
approach. AORE aims at the modularization of crosscutting concerns and the creation of a consistent re-
quirements specification document. Aspectual requirements are similar to external requirements in PRE-
View. They crosscut user requirements derived from various viewpoints.

The approach uses XML-based templates to represent the viewpoint requirements as well as aspec-
tual requirements. Composition descriptions allow crosscutting relationships to be described, i.e., they
specify how requirements and aspectual requirements are composed into an integrated specification. The
composition description is also specified in XML.

The AORE process starts with the identification of the viewpoints and the collection of the associated
user requirements. Subsequently, the PREView-like concerns are identified from the user requirements.10

As soon as the concerns are identified, coarse-grained relationships between concerns and viewpoints are
established. If a concern affects several viewpoints, the concern is called a candidate aspect. The aspectual
requirements are then derived from the aspect candidates. Furthermore, the aspectual requirements are
identified. Concerns, viewpoints and requirements are described with XML elements.

Subsequently, the engineer identifies the composition rules between aspectual requirements and the
user requirements. When composing, con�icts can be identified when two or more concerns affect the
user requirements of the same viewpoint. In this case, the con�icting aspectual requirements are assigned
priorities. Finally, the PROBE framework [Katz04] allows the generation of proof obligations that must
hold in the implementation of the aspect-oriented system. The approach is evaluated in Table A.7.

Table A.7: Evaluation of the AORE with Arcade.

Criteria Description
Traceability Viewpoints identify the sources of a requirement (cf. PREView approach) which

in turn allow the sources to be related to the corresponding XML elements.
However, the approach does not elaborate on how the sources of changes are
tracked. AORE records the resulting type of architectural artifact (decision,
function, etc.) to which a requirement evolves. Thus, it allows tracing to artifacts
in later stages. The PROBE framework allows the tracing of the trade-offs to
artifacts in later stages.

Composability The approach has a clear composition semantics that is provided through
composition rules and operators. Rules and operators can be adapted to a specific
problem.

Continued on the next page . . .

9Arcade is the tool supporting the AORE approach. It is mentioned to distinguish the aspect-oriented require-
ments engineering approach from the general field of aspect-oriented requirements engineering.

10Note that this is the reverse of the process in PREView, where first the concerns are identified and then the
viewpoints.

A.3 Aspect-Oriented Approaches 271

Criteria Description
Modifiability and
Evolvability

AORE has a clear separation of concerns. Changes have therefore a local impact
on the corresponding concern and perhaps the composition description. Thus, the
changes can be handled easily.

Scalability The XML artifacts produced by the approach are scalable. However, the
composition tables can grow very large, which can affect the readability.

Understandability Despite the claim that XML is human-legible, it is not necessarily easy to
understand. Especially many cross references, a large number of documents,
or large XML documents affect the understandability, especially when used to
communicate with stakeholders.

Trade-off AORE supports trade-off analysis. Con�icts between crosscutting concerns are
detected by the composition process and the PROBE framework. The approach
supports the resolution of con�icts.

Mapping AORE provides guidelines for mapping requirements to later stages in the
software process. This is done by using aspect specification dimensions which
specify to what kind of artifacts, e.g., functions or decisions, a requirement is
mapped.

Verification and
Validation

The validation of AORE artifacts is done manually, and can be difficult (cf.
Understandability). Validation and verification are supported by the generated
proof obligations of PROBE, either for a formal validation or as a basis for test
cases.

Concern handling Both crosscutting as well as core concerns are handled by the approach, but,
the identification of non-functional crosscutting concerns is not clearly guided.
Furthermore, the identification of functional crosscutting concerns is not clearly
covered by the approach. Nevertheless, the approach can be extended with aspect-
mining techniques, such as [Samp05], which allow the identification of potential
crosscutting concerns in the natural language description of the requirements.

A.3.2 ARGM
Aspects in Requirements Goal Models (ARGM) [Yu04] is a goal-oriented approach which is based on
the non-functional requirements framework [Chun00]. Goals and soft-goals can be decomposed into
subgoals and sub-soft-goals, respectively. This is done iteratively until the decomposition is reduced
to a task. (Sub)soft-goals can be related to operationalizations. Correlations can represent in�uences
between (sub)soft-goals and goals. Together they form a goal/soft-goal interdependency graph, which
is represented as a so-called V-graph. The approach aims at identifying aspects during goal-oriented
requirements analysis. Aspects are identified as tasks with many links satisfying different goals.

The approach is supported by a process that starts with the gathering of goals and soft goals. These
are then iteratively broken down into sub-goals and sub-soft-goals. During the decomposition, soft goals
are correlated with goals, thereby solving con�icts. Soft goals contribute either positively or negatively to
a goal. The magnitude of the contribution is specified by a value between 1 and 0, which is propagated to
the parent goal. If any subgoals contribute negatively to their parent, the con�ict is resolved by removing
the link between goal and subgoal. Thus, a goal/soft goal must not be less satisfied due to decomposition.

272 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Finally, aspect identification gathers the tasks (operationalizations) contributing to soft goals which, in
turn, contribute to a goal.

Table A.8: Evaluation of ARGM.

Criteria Description
Traceability The ARGM approach does not record the sources of a goal or a soft goal. The

V-graph relates the refinement and operationalizations of functional and non-
functional elements, so their origin can be traced. The artifacts are traceable into
the design and implementation phase by using operationalization links similar to
the NFR framework.

Composability In [Yu04], there is no clear description of a composition mechanism. However,
the approach allows the crosscutting concerns to be separated.

Modifiability and
Evolvability

Similarly to the SIG in the NFR framework, major changes in the requirements
can cause major changes in the V-graph. However, in the majority of cases,
changes stay local in the graph and the effects on the graph can be easily identified
by the relationships in the graph.

Scalability The approach suffers from poor scalability. Even small models may be hard to
handle (cf. for example Fig. 12 in [Yu04]), despite tool support. A partial view
of the graph does not solve the problem, as some of the relationships between the
nodes of a different view are then hidden. Therefore, the whole model becomes
harder to understand.

Understandability Goal/soft goal V-graphs are hard to interpret manually, due to the lack of
scalability. Furthermore, as with all goal concepts, the approach is abstract.
Thus, there can be problems in understanding when V-graphs are used for
communication with non-expert stakeholders.

Trade-off Trade-offs are solved by removing negatively contributing links. However, this
simple trade-off solution has major draw-backs. For example, the resulting
solutions can be suboptimal as better compromise solutions for the problem may
get discarded.

Mapping ARGM is based on the NFR framework, which does not specify guidelines
for the mapping of requirements artifacts to artifacts in the later stages of the
software process. However, the NFR provides catalogs which support systematic
decomposition and linking to the functional requirements indirectly. This also
facilitates the mapping to artifacts in later software stages.

Verification and
Validation

The approach does not propose special means for validating/verifying the
resulting artifacts. However, a manual validation/verification can be done by
simply walking through the resulting graph, e.g., in a formal review with the
customer.

Concern handling The approach treats non-functional and functional crosscutting concerns equally.

A.3 Aspect-Oriented Approaches 273

A.3.3 AOSD/UC
Aspect-oriented software development with use cases (AOSD/UC) [Jaco03, Jaco05] proposes an extension
to the use case method [Jaco92]. The approach can be employed throughout all phases in the software
process and introduces new aspect-oriented symmetric and asymmetric constructs. The two new main
elements are pointcuts and use case slices.

A pointcut specifies where a crosscutting concern cuts across other use cases, i.e., it represents a
group of use case join points. Use case slices are UML packages containing all artifacts concerning the
use cases at a particular level, e.g., the requirements stage. Furthermore, use case modules are packages
which contain all use cases and the related artifacts which accumulate throughout the software process.
Between the subpackages of a use case module, dependencies with the stereotype «trace» can be used to
describe upstream and downstream dependencies in the development process.

Peer use cases are independent of each other and cut across the classes of the design. Extension use
cases contain crosscutting functionality and infrastructure use cases contain functionality originating in
non-functional requirements. In [Jaco05], use case templates are employed for realizing infrastructure use
cases.

Extension as well as infrastructure use cases use the extension relationship to express the cutting across
of other use cases. An extension use case augments one or more base use cases at a specific extension point
identified by the extension pointcut. The extension �ow is injected at the specified location. The meaning
of the extend relationship of the original approach is enriched by certain elements. For example, the
extending use case can define whether the extension �ow is inserted before, after, or around the extension
point. Due to the fact that the standard UML use case diagram is not powerful enough to represent these
extensions, a UML classifier construct is used in [Jaco05] to describe the dependencies between the use
cases.

The approach is supported by a process throughout the whole software life-cycle. The requirements
process is taken from the traditional use case approach [Jaco92]. The most significant change is the ability
to handle non-functional requirements. They are identified and documented as infrastructure use cases
along with functional use cases. An evaluation of the approach can be found in Table A.9.

Table A.9: Evaluation of AOSD/UC.

Criteria Description
Traceability It is not clear how source traceability is achieved in AOSD/UC. However, as

use cases are usually specified in a free form, one can just textually add the
source of the information. Collaborations provide traceability for the use cases.
Furthermore, the «trace» relationship in a use case module provides a degree
of forward and backwards traceability between the artifacts of different stages
associated with use cases.

Composability In contrast to the plain use case approach, composability has been extended. For
example, the extension construct defines the order of the extension use case with
respect to the extended use case.

Modifiability and
Evolvability

The approach has the same characteristics as the plain use case approach.

Continued on the next page . . .

274 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Criteria Description
Scalability The scalability issues of the conventional use approach also apply to AOSD/UC.

However, the additional structures of use case slice and use case module help to
organize the elements better and to describe the relationships between the various
constructs.

Understandability The characteristics of the conventional use case approach also apply to AOSD/UC.

Trade-off A con�ict of aspects can be handled in a limited way by the ordering of the
extension use cases with the before, after and around keyword. However, there
is no mechanism for con�ict detection and resolution at the requirements level in
AOSD/UC.

Mapping As in the traditional use case approach, the mapping of the requirements artifacts
is supported through collaborations. Furthermore, the approach outlines a rough
process by which the aspect-oriented use case artifacts can be mapped to the
software design.

Verification and
Validation

The approach has the same validation and verification characteristics as the
traditional use case approach.

Concern handling The approach handles crosscutting and core concerns equally. However, it is
debatable whether the approach is suited to all kinds of non-functional concerns.
There may be non-functional requirements which do not manifest in code, and it is
not clear how NFRs are identified. Furthermore, employing use cases for handling
NFRs contradicts the definition of the term use case. A use case is usually initiated
by an actor. However, there are NFRs which are not necessarily user-centric, i.e.,
initiated by an actor. For example, the maintainability NFR of a system cannot be
properly expressed by a use case, as this would make no sense.

A.3.4 SMA
Scenario modeling with aspects (SMA) [Arau04, Whit04] is an approach for creating more consistent
and complete use cases by modeling base and crosscutting scenarios separately from each other. A com-
position mechanism generates state machines from the elicited scenarios. These state machines help to
validate the modeled use cases by simulation.

The approach is supported by a process which starts with the identification of the use cases. Then
the coarse-grained use cases are refined. Non-functional requirements can be identified with the help of
templates and usually result in aspectual scenarios. Base scenarios are modeled as simple UML sequence
diagrams. Sequence diagrams can be transformed to finite state machines (FSM) by the semi-manual
algorithm presented in [Whit00].

Aspectual scenarios are modeled as interaction pattern specifications (IPS) which are UML sequence
diagrams containing roles instead of concrete message and lifeline identifiers. A set of IPS can be trans-
formed to a state machine pattern specification (SMPS) which represents a state machine containing
generic roles instead of messages and states.

For the composition of the base and crosscutting behavior the FSM and SMPS have to be merged.
However, before this can be done, the roles of the SMPS must be instantiated with concrete values which

A.3 Aspect-Oriented Approaches 275

are provided by a state machine binding specification. The concrete values in the binding specification
are state and message names of the FSM. After the instantiation of the values, the FSM and SMPS are
merged, resulting in a unified state machine, which can be used, for example, to check or simulate the
model. The evaluation of SMA is given in Table A.10

Table A.10: Evaluation of SMA.

Criteria Description
Traceability The approach discusses neither how the source of a requirement nor how the

resulting artifacts at later stages of the software process are tracked. There is
also no discussion of tracking the sources of a change.

Composability The approach provides the composition of behavior from the modeled scenarios.
However, the composition process (i.e., the mapping of the roles to concrete
identifiers), as well as the synthesis of statecharts from the scenarios need manual
intervention.

Modifiability and
Evolvability

The approach is based on scenarios for defining use cases. Changes to
requirements may cause changes in one or more scenarios. Even though these
changes are local, they may cause the additional effort of checking the consistency
between the different scenarios and the corresponding bindings.

Scalability The state machine generation algorithm scales well. Nevertheless, scalability in
general is compromised by the need to provide individual binding specifications
for each composition.

Understandability Intelligibility may be hampered by the numerous scenarios that are needed to
specify FSMs and SMPSs. Thus, it is easy to lose track of the many artifacts.

Trade-off There is no support for detecting and handling trade-offs between different
concerns.

Mapping There is no mechanism for mapping artifacts to later stages.

Verification and
Validation

The validation of specifications is well supported, as the approach aims
at generating executable statecharts which can be used for simulating the
requirements. Apart from the simulation, the approach also allows the validation
of the message sequence charts and IPS manually together with the stakeholder.

Concern handling The approach is well-suited for handling crosscutting as well as core concerns.
However, it neither discusses in detail how the functional crosscutting scenarios
are found nor clearly addresses how to handle non-functional requirements
by scenarios. Furthermore, the approach cannot cope with non-functional
requirements that do not end up in functionality.

A.3.5 AUCDA

Aspectual use case driven approach (AUCDA) [Arau03] is another use-case-based aspect-oriented ap-
proach. It is similar to AOSD/UC [Jaco05] and aims at identifying and describing crosscutting non-

276 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

functional (called quality attributes) and functional concerns at the requirements stage. However, in con-
trast to AOSD/UC, non-functional requirements are not handled by infrastructure use cases. A template,
proposed in [More02], is introduced, which facilitates the identification of non-functional requirements.

Crosscutting use cases resulting from non-functional requirements are split into three different cate-
gories: overlapping, overriding and wrapping. An overlapping use case crosscuts another use case either
before or after a given execution point. Overriding means that a non-functional use case replaces func-
tionality in the crosscut use case. Finally, a wrapping non-functional use case encloses the functionality
of the crosscut use case.

The approach introduces new relationships between use cases. Apart from extension, inclusion, and
generalization, use cases are also allowed to be in a collaboration, damage, or constrain relationship.
A collaboration relationship between two use cases means that one use case contributes positively to
the other, damage means a negative correlation, and constrain indicates a restriction. Furthermore, the
approach introduces a use case pattern speci�cation mechanism which allows a use case to be represented
in a abstract way as a template that can be instantiated later for a concrete situation.

The AUCDA process starts with the identification of actors and high-level use cases. The high-level
use cases are subsequently refined, then redundant behavior is identified, removed and described by sep-
arate use cases. The separated use cases are then connected to the other use cases by include or extend
relationships. After these steps the non-functional requirements are identified with the help of quality at-
tribute templates. The non-functional requirements found are mapped to use cases in the use case diagram
and connected with the appropriate relationship to the use cases they in�uence. Finally, the candidate
aspects are identified, i.e., the use cases that probably map to an aspect implemented at the coding phase.
Candidate aspects have more than one include, extend or constrain relationship to other use cases. The
approach is evaluated in Table A.11.

Table A.11: Evaluation of the AUCDA approach.

Criteria Description
Traceability Non-functional requirements can be traced through the information captured

when identifying the non-functional requirements with the help of the proposed
template. However, the approach does not mention how the sources of the
functional requirements are recorded. As with the original use case approach
this can be done by simply noting the source in the corresponding functional use
case. The traceability to artifacts in later stages is not explicitly mentioned but can
be supported by UML collaborations for functional use cases or NFRs resulting
in functionality. However, there is no discussion about the traceability of NFRs
which do not end as functionality in the final system.

Composability The approach extends the decomposition facilities of conventional use case
approaches by introducing several new relationships, such as collaboration and
damage. However, the approach does not discuss a mechanism for an automatic
composition. Thus, the composition has to be done manually if needed.

Modifiability and
Evolvability

As with other use case approaches, changes to artifacts are rather local to use
cases. However, major changes to requirements may require changes to other use
cases too. As with the other use-case-based approaches, there is no possibility for
an automatic checking of the use case consistency.

Continued on the next page . . .

A.3 Aspect-Oriented Approaches 277

Criteria Description
Scalability The use case diagram is the main artifact. However, it becomes unreadable rather

quickly, when the number of use cases increases.

Understandability The use case diagram can become unreadable when many use cases are found.

Trade-off There is no trade-off analysis support. However, the relationships between
the use case diagrams, such as collaboration, damage and constrain provide
information about con�icts which can be used when negotiating the requirements
with stakeholders.

Mapping Functional use cases and NFRs which can be operationalized to functional use
cases can be mapped to UML collaborations.

Verification and
Validation

The approach is well suited for manual validation techniques.

Concern handling Functional as well as non-functional concerns can be handled equally by the
approach. However, the same problems as with AOSD/UC also apply to this
approach.

A.3.6 Cosmos
The Cosmos approach [Stan02, Sutt03, Sutt04] is based on the principle of the multi-dimensional sepa-
ration of concerns [Tarr99], where the concern space consists of a set of peer concerns that may overlap.
Cosmos proposes an artifact-independent way of modeling concerns. It provides a general concern-space
modeling schema for classifying concerns, their relationships, etc. After a concern has been identified, it
is assigned to one or more concern categories. Furthermore, the relationships to other concerns are iden-
tified and classified [Sutt04]. A concern is either logical or physical. A logical concern is of a conceptual
nature whereas a physical concern deals with real world artifacts.

There is no clear-cut process in cosmos. However, there are several simple guideline rules which
help to create a good categorization of the concerns discovered, such as for components-off-the-shelf
development, or development from scratch. The basic approach to finding concerns is to carefully analyze
the document and artifacts of interest. After a list of concerns has been found, they have to be assigned to
Cosmos categories.

Table A.12: Evaluation of the Cosmos approach.

Criteria Description
Traceability The Cosmos approach discusses neither how the sources of a concern nor how the

sources of changes are recorded. The traceability to artifacts at a later stage is not
discussed.

Composability The approach proposes different types of relationships for the decomposition of
concerns. A composition has to be done manually.

Continued on the next page . . .

278 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Criteria Description
Modifiability and
Evolvability

Cosmos categorizes concerns. Usually changes are made in the artifacts that are
assigned to the concern. Thus changes generally have a low impact on the concern
structure.

Scalability The concern schema of Cosmos is quite simple and models the concerns on a
meta-level. Therefore, the approach is very scalable. However, concerns may
have a lot of dependencies resulting in greater efforts being required.

Understandability The approach is rather abstract. Therefore, the communication with stakeholders
may be difficult.

Trade-off The approach does not propose any trade-off analysis, as it does not deal with
the elicitation and negotiation of requirements. However, constraints allow the
capture of any trade-off decisions taken during the analysis.

Modifiability Cosmos does not consider the mapping of concerns to artifacts at a later stage
in the software process. Nevertheless, it allows the mapping between physical
concerns and artifacts to be recorded.

Verification and
Validation

There is no support for dynamic validation/verification. However, the Cosmos
model may assist the static validation of the physical requirements artifacts.

Concern handling The approach treats all concerns as peers, no matter if they have a functional or
non-functional origin.

A.3.7 CORE
Concern-oriented requirements engineering (CORE) [More05a, More05b] extends the AORE with Ar-
cade approach [Rash03] by the concepts of the multidimensional separation of concerns [Tarr99]. CORE
decomposes requirements using different concerns as decomposition criteria. It therefore introduces, sim-
ilarly to the Cosmos approach [Stan02], a meta-concern space which models the concerns of a software
system and their relationships. An instantiation of the corresponding concerns allows the assignment of
the requirements belonging to the concern. A set of composition rules describes the impact of a concern
on the requirements of other concerns. Similarly to AORE, CORE uses XML for the representation of its
artifacts, i.e., the meta-concern structure, the concern artifacts, and the composition descriptions.

The CORE process starts with the identification of the concerns of the system to be developed. The
process can be carried out with any requirements engineering approach, such as a viewpoint- or use-case-
based approach. After the concerns have been identified, the coarse-grained relationships between them
are identified. Subsequently, the relationships are described in more detail by composition rules.

A trade-off analysis results the identification of the con�icts between different concerns impacting the
same requirements. This is done by folding the concern relationships. In [More05a], folding employs
a compositional intersection operation. Con�icting concerns are discussed with the stakeholders of the
project. Priority weights can be used to reason about different impact situations on the same requirements,
which can help in reaching a decision for resolving the con�icts. Finally, the mapping of the concerns to
artifacts of the following stage in the software process is done by the same means as used in the AORE
approach. The characteristics of CORE are evaluated in Table A.13.

A.3 Aspect-Oriented Approaches 279

Table A.13: Evaluation of the CORE approach.

Criteria Description
Traceability Even though CORE is based on AORE, it no longer uses the viewpoint templates.

Therefore the sources of the concerns are not recorded. The same applies to
the sources of changes in the requirements. In [More05a, More05b], there is no
mention of how to trace the source of a concern or a requirement. However, this
can be achieved by extending the XML schema with the needed elements. The
traceability to artifacts in later stages of the software process is done similarly to
AORE.

Composability The approach has the same composability capabilities as AORE. However, the
composition is more �exible, since all concerns are uniquely represented in a
meta-concern space.

Modifiability and
Evolvability

The approach has a high separation of concerns, therefore changes to the
requirements have low impact.

Scalability As with AORE, the XML artifacts used in the CORE approach are very scalable.
However, the composition tables can grow very large, which can affect the
readability.

Understandability As with the AORE approach, the XML representation is not necessarily easy to
understand, which may cause problems, especially when used for communication
with non-expert stakeholders.

Trade-off The approach provides a well suited trade-off analysis, which trade-offs to be
detected, analyzed and resolved.

Mapping CORE provides the same support for mapping artifacts to later stages as AORE.

Verification and
Validation

Artifacts of the CORE approach have to be validated manually.

Concern handling Functional as well as non-functional concerns are treated as peers. Overlapping
concerns are documented separately.

A.3.8 AOREC
Aspect-oriented requirements engineering for component-based software systems (AOREC) [Grun99,
Grun00] provides a classification schema for categorizing the systemic aspects of components. In AOREC,
an aspect is a characteristic of a system which consists of components providing or requiring services.

The main artifacts for documenting aspects are diagrams. The diagrams describe the components, the
related aspects and the corresponding relationships. Furthermore, there are textual descriptions that ad-
ditionally describe the functional and non-functional requirements of the system. A so-called aggregated
aspect describes a group of interrelated components.

The approach is supported by a process. First, a set of requirements is elicited and a set of candidate
components is identified. Then, the requirements for the components are elaborated. In the subsequent
steps, the aspects of each component are identified and refined and the requirements are assigned to as-
pects. In the following, the aspect can be used to reason about the associated components, their compo-

280 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

sition and configuration. In a next step, the refined aspects are analyzed in order to see if they form an
aggregate aspect. Aggregate aspects form new components. The creation of new components may cause
further iterations through the process. After all requirements have been allocated, the components are ver-
ified against the system requirements. If all are met adequately, the design phase can start. The evaluation
of AOREC can be found in Table A.14.

Table A.14: Evaluation of AOREC.

Criteria Description
Traceability AOREC does not discuss tracking the source of requirements or source of

changes. The aspects found at the requirements level are directly propagated to
the design level, which allows them to be traced.

Composability The requirements of a component are composed from aspects. In turn,
components can provide requirements to aspects. A composed view of the
artifacts has to be generated manually if needed.

Modifiability and
Evolvability

Changes are usually local. However, there may be changes which cause major
changes in the artifacts. In this case, the relationships between aspects and
components can help to estimate the costs of a change of requirements.

Scalability The approach allows the separation of requirements which are common to more
than one component in an aspect. Therefore, AOREC helps to avoid the scattering
of the same requirements at different locations, which facilitates scalability.
However, the graphical model consisting of aspects, components and relationships
does not scale. It easily becomes very complex.

Understandability The graphical and textual representations are well suited for communication with
all types of stakeholders. However, for larger systems, the lack of scalability may
cause problems.

Trade-off AOREC does not provide any analysis of, or decision support for trade-offs.
Nevertheless, it is possible to locate the impacts of decision.

Mapping The artifacts from the requirements phase are directly transferred to the design
phase.

Verification and
Validation

There is no explicit validation/verification support. However, a validation of the
artifacts can be done manually.

Concern handling AOREC artifacts can support non-functional as well as functional crosscutting
concerns by aspects and components. However, it is not clear how functional
crosscutting concerns are handled by the AOREC process. Furthermore, there is
no support for the identification of crosscutting concerns. However, some example
decomposition patterns are suggested for the initial breakdown of aspects.

A.3 Aspect-Oriented Approaches 281

A.3.9 Theme/Doc
Theme/Doc [Bani04c, Bani04a, Clar05] is the requirements part of the Theme approach. In contrast to
other approaches, such as ARGM, the Theme approach has been designed from scratch as an aspect-
oriented approach and originates in subjective programming [Harr93]. It aims at the identification and
further handling of crosscutting concerns extracted from natural language requirements.

Theme/Doc analyzes the requirements statements of a piece of software, thus it is applied at a later
stage in the requirements process, when the requirements have already been elicited. Theme/Doc has
a focus on functional requirements, and so it is less suitable for detecting non-functional crosscutting
concerns. The analysis relies on the use of a tool. The artifacts produced by the tool are based on a
manually compiled list of action words and entities. Action words are derived from the verbs in the natural
language requirements specification and are called themes. A theme can be seen as the “encapsulation of
a concern” [Clar05]. Entities are nouns related to the action words. Entities can be seen as objects on
which the actions rely.

The artifact generated from this input list is the action view graph [Bani04c], which shows the rela-
tionships between the themes and the requirements. The clipped action view is produced by separating
the crosscutting themes from the base themes. They are then associated with a crosscut relationship. A
theme is crosscutting if it belongs to a requirements statement which is already associated to another
requirements statement.11

The Theme/Doc process starts with the identification of action words from a set of given requirements
statements. Furthermore, the requirements, the themes, as well as the entities contained in the requirements
are used as input to the further process. In the following step, the action view and the clipped action view is
created. From the clipped action view, a theme view is created. It shows the requirements and the entities
associated with the themes. The theme view is a basis for the design with Theme/UML [Bani04c, Clar05]
(cf. Section 3.2.3). The characteristics of Theme/Doc are summarized in Table A.15.

Table A.15: Evaluation of the Theme/Doc.

Criteria Description
Traceability Theme/Doc does not consider the source traceability of the requirements, as

it is based on the elicited and negotiated requirements at a later stage of the
requirements process. Theme/Doc links to the design artifacts which are created
by Theme/UML.

Composability Theme/Doc provides an order for the composition of crosscutting themes in the
clipped action view. However, a composition is not done until the design with
Theme/UML where a composition semantics is defined.

Modifiability and
Evolvability

Changes in the requirements are handled to a large extent by the tool. However,
the changes in the requirements have to be analyzed and the corresponding action
words, entities, and requirements statements in the input list of the tool have to be
added or modified, respectively. The tool then regenerates all views.

Continued on the next page . . .

11Thus, when two themes share the same requirements, one of the themes is crosscutting.

282 Chapter A. Discussion of Aspect-Oriented Requirements Approaches

Criteria Description
Scalability The graphical representation of Theme/Doc very quickly becomes unmanageable,

and, therefore, it does not scale well. In [Bani04b] possible approaches to improve
the scalability are explored.

Understandability The understandability of the Theme/Doc artifacts is rather poor, as the resulting
graph structure tends to be overloaded.

Trade-off The approach neither explicitly supports the identification of con�icting themes
nor how these trade-offs are to be resolved. Therefore, the user of the approach
has to manage trade-offs manually, based on his experience and intuition.

Mapping The requirements models can be mapped directly to Theme/UML design models.

Verification and
Validation

There are no means for automatic validation, thus, a validation has to be done
manually by walking through the (clipped) action view resulting from the analysis.

Concern handling The approach allows all kinds of crosscutting concerns to be described. However,
since the approach is based on natural language analysis of action words, it is
suitable for finding functional crosscutting concerns rather than non-functional
crosscutting concerns. This is due to the fact that non-functional requirements are
often not described by action words.

283

Appendix B

EBNF of the Aspect-Oriented ADORA
language

In the following, the grammar production rules for the ADORA language and its aspect-oriented extension
are presented. An introduction to the ADORA language can be found in Sections 5 and 6. Since the
release of the last version in [Seyb06a], the grammar presented has undergone some changes to support
the aspect-oriented extensions presented in this work.

B.1 Extended Backus Naur Form
In the subsequent section, the Extended Backus Naur Form (EBNF) is used for describing the production
rules of the ADORA languages. The EBNF rules are explained in Table B.1.

Table B.1: Informal Description of the EBNF grammar.

EBNF Element Example Description
“partial” A terminal symbol of the grammar is enclosed between two

quotes and written in bold typewriter font. In the given exam-
ple, the terminal symbol for the keyword partial is given.

ComponentDefinition An element of the grammar starting with an upper case character
denotes a non-terminal symbol, i.e., the name of a production
rule. In the example, the name of the syntax rule for the definition
of a component is given.

<INTEGER_LITERAL> Denotes a set of terminal elements in the grammar given by a
regular expression. In this example, the set of all positive and
negative integer numbers is described (cf. Section B.2).

Continued on the next page . . .

284 Chapter B. EBNF of the Aspect-Oriented ADORA language

EBNF Element Example Description
(. . .) Denotes a grouping of the elements between the two parentheses.

Any operation immediately following the closing parenthesis re-
lates to the group of elements.

(. . .) ? Anything between the parentheses may occur optionally.

(. . . | . . .) Denotes an alternative, i.e., either the elements before or the ele-
ments after the vertical line are given.

(. . .) + The elements grouped by the parentheses may occur one or more
times.

(. . .) * The elements between the parentheses may occur zero or more
times.

“state” StateName
UniqueModelElementIdentifier

An element following another one indicates a sequence of these
elements. In the given example, the keyword state is followed
by the non-terminal StateName which in turn is followed by the
non-terminal UniqueModelElementIdenti�er.

B.2 Regular Expressions in the Grammar
In the ADORA grammar, several regular expressions are given which describe a set of terminal elements.
They are denoted with a name in uppercase letters enclosed by angle brackets. All terminals symbols in
the grammar are given in the following Table B.2.

Table B.2: Regular Expressions in the ADORA grammar.

Token Description
<EOF> Denotes the (non-printable) end-of-file character.

<INTEGER_LITERAL> Describes the set of negative or positive integer literals.

<IDENTIFIER> Denotes the set of identifiers which are formed, as it is usually
done in programming languages, by a sequence of underscores,
upper-, lowercase letters and digits. The start character must be a
letter or an underscore.

<APOSTROPHIZED_IDENTIFIER> Describes the set of identifiers composed of any character. This
type of identifier has to be enclosed by two apostrophes.

<BOOLEAN_LITERAL> Denotes the set of the boolean literals true or false.

Continued on the next page . . .

B.3 EBNF Grammar of the ADORA Language 285

Token Description
<FLOATING_POINT_LITERAL> Describes the set of positive or negative numeric �oating point

literals.

<DATE_LITERAL> Denotes a date of the form yyyy/mm/dd, where yyyy is the year
(any positive four-digit number), mm the number of the month
(01 – 12) and dd the number of the day in the month (01 - 31).

<TIME_LITERAL> Describes the set of time literals of the form hh:mm:ss, where hh
is the number of the hour (00 – 23), mm the number of the
minute (00 – 59) and ss the number of the second (00 – 59).

<INFORMAL_DESCRIPTION> Describes an informal description which is introduced by /# and
closed by #/. Between these delimiters, any character may be
placed.

B.3 EBNF Grammar of the ADORA Language
The ADORA grammar comprises of a set of production rules, as shown in the following Table B.3. The
last rule in this list defines the so-called informal description, which can occur at any place of a textual
ADORA model description (cf. Chapter 6.1.2). This fact is not expressed explicitly as this would bloat the
grammar.

Table B.3: EBNF grammar of the aspect-oriented ADORA language.

Left Hand Side (Rule Name) Right Hand Side (Production)
SpecificationDefinition ::= (“partial”)? “specification” (SpecialIdentifier)?

Model (Representation)? “end” “specification” (
SpecialIdentifier)? <EOF>

Model ::= “model” ((ComponentDefinition |
EnvironmentObjectDefinition | AspectDefinition))*
TypeDefinitions PropertyDefinitions StereotypeDefinitions
“end” “model”

ComponentDefinition ::= (“partial”)? (“external”)? (“start”)?
“component” ComponentName
UniqueModelElementIdentifier (Cardinality)? (“is”
InheritedType)? ComponentParts FunctionalSpecification (
ComponentConnections)? “end” “component”
ComponentName

ComponentName ::= SpecialIdentifier

UniqueModelElementIdentifier ::= SpecialIdentifier

Continued on the next page . . .

286 Chapter B. EBNF of the Aspect-Oriented ADORA language

Left Hand Side (Rule Name) Right Hand Side (Production)
EnvironmentObjectDefinition ::= (“partial”)? “environment” “object”

EnvironmentObjectName UniqueModelElementIdentifier (
Cardinality)? (EnvironmentObjectConnections)? “end”
“environment” “object” EnvironmentObjectName

EnvironmentObjectName ::= SpecialIdentifier

InheritedType ::= “type” QualifiedIdentifier

ComponentParts ::= (“consists” “of” (ComponentDefinition | StateDefinition |
ScenarioDefinition | AspectDefinition)+ “end” “consists”
“of”)?

StateDefinition ::= (“partial”)? (“start”)? “state” StateName
UniqueModelElementIdentifier StateParts (StateConnections)?
“end” “state” StateName

StateName ::= SpecialIdentifier

StateParts ::= (“consists” “of” (StateDefinition)+ “end” “consists”
“of”)?

AspectDefinition ::= (“partial”)? “aspect” AspectName
UniqueModelElementIdentifier AspectParts
FunctionalSpecification AspectConnections “end” “aspect”
AspectName

AspectParts ::= (“consists” “of” (ComponentDefinition | StateDefinition |
ScenarioDefinition | AspectDefinition | ExitPointDefinition)+
“end” “consists” “of”)?

ExitPointDefinition ::= “exit” StateName UniqueModelElementIdentifier “end”
“exit” StateName

AspectName ::= SpecialIdentifier

AspectConnections ::= (“connections” (AssociationDefinition |
AssociationRoleDefinition | JoinRelationshipDefinition)*
“end” “connections”)?

JoinRelationshipDefinition ::= (“partial”)? “joinrelationship”
UniqueModelElementIdentifier “from” ElementReference
“to” ElementReference (“before” | “instead” | “after”
)? (Priority)? (ContextMap)?

Priority ::= <INTEGER_LITERAL>

ContextMap ::= “context” “map” ContextMapping (ContextMapping)*
“end” “context” “map”

ContextMapping ::= Identifier “:” Expression “;”

Continued on the next page . . .

B.3 EBNF Grammar of the ADORA Language 287

Left Hand Side (Rule Name) Right Hand Side (Production)
ScenarioDefinition ::= (“partial”)? ScenarioType “scenario” ScenarioName

UniqueModelElementIdentifier (“on” GuardPart)? (
“iteration” Expression)? (ScenarioConnections)? (
TransformationElements)? “end” “scenario” ScenarioName

ScenarioName ::= SpecialIdentifier

ScenarioType ::= (“alternative” | “sequence” (<INTEGER_LITERAL>
)? | “parallel” | “root” (Cardinality)?)

StateConnections ::= “connections” (TransitionDefinition)* “end”
“connections”

TransitionDefinition ::= (“partial”)? “transition”
UniqueModelElementIdentifier “to” ElementReference (
SimpleTransition | DecisionTableTransition)?

SimpleTransition ::= ConditionPart “|” ActionPart

DecisionTableTransition ::= “table” ConditionBlock ActionBlock “end” “table”

ConditionBlock ::= IdentifiableConditionPart (“;” IdentifiableConditionPart)*

IdentifiableConditionPart ::= ConditionID “:” ConditionPart

ConditionPart ::= (TimeCondition)? (GuardPart)? (MessageReceive)?

GuardPart ::= “[” Expression “]”

ActionBlock ::= “do” ActionPart (ActionConditions (“or” ActionConditions)*
)?

ActionConditions ::= “on” NegatableConditionId (“,” NegatableConditionId)*

NegatableConditionId ::= (“not”)? ConditionID

ConditionID ::= <INTEGER_LITERAL>

ComponentConnections ::= “connections” (AssociationDefinition |
AssociationRoleDefinition | TransitionDefinition)* “end”
“connections”

EnvironmentObjectConnections ::= “connections” (AssociationDefinition |
AssociationRoleDefinition | JoinRelationshipDefinition)*
“end” “connections”

AssociationRoleDefinition ::= Role “of” “association” ElementReference

Role ::= “role” RoleName (Cardinality)?

AssociationDefinition ::= (“partial”)? “association”
UniqueModelElementIdentifier “to” ElementReference Role

RoleName ::= SpecialIdentifier

ScenarioConnections ::= “connections” (ScenarioConnectionDefinition |
AssociationDefinition | AssociationRoleDefinition)* “end”
“connections”

Continued on the next page . . .

288 Chapter B. EBNF of the Aspect-Oriented ADORA language

Left Hand Side (Rule Name) Right Hand Side (Production)
ScenarioConnectionDefinition ::= “scenarioconnection” UniqueModelElementIdentifier

“to” ElementReference

TypeDefinitions ::= (TypeDefinition)*

TypeDefinition ::= (“partial”)? “type” TypeName (“inherits”
InheritedType)? ComponentParts FunctionalSpecification
“end” “type” TypeName

TypeName ::= SpecialIdentifier

PropertyDefinitions ::= (PropertyDefinition)*

PropertyDefinition ::= “propertydef” SpecialIdentifier (“numbered”)?
DataTypeReference (“constraints unique”)? “end”
“propertydef” SpecialIdentifier

StereotypeDefinitions ::= (StereotypeDefinition)*

StereotypeDefinition ::= “stereotype” SpecialIdentifier “for” QualifiedIdentifier (
“,” QualifiedIdentifier)* <STRING_LITERAL>
LocalVariableDefinitions (“condition” Expression)? “end”
“stereotype” SpecialIdentifier

FunctionalSpecification ::= (“functional” “specification” (Provides)? (
Requires)? (Invariants | DataTypeDeclarations |
AttributeDefinitions | Property | OperationDefinition)* “end”
“functional” “specification”)?

Provides ::= “provides” Identifier (“,” Identifier)* “;”

Requires ::= “requires” QualifiedIdentifier (“,” QualifiedIdentifier)* “;”

Invariants ::= “inv” (Expression “;”)+

DataTypeDeclarations ::= “data” “type” (DataTypeDeclaration)+

DataTypeDeclaration ::= DataTypeName “:” DataTypeDefinition “;”

DataTypeDefinition ::= (PrimitiveType | EnumerationTypeDefinition |
DesignedTypeDefinition)

DataTypeName ::= Identifier

DataTypeReference ::= (PrimitiveType | Identifier)

AttributeDefinitions ::= “attributes” (VariableDefinition “;”)+

VariableDefinition ::= VariableNameList “:” DataTypeReference (“=”
ExtendedTypeLiterals)?

VariableName ::= Identifier

VariableNameList ::= VariableName (“,” VariableName)*

Property ::= “property” Identifier (<INTEGER_LITERAL>)?
TypeLiteral “;”

Continued on the next page . . .

B.3 EBNF Grammar of the ADORA Language 289

Left Hand Side (Rule Name) Right Hand Side (Production)
OperationDefinition ::= (AsyncOperationSignature | SyncOperationSignature) (“is”

“set” “operation”)? (LocalVariableDefinitions)? (
PreConditions)? (PostConditions)? (Statements)? “end”
“operation” OperationName

OperationName ::= Identifier

AsyncOperationSignature ::= “operation” OperationName “(” (Parameters)? “)”

SyncOperationSignature ::= “syncoperation” OperationName “(” (SyncParameterList
)? “)” (“:” DataTypeReference)?

LocalVariableDefinitions ::= “var” (VariableDefinition “;”)+

PreConditions ::= “pre” (Expression “;”)+

PostConditions ::= “post” (Expression “;”)+

Statements ::= “statements” Statement (“;” Statement)*

Statement ::= (GuardPart)? (Assignment |MessageSend |MetaFunction)

Assignment ::= ExtendedQualifiedIdentifier “=” Expression

MetaFunction ::= (StructureMetaFunction | QueryMetaFunction |
ObjectSetMetaFunction)

StructureMetaFunction ::= (“compositionOf” | “componentsOf” |
“isActiveState”) “(” (ActualParamList)? “)”

QueryMetaFunction ::= (“findObjects” | “systemtime”) “(” (Expression)? “)”

ObjectSetMetaFunction ::= (“maxObjectNumber” | “minObjectNumber” |
“actObjectNumber” | “create” | “dispose”) “(” (
ActualParamList)? “)”

SyncParameterList ::= (SyncParamListOut | SyncParamListIn) (“;” (
SyncParamListOut | SyncParamListIn))*

SyncParamListIn ::= (“in”)? Parameters

SyncParamListOut ::= “out” Parameters

Parameters ::= ParameterDefinition (“,” ParameterDefinition)*

ParameterDefinition ::= VariableName “:” DataTypeReference

Expression ::= (ConditionalOrExpression (“or” ConditionalOrExpression)* |
QuantifiedExpression)

QuantifiedExpression ::= (“for” “all” | “exists”) VariableName “:”
DataTypeReference “insetof” ExtendedQualifiedIdentifier
“(” Expression “)”

ConditionalOrExpression ::= ConditionalAndExpression (“and” ConditionalAndExpression
)*

ConditionalAndExpression ::= ImplEqualExpression ((“->” | “<->”) ImplEqualExpression
)*

Continued on the next page . . .

290 Chapter B. EBNF of the Aspect-Oriented ADORA language

Left Hand Side (Rule Name) Right Hand Side (Production)
ImplEqualExpression ::= EqualityExpression ((“==” | “!=”) EqualityExpression)*

EqualityExpression ::= RelationalExpression ((“<” | “>” | “<=” | “>=”)
RelationalExpression)*

RelationalExpression ::= AdditiveExpression ((“+” | “-”) AdditiveExpression)*

AdditiveExpression ::= MultiplicativeExpression ((“*” | “/”)
MultiplicativeExpression)*

MultiplicativeExpression ::= (“not” | “-”)* UnaryExpression

UnaryExpression ::= (ActualParam | “(” Expression “)”)

PrimitiveType ::= (“string” | “integer” | “time” | “float” | “boolean” |
“id”)

EnumerationTypeDefinition ::= “(” VariableName (“,” VariableName)* “)”

DesignedTypeDefinition ::= (TypeConstraintDefinition | ListTypeDefinition |
StructureTypeDefinition)

TypeConstraintDefinition ::= “constrained” VariableName “:” PrimitiveType “(”
Expression “)”

ListTypeDefinition ::= “list” “of” DataTypeReference

StructureTypeDefinition ::= “structure” “of” “(” VariableDefinition (“;”
VariableDefinition)* “)”

TimeCondition ::= (“steps” | “secs”) <INTEGER_LITERAL> “after” (
“simulation start” | “state entered” |
“object initialized”)

MessageReceivePart ::= MessageReceive (“;” MessageReceive)*

MessageReceive ::= “receive” (“low” | “high” | “default”)? (“queued”)?
(ExtendedQualifiedIdentifier “=”)? EventName “(” (
SyncParameterList)? “)” (“over” AssociationRoleNameList
)? (“from” ComponentNameList)?

AssociationRoleNameList ::= SpecialIdentifier (“,” SpecialIdentifier)*

ComponentNameList ::= QualifiedIdentifier (“,” QualifiedIdentifier)*

ActionPart ::= (EmbeddedOperation | OperationCall)?

EmbeddedOperation ::= (“syncexec”)? (LocalVariableDefinitions)? (PreConditions
)? (PostConditions)? Statement (“;” Statement)*

OperationCall ::= “call” (OperationName (“(” (ActualParamList)? “)”)?)?

MessageSendPart ::= MessageSend (“;” MessageSend)*

MessageSend ::= “send” (“multicast”)? EventName “(” (ActualParamList
)? “)” (“over” AssociationRoleNameList)? (“to”
ComponentNameList)? ObjectSetAddress

ObjectSetAddress ::= (Index)? (AnonymousList | QualifiedIdentifier)?

Continued on the next page . . .

B.4 Production Rules of Identifiers and References 291

Left Hand Side (Rule Name) Right Hand Side (Production)
TransformationElements ::= (TransformInput | TransformOutput) (“;” (TransformInput |

TransformOutput))*

TransformInput ::= “transform” “input” EventName “(” (SyncParameterList
)? “)” (“over” RoleName | “to” QualifiedIdentifier)?

TransformOutput ::= “transform” “output” EventName “(” (
SyncParameterList)? “)” (“over” RoleName | “from”
QualifiedIdentifier)?

ActualParamList ::= ActualParam (“,” ActualParam)*

ActualParam ::= (TypeLiteral | ExtendedQualifiedIdentifier |MetaFunction)

Identifier ::= <IDENTIFIER>

SpecialIdentifier ::= (Identifier | <APOSTROPHIZED_IDENTIFIER>)

ElementReference ::= SpecialIdentifier

QualifiedIdentifier ::= SpecialIdentifier (“.” SpecialIdentifier)*

ExtendedQualifiedIdentifier ::= QualifiedIdentifier (“@pre”)? (Index)?

EventName ::= Identifier

TypeLiteral ::= (<STRING_LITERAL> | <BOOLEAN_LITERAL> |
<INTEGER_LITERAL> | <FLOATING_POINT_LITERAL>
| TimeStamp)

TimeStamp ::= (<DATE_LITERAL> (“,” <TIME_LITERAL>)? |
<TIME_LITERAL>)

ExtendedTypeLiterals ::= TypeLiteral | QualifiedIdentifier | AnonymousList

AnonymousList ::= “{” ExtendedTypeLiterals (“,” ExtendedTypeLiterals)* “}”

Index ::= “[” IndexDimension (“,” IndexDimension)* “]”

IndexDimension ::= <INTEGER_LITERAL> | ExtendedQualifiedIdentifier

Cardinality ::= “(” (<INTEGER_LITERAL> | <IDENTIFIER>) “,” (
<INTEGER_LITERAL> | <IDENTIFIER>) “)”

InformalDescription ::= <INFORMAL_DESCRIPTION>

B.4 Production Rules of Identi�ers and References
There are four different basic grammar rules (cf. Section B.3) on which all identifiers and references are
based. The Identi�er rule specifies identifiers as they are known from common programming languages.
It consists of digits, upper and lower case letters and underscores, where the first character is always a
letter or an underscore. Another type of identifier is a SpecialIdenti�er which is either an Identi�er or any
character string, including the empty string, enclosed in apostrophes.

A Quali�edIdenti�er is a sequence of SpecialIdenti�ers connected by dots. Quali�edIdenti�ers are
used to reference elements which have a name [Seyb06a, p. 14]. The segments in a reference consist of
two parts: a path and the name of the referred element. The path is composed of the names of the ancestors

292 Chapter B. EBNF of the Aspect-Oriented ADORA language

of the model decomposition hierarchy. For example, if a component with the name C is referred and it is
embedded in component B which in turn lies in A, then the qualified name is A.B.C, where A.B is the path.

Furthermore, if the first segment of a Quali�edIdenti�er is this, then the following path is relative to
the component where the Quali�edIdenti�er occurs. For instance with respect to the example A.B.C, a
qualified identifier this.C occurring in the component B is equal to the qualified name A.B.C. If the first
segment of a qualified identifier is parent, then the following path relates to the parent of the component
where the Quali�edIdenti�er occurs. With respect to the example A.B.C, parent.X occurring in the
component C is equal to the qualified identifier A.B.X.

Another identifier is the ExtendedQuali�edIdenti�er which is a Quali�edIdenti�er that might option-
ally have an index for referring to the elements of a field and a pre directive which is employed in the
description of pre-, postconditions and invariants (cf. Section 5.2.6). Furthermore, the ExtendedQuali-
�edIdenti�er may be used in Expressions and the actual parameters of operations.

The rule UniqueModelElementIdenti�er defines the generated identifiers in the ADORA grammar of
Appendix B, whereas ElementReference gives a definition of the corresponding references. Grammar
rules ending with the suffix Name define what a name looks like, whereas the rule Quali�edIdenti�er or
ExtendedQuali�edIdenti�er describe the corresponding references. A list of all the production rules that
define generated identifiers or names and the corresponding references are given in Table B.4.

The four basic identifier rules are used to define specific identifier rules which are referred by the rules
of other elements of the language. In Table B.4 a list of the rules which define generated identifiers and
names (cf. Section 6.1.5) is given. The first column shows the name of the particular rule. The second
colum indicates the type of the identifier, where G means generated, N means Name, R reference and I
identifier. The third column describes in detail, where the rule is used.

Table B.4: Grammar rules of identifiers and references

Grammar Rule Name Type Description
ComponentName N I Describes the name of a component.

UniqueModelElementIdentifier G I Is used for identifying main elements in a textual ADORA model
(Speci�cationDe�nition, ComponentDe�nition, EnvironmentOb-
jectDe�nition, StateDe�nition, ScenarioDe�nition, Transition-
De�nition, AssociationRoleDe�nition, ScenarioConnectionDe�-
nition).

EnvironmentObjectName N I Describes the name of an environment object.

TypeQualifiedName N R Describes which type is used for an object. A type may consist of
a qualified name. The qualified name may denote the inheritance
path to disambiguate which type is used.

StateName N I Describes the name of a state.

ScenarioName N I Describes the name of a scenario node.

RoleName N I Describes the role name of an association role.

Continued on the next page . . .

B.4 Production Rules of Identifiers and References 293

Grammar Rule Name Type Description
TypeName N I Describes the name of a Type.

DataTypeName N I Describes the name of a data type.

VariableName N I Describe the name of a variable. This production rule is used for
variable declarations.

OperationName N I Describes the name of an operation.

ElementReference G R Gives a reference on an arbitrary modeling element. Ele-
mentReference refers to the element which is identified by a
UniqueModelElementIdenti�er.

EventName N I Defines the names of events. This production rule is used in
the MessageSend, MessageReceive, TransformInput and Trans-
formOutput elements.

Identifier N R Describes the reference of a name.

SpecialIdentifier N R Describes the reference of a name.

295

Appendix C

Mapping of Graphical ADORA Model
Elements

In the ADORA language, each main language element is mapped to a graphical element [Xia04]. The
following table presents a version of the graphical mapping which was adapted in [Seyb06a] to fit a
revised grammar version of ADORA. The current mapping is extended to the newest version of the ADORA

grammar in Appendix B.
In the first column of the following table, the language element which is mapped is named. The second

column indicates the grammar rule. The third column gives an instance of the grammar rule and, finally,
the fourth column shows the corresponding graphical representation.

Table C.1: Graphical Mapping for the aspect-oriented ADORA Language

Name Grammar Rule Textual Instance Graphical Mapping

Abstract Ob-
ject

Component-
Definition

/# Informal Description #/
component Name Identi�er (1, 1)
. . .
end component Name

Name

Object Set Component-
Definition

/# Informal Description #/
component Name Identi�er (n,m)
. . .
end component Name

Name

(n,m)

Abstract Start
Object

Component-
Definition

/# Informal Description #/
start component Name Identi�er (1,1)
. . .
end component Name

Name

Continued on the next page . . .

296 Chapter C. Mapping of Graphical ADORA Model Elements

Name Grammar Rule Textual Instance Graphical Mapping

Partial Ab-
stract Object

Component-
Definition

/# Informal Description #/
partial component Name Identi�er (1,1)
. . .
end component Name

Name...

State State-
Definition

/# Informal Description #/
state Name Identi�er
. . .
end state Name

Name

Start State State-
Definition

/# Informal Description #/
start state Name Identi�er
. . .
end state Name

Name

Root Scenario Scenario-
Definition

/# Informal Description #/
root (n,m) scenario Name Identi�er
. . .
end scenario Name

Name
(n,m)

Parallel Sce-
nario

Scenario-
Definition

/# Informal Description #/
parallel scenario Name Identi�er on [Entry
Condition] iteration IterationCondition
. . .
end scenario Name

Name
IterationCondition

EntryCondition

II *

Sequential
Scenario

Scenario-
Definition

/# Informal Description #/
sequence no scenario Name Identi�er
. . .
end scenario Identi�er

Nameno.

Alternative
Scenario

Scenario-
Definition

/# Informal Description #/
alternative no scenario Name Identi�er on
[Entry Condition]
. . .
end scenario Name Identi�er

NameO

Environment
Object (Ac-
tor)

Environment-
Object-
Definition

/# Informal Description #/
environment object Name Identi�er (m,n)
. . .
environment object Name

Name

Environment
Object Set

Environment-
Object-
Definition

/# Informal Description #/
environment object Name Identi�er (m,n)
. . .
end environment object Name

Name
(n,m)

Continued on the next page . . .

297

Name Grammar Rule Textual Instance Graphical Mapping

Aspect Aspect-
Definition

/# Informal Description #/
aspect Name Identi�er
end aspect Name

Name

Association Association-
Definition

/# Informal Description #/
association Identi�er to target_identi�er
role Role (m,n)

Role (m,n) target_
identifierNameName

Transition Transition-
Definition

/# Informal Description #/
transition Identi�er to target_identi�er
Condition | Action

Condition |
Action target_

identifierName

Join Relation-
ship

Join
Relationship-
Definition

/# Informal Description #/
joinrelationship Identi�er
from orig_identi�er
to target_identi�er before

before target_
identifier

AA

BB

XX

299

Appendix D

Textual ADORA Example Model

D.1 Example of a Conventional ADORA Text Model
The following Listing D.1 contains the textual representation of the model given by Fig. 5.2. In the
following, it is assumed that the components and scenarios containing an ellipsis are partial.

Listing D.1: An example of a textual ADORA model which shows a partial version of the
library system.

1 speci�cation LibrarySystem
2 model
3 component LibrarySystem ’1.1’ (1,1) is type Root
4 consists of
5 partial component User ’1.1.1’ (0,m)
6 connections
7 role ReadUserInfo (1,1) of association ’1.1.4.a.2’
8 association ’1.1.1.a.1’ to ’1.1.6’ role GetUserId (1,1)
9 role borrows (0,p) of association ’1.1.2.a.2’

10 end connections
11 end component User
12
13 partial component Book ’1.1.2’ (0,n)
14 connections
15 role ReadCatalogBA (1,1) of association ’1.1.5.a.1’
16 association ’1.1.2.a.1’ to ’1.1.3’ role ReadCatalogBM (1,1)
17 association ’1.1.2.a.2’ to ’1.1.1’ role borrowedBy (0,1)
18 end connections
19 end component Book
20
22 partial component BorrowManager ’1.1.3’ (1,1)
23 consists of
24 root scenario BorrowBooks ’1.1.3.1’
25 connections
26 scenarioconnection ’1.1.3.1.s.1’ to ’1.1.3.2’

300 Chapter D. Textual ADORA Example Model

27 scenarioconnection ’1.1.3.1.s.2’ to ’1.1.3.3’
28 scenarioconnection ’1.1.3.1.s.3’ to ’1.1.3.4’
29 association ’1.2.a.1’ to ’1.2’ role ’’ (1,1)
30 end connections
31 end scenario BorrowBooks
32
33 partial sequence 1 scenario SelectBooks ’1.1.3.2’
34 end scenario SelectBooks
35
36 partial sequence 2 scenario Authenticate ’1.1.3.3’
37 end scenario Authenticate
38
39 partial sequence 3 scenario RegisterBorrowing ’1.1.3.4’
40 end scenario RegisterBorrowing
41 end consists of
42 connections
43 role BorrowBooks (1,1) of association ’1.1.2.a.1’
44 association ’1.1.3.a.1’ to ’1.1.6’ role AuthenticateBorrowing (1,1)
45 end connections
46 end component BorrowManager
47
48 partial component UserAdministration ’1.1.4’ (1,1)
49 connections
50 role GetFeedback (1,1) of association ’1.4.a.1’
51 association ’1.1.4.a.1’ to ’1.1.6’ role AuthenticateUserAdm (1,1)
52 association ’1.1.4.a.2’ to ’1.1.1’ role ManageUserInfo (1,1)
53 end connections
54 end component UserAdministration
55
56 partial component BookAdministration ’1.1.5’ (1,1)
57 connections
58 role GetFeedback (1,1) of association ’1.3.a.1’
59 association ’1.1.5.a.1’ to ’1.1.2’ role ManageCatalog (1,1)
60 association ’1.1.5.a.2’ to ’1.1.6’ role AuthenticateBookAdm (1,1)
61 end connections
62 end component BookAdministration
63
64 partial component Authorization ’1.1.6’ (1,1)
65 consists of
66 start state Wait ’1.1.6.1’
67 connections
68 transition ’1.1.6.1.t.1’ to ’1.1.6.2’
69 [not authenticated]
70 receive queued msg=authenticate(user : string, pw : string) over
71 AuthenticateBorrowing, AuthenticateBookAdm,

D.1 Example of a Conventional ADORA Text Model 301

72 AuthenticateUserAdm | send getUserInfo(user, pw) over SendUserInfo
73
74 transition ’1.1.6.1.t.2’ to ’1.1.6.1’
75 [authenticated] receive queued msg=authorized(user : string, pw : string) over
76 AuthenticateBorrowing, AuthenticateBookAdm,
77 AuthenticateUserAdm | call
78 end connections
79 end state Wait
80 state UserInfo ’1.1.6.2’
81 connections
82 transition ’1.1.6.2.t.1’ to ’1.1.6.3’
83 receive userInfo(ui : userinfo) over GetUserId |
84 syncexec send composeUserCredentials() to UserCredentials
85 end connections
86 end state UserInfo
87 state Authorizing ’1.1.6.3’
88 connections
89 transition ’1.1.6.3.t.1’ to ’1.1.6.1’
90 receive userCredentials() from UserCredentials |
91 send authorized() to msg.msgAnswerTarget
92 end connections
93 end state Authorizing
94 partial component ’1.1.6.4’ UserCredentials
95 end component UserCredentials
96 end consists of
97 functional speci�cation
98 requires LibrarySystem.User.userinfo;
99 attributes msg : message;

100 operation authenticate(user : string, pw : string)
101 statements
102 send authorized() to msg.msgAnswerTarget
103 end operation authenticate
104 end functional speci�cation
105 connections
106 role SendUserInfo (1,1) of association ’1.1.1.a.1’
107 role AuthorizeUserAdm (1,1) of association ’1.1.4.a.1’
108 role AuthorizeBookAdm (1,1) of association ’1.1.5.a.2’
109 role AuthorizeBorrowing (1,1) of association ’1.1.3.a.1’
110 end connections
111 end component Authorization
112 end consists of
113 end component LibrarySystem
114
115 environment object LibraryUser ’1.2’
116 connections

302 Chapter D. Textual ADORA Example Model

117 association ’1.2.a.1’ to ’1.1.3.1’ role ’’ (1,1)
118 end connections
119 end environment object LibraryUser
120
121 environment object BookAdministrator ’1.3’
122 connections
123 association ’1.3.a.1’ to ’1.1.1.5’ role ManageBooks (1,1)
124 end connections
125 end environment object BookAdministrator
126
127 environment object UserAdministrator ’1.4’
128 connections
129 partial association ’1.4.a.1’ to ’1.1.4’ role ManageUsers (1,1)
130 end connections
131 end environment object UserAdministrator
132 end model
133 end speci�cation LibrarySystem

D.2 Example of Textual Description of an Aspect Module
Listing D.2 contains the textual model description of the aspect Authentication shown in Fig. 7.2. It is
assumed that the elements containing an ellipsis in their name are partial.

Listing D.2: The Authentication aspect from the model of Fig. 7.2 as textual specification.
1 aspect Authentication ’1.1.7’
2 consists of
3 state WaitForUserName ’1.1.7.1’
4 connections
5 transition ’1.1.7.t.1’ to ’1.1.7.2’
6 receive userNameEntered(name : string) | call
7 end connections
8 end state WaitForUserName
9 state Authenticate ’1.1.7.2’

10 connections
11 transition ’1.1.7.t.2’ to ’1.1.7.3’
12 receive authorized() over Authorized |
13 transition ’1.1.7.t.3’ to ’1.1.7.2’
14 receive userPWEntered(pw : string) |
15 send authenticate(user, pw) over Authenticate;
16 send log(user, pw) to AuthenticationLog
17 end connections
18 end state Authenticate
19 start state WaitForHintRequest ’1.1.7.3’
20 connections

D.2 Example of Textual Description of an Aspect Module 303

21 transition ’1.1.7.3.t.1’ to ’1.1.7.4’
22 receive requestHint(name : String) | send getHint(name) over Authenticate
23 end connections
24 end state WaitForHintRequest
25 state WaitForHintQuestion ’1.1.7.4’
26 connections
27 transition ’1.1.7.4.t.1’ to ’1.1.7.5’
28 receive hint(hint : string) over Authorize | send showHint(hint)
29 end connections
30 end state WaitForHintQuestion
31 state WaitForAnswer ’1.1.7.5’
32 connections
33 transition ’1.1.7.5.t.1’ to ’1.1.7.6’
34 receive enterAnswer(a:string) | send verifyAnswer(a) over Authenticate
35 end connections
36 end state WaitForAnswer
37 state WaitForHintPassword ’1.1.7.6’
38 connections
39 transition ’1.1.7.6.t.1’ to ’1.1.7.3’
40 receive result(pwMsg : string) over Authorize | send showPwMsg(pwMsg)
41 end connections
42 end state WaitForHintPassword
42 exit Authorized ’1.1.7.7’
43 end exit Authorized
44 root scenario Authenticate ’1.1.7.8’
45 connections
46 scenarioconnection ’1.1.7.8.s.1’ to ’1.1.7.9’
47 scenarioconnection ’1.1.7.8.s.2’ to ’1.1.7.10’
48 end connections
49 end scenario Authenticate
50 sequence 1 scenario EnterUsername ’1.1.7.9’
51 transform input userNameEntered(name : string)
52 end scenario EnterUsername
53 sequence 2 scenario EnterPassword ’1.1.7.10’
54 transform input userPWEntered(pw : string)
55 end scenario EnterPassword
56 partial component AuthenticationLog ’1.1.7.11’
57 end component AuthenticationLog
58 root scenario RequestPassword ’1.1.7.12’
59 connections
60 scenarioconnection ’1.1.7.12.s.1’ to ’1.1.7.13’
61 scenarioconnection ’1.1.7.12.s.2’ to ’1.1.7.14’
62 scenarioconnection ’1.1.7.12.s.3’ to ’1.1.7.15’
63 association ’1.1.7.12.a.1’ to ’2’ role ’’
64 end connections

304 Chapter D. Textual ADORA Example Model

66 end scenario RequestPassword
67 partial sequence 1 scenario ReceiveHint ’1.1.7.13’
68 end scenario ReceiveHint
69 partial sequence 2 scenario EnterAnswer ’1.1.7.14’
70 end scenario EnterAnswer
71 partial sequence 3 scenario GetPassword ’1.1.7.15’
72 end scenario GetPassword
73 end consists of
74 functional speci�cation
75 attributes
76 user : string;
77 operation userNameEntered(name : string)
78 statements
79 user = name
80 end operation userNameEntered
81 end functional speci�cation
82 connections
83 association ’1.1.7.a.1’ to ’1.1.6’ role ’Authenticate’
84 joinrelationship ’1.1.7.j.1’ from ’1.1.7.1’ to ’1.1.3.t.2’ before
85 joinrelationship ’1.1.7.j.2’ from ’1.1.7.1’ to ’1.1.5.t.2’ before
86 joinrelationship ’1.1.7.j.3’ from ’1.1.7.1’ to ’1.1.5.t.3’ before
87 joinrelationship ’1.1.7.j.4’ from ’1.1.7.4’ to ’1.1.3.3’ before
88 joinrelationship ’1.1.7.j.5’ from ’1.1.7.4’ to ’1.1.5.8’ before
89 joinrelationship ’1.1.7.j.6’ from ’1.1.7.4’ to ’1.1.5.11’ before
90 end connections
91 end aspect Authentication

305

Appendix E

Functions on Syntax Trees

In the this Section of the appendix, a catalog of ADORA syntax tree functions is presented. They are used
for defining the constraints discussed in Chapter 7 and the model transformations in Chapter 9. The catalog
is divided into three subsections. The first Section E.1 gives a formal description of the set of syntax trees
∆ (cf. Section 6.2). Section E.3 contains primitive functions, such as projection, insertion and deletion of
syntax tree elements. Section E.4 presents functions which are used for retrieving properties of a given
model tree, such as the parts of a component or the sequence number of a scenario. Section E.2 contains an
alphabetical register of all ADORA syntax tree functions presented in the following. Section E.5 presents
functions which are used to define the language constraints of the aspect-oriented language elements.
Section E.6 introduces functions that are employed for the weaving of model transformations.

E.1 Formalized Data Structure for Syntax Tree
There is a parsing function1 ρ : (G × L) → ∆ which takes the rules in grammar G (cf. Definition 6.1)
and an arbitrary word w ∈ L, where L ⊆ T ∗ is the language generated by G. ρ produces a syntactically
correct syntax tree δ ∈ ∆ from the given input, where ∆ is the set of syntax trees (cf. Section E.1).

Let N be the set of non-terminals and T the set of terminals of the ADORA grammar definition (cf.
Section 6.1.1). In that case, the set ∆ of ADORA syntax trees is defined inductively as follows:

i. The set of syntax trees ∆ contains all terminal elements, i.e., T ⊂ ∆.

ii. Furthermore, the set of syntax trees ∆ contains pairs of the form N × ∆k

where k ∈ N and ∆k denotes a tuple of k elements from the set ∆.

iii. ∆ contains only elements obtained from the clauses i and ii.

(E.1)

Hence, the set ∆ consists of all syntax trees adhering to the grammar G as well as all possible subtrees
also including terminal elements.2 Note that ∆ will be used in the appendix of this work to refer to
ADORA syntax trees when defining parts of the language formally.

1The parsing function is not at the focus of interest and therefore, it is not elaborated here.
2Thus, the parsing function ρ is not surjective as it does not return all elements of its codomain ∆.

306 Chapter E. Functions on Syntax Trees

A a

Figure E.1: A simple example model for the illustration of functions working on syntax
trees. The model shows a component A with a re�exive transition.

E.2 Alphabetical Catalog of Functions
The functions use logical functions and set operations as basic constructs. They are either defined in
a mathematical notation or, where it is more convenient, in pseudocode. Note that the definition of a
function in pseudocode aims at presenting the function’s semantics, and not at an efficient performance.

For discussing some of the functions defined in the following, the simple ADORA model in Fig. E.1
will be used. Its concrete syntax tree is given in Fig. E.2, whereas its tuple structure can be found in
Fig. E.3.

The following Table E.1 contains an alphabetical list of all syntax tree functions presented in the
following.

Table E.1: Alphabetical list of syntax tree function.

Function name Page Type of function
π→ see also projection 309 primitive

ρ 311 primitive

ρ−1 311 primitive

actionPart 312 basic

adaptCloneReferences 352 weaving

arity 309 primitive

attributes 313 basic

distance 319 basic

calcdistance 313 basic

child 312 primitive

childOfType 313 basic

children 312 primitive

childrenSet 314 basic

childrenSetOfType 314 basic

cloneElement 352 weaving

Continued on the next page . . .

E.2 Alphabetical Catalog of Functions 307

Function name Page Type of function
conditionPart 314 basic

connections 316 basic

containedAspects 343 aspect

containsElement 316 basic

createAdditionalExitStateClone 354 weaving

createCloneId 354 weaving

createCloneMap 355 weaving

createElementReferenceTree 316 basic

createUniqueElementIdentTree 316 basic

dataTypeDeclarations 319 basic

decompositionParent 319 basic

delete 310 primitive

descendants 319 basic

distance 319 basic

elementReference 321 basic

enclosingAspects 343 aspect

endTargetModules 345 aspect

equals 321 basic

exitPoints 345 aspect

�lterFsElement 321 basic

�lterOperationOrProperties 321 basic

�lterProvidesRequires 323 basic

�lterSet 323 basic

�nd 323 basic

�ndClone 356 weaving

�ndEoJrs 346 aspect

�ndJoinRelationshipCycle 346 aspect

�ndOrderingGroups 356 weaving

�ndParentAndChildrenScenarios 325 basic

�ndScenarioGroupMembers 325 basic

�ndScenarioSubtreeMembers 327 basic

�ndStateGroupMembers 327 basic

�rstJr 357 weaving

�atenTuple 327 basic

functionalSpec 327 basic

Continued on the next page . . .

308 Chapter E. Functions on Syntax Trees

Function name Page Type of function
gatherAspects 346 aspect

gatherJrs 357 weaving

generateUniqueElementIdenti�er 357 weaving

generateUniqueName 359 weaving

generateUniqueRole 359 weaving

hasJoinRelationshipCycles 348 aspect

identicalElement 359 weaving

insert 310 primitive

invariants 329 basic

isPredecessorGroup 360 weaving

jrHostingAspect 348 aspect

mappedReference 360 weaving

operations 329 basic

orderedChildrenOfType 329 basic

ordering 348 aspect

partial 330 basic

parts 330 basic

priority 351 aspect

prioritySort 360 weaving

projection 309 primitive

provides 331 basic

requires 331 basic

removeScenarios 362 weaving

roleChannelNames 332 basic

roleName 332 basic

rootScenarios 332 basic

scenarioGroups 332 basic

scenarioParent 335 basic

scenarioSiblings 335 basic

scenarioType 335 basic

seekTargetConnections 335 basic

serverComponentAssociations 351 aspect

seqNo 335 basic

sortTargetGroups 362 weaving

source 337 basic

Continued on the next page . . .

E.3 Primitive Functions 309

Function name Page Type of function
sourceRole 337 basic

specialIdenti�er 338 basic

standardizedProperties 338 basic

startStates 338 basic

stateGroups 338 basic

target 339 basic

targetConnections 341 basic

targetModule 351 aspect

targetRole 341 basic

topologicJrSort 362 weaving

treeAncestor 343 basic

type 311 primitive

uniqueElementIdenti�er 343 basic

E.3 Primitive Functions
ADORA models are syntax trees that are represented as tuple structures (cf. Section 6.2.1). Several prim-
itive functions are introduced in the following. The first function allows retrieval of the arity and doing a
projection on a specific element in a syntax tree. The function delete and insert provide a way to manip-
ulate a syntax tree. The function ρ allows creation of a syntax tree from a textual model, and the function
ρ−1 performs the reverse operation. The functions child and children are introduced for reasons of conve-
nience. They return one specific child, or all children of a given root node of a syntax tree, respectively.
Finally, the function type allows retrieval of the type of a given syntax (sub)tree.

All primitive functions are employed to build more complex functions. These complex functions are
in turn either used to read the basic properties, to retrieve aspect-oriented elements, or to perform the
weaving transformations of ADORA model.

Arity of a tuple. In Definition E.2, the function arity : M0 ×M1 × . . . ×Mk → N is given, where
M0,M1, . . . ,Mk denote arbitrary sets. The function takes a tuple m ∈M0 ×M1 × . . .×Mk and returns
the number of elements contained in the tuple. Note that tuples with no elements are denoted as ∅.

arity(m) =

{
k + 1 if m = (m0, . . . ,mn, . . . ,mk)
0 if m = ∅

(E.2)

Projection of tuple. Definition E.3 specifies the projection function πn : N0×M0×M1× . . .×Mn×
. . .×Mk → Mn for a given tuple m = (m0, . . . ,mn, . . . ,mk), where n ∈ N0. The function returns the
empty word ε if n ≥ arity(m).

310 Chapter E. Functions on Syntax Trees

SpecificationDefinition

Model

model ComponentDefinition

component ComponentName ComponentConnections end component

modelend

end specification specification

UniqueModelElementIdentifier

SpecialIdentifier

Identifier

A

SpecialIdentifier

'1'

connections AssociationDefinition connectionsend

association UniqueModelElementIdentifier to ElementReference Role

SpecialIdentifier

'1'

SpecialIdentifier

'1.a.1'

RoleName Cardinality

SpecialIdentifier

Identifier

a

(1 , 1)

SpecialIdentifier

'Sample Model'

SpecialIdentifier

'Sample Model'

SpecialIdentifier

Identifier

A

ComponentName

Figure E.2: A concrete syntax tree example. It shows the concrete syntax tree for the model
of Fig. E.1.

πn(m) =

mn if n < arity(m)
ε if n ≥ arity(m)
ε if arity(m) = 0

(E.3)

Insert an element into a tuple. Definition E.4 defines the function insertn which inserts an element
r ∈ R, where R is an arbitrary set, in a tuple m ∈ (M0 ×M1 × . . .×Mk) at the position of the element
mn. The elements mi with i ≥ n are positioned at the index i+ 1. If the position of n is equal or greater
than the arity of the tuple, the value is inserted at the end.

insertn(m, r) =

(
∅, r
)
7→ (r) if arity(m) = 0

(
(m0, . . . ,mk), r

)
7→ (m0, . . .mk, r) if arity(m) ≤ n

(
(m0, . . . ,mn, . . .mk), r

)
7→ (q0, . . . , qn, . . . qk+1),

where
(
∀i ∈ N0 : i < n⇒ (qi = mi)

)
∧(

∀i ∈ N0 : (n < i < k + 2)⇒ (qi = mi−1)
)
∧ qn = r

if arity(m) > n

(E.4)

Delete an element from a tuple. Definition E.5 describes the delete operation for an element of a
tuple. The function removes the element at position n from a tuple m ∈ (M0 ×M1 × . . .×Mk).

E.3 Primitive Functions 311

(SpecificationDefinition, (specification, (SpecialIdentifier, (’Sample Model’)),
(specification, (Model, (model, (ComponentDefinition, (component, (Compo-
nentName, ((SpecialIdentifier, ((Identifier, (A)))))), (UniqueModelElementIdentifier, ((Spe-
cialIdentifier, (’1’)))), (ComponentConnections, (connections, (AssociationDefinition,
(association, (UniqueModelElementIdentifier, ((SpecialIdentifier,(’1.a.1’)))), to, (El-
ementReference, ((SpecialIdentifier,(’1’)))), (Role, (role, (RoleName, ((SpecialIdentifier,
((Identifier,(a)))))), (Cardinality, ((, 1, ,, 1,))))))), end, connections)), end, com-
ponent), (ComponentName, ((SpecialIdentifier, ((Identifier, (A))))))), end, model)), end,
specification), (SpecialIdentifier, (’Sample Model’))))

Figure E.3: A tuple representation of the ADORA model of Fig. E.1.

deleten(m) =

∅ 7→ ∅ if arity(m) = 0

(m0,m1, . . .mk) 7→ (m0,m1, . . .mk) if arity(m) ≤ n

(m0, . . . ,mn, . . .mk) 7→ (q0, . . . , qn−1, qn, . . . qk−1),
where

(
∀i ∈ N0 : i < n⇒ (qi = mi)

)
∧(

∀i ∈ N0 : (n ≤ i < k)⇒ qi = mi+1

) if arity(m) > n

(E.5)

Creating a syntax tree from a text model. The function ρ : (G×L)→ ∆ takes the grammar G (cf.
Definition 6.1) and an arbitrary word w ∈ L, where L ⊆ T ∗ is the language generated by G. ρ produces a
syntactically correct syntax tree δ ∈ ∆ from the given input, where ∆ is the set of syntax (sub)trees. See
also Section 6.2.1 for further explanations. This function is not algorithmically described in the appendix.

Creating a text model from a syntax tree. The function ρ−1 : ∆→ T ∗ is the inverse of the parsing
function ρ presented above. It takes the syntax tree of any ADORA model element and creates a textual
description of it. This function is not algorithmically described in the appendix.

Retrieving the type of a syntax tree. A particular ADORA syntax tree or subtree has a specific type.
Its type is defined by the label of the tree’s root node. For example, in Fig. E.2, the subtree defining the
component A is of the type ComponentDe�nition. The type information can contain additional informa-
tion which might be useful to relate a particular semantics to a given element of a subtree. For instance
in the model of Fig. E.2, the unique identifier of the component A is '1' is defined by the correspond-
ing UniqueModelElementIdenti�er branch (cf. the third branch from the left of the component subtree).
Furthermore, the component A is referenced by a re�exive association. Thus, the corresponding Associa-
tionDe�nition contains a reference '1' (cf. the second-last branch in the association’s subtree). Both, the
identifier of component A as well as the reference adhere to the same rules.3 However, for distinguishing
identifiers from references, the parent trees containing them are of different types. Identifiers are defined

3Both are defined by a SpecialIdenti�er rule.

312 Chapter E. Functions on Syntax Trees

by a tree with the type UniqueModelElementIdenti�er whereas references are defined by the trees with
the type ElementReference.

The function type : ∆→ (N ∪ T), given in Definition E.6, returns either the label of the root node of
a given syntax tree t ∈ ∆ or the label of a given terminal node.4 Hence, the function returns an element
of the set N ∪ T .

type(t) =

{
t 7→ t if t ∈ T
π0(t), where t =

(
r, (c0, c1, . . . , ck)

)
if t ∈ ∆

(E.6)

Retrieving children. For reasons of convenience, the functions children and child are defined. The
function childrenk : ∆ →

⋃
k

∆k ∪ {ε}, where k ∈ N0, is given in Definition E.7. It returns a tuple

(c0, c1, . . . , ck) containing the children of t ∈ ∆, where t is
(
r, (c0, c1, . . . , ck)

)
.

children(t) =

{
t 7→ ε if t ∈ T
π1(t) else

(E.7)

In contrast, the function child allows retrieval of one child of a given tree root node. The nth child of a
syntax tree node t ∈ ∆ is obtained by applying the projection function (see Definition E.3) to the result of
the children function (Definition E.7):

childn(t) = πn

(
children(t)

)
(E.8)

E.4 Basic Functions
For all various kinds of operations with ADORA syntax trees, it is necessary to retrieve particular properties
of a model. The basic functions described in the following allow retrieval of various properties, such as
the parts of a component, the type of a scenario, or the name of a state.

Each of the functions takes at least one argument which is usually the syntax tree of an ADORA model
or a subpart of an ADORA model. The returned values are either syntax trees of ADORA models, subtrees
of it, or another kind of value which represents a retrieved property. The functions are alphabetically
sorted.

Function actionPart. The function actionPart : ∆ → ∆ has one argument s which denotes the
syntax tree of a transition (TransitionDefinition). It returns a syntax subtree which describes the action
part of the transition. The method returns the empty word ε if the given syntax tree does not describe a
transition or if there is no action part. The function is formally defined in Listing E.1.

4Remember that in the following ∆ represents the set of ADORA syntax trees (cf. Section 6.2.1).

E.4 Basic Functions 313

Listing E.1: The function actionPart .

1 function actionPart(transition)
2 input
3 transition ∈ ∆;
4 return
5 retVal ∈ ∆;
6 declare
7 st ∈∆;
8 begin
9 retVal← ε
10 if (type(transition) =

11 TransitionDefinition) begin
12 st = childOfType(transition,
13 SimpleTransition, 1);
14 if (st 6= ε) begin
15 retVal← childOfType(
16 st, ActionPart, 1);
17 end
18 end
19 end

Listing E.2: The function attributes .

1 function attributes(fs)
2 input
3 fs ∈∆;
4 return
5 retVal ∈ ∪

k
∆k, where k ∈ N0;

6 begin
7 retVal← filterFsElements(fs,
8 AttributeDefinitions,
9 VariableDefinition);
10 end

Function attributes. The function attributes : ∆→ ∪
k
∆k, where k ∈ N0 takes an argument s which

describes the syntax tree of a functional specification. The function gathers the syntax subtrees of s which
define attributes and returns them in a tuple. The elements in the tuple are ordered according to their
occurrence in s, read from left to right in infix order. The function returns the empty tuple ∅ if s is not the
syntax tree of a functional specification or there are no attributes contained in the functional specification.
The function is formally defined in Listing E.2.

Function calcdistance. The function calcdistance : ∆×∆→ Z takes two arguments t and s, where
t is a ADORA syntax tree and s is another syntax tree. If s is part of t, the function calculates the distance
between the root node of s and the root node of t by counting the number of edges that have to be traversed
to reach the root node of t and the root node of s. If s is not part of t, the function returns −1. It is a
helper function that is used by the function distance (cf. page 319). The function is formally defined in
Listing E.3.

Function childOfType. The function childOfType : ∆×(T∪N)×N→ ∆∪{ε} has three arguments
s, p and n. The argument s is an arbitrary syntax tree, p is a type label, which is either a terminal or a
non-terminal symbol, and n is a natural number. The function searches for the n-th occurrence of a subtree
with the type p. The subtree is searched in the (direct) subtrees of s. If no subtree is found with the given
type or the subtree type occurs fewer times as specified, the empty word ε is returned. An example with
the model in Fig. E.1 illustrates the function. Suppose the argument s is the subtree of the component A, p
is ComponentName, and the argument n is 1. In this case the method returns the left-most subtree branch
defining the name of the component, i.e., (ComponentName , (SpecialIdentifier , (Identifier , (A)))). The

314 Chapter E. Functions on Syntax Trees

Listing E.3: The function calcdistance.

1 function calcdistance(tree, subtree, level)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 subtree ∈∆; level ∈ N0;
5 level ∈ N0

6 return
7 retVal ∈ Z;
8 declare
9 i ∈ N0; e ∈∆;
10 ch ∈ ∪

k
∆k, where k ∈ N0;

11 begin
12 retVal← -1;
13 if (¬ equals(tree, subtree)) begin
14 i← 0;

15 ch← children(tree);
16 while (i < arity(ch) ∧ retVal = -1)
17 begin
18 e← πi(ch);
19 if (e ∈∆) begin
20 retVal←
21 calcdistance(e, subtree, level+1);
22 end
23 i← i + 1;
24 end
25 end else begin
26 retVal← level + 1;
27 end
28 end

function is formally defined in Listing E.4.

Function childrenSet. The function childrenSet : ∆ → P(∆) takes an arbitrary syntax tree t as
argument and returns the set of all direct subtrees of t.5 Thus, in contrast to the function descendants6,
defined below, the function’s result does not contain the indirect subtrees of the root node. In contrast
to the children function of Definition E.7, this function returns an unordered set, whereas the children
function returns an ordered tuple of t’s children. For example, calling the function with the syntax subtree
of the association defined in Fig. E.2 results in a set containing its direct subtrees, thus {association,
(UniqueModelElementIdentifier, ((SpecialIdentifier,(’1.a.1’)))), to, (ElementReference, ((SpecialI-
dentifier,(’1’)))), (Role, (role, (RoleName, ((SpecialIdentifier, ((Identifier,(a)))))), (Cardinality, ((, 1,
,, 1,))))) }. The function is formally defined in Listing E.5.

Function childrenSetOfType. The function childrenSetOfType : ∆ × (T ∪ N) → P(∆) takes
the arguments t and p. The argument t is an arbitrary syntax tree and p is a type label. The function
returns the set of all direct subtrees of t having the type p. If no subtree of the specified type is found, the
empty set is returned. For instance, when calling the function with the syntax subtree of the component
A, given in Fig. E.2, as t and ComponentName as argument p, a set is returned which contains one subtree
representing the name of the component.7 Thus, the result is { (ComponentName , (SpecialIdentifier ,
(Identifier , (A)))) }. The function is formally defined in Listing E.6.

Function conditionPart. The function conditionPart : ∆→ ∆ has one argument s which contains
the syntax tree of a transition (TransitionDefinition). It returns the syntax subtree which describes the

5Remember that, P(∆) is the power set of ∆.
6The function descendants returns the set of all direct and indirect subtrees of t.
7One might suppose that two elements in the set are returned, because there is one component name in the

header and another one in the footer of the definition. However, the returned subtrees are equal, and therefore only
one element results.

E.4 Basic Functions 315

Listing E.4: The function childOfType.

1 function childOfType(tree, type, occurrence)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 type ∈ T ∪ N;
5 occurrence ∈ N0;
6 return
7 retVal ∈ ∆;
8 declare
9 count ∈ N0;
10 i ∈ N0;
11 begin
12 i← 0; retVal← ε;
13 count← 0;

14 while (i < arity(children(tree)) ∧
15 retVal = ε) begin
16 if (type(childi (tree) = type) begin
17 count← count + 1;
18 if (count = occurrence) begin
19 retVal← childi (tree);
20 end
21 end
22 i← i + 1;
23 end
24 end

Listing E.5: The function childrenSet .

1 function childrenSet(tree)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 return
5 retVal ∈ P(∆);
6 declare
7 i ∈ N0;
8 begin
9 i← 0;

10 retVal← ∅;
11 while (i < arity(children(tree)) ∧
12 retVal = ε) begin
13 retVal← retVal ∪ { childi (tree) };
14 i← i + 1;
15 end
16 end

Listing E.6: The function childrenSetOfType.

1 function childrenSetOfType(tree, type)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 type ∈ T ∪ N;
5 return
6 retVal ∈ P(∆);
7 declare
8 i ∈ N0;
9 begin
10 i← 0;

11 retVal← ∅;
12 while (i < arity(children(tree)) ∧
13 retVal = ε) begin
14 if (type(childi (tree) = type) begin
15 retVal← retVal ∪ { childi (tree) };
16 end
17 i← i + 1;
18 end
19 end

316 Chapter E. Functions on Syntax Trees

Listing E.7: The function conditionPart .

1 function conditionPart(transition)
2 input
3 transition ∈ ∆;
4 return
5 retVal ∈ ∆;
6 declare
7 st ∈∆;
8 begin
9 retVal← ε;
10 if (type(transition)=TransitionDefinition)

11 begin
12 st = childOfType(
13 transition, SimpleTransition, 1);
14 if (st 6= ε) begin
15 retVal← childOfType(
16 st, ConditionPart, 1);
17 end
18 end
19 end

condition part of the transition. The method returns the empty word ε if the given syntax tree does not
describe a transition or if the transition is an epsilon transition without a message reception part and a
guard. The function is formally defined in Listing E.7.

Function connections. The function connections : ∆ → P(∆) takes the argument t which is a
syntax tree of type ComponentDe�nition, StateDe�nition, AspectDe�nition, or ScenarioDe�nition. The
function returns the set of syntax trees of t’s out-going connections. If t is not one of the above spec-
ified types, or t does not contain any out-going connections, the empty set is returned. For example,
calling the function for the syntax subtree of the component A in Fig. E.1 as t, the function returns a
set with one element comprising the association defined in component A, i.e., { (AssociationDefinition,
(association, (UniqueModelElementIdentifier, ((SpecialIdentifier,(’1.a.1’)))), to, (ElementRe-
ference, ((SpecialIdentifier,(’1’)))), (Role, (role, (RoleName, ((SpecialIdentifier, ((Identifier,(a)))))),
(Cardinality, ((, 1, ,, 1,))))))) }. The function is formally defined in Listing E.8.

Function containsElement. The function containsElement : ∆ × ∆ → {true, false} takes two
arguments t and s, which must both be syntactically correct syntax (sub)trees. The function returns true,
if s is a subtree of t, otherwise it returns false. The algorithmic description of the function can be found
in Listing E.9.

Function createElementReferenceTree. The auxiliary function createElementReferenceTree :
T → ∆ takes a token t which must recognized as <APOSTROPHIZED_IDENTIFIER>. The token is
used to create the tree for an element reference, i.e., a subtree which is used to refer to another element
that has a unique model element identifier. The algorithmic description of the function can be found in
Listing E.10.

Function createUniqueElementIdentTree. The auxiliary function createUniqueElementIdentTree:
T → ∆ takes an argument t which must be a token that belongs to the set of <APOSTROPHIZED_-
IDENTIFIER>. The function builds a syntax tree for a unique model element identifier. The function is
formally defined in Listing E.11.

E.4 Basic Functions 317

Listing E.8: The function connections .

1 function connections(tree)
2 input
3 tree ∈∆;
4 return
5 retVal ∈ P(∆);
6 declare
7 typeVar ∈ N;
8 e ∈ ∆;
9 temp ∈ P(∆);
10 begin
11 temp← ∅;
12 retVal← ∅;
13 typeVar← ε;
14 if (type(tree) =
15 ComponentDefinition) begin
16 typeVar← ComponentConnections;
17 end else if (type(tree) =
18 AspectDefinition) begin
19 typeVar← AspectConnections;
20 end else if (type(tree) =
21 StateDefinition) begin
22 typeVar← StateConnections;

23 end else if (type(tree) =
24 ScenarioDefinition) begin
25 typeVar← ScenarioConnections;
26 end else if (type(tree) =
27 EnvironmentObjectDefinition) begin
28 typeVar←
29 EnvironmentObjectConnections;
30 end
31 if (typeVar 6= ε) begin
32 e← childOfType(tree, typeVar, 1);
33 if (e 6= ε) begin
34 temp = childrenSet();
35 end
36 end
37 foreach e ∈ temp begin
38 if (e /∈ T) begin
39 retVal← retVal ∪ { e }
40 end
41 end
42 end

Listing E.9: The function containsElement .

1 function containsElements(model, element)
2 input
3 model ∈ ∆ \ T;
4 element ∈ ∆;
5 return
6 retVal ∈ { true, false };
7 declare
8 children ∈ ∪

k
∆k, where k ∈ N0;

9 i ∈ N0;
10 begin
11 retVal← false; i← 0;
12 children← children(model);
13 while (i < arity(children) ∧
14 retVal = false)

15 begin
16 if (childi(model) /∈ T) begin
17 if (equals(childi(model),
18 element)
19 begin
20 retVal← true;
21 end else begin
22 retVal← containsElement(
23 childi(model), element);
24 end
25 end
26 i← i + 1;
27 end
28 end

318 Chapter E. Functions on Syntax Trees

Listing E.10: The function createElementReferenceTree .
1 function createElementReferenceTree(token)
2 input
3 token ∈ <APOSTROPHIZED_IDENTIFIER>;
4 return
5 retVal ∈∆ ∧ type(retVal) = ElementReference;
6 begin
7 retVal← (ElementReference, ((SpecialIdentifier, (token))));
8 end

Listing E.11: The function createUniqueElementIdentTree .
1 function createUniqueElementIdentTree(token)
2 input
3 token ∈ <APOSTROPHIZED_IDENTIFIER>;
4 return
5 retVal ∈∆ ∧ type(retVal) = UniqueModelElementIdentifier;
6 begin
7 retVal← (UniqueModelElementIdentifier, ((SpecialIdentifier, (token))));
8 end

E.4 Basic Functions 319

Listing E.12: The function dataTypeDeclarations .

1 function dataTypeDeclarations
2 (fs)
3 input
4 e ∈ ∆;
5 return
6 retVal ∈ ∪

k
∆k,

7 where k ∈ N0;

8 begin
9 retVal← filterFsElements(
10 fs,
11 DataTypeDeclarations,
12 DataTypeDeclaration);
13 end

Function dataTypeDeclarations. The function dataTypeDeclarations : ∆→ ∪
k
∆k, where k ∈ N0

takes one argument s which describes the syntax tree of a functional specification. It extracts the syntax
subtrees of all data types declared in the functional specification and returns them in a tuple. The elements
in the tuple have the same order as they occur in s. The function returns the empty tuple ∅ if s is not
the syntax tree of a functional specification or s does not contain data type declarations. The function is
formally defined in Listing E.12.

Function decompositionParent. The function decompositionParent : ∆ × ∆ → ∆ ∪ {ε} takes
two syntax trees t and s as arguments. It determines the smallest subtree p such that p comprises s in its
parts section which may be either of the type StateParts, ComponentParts, or Model.8 Table E.2 specifies
the valid part-of relationships between p and s.

Table E.2: Table defining the valid part-of relationships of ADORA elements.

Type of s Possible types of parent nodes p
ComponentDefinition Model, ComponentDefinition

EnvironmentObjectDefinition Model

StateDefinition ComponentDefinition, StateDefinition

ScenarioDefinition ComponentDefinition

If s has a type other than those given in Table E.2, the decompositionParent function returns the
value ε. The function is exemplified by Fig. E.1: when calling the function decompositionParent with
the syntax tree of this model as t and the subtree of the component A (i.e., the subtree with the type
ComponentDe�nition) as s, the function returns the subtree of the Model. A formal definition of the
function can be found in Listing E.13.

Function descendants. The function descendants : ∆ → P(∆) takes a syntax tree t as argument
and returns the set of all direct and indirect subtrees of t’s. For example, the set of descendants for
the ComponentName subtree of the component A in Fig. E.2 is {(ComponentName, ((SpecialIdentifier,
((Identifier, (A)))))), ((SpecialIdentifier, ((Identifier, (A))))), (Identifier, (A)), A }. A formal definition of
the function can be found in Listing E.14.

Function distance. The function distance : ∆×∆→ Z takes two syntax trees t and s as arguments
and checks whether t contains s as a direct or indirect child. If s is contained in t, the number of edges
that have to be traversed to get from the root node of t to the root node of s is returned. Otherwise −1
is returned. For example, calling the function with the syntax tree given in Fig. E.2 as t and the syntax
subtree of the definition of component A, which has the root node ComponentDe�nition returns the value
2. A formal definition of the function can be found in Fig. E.15.

8The smallest subtree is determined by using the distance function defined below.

320 Chapter E. Functions on Syntax Trees

Listing E.13: The function decompositionParent .

1 function decompositionParent(model,
2 subtree)
3 input
4 model ∈ ∆;
5 subtree ∈∆;
6 return
7 retVal ∈ ∆;
8 declare
9 map ⊆ (N × N);
10 begin
11 map← ∅;
12 retVal← ε;
13 if (type(subtree) =
14 ComponentDefinition)
15 begin
16 map← {
17 (Model, 1),
18 (ComponentDefintion, 2),
19 (AspectDefinition, 2) };
20 end
21 if (type(subtree) =
22 EnvironmentObjectDefinition)
23 begin
24 map← {(Model, 1)};
25 end
26 if (type(subtree) =
27 StateDefinition)
28 begin
29 map← {
30 (ComponentDefinition, 2),

31 (StateDefintion, 2),
32 (AspectDefinition, 2) };
33 end
34 if (type(subtree) =
35 AspectDefinition)
36 begin
37 map← {
38 (Model, 1),
39 (ComponentDefintion, 2),
40 (AspectDefinition, 2) };
41 end
42 if (type(subtree) =
43 ExitPointDefinition)
44 begin
45 map← {(AspectDefintion, 2)};
46 end
47 if (type(subtree) =
48 ScenarioDefinition)
49 begin
50 map← {
51 (ComponentDefintion, 2),
52 (AspectDefinition, 2) };
53 end
54 if (map 6= ∅)
55 begin
56 retVal← treeAncestor(
57 model, subtree, map);
58 end
59 end

Listing E.14: The function descendants.

1 function descendants(tree)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 return
5 retVal ∈ P(∆)
6 declare
7 i ∈ N0; ch ∈ ∪

k
∆k, where k ∈ N0;

8 e ∈ ∆;
9 begin
10 i← 0;

11 ch← children(tree);
12 while (i < arity(ch)) begin
13 e = πi(ch);
14 retVal← retVal ∪ { e };
15 if (e ∈∆) begin
16 retVal← retVal ∪ descendants(e);
17 end
18 i← i + 1;
19 end
20 end

E.4 Basic Functions 321

Listing E.15: The function distance.

1 function distance(tree, subtree)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 subtree ∈∆ ∧ subtree /∈ T;
5 return

6 retVal ∈ N0;
7 begin
8 retVal← calcdistance(tree, subtree, -1);
9 end

Listing E.16: The function elementReference.

1 function elementReference(tree)
2 input
3 tree ∈∆;
4 return
5 retVal ∈ uniqueIdentifier ∈
6 <REFERENCE_STRING_LITERAL>
7 ∪ <IDENTIFIER>;

8 begin
9 if (type(tree) = ElementReference) begin
10 retVal← specialIdentifier(child0(tree));
11 end
12 end

Function elementReference. The function elementReference : ∆ → T has one argument s which
is an ADORA syntax tree. If s contains the syntax tree of an element reference, the token denoting element
reference is returned, otherwise the return value is undefined. The algorithmic description of the function
can be found in Listing E.16.

Function equals. The function equals : ∆ × ∆ → {true, false} returns true if two given syntax
trees t1 and t2 are equal. Two syntax trees are equal if they are isomorphic, i.e., they are structurally
equivalent and the labels of the corresponding nodes are equal. The use of equal(t1, t2) is equivalent to
the expression t1 = t2. A formal definition of the function can be found in Listing E.17.

Function �lterFsElement. The function filterFsElement : ∆ × N × N → ∪
k
∆k, where k ∈ N0,

takes three arguments t, m, and p. The argument t is an ADORA syntax tree, m and p are non-terminal
elements which denote the type of a subtree. The function returns all children of t which have p as type
and m as the parent’s type. The found elements are returned as a tuple. The order of the tuple is the order
of the found elements in the tree. This function is an auxiliary function which is used by the functions
attributes (cf. p. 313), dataTypeDeclarations (cf. p. 319), and invariants (cf. p. 329). A formal definition
of the function can be found in Listing E.18.

Function �lterOperationOrProperties. The function filterOperationsOrProperties : ∆ ×N →
∪
k
∆k, where k ∈ N0, takes two arguments t andm. The argument t is an ADORA syntax tree, the argument

m is a non-terminal element which denotes the type of a subtree. The function returns all subtrees which
have m as type. The found subtrees are returned in a tuple which has the same order as the occurrence
of the found elements in the tree. This function is an auxiliary function which is used by the functions
operations (cf. p. 329) and standardizedProperties (cf. p. 338). A formal definition of the function can be
found in Listing E.19.

322 Chapter E. Functions on Syntax Trees

Listing E.17: The function equals .

1 function equals(tree1, tree2)
2 input
3 tree1 ∈ ∆ \ T;
4 tree2 ∈ ∆ \ T;
5 return
6 retVal ∈ {true,false}
7 declare
8 i ∈ N0;
9 ch1 ∈ (∪

k
∆k), where k ∈ N0;

10 ch2 ∈ (∪
k
∆k), where k ∈ N0;

11 e1 ∈∆; e2 ∈∆;
12 begin
13 i← 0;
14 retVal← true;
15 if (type(tree1) = type(tree2)) begin
16 ch1← children(tree1);
17 ch2← children(tree2);
18 if (arity(ch1) 6= arity(ch2)) begin
19 retVal← false;

20 end
21 while (retVal ∧ i < arity(ch1)) begin
22 e1← πi(ch1);
23 e2← πi(ch2);
24 if (e1 ∈ T ∧ e2 ∈ T) begin
25 if (e1 6= e2) begin
26 retVal← false;
27 end
28 end else if (e1 ∈ ∆ ∧ e2 ∈∆) begin
29 retVal← equals(e1, e2);
30 end else begin
31 retVal← false;
32 end
33 i← i + 1;
34 end
35 end else begin
36 retVal← false;
37 end
38 end

Listing E.18: The function filterFsElement .

1 function filterFsElement
2 (fs, superType, subType)
3 input
4 fs ∈∆;
5 superType ∈ N;
6 subType ∈ N;
7 return
8 retVal ∈ ∪

k
∆k, where k ∈ N0;

9 declare
10 invs ∈ ∪

k
∆k, where k ∈ N0;

11 i ∈ N0;
12 j ∈ Integer0;
13 ch ∈ ∪

k
∆k, where k ∈ N0;

14 begin
15 retVal← emtpySet;
16 if (type(fs) = FunctionalSpecification)
17 begin
18 invs = children(fs);

19 j← 0;
20 while (j < arity(invs)) begin
21 if (πj(invs) /∈ T ∧
22 type(πj(invs)) = superType begin
23 i← 0;
24 ch← children(πj(invs));
25 while (i < arity(ch)) begin
26 if (type(πi(ch)) = subType) begin
27 retVal← insertarity(retVal)(
28 retVal, πi(ch));
29 end
30 i← i + 1;
31 end
32 end
33 j← j + 1;
34 end
35 end
36 end

E.4 Basic Functions 323

Listing E.19: The function filterOperationsOrProperties .

1 function filterOperationsOrProperties
2 (fs,stType)
3 input
4 fs ∈∆;
5 stType ∈ N;
6 return
7 retVal ∈ ∪

k
∆k, where k ∈ N0;

8 declare
9 i ∈ N0;
10 ch ∈ ∪

k
∆k, where k ∈ N0;

11 begin
12 retVal← ∅;
13 if (type(fs) = FunctionalSpecification)

14 begin
15 ch = children(fs);
16 i← 0;
17 while (i < arity(ch)) begin
18 if (type(πi(ch)) = stType) begin
19 retVal←
20 insertarity(retVal)(retVal, πi(ch));
21 end
22 i← i + 1;
23 end
24 end
25 end

Function �lterProvidesRequires. The auxiliary function filterProvidesRequires : ∆×N ×N has
three arguments t, m, and p. It extracts either the elements defined in the provides or the requires decla-
ration of a functional specification. The elements that should be extracted are specified by the arguments
m and p. Argument m must either be the non-terminal Provides or Requires. The argument p denotes
the type of the elements contained in the corresponding requires/provides declaration, i.e., Identi�er for
provides and Quali�edIdenti�er for requires declarations. The function is used by the functions provides
(cf. p. 331) and requires (cf. p. 331). A formal definition of the function can be found in Listing E.20.

Function �lterSet. The function filterSet : P(∆)× (N ∪T → P)(∆) takes two arguments m and p.
The argument m denotes a set of syntax trees, and p denotes a type label, i.e., a terminal or a non-terminal
symbol of the ADORA syntax. The function returns a subset of m which contains all trees of the type p.
If no syntax trees in m have the type p, the empty set is returned. For example, when calling the function
filterSet(descendants(t), Identifier), where t is the syntax tree of the model in Fig. E.2, a set with the
two elements { (Identifier, (A)), (Identifier, (a)) } is returned. The first element is the identifier from
the component name and the second element is the identifier of the association’s role name. A formal
definition of the function can be found in Listing E.21.

Function �nd. The function find : ∆ × A→ ∆ ∪ {ε}, where A is the set of all identifiers defined by
the grammar rule UniqueModelElementIdenti�er9, takes two arguments t and a. The function searches
in the syntax tree t for a subtree defining a (semantical) element, such as a component, an association, a
transition, etc. which is identified by the unique element identifier a (cf. Section 6.1.5). Unique element
identifiers are represented by subtrees of the type UniqueModelElementIdenti�er. The label of the only
leaf node of such a UniqueModelElementIdenti�er subtree must be equal to a. If a is not contained in a
UniqueModelElementIdenti�er subtree of t, the empty word ε is returned.

The find function is defined as a recursive algorithm in Listing E.22. Calling the function find(t,′ 1′),
where t is the syntax tree illustrated in Fig. E.2, exemplifies how the �nd function works. It returns the

9According to the grammar definition in Appendix B, the set of all unique model element identifiers consist of
A = <APOSTROPHIZED_IDENTIFIER> ∪ <IDENTIFIER>.

324 Chapter E. Functions on Syntax Trees

Listing E.20: The function filterProvidesRequires .

1 function filterProvidesRequires
2 (fs, type, subType)
3 input
4 fs ∈∆;
5 type ∈ N;
6 subType ∈ N;
7 return
8 retVal ∈ ∪

k
∆k, where k ∈ N0;

9 declare
10 provides ∈∆;
11 i ∈ N0;
12 ch ∈ ∪

k
∆k, where k ∈ N0;

13 begin
14 i← 0;
15 retVal← ∅;

16 if (type(fs) = FunctionalSpecification)
17 begin
18 provides← childOfType(fs, type, 1);
19 if (provides 6= ε) begin
20 ch← children(provides);
21 while (i < arity(ch)) begin
22 if (type(πi(ch)) = subType) begin
23 retVal← insertarity(ch)(
24 retVal, πi(ch));
25 end
26 i← i + 1;
27 end
28 end
29 end
30 end

Listing E.21: The function filterSet .

1 function filterSet(trees, type)
2 input
3 trees ∈ P(∆);
4 type ∈ N ∪ T;
5 return
6 retVal ∈ P(∆);
7 declare
8 element ∈ ∆;
9 begin

10 retVal← ∅;
11 foreach (element ∈ trees) begin
12 if (type(element) = type) begin
13 retVal← retVal ∪ { element };
14 end
15 end
16 end

E.4 Basic Functions 325

Listing E.22: The function find .

1 function find(tree, uniqueIdentifier)
2 input
3 tree ∈∆ ∧ tree /∈ T;
4 uniqueIdentifier ∈
5 <APOSTROPHIZED_IDENTIFIER>
6 ∪ <IDENTIFIER> ;
7 return
8 retVal ∈ ∆;
9 declare
10 i ∈ N0; ch ∈ ∪

k
∆k, where k ∈ N0;

11 e ∈ ∆;
12 begin
13 retVal← ε; i← 0;
14 ch← children(tree);

15 while (i < arity(ch) ∧ retVal = ε) begin
16 e = πi(ch);
17 if (type(e) =
18 UniqueModelElementIdentifier ∧
19 uniqueElementidentifier(e) =
20 uniqueIdentifier
21 begin
22 retVal← tree;
23 end else if (e ∈ ∆) begin
24 retVal← find(e, uniqueIdentifier);
25 end
26 i← i + 1;
27 end
28 end

subtree for the component A, i.e., the tuple (ComponentDefinition, (component, (ComponentName,
((SpecialIdentifier, ((Identifier, (A)))))),. . . , end, component), (ComponentName, ((SpecialIdentifier,
((Identifier, (A))))))).

Function �ndParentAndChildrenScenarios. The auxiliary function �ndParentAndChildrenSce-
narios : ∆ × P(∆) ×∆ → P(∆) takes three arguments t, m, and s. The argument t is a syntax tree of
an ADORA model, and m denotes the set of already found syntax trees describing scenario nodes. The
argument m is actually used for the recursive descent of the function, and therefore, for an initial call m is
usually the empty set ∅. The argument s is the syntax tree of a scenario node contained in t. The function
returns a set containing the syntax trees of the parent node of s and all of the parent’s direct and indirect
child nodes. Note that s is also contained in the returned set and that the returned set is empty if either s
does not describe a scenario node or if s is a root node. A formal definition of the function can be found
in Listing E.23.

Function �ndScenarioGroupMembers. The function findScenarioGroupMembers : ∆×P(∆)×
∆ → P(∆) takes three arguments. The first argument is the syntax tree t of an ADORA model. The
second argument m denotes a set of syntax trees which have already been found in a recursive call of
the function. This argument is usually the empty set ∅ for an initial call. The third argument s is the
syntax subtree contained in t describing a scenario node. The function returns the set of syntax subtrees
representing the scenario nodes which belong to the same scenario group (cf. Section 5.2.4) as the scenario
node described by s. Note that s is also contained in the returned set. The function returns m if s does not
describe a scenario node. A formal definition of the function can be found in Listing E.24.

Function �ndScenarioSubtreeMembers. The function findScenarioSubtreeMembers : ∆×P(∆)
×∆→ P(∆) takes three arguments as input. The first argument t is the syntax tree of an ADORA model.
The second argumentm is a set consisting of syntax trees which describe scenario nodes that have already
been found by a recursive call of the function. For an initial call of the function, this argument is usually

326 Chapter E. Functions on Syntax Trees

Listing E.23: The auxiliary function findParentAndChildrenScenarios .

1 function findParentAndChildrenScenarios(
2 model, group, element)
3 input
4 model ∈ ∆;
5 group ∈ P(∆);
6 element ∈ ∆ ∧ element /∈ T;
7 return
8 group ∈ P(∆);
9 declare
10 connections ∈ P(∆);
11 scenarioTarget ∈ ∆;
12 scenarioParent ∈∆;
13 temp ∈ ∆;
14 begin
15 scenarioParent← scenarioParent(
16 model, element);
17 if (scenarioParent 6= ε) begin
18 group← group ∪ { scenarioParent };
19 connections← connections(
20 scenarioParent);

21 if (connections 6= ε) begin
22 connections← filterSet(
23 connections,
24 ScenarioConnectionDefinition);
25 foreach temp ∈ connections begin
26 scenarioTarget = target(
27 model, temp);
28 if (scenarioTarget /∈ group ∧
29 element 6= scenarioTarget)
30 begin
31 group←
32 findScenarioSubtreeMembers(
33 model, group,
34 scenarioTarget);
35 end
36 end
37 end
38 end
39 end

Listing E.24: The auxiliary function findScenarioGroupMembers .

1 function findScenarioGroupMembers(
2 model, group, element)
3 input
4 model ∈ ∆;
5 group ∈ P(∆);
6 element ∈ ∆ ∧ element /∈ T;
7 return
8 group ∈ P(∆);
9 begin

10 group←
11 findScenarioSubtreeMembers(
12 model, group, element);
13 group←
14 findParentAndChildrenScenarios(
15 model, group, element);
16 end

E.4 Basic Functions 327

Listing E.25: The auxiliary function findScenarioSubtreeMembers .

1 function findScenarioSubtreeMembers(
2 model, group, element)
3 input
4 model ∈ ∆;
5 group ∈ P(∆);
6 element ∈ ∆ ∧ element /∈ T;
7 return
8 group ∈ P(∆);
9 declare
10 connections ∈ P(∆);
11 scenarioConnections ∈ P(∆);
12 targetNode ∈ ∆;
13 e ∈ ∆;
14 begin
15 if (type(element) = ScenarioDefinition)
16 begin
17 group← group ∪ { element };

18 connections← connections(element);
19 scenarioConnections← filterSet(
20 connections,
21 ScenarioConnectionDefinition);
22
23 foreach e ∈ scenarioConnections
24 begin
25 targetNode← target(model, e);
26 if (targetNode /∈ group) begin
27 group←
28 findScenarioSubtreeMembers(
29 model, group, targetNode);
30 end
31 end
32 end
33 end

the empty set ∅. The third argument s is the syntax tree of a scenario node which is part of t. The function
returns a set of syntax trees which are contained in t and which describe the scenario subtree members10

that have s as root node. Note that s is also contained in the result set. The function returns m if s is not
the syntax tree of a scenario node. A formal definition of the function can be found in Listing E.25.

Function �ndStateGroupMembers. The function findStateGroupMembers : ∆ × P(∆) × (∆ \
T)→ P(∆) takes three arguments. The first argument t denotes the syntax tree of an ADORA model. The
second argument m denotes the set of state group members that have already been found. The argument
m is used for the recursive call of the function and is usually the empty set ∅ for an initial call. The third
argument s is the syntax tree of a state or a component which is part of a state group (cf. Section 5.2.3).
The method returns a set of syntax trees describing states and components which are in the same state
group as the element given by s. If s is not a state or a component, the function returns the empty set. A
formal definition of the function can be found in Listing E.26.

Function �atenTuple. The function flatenTuple ∪
i
M i × ∪

k
Mk,→ ∪

l
M l, where k, i and l ∈ N0 and

M is an arbitrary set, takes two arguments. The first argument x is a tuple which contains arbitrary
elements in an arbitrarily nested tuple structure. It may also contain tuples that are empty. The second
argument z is a tuple to which the elements extracted from x are appended. The argument z is used for the
recursive call of the function. For an initial call of the function, this argument is usually the empty tuple ∅.
The function returns the �attened tuple structure, i.e. all non-tuple elements which are found in the nested
tuple structure are appended at the end of z. The function returns z if x does not contain a (nested) tuple
structure. A formal definition of the function can be found in Listing E.27.

10Scenario subtree means the scenario tree in the model, not the syntax tree of the scenarios.

328 Chapter E. Functions on Syntax Trees

Listing E.26: The function findStateGroupMembers .

1 function findStateGroupMembers(
2 model, group, element)
3 input
4 model ∈ ∆; group ∈ P(∆); element ∈∆;
5 return
6 group ∈ P(∆);
7 declare
8 transitions ∈ P(∆); transitions2 ∈ P(∆);
9 connections ∈ P(∆);
10 connections2 ∈ P(∆);
11 targetNode ∈ ∆; sourceNode ∈∆;
12 e1 ∈∆; e2 ∈∆;
13 begin
14 group← group ∪ { element };
15 connections← connections(element);
16 transitions← filterSet(
17 connections, TransitionDefinition);
18
19 foreach e1 in transitions begin
20 targetNode← target(model, e1);
21 if (targetNode /∈ group) begin
22 group← findStateGroupMembers(
23 model, group, targetNode);
24 end
25 end
26
27 connections = targetConnections(
28 model, element);

29 transitions = filterSet(
30 connections, TransitionDefinition);
31
32 foreach e1 in transitions begin
33 sourceNode← source(model, e1);
34 if (sourceNode 6= ε ∧
35 sourceNode /∈ group)
36 begin
37 group← group ∪ { sourceNode };
38 connections2←
39 connections(sourceNode);
40 transitions2← filterSet(
41 connections2,
42 TransitionDefinition);
43 foreach e2 ∈ transitions2 begin
44 targetNode← target(model, e2);
45 if (targetNode /∈ group) begin
46 group←
47 findStateGroupMembers(
48 model,
49 group,
50 targetNode);
51 end
52 end
53 end
54 end
55 end

Listing E.27: The function flatenTuple.

1 function �atenTuple(inC, outC)
2 input
3 inC ∈ ∪

k
Mk, where k ∈ N0;

4 outC ∈ ∪
k
Mk, where k ∈ N0;

5 return
6 outC ∈ ∪

k
Mk, where k ∈ N0;

7 declare
8 curr ∈ ∪

k
Mk, where k ∈ N0;

9 i ∈ N0;
10 begin
11 i← 0;

12 while (i < arity(inC)) begin
13 if ((πi(inC) /∈∆ ∧ πi(inC) ∈ ∪

k
Mk)

14 begin
15 curr← πi(inC);
16 outC← �atenTuple(curr, outC);
17 end else if (πi(inC) ∈∆) begin
18 insertarity(outC)(outC, πi(inC));
19 end
20 i← i + 1;
21 end
22 end

E.4 Basic Functions 329

Listing E.28: The function functionalSpec.

1 function functionalSpec(e)
2 input
3 e ∈ ∆;
4 return
5 retVal ∈ ∆ ∧
6 (type(retVal) = FunctionalSpecification
7 ∨ retVal = ε);
8 begin
9 retVal← ε;

10 if (type(e) = ComponentDefinition ∨
11 type(e) = AspectDefinition)
12 begin
13 retVal← childOfType(
14 e, FunctionalSpecification, 1);
15 end
16 end

Listing E.29: The function invariants .

1 function invariants(fs)
2 input
3 fs ∈∆;
4 return
5 retVal ∈ ∪

k
∆k, where k ∈ N0;

6 begin
7 retVal← filterFsElements(
8 fs, Invariants, Expression);
9 end

Function functionalSpec. The function functionalSpec : ∆→ ∆ takes one argument s that must be
the syntax tree of an aspect module or a component. It returns the syntax subtree describing the functional
specification of s. The function returns the empty word ε if no functional specification is defined in s, or
s is not the syntax tree of a component or an aspect module. A formal definition of the function can be
found in Listing E.28.

Function invariants. The function invariants : ∆→ ∪
k
∆k, where k ∈ N0 takes an argument swhich

must be a syntax tree of a functional specification. It extracts the syntax trees of the expressions which are
part of the invariant in the functional specification. The function returns them in a tuple. The expressions
in the tuple occur in the same (infix) order as they are contained in s. The function returns the empty
tuple ∅ if there is no syntax subtree in s describing invariants, or if s does not contain the syntax tree of a
functional specification. A formal definition of the function can be found in Listing E.29.

Function operations. The function operations : ∆ → ∪
k
∆k, where k ∈ N0 takes an argument s

which describes the syntax tree of a functional specification. It returns the syntax subtrees of all operations
that are defined in the functional specification. The result is a tuple and the elements contained in the tuple
have the same (infix) order as in s. The function returns the empty tuple ∅ if s is not the syntax tree of a
functional specification, or if there are no operations defined in s. A formal definition of the function can
be found in Listing E.30.

Function orderedChildrenOfType. The function orderedChildrenOfType ∆×N ×∪
k
∆k→ ∪

i
∆i,

where k, i ∈ N0 takes three arguments. The first argument s is any ADORA syntax tree. The second
argument x is an element from the set of non-terminals N which denotes the name of a type. The third

330 Chapter E. Functions on Syntax Trees

Listing E.30: The function operations .

1 function operations(fs)
2 input
3 fs ∈∆;
4 return
5 retVal ∈ ∪

k
∆k, where k ∈ N0;

6 begin
7 retVal←
8 filterOperationsOrProperties(fs,
9 OperationDefinition);
10 end

Listing E.31: The function orderedChildrenOfType.

1 function orderedChildrenOfType
2 (element, type, foundElements)
3 input
4 element ∈ ∆;
5 type ∈ N;
6 foundElements ∈ ∪

k
∆k, where k ∈ N0;

7 return
8 retVal ∈ ∪

k
∆k, where k ∈ N0;

9 declare
10 child ∈ ∆;
11 i ∈ N0;
12 begin
13 retVal← foundElements;
14 i← 0;

15 while (i < arity(children(element)))
16 begin
17 child← childi(element);
18 if (type(child) = type) begin
19 retVal← insertarity(retVal)(
20 retVal, child);
21 end else if (child /∈ T) begin
22 retVal← orderedChildrenOfType(
23 child, type, retVal);
24 end
25 i← i + 1;
26 end
27 end

argument y is the tuple of syntax subtrees which have been already found. This argument is used for the
recursive call of the function and is usually the empty tuple ∅ for an initial call. The function seeks in the
given syntax tree s for syntax subtrees of the type x in infix order and adds them at the end of y. The
resulting tuple is returned by the function. The argument y is returned if s does not contain any subtrees
of type x. A formal definition of the function can be found in Listing E.31.

Function partial. The function partial : ∆ → {true, false} in Definition E.32 takes a syntax tree
t ∈ ∆ and returns true, if at least one (direct) subelement in the tree of t is the label partial, otherwise
it returns false. A formal definition of the function can be found in Listing E.32.

Function parts. The function parts : ∆ → P(∆) takes an argument s which is a syntax tree of type
ComponentDe�nition, StateDe�nition, AspectDe�nition or Model. The function returns a set of subtrees

Listing E.32: The function partial .

partial(t) = ∃k ∈ N0 : (k < arity(children(s)) ∧ πk = partial)

E.4 Basic Functions 331

Listing E.33: The function parts .

1 function parts(tree)
2 input
3 tree ∈∆;
4 return
5 retVal ∈ P(∆);
6 declare
7 type ∈ N; e ∈ ∆; temp ∈ P(∆);
8 begin
9 retVal← ∅; temp← ∅; type← ε;
10 if (type(tree) = ComponentDefinition)
11 begin
12 type← ComponentParts;
13 end else if (type(tree) = AspectDefinition)
14 begin
15 type← AspectParts;
16 end else if (type(tree) = StateDefinition)
17 begin
18 type← StateParts;
19 end else if (type(tree) = Model)

20 begin
21 temp← childrenSetOfType(
22 tree, ComponentDefinition);
23 temp← retVal ∪ childrenSetOfType(
24 tree, AspectDefinition);
25 temp← retVal ∪ childrenSetOfType(
26 tree, EnvironmentObjectDefinition);
27 end
28 if (type 6= ε) begin
29 retVal← childrenSet(childOfType(
30 tree, type, 1));
31 end
32 foreach e ∈ temp begin
33 if (e /∈ T) begin
34 retVal← retVal ∪ { e }
35 end
36 end
37 end

Listing E.34: The function provides .

1 function provides(fs)
2 input
3 fs ∈∆;
4 return
5 retVal ∈ ∪

k
∆k, where k ∈ N0;

6 begin
7 retVal← filterProvidesRequries(
8 fs, Provides, Identifier);
9 end

of ADORA elements which are in a part-of relationship with the element described by t. Hence, the return
value is the set of syntax trees described by the corresponding ComponentParts, StateParts, AspectParts
or the direct children in the case of the Model grammar rule given in Section B.3, respectively. If no parts
are contained in s, or the argument s is not one of the types above, the empty set is returned. A formal
definition of the function can be found in Listings E.33.

Function provides. The function provides : ∆→ ∪
k
∆k, where k ∈ N0 takes an argument s which is

the syntax tree of a functional specification. It extracts all syntax subtrees of the elements defined in the
provides statement and returns them as a tuple. The elements of the tuple occur in the same order as in s.
The function returns the empty tuple ∅ if s is not the syntax tree of a functional specification or it does not
contain a provide statement. A formal definition of the function can be found in Listing E.34.

Function requires. The function requires : ∆ → ∪
k
∆k, where k ∈ N0, takes an argument s which

describes the syntax tree of a functional specification. It extracts all syntax subtrees which describe the
elements defined in the requires statement of the functional specification and returns them as a tuple. The

332 Chapter E. Functions on Syntax Trees

Listing E.35: The function requries .

1 function requires(fs)
2 input
3 fs ∈∆;
4 return
5 retVal ∈ ∪

k
∆k, where k ∈ N0;

6 begin
7 retVal← filterProvidesRequries(
8 fs, Requires, QualifiedIdentifier);
9 end

elements of the tuple occur in the same order as in s. The function returns the empty tuple ∅ if s is not the
syntax tree of a functional specification or it does not contain a requires statement. A formal definition of
the function can be found in Listing E.35.

Function roleChannelNames. The function roleChannelNames : ∆× ∪
i
∆i → ∪

k
∆k, where i, k ∈

N0 takes two arguments. The first argument s is the syntax tree of any element. The second argument
m is a tuple of syntax trees. It is used for the recursion of the function and is usually the empty tu-
ple ∅ for an initial call. The function seeks for all channel names used in receive, send and transform
statements which refer to roles of associations. It returns a tuple of syntax trees of SpecialIdentifiers or
QualifiedIdentifiers representing the names of the referred roles. The order of the elements in the tuple
is their infix occurrence in s. The function returns m if there are no role names in s. A formal definition
of the function can be found in Listing E.36.

Function roleName. The function roleName :∆→ T takes one argument swhich must be the syntax
tree of a association role. The function extracts the name of the role and returns it. The empty word ε
is returned if s does not contain the syntax tree of a role, or if the role has no name defined. A formal
definition of the function can be found in Listing E.37.

Function rootScenarios. The function rootScenarios : ∆ × P(∆) → P(∆) takes two arguments t
andm, where t is the syntax tree of the ADORA model andm a set of syntax subtrees of t. The elements of
m must be scenario nodes (subtrees of the type ScenarioDe�nition). The function returns a set of scenario
syntax trees which do not have in-coming scenario connections. Hence, the returned set of scenario nodes
are the root nodes found in m. The elements in m not having the type ScenarioDe�nition are ignored. If
no valid elements are found in m, the empty set ∅ is returned. A formal definition of the function can be
found in Listing E.38.

Function scenarioGroups. The function scenarioGroups : ∆×P(∆)→ P(P(∆)) takes the parse
tree of an ADORA model t and a set m of syntax subtrees contained in t. The syntax trees contained in
m must describe scenario nodes, i.e., they must have the type ScenarioDe�nition. Elements which do
not have this type are ignored. The function takes all elements in m and computes the set of all scenario
groups, where a scenario group is the set of all connected scenario nodes (cf. Section 5.2.4). There may
be groups in the result set containing only one element, which is the case if a scenario node does not have
any in-coming and out-going connections. If no elements with the type ScenarioDe�nition are contained
in m, the empty set is returned. A formal definition of the function can be found in Listing E.39.

E.4 Basic Functions 333

Listing E.36: The function roleChannelNames .

1 function roleChannelNames
2 (model, foundNames)
3 input
4 model ∈ ∆;
5 foundNames ∈ ∪

k
∆k, where k ∈ N0;

6 return
7 retVal ∈ ∪

k
∆k, where k ∈ N0;

8 declare
9 child ∈ ∆;
10 temp ∈ ∆;
11 i ∈ N0;
12 begin
13 retVal← foundNames;
14 i← 0;
15 if (type(model) = MessageSend ∨
16 type(model) = MessageReceive) begin
17 child← childOfType(
18 model, AssociationRoleNameList, 1);
19 if (child 6= ε ∧ child /∈ T)
20 begin
21 while (i < arity(children(child)))
22 begin
23 temp← childi(child);
24 if (type(temp) = SpecialIdentifier)
25 begin
26 retVal←
27 insertarity(retVal)(retVal, temp);
28 end
29 i← i + 1;
30 end
31 end

32 end else
33 if (type(model) = TransformInput ∨
34 type(model) = TransformOutput)
35 begin
36 child← childOfType(
37 model, RoleName, 1);
38 if (child 6= ε) begin
39 temp← childOfType(
40 child, SpecialIdentifier, 1);
41 retVal←
42 insertarity(retVal)(retVal, temp);
43 end else begin
44 temp← childOfType(
45 model, QualifiedIdentifier, 1);
46 if (temp 6= ε) begin
47 retVal←
48 insertarity(retVal)(retVal, temp);
49 end
50 end
51 end else begin
52 while (i < arity(children(model)))
53 begin
54 if (childi(model) /∈ T) begin
55 retVal← roleChannelNames(
56 childi(model), retVal);
57 end
58 i← i + 1;
59 end
60 end
61 end

Listing E.37: The function roleName.

1 function roleName(role)
2 input
3 role ∈∆;
4 return
5 roleName ∈ ∆;
6 declare
7 temp ∈ ∆;
8 begin
9 if (type(role) = Role) begin
10 temp← childOfType(

11 role, RoleName, 1);
12 if (temp 6= ε) begin
13 temp← childOfType(
14 temp, SpecialIdentifier, 1);
15 end
16 roleName = temp;
17 end
18 end

334 Chapter E. Functions on Syntax Trees

Listing E.38: The function rootScenarios .

1 function rootScenarios(model,
2 scenarioNodes)
3 input
4 model ∈ ∆ ∧ model /∈ T;
5 scenarioNodes ∈ P(∆);
6 return
7 retVal ∈ P(∆);
8 declare
9 nonRootNodes ∈ P(∆);
10 connections ∈ ∆; scenarioConn ∈ P(∆);
11 temp ∈ ∆; scenario ∈∆;
12 begin
13 nonRootNodes← ∅; retVal← ∅;
14 foreach (scenario ∈ scenarioNodes)
15 begin
16 if (type(scenario) = ScenarioDefinition)
17 begin
18 scenarioConn← ∅;
19 connections← childOfType(
20 scenario, ScenarioConnections, 1);
21 if (connections 6= ε) begin
22 scenarioConn←
23 childrenSetOfType(
24 connections,

25 ScenarioConnectionDefinition);
26 end
27
28 foreach (temp in scenarioConn)
29 begin
30 temp← childOfType(
31 temp, ElementReference, 1);
32 temp← find(
33 model, elementReference(temp));
34 if (temp 6= ε)
35 begin
36 nonRootNodes←
37 nonRootNodes ∪ { temp };
38 end
39 end
40 end else begin
41 nonRootNodes←
42 nonRootNode ∪ { scenario };
43 end
44 end
45 retVal←
46 scenarioNodes \ nonRootNodes;
47 end

Listing E.39: The function scenarioGroups .

1 function scenarioGroups
2 (tree, scenarioElements)
3 input
4 tree ∈∆ \ T;
5 scenarioElements ∈ P(∆);
6 return
7 groups ∈ P(P(∆));
8 declare
9 temp ∈ P(∆);
10 found ∈ { true, false };
11 element ∈ ∆;
12 v ∈ P(∆);
13 s ∈ ∆;
14 begin
15 groups← ∅;
16 foreach element ∈ scenarioElements
17 begin
18 found← false;
19 if (element /∈ T ∧

20 type(element) = ScenarioDefinition)
21 begin
22 foreach v ∈ groups begin
23 foreach s ∈ v begin
24 if (s = element) begin
25 found← true;
26 end
27 end
28 end
29 if (¬ found) begin
30 temp←
31 findScenarioGroupMembers(
32 tree, ∅, element);
33 groups← groups ∪ { temp };
34 end
35 end
36 end
37 end

E.4 Basic Functions 335

Listing E.40: The function scenarioParent .

1 function scenarioParent(model, scenario)
2 input
3 model ∈ ∆;
4 scenario ∈ ∆;
5 return
6 retVal ∈ ∆ ∪ { ε };
7 declare
8 connections ∈ P(∆);
9 connection ∈∆;
10 begin
11 retVal← ε;
12 if (type(scenario) = ScenarioDefinition)

13 begin
14 connections← filterSet(
15 targetConnections(model, scenario),
16 ScenarioConnectionDefinition);
17 if (| connections | = 1) begin
18 connection ∈ connections;
19 retVal← source(model, connection);
20 end
21 end
22 end

Function scenarioParent. The function scenarioParent : ∆ × ∆ → ∆ takes two arguments. The
first argument t is the syntax tree of an ADORA model. The second argument s is a syntax subtree of
t which describes a scenario node. The function returns the syntax tree of the parent scenario, i.e., the
parent node in the scenario tree which is connected by a scenario connection to scenario node described
by s. The function returns the empty word ε if s does not describe a scenario node or if s specifies the
root node of a scenario tree. A formal definition of the function can be found in Listing E.40.

Function scenarioSiblings. The function scenarioSiblings : ∆ × ∆ → ∪
k
∆k, where k ∈ N0, has

two arguments. The first argument t is the syntax tree of an ADORA model. The second argument s is a
syntax subtree of t that describes a scenario node. The function returns a tuple of syntax trees containing
the siblings of the given scenario s. Note that the returned tuple also contains s. The function returns the
empty tuple ∅ if s is not a scenario. If s is not part of t, the function also returns the empty tuple. A formal
definition of the function can be found in Listing E.41.

Function scenarioType. The function scenarioType : ∆ → T takes one argument s, which must
be the syntax tree of a scenario node. The function extracts the type of the scenario node and returns
the corresponding token sequence, parallel, alternative, or root. The function returns the
empty word ε if s is not the syntax tree of a scenario node. A formal definition of this function can be
found in Listing E.42.

Function seekTargetConnections. The auxiliary function seekTargetConnections : ∆ × ∆ ×
P(∆) → P(∆) takes three arguments t, s, and m. The first argument t is the syntax tree of an ADORA

model, s is a syntax tree that is part of t. Finally, m is a set of connections that have already been found. It
is used for recursive descent and is usually the empty set ∅ for an initial call of the function. The function
determines all connections in the given model t which have the element s as target element. It returns a
set of the syntax trees of the found elements. The function returns the empty set ∅ if s is not a subtree of t,
or if s is not the target of any connection. A formal definition of the function can be found in Listing E.43.

336 Chapter E. Functions on Syntax Trees

Listing E.41: The function scenarioSiblings .

1 function scenarioSiblings(model, scenario)
2 input
3 model ∈ ∆;
4 scenario ∈ ∆;
5 return
6 retVal ∈ ∪

k
∆k, where k ∈ N0;

7 declare
8 scenarioParent ∈∆;
9 connection ∈∆;
10 target ∈ ∆;
11 begin
12 retVal← ∅;
13 scenarioParent← scenarioParent(
14 model, scenario);

15 if (scenarioParent 6= ε) begin
16 connections←
17 filterSet(
18 connections(scenarioParent),
19 ScenarioConnection);
20 foreach connection ∈ connections
21 begin
22 if (connection /∈ T) begin
23 target← target(model, connection);
24 insertarity(retVal)(retVal, target);
25 end
26 end
27 end
28 end

Listing E.42: The function scenarioType.

1 function scenarioType(scenario)
2 input
3 scenario ∈ ∆;
4 return
5 retVal ∈ T;
6 declare
7 typetree ∈ ∆;
8 begin
9 retVal← ε;
10 if (type(scenario) = ScenarioDefinition)

11 begin
12 typetree← childOfType(
13 scenario, ScenarioType, 1);
14 if (typetree 6= ε) begin
15 retVal← child0(typetree);
16 end
17 end
18 end

E.4 Basic Functions 337

Listing E.43: The function seekTargetConnections .

1 function seekTargetConnection
2 (model, element, foundConn)
3 input
4 model ∈ ∆;
5 element ∈ ∆;
6 foundConn ∈ P(∆);
7 return
8 foundConn ∈ P(∆) ∧
9 ∀ e ∈ foundConn : type(e) ∈ {
10 TransitionDefinition,
11 AssociationDefinition,
12 ScenarioConnectionDefintion,
13 JoinRelationshipDefinition };
14 declare
15 i ∈ N0;
16 occ ∈ N;
17 ch ∈∆;
18 elementRef ∈∆;
19 id ∈ T;
20 refId ∈ T;
21 begin
22 i← 0;
23 id← uniqueElementIdentifier(
24 childOfType(element,
25 UniqueModelElementIdentifier, 1));
26 refId← ε;
27 while (i < arity(children(model))) begin
28 ch← childi(model);

29 if (type(ch) ∈ { TransitionDefinition,
30 AssociationDefinition,
31 ScenarioConnectionsDefinition,
32 JoinRelationshipDefinition } begin
33 if (type(ch) =
34 JoinRelationshipDefinition)
35 begin
36 occ← 2;
37 end else begin
38 occ← 1;
39 end
40 elementRef← childOfType(
41 ch, ElementReference, occ);
42 refId = elementReference(
43 elementRef);
44 if (refId = id) begin
45 foundConn← foundConn ∪ { ch };
46 end
47 end else if (ch /∈ T) begin
48 foundConn←
49 seekTargetConnections(
50 element, ch, foundConn);
51 end
52 i← i + 1;
53 end
54 end

Function seqNo. The function seqNo : ∆ → N0 takes a syntax tree as argument s. It must describe
a scenario node (type ScenarioDefinition). If the scenario has the scenario type sequence, the function
returns a sequence number which is greater than zero. The function returns 0, if the given scenario node
has not the type sequence or if s is not the syntax tree of a scenario. A formal definition of the function
can be found in Listing E.44.

Function source. The function source : ∆ × ∆ → ∆ ∪ {ε} takes the two arguments t and s. The
tree t is a syntax tree of an ADORA model that contains a connection described by s. Thus, s has the type
TransitionDe�nition, AssociationDe�nition, ScenarioDe�nition, or a JoinRelationshipDe�nition and is a
subtree of t. The function returns the source of s. Thus it returns the syntax tree of the element which the
connection s is embedded in. If s does not describe a connection or is not contained in t, the empty word
ε is returned. For example, a function call with the syntax tree of the model in Fig. E.2 and the syntax
subtree of the association identified by '1.a.1' returns the syntax tree of the abstract object A, as it is the
source of this association. A formal definition of the function can be found in Listing E.45.

338 Chapter E. Functions on Syntax Trees

Listing E.44: The function seqNo.

1 function seqNo(scenario)
2 input
3 scenario ∈ ∆;
4 return
5 retVal ∈ N0;
6 declare
7 typetree ∈ ∆;
8 f : T→ N =
9 { (1,1), (2,2), (3,3), . . . , };
10 begin

11 retVal← 0;
12 if (scenarioType(scenario) =
13 sequence)
14 begin
15 typetree← childOfType(
16 scenario, ScenarioType, 1);
17 retVal← f(child1(typetree));
18 end
19 end

Function sourceRole. The function sourceRole : ∆ → ∆ takes one argument t which must be a
syntax tree of an association. The function extracts the subtree of the source role. If no source role is
defined or t is not the syntax tree of an association, the empty word ε is returned. A formal definition of
the function can be found in Listing E.46.

Function specialIdenti�er. The function specialIdentifier : ∆ → T takes one argument s. If s is a
syntax tree representing a special identifier, the function returns the token of the special identifier. If s is
not the tree of a special identifier, the empty word ε is returned. A formal definition of the function can be
found in Listing E.47.

Function standardizedProperties. The function standardizedProperties : ∆ → ∪
k
∆k, where k ∈

N0 takes an argument s which describes the syntax tree of a functional specification. The function gathers
the syntax subtrees of swhich define standardized properties. They are returned as tuple, and the contained
elements are ordered according to their occurrence in s. The function returns the empty tuple ∅ if s is not
the syntax tree of a functional specification or there are no standardized properties in s. A formal definition
of the function can be found in Listing E.48.

Function startStates. The function startStates : P(∆) → P(∆) takes a set m of syntax trees and
returns the subset of m of all syntax trees of the type ComponentDe�nition or StateDe�nition with a start
state indicator. The function returns the empty set if no component or state with a start state indicator is
found in m. A formal definition of the function can be found in Listing E.49.

Function stateGroups. The function stateGroups : ∆ × P(∆) → P(P(∆)) takes the syntax tree
t of an ADORA model11 and a set m of syntax trees containing the nodes of a behavior description. The
elements in m should have the type ComponentDe�nition, ExitPointDe�nition, or StateDe�nition. The
function takes all elements of m and computes the set of all state groups which can be formed of the given
set of nodes. There may be state groups in the result which consist only of one element, which is the case
if a node has no in-coming and no out-going transitions. However, an exception are nodes of the type
ComponentDe�nition. Elements of these types which have no incoming and no outgoing transitions do

11More precisely, it can be any subtree of an ADORA model which contains all the behavior elements whose
stategroups should be returned.

E.4 Basic Functions 339

Listing E.45: The function source.

1 function source(model, conn)
2 input
3 model ∈ ∆ ∧ model /∈ T;
4 conn ∈ ∆ ∧ conn /∈ T;
5 return
6 retVal ∈ (∆ ∪ { ε });
7 declare
8 r ∈∆; map ⊆ (N × N);
9 begin
10 retVal← ε;
11 if (type(conn) = TransitionDefinition)
12 begin
13 map←
14 {(ComponentDefintion, 2),
15 (StateDefinition, 2) };
16 end
17 if (type(conn) = AssociationDefinition)
18 begin
19 retVal←
20 {(EnvironmentObjectDefinition, 2),
21 (ComponentDefintion, 2),
22 (AspectDefinition, 2),
23 (ScenarioDefinition, 2)};

24 end
25 if (type(conn) =
26 ScenarioConnectionDefinition)
27 begin
28 map← {(ScenarioDefinition, 2) };
29 end
30 if (map 6= ∅) begin
31 retVal← treeAncestor(
32 model, conn, map);
33 end
34 if (type(conn) =
35 JoinRelationshipDefinition)
36 begin
37 r← childOfType(
38 conn, "ElementReference", 1);
39 if (r 6= ε) begin
40 retVal← find(
41 model, elementReference(r));
42 end
43 end
44 end

not form a state group, i.e., they are not members of a one-element stategroup in the result. They are rather
so-called embedded components (cf. Section 7.9). Furthermore, if m does not contain any element of the
types mentioned above, the empty set ∅ is returned. A formal definition of the function can be found in
Listing E.50.

Function target. The function target : ∆×∆→ ∆∪{ε} takes two arguments t and s. The argument
t is the syntax tree of an ADORA model and s the syntax tree of a connection. The connection must be
part of the ADORA model represented by t. The function returns the syntax tree of the connection’s target
if (i) s has either the type TransitionDe�nition, AssociationDe�nition, ScenarioConnectionDe�nition, or
JoinRelationshipDe�nition, and (ii) if s is contained in t, and (iii) the referenced target element exists in t.

Listing E.46: The function sourceRole.

1 function sourceRole(association)
2 input
3 association ∈ ∆;
4 return
5 retVal ∈ ∆ ∪ { ε };
6 begin
7 retVal← ε;

8 if (type(association) =
9 AssociationDefinition) begin
10 retVal← childOfType(
11 association, Role, 1);
12 end
13 end

340 Chapter E. Functions on Syntax Trees

Listing E.47: The function specialIdentifier .

1 function specialIdentifier(tree)
2 input
3 tree ∈∆;
4 return
5 retVal ∈ uniqueIdentifier ∈
6 <REFERENCE_STRING_LITERAL>
7 ∪ <IDENTIFIER>;
8 declare
9 temp ∈ ∆;
10 begin

11 if (type(tree) = SpecialIdentifier) begin
12 temp← child0(tree);
13 if (type(temp) = Identifier) begin
14 retVal← child0(temp);
15 end else begin
16 retVal← temp;
17 end
18 end
19 end

Listing E.48: The function standardizedProperties .

1 function standardizedProperties(fs)
2 input
3 fs ∈∆;
4 return
5 retVal ∈ ∪

k
∆k, where k ∈ N0;

6 begin
7 retVal←
8 filterOperationsOrProperties(fs,
9 Property);
10 end

Listing E.49: The function startStates .

1 function startStates(states)
2 input
3 states ∈ P(∆);
4 return
5 retVal ∈ P(∆);
6 declare
7 element ∈ ∆;
8 begin
9 retVal← ∅;
10 foreach element ∈ states begin

11 if (element /∈ T ∧
12 childOfType(
13 element, start, 1) 6= ε)
14 begin
15 retVal← retVal ∪ { element };
16 end
17 end
18 end

E.4 Basic Functions 341

Listing E.50: The function stateGroups .

1 function stateGroups(model,
2 statechartElements)
3 input
4 model ∈ ∆ ∧ tree /∈ T;
5 statechartElements ∈ P(∆);
6 return
7 groups ∈ P(P(∆));
8 declare
9 temp ∈ P(∆);
10 found ∈ { true, false };
11 e ∈ ∆;
12 m ∈ P(∆);
13 s ∈ ∆;
14 begin
15 groups← ∅;
16 foreach e ∈ statechartElements begin
17 if (e /∈ T ∧ (type(e) = StateDefinition ∨
18 type(e) = ComponentDefinition ∨

19 type(e) = ExitPointDefinition)) begin
20 found← false;
21 foreach m ∈ groups begin
22 foreach s ∈ m begin
23 if (s = e) begin
24 found← true;
25 end
26 end
27 end
28 if (¬ found) begin
29 temp← findStateGroupMembers(
30 model, ∅, e);
31 groups← groups ∪ { temp };
32 end
33 end
34 end
35 end

If any one of these three conditions is not satisfied, the empty element ε is returned. For example, calling
the function with the syntax tree of the model in Fig. E.2 and syntax subtree of the association identified
by '1.a.1', it returns the syntax tree of the abstract object A, as it is the target of this association. A formal
definition of the function can be found in Listing E.51.

Function targetConnections. The function targetConnections : ∆ ×∆ → P(∆) takes two argu-
ments. The first argument t is the syntax tree of an ADORA model. The second argument s should be
a subtree of t and be identifiable with a unique model element identifier. The function returns the set
of syntax trees describing the connections, i.e., transitions, associations, scenario connections, and join
relationships which have s as target element. The function returns the empty set ∅ if s is not the target of
any connection or it is not part of t. A formal definition of the function can be found in Listing E.52.

Function targetRole. The function targetRole : ∆ × ∆ → ∆ takes two arguments t and s. The
argument t must be the syntax tree of an ADORA model and s must be the syntax tree of an association.
The function extracts the subtree of the target role of the association represented by s. If no target role is
defined, or s is not a subtree of t, or s is not the syntax tree of an association, the empty word ε is returned.
A formal definition of the function can be found in Listing E.53.

Function treeAncestor. The auxiliary function treeAncestor : ∆×∆(N ×N) takes three arguments
t, s, and m. The argument t is the syntax tree of an ADORA model, s any subtree of t, and m is a set
which defines the properties of a valid relationship between the given s and a given t. Concretely, m
contains pairs of non-terminals denoting the type of t, as well as a natural number which specifies the tree
distance12 between the root node of t and s. The function seeks for the (sub)tree in t which contains s and

12This is done in terms of the function distance (cf. p. 319).

342 Chapter E. Functions on Syntax Trees

Listing E.51: The function target .

1 function target(model, conn)
2 input
3 model ∈ ∆ ∧ model /∈ T;
4 conn ∈ ∆ ∧ conn /∈ T;
5 return
6 retVal ∈ (∆ ∪ { ε });
7 declare
8 occurAt ∈ Z;
9 e ∈ ∆;
10 begin
11 retVal← ε;
12 occurAt← -1;
13
14 if (type(conn) in
15 { TransitionDefinition,
16 AssociationDefinition,
17 ScenarioConnectionDefinition }
18 begin

19 occurAt← 1;
20 end
21
22 if (type(conn) =
23 JoinRelationshipDefinition) begin
24 occurAt← 2;
25 end
26
27 if (occurAt 6= -1) begin
28 e← childOfType(conn,
29 ElementReference, occurAt);
30 if (e 6= ε) begin
31 retVal← find(
32 model, elementReference(e));
33 end
34 end
35 end

Listing E.52: The function targetConnections .

1 function targetConnections(model,
2 element)
3 input
4 model ∈ ∆;
5 element ∈ ∆;
6 return
7 retVal ∈ P(∆);

8 begin
9 retVal← ∅;
10 retVal← seekTargetConnections(
11 model, element, retVal);
12 end

E.5 Aspect Specific Functions 343

Listing E.53: The function targetRole.

1 function targetRole(model, association)
2 input
3 model ∈ ∆;
4 association ∈ ∆;
5 return
6 retVal ∈ ∆ ∪ { ε };
7 declare
8 temp ∈ ∆;
9 assocTargetRoles ∈ P(∆);
10 a ∈ ∆;
11 uid ∈ ∆;
12 begin
13 retVal← ε;
14 if (type(association) =
15 AssociationDefinition)
16 begin
17 uid← childOfType(association,

18 UniqueModelElementIdentifier, 1);
19 temp← target(model, association);
20 assocTargetRoles← filterSet(
21 connections(temp),
22 AssociationRoleDefinition);
23 foreach a ∈ assocTargetRoles begin
24 temp← childOfType(
25 a, ElementReference, 1);
26 if (elementReference(temp) =
27 uniqueElementIdentifier(uid))
28 begin
29 retVal← childOfType(a, Role, 1);
30 end
31 end
32 end
33 end

whose root node is one of the types given by the relationship m and which has the specified distance to s.
A formal definition of the function can be found in Listing E.54.

Function uniqueElementIdenti�er. The function uniqueElementIdentifier : ∆ → T takes one
argument t, where t should be the syntax tree of a unique model element identifier. It extracts the unique
model element identifier terminal symbol and returns it. The function returns the empty word ε, if t is not
the syntax tree of a unique model element identifier. A formal definition of the function can be found in
Listing E.55.

E.5 Aspect Speci�c Functions
Function containedAspects. The function containedAspects : ∆ × P(∆) → P(∆) has two argu-
ments t and m. The first argument s is the syntax tree of an ADORA model or a part of a model. The
argumentm is a set of syntax trees, which is used for the recursive descent of the function. It is usually the
empty set ∅ when being used by an external caller. The function takes the syntax tree s and seeks for the
subtrees which are aspect modules, i.e., which have the type AspectDe�nition. If such a subtree is found,
it is added to the content of m. The method returns in the end all syntax trees which are aspect modules
that are contained in s. The function returns the empty set ∅ if s does not contain any aspect module. A
formal definition of the function can be found in Listing E.56.

Function enclosingAspects. The function enclosingAspects : ∆×∆×P(∆)→ P(∆) takes three
arguments t, s, and m. The argument t is the syntax tree of an ADORA model, s is the subtree of any
model element contained in t. Finally, the argument m is a set of calculated elements which is used for
the recursive computation of the function. It should be the empty set ∅ for the initial function call. The
method returns all direct and indirect decomposition parents of s which are of the type AspectDefinition .

344 Chapter E. Functions on Syntax Trees

Listing E.54: The function treeAncestor .

1 function treeAncestor(model, subtree, map)
2 input
3 model ∈ ∆ ∧ model /∈ T;
4 subtree ∈∆ ∧ subtree /∈ T;
5 map ⊆ (N × N);
6 return
7 retVal ∈ (∆ ∪ { ε });
8 declare
9 level ∈ Z; i ∈ N0;
10 ch ∈ ∪

k
∆k, where k ∈ N0;

11 e ∈ ∆;
12 compare ∈ {true,false};
13 m ∈ (N × N);
14 begin
15 level← 1; retVal← ε;
16 compare← false;
17 if (map = ∅) compare← true;
18 for each m ∈ map begin
19 if (π0(m) = type(model)) begin
20 level← π1(m);
21 compare← true;

22 end
23 end
24 if (compare) begin
25 if (distance(model, subtree) = level)
26 begin
27 retVal← model;
28 end
29 end
30 if (retVal = ε) begin
31 ch← children(model);
32 i← 0;
33 while (i < arity(ch) ∧ retVal = ε) begin
34 e← childi(model);
35 if (e /∈ T) begin
36 retVal←
37 treeAncestor(e, subtree, map);
38 end
39 i← i + 1;
40 end
41 end
42 end

Listing E.55: The function uniqueElementIdentifier .

1 function uniqueElementIdentifier(tree)
2 input
3 tree ∈∆;
4 return
5 retVal ∈
6 <REFERENCE_STRING_LITERAL>
7 ∪ <IDENTIFIER>;
8 begin

9 retVal← ε;
10 if (type(tree) =
11 UniqueModelElementIdentifier) begin
12 retVal← specialIdentifier(child0(tree));
13 end
14 end

E.5 Aspect Specific Functions 345

Listing E.56: The function containedAspects .

1 function containedAspects(model, contained)
2 input
3 model ∈ ∆ \ T;
4 contained ∈ P(∆);
5 return
6 contained ∈ P(∆);
7 declare
8 children ∈ ∪

k
∆k, where k ∈ N0;

9 element ∈ ∆;
10 i ∈ N0;
11 begin
12 i← 0;
13 children← children(model);
14 while (i < arity(children)) begin

15 element← childi(model);
16 if (type(element) = AspectDefinition)
17 begin
18 contained← contained ∪
19 { element };
20 end
21 if (element notIn T)
22 begin
23 contained← containedAspects(
24 element, contained);
25 end
26 i← i + 1;
27 end
28 end

Hence, the function returns the set of all aspect modules which enclose the element s. If s is not uniquely
identifiable in t, i.e., if the element in s has no unique element identifier, the enclosing aspects of the
first element matching s are derived. If no aspect module encloses the element defined by s, the value
of parameter m is returned (i.e., the empty set). A formal definition of the function can be found in
Listing E.57.

Function endTargetModules. The function endTargetModules ∆ × ∆ × ∪
k
∆k → ∪

i
∆i, where

k, i ∈ N0 determines the end target modules of an aspect. Its algorithmic specification is formally given
in Section E.5. The function takes three arguments. The first argument t is the syntax tree of an ADORA

model. The second argument s is the syntax subtree of t describing the aspect module for which the
end target modules are searched. The third argument z is a tuple used to store the resulting elements
found during the recursive call of the function. It is usually the empty tuple ∅ for an initial call. The
function seeks for all syntax trees defining the end target modules in t with respect to the given aspect
s. The found elements are appended to z and returned. As the final model only contains conventional
language elements after the weaving, an end target module is only contained in the resulting tuple if it is
a component.13 Even though the given aspect s may have various join relationship paths to the same end
target module, the target module is only contained once in the resulting tuple.14 The function returns the
value of z, if s is not an aspect or if the model does not contain join relationships. A formal definition of
the function can be found in Listing E.58.

Function exitPoints. The function exitPoints : P(∆)→ P(∆) takes the argument m which is a set
of syntax trees. It returns a subset ofm containing all syntax trees which describe an exit point, i.e., which
have the type ExitPointDe�nition. If m does not contain exit points, the empty set is returned. A formal
definition of the function can be found in Listing E.59.

13However, there may be end target modules that are aspects. Nevertheless, they are irrelevant for the final model
and therefore they are omitted by the endTargetModules function.

14The first time the end target module is found, it is appended to the result tuple.

346 Chapter E. Functions on Syntax Trees

Listing E.57: The function enclosingAspects .

1 function enclosingAspects
2 (model, element, aspects)
3 input
4 model ∈ ∆ \ T;
5 element ∈ ∆;
6 aspects ∈ P(∆);
7 return
8 retVal ∈ P(∆) ∧
9 ∀ x ∈ retVal :
10 type(x) = AspectDefinition;
11 declare
12 child ∈ ∆;
13 i ∈ N0;
14 begin
15 if (type(model) = AspectDefinition) begin
16 if (containsElement(model, element))

17 begin
18 aspects← aspect ∪ { model };
19 end
20 end
21 i← 0;
22 while (i < arity(children(model))) begin
23 child = childi(model);
24 if (child /∈ T) begin
25 aspects← enclosingAspects(
26 child, element, aspects);
27 end
28 i← i + 1;
29 end
30 retVal = aspects;
31 end

Function �ndEoJrs. The function findEoJrs : ∆ ×∆ → ∪
k
∆k, where k ∈ N0, has two arguments.

The first argument t is the syntax tree of an ADORA model. The second argument s is the syntax tree of an
association (type AssociationDefinition). It must be a subtree of t. The function seeks for an environment
object which is either the source or the target node of the given association. If an environment object is
found, its outgoing join relationships are extracted and returned as a tuple. The function returns the empty
tuple ∅ if s is not part of t, or s is not an association, or the found environment object has no outgoing join
relationships. A formal definition of the function can be found in Listing E.60.

Function �ndJoinRelationshipCycle. The auxiliary function findJoinRelationshipCycle : ∆ ×
∆ × ∆ → {true, false} takes three arguments t, s, and a. Argument t is a syntax tree of an ADORA

model, s a syntax tree of a join relationship’s target, and a is the start aspect, where the join relationship
is hosted. The function returns whether the source aspect and the target are reachable over a cyclic join
relationship structure. This function is actually a helper for the function hasJoinRelationshipCycles .
The actual criteria which describe when a join relationship cycle results can be found in the description
in the hasJoinRelationshipCycles function at page 348. A formal definition of the function is given in
Listing E.61.

Function gatherAspects. The function gatherAspects ∆×∪
i
∆i → ∪

k
∆k, where k, i ∈ N0 takes two

arguments. The function collects the syntax subtrees of all aspect modules found in the model and returns
them as a tuple. The first argument t must be the syntax tree of an ADORA model whose aspect modules
should be extracted. The second argument x is a tuple of syntax trees. Found aspects are appended to x.
The argument x is used for the recursive descent of the function and is usually the empty tuple ∅ for an
initial call. The order of the elements in the tuple denotes the order in which the aspects are found during
the gathering when visiting t in infix order. The argument x is returned if no aspect modules are found. A
formal definition of the function can be found in Listing E.62.

E.5 Aspect Specific Functions 347

Listing E.58: The function endTargetModules .

1 function endTargetModules(
2 model, aspect, foundModules)
3 input
4 model ∈ ∆;
5 aspect ∈ ∆;
6 foundModules ∈ ∪

k
∆k, where k ∈ N0;

7 return
8 foundModules ∈ ∪

k
∆k, where k ∈ N0;

9 declare
10 ch ∈ ∪

k
Mk, where k ∈ N0;

11 temp ∈ ∆; e ∈∆; i ∈ N0; j ∈ N0;
12 found ∈ { true, false };
13 begin
14 i← 0; found← false;
15 if (type(aspect) = AspectDefinition) begin
16 temp← childOfType(
17 aspect, AspectConnections, 1);
18 if (temp 6= ε) begin
19 ch← children(temp);
20 while (i < arity(ch)) begin
21 e← πi(ch);
22 if (type(e) =
23 JoinRelationshipDefinition)
24 begin
25 temp← targetModule(
26 model, target(model, e));
27 if (temp 6= ε ∧ type(temp) =
28 AspectDefinition)
29 begin
30 foundModules←

31 endTargetModules(
32 model,
33 temp,
34 foundModules);
35 end else if (temp 6= ε ∧ type(
36 temp) = ComponentDefinition)
37 begin
38 j← 0; found← false;
39 while
40 (j < artiy(foundModules))
41 begin
42 if (πj(foundModules) =
43 temp)
44 begin
45 found = true;
46 end
47 j← j + 1;
48 end
49 if (¬ found) begin
50 foundModules←
51 insertarity(foundModules)(
52 foundModules, temp);
53 end
54 end
55 end
56 i← i + 1;
57 end
58 end
59 end
60 end

Listing E.59: The function exitPoints .

1 function exitPoints(states)
2 input
3 stateGroupElements ∈ P(∆);
4 return
5 retVal ∈ P(∆);
6 declare
7 element ∈ ∆;
8 begin
9 retVal← ∅;

10 foreach element ∈ states begin
11 if (element /∈ T ∧
12 type(element) = ExitPointDefinition)
13 begin
14 retVal← retVal ∪ { element };
15 end
16 end
17 end

348 Chapter E. Functions on Syntax Trees

Listing E.60: The function findEoJrs .

1 function findEoJrs(model, association)
2 input
3 model ∈ ∆;
4 associations ∈∆;
5 return
6 retVal ∈ ∪

k
∆k, where k ∈ N0;

7 declare
8 eo ∈∆;
9 j ∈∆;
10 jrs ∈ P(∆);
11 begin
12 retVal← ∅;
13 if (type(association) =
14 AssociationDefinition)
15 begin
16 eo← ε;
17 if (type(source(model, association)) =
18 EnvironmentObjectDefinition)
19 begin

20 eo← source(model, association);
21 end else if (type(target(
22 model, association)) =
23 EnvironmentObjectDefinition)
24 begin
25 eo← target(model, association);
26 end
27 if (eo 6= ε) begin
28 jrs← filterSet(
29 connections(eo),
30 JoinRelationshipDefinition);
31 foreach j ∈ jrs begin
32 insertarity(retVal)(retVal, j);
33 end
34 end
35 end
36 end
37

Function hasJoinRelationshipCycles. The function hasJoinRelationshipCycles : ∆ × ∆ →
{true, false} takes two arguments t and s, where t is a syntax tree of an ADORA model and s is a
syntax tree of a join relationship contained in t. This function is needed since aspects may crosscut as-
pects. Hence cycles of crosscutting join relationships may occur, but such cycles are not meaningful. The
function returns true if the given join relationship connects its source and target in a way that a cyclic
crosscutting relationship is created. A cycle occurs, if an aspect A or one of A’s descendants or ances-
tor aspects15 is connected directly or transitively with an aspect B or one of B’s descendant or ancestor
aspects, and in turn the aspect B (or one of its descendant or ancestor aspects) is connected directly or
transitively with the aspect A (or one of its descendant or ancestor aspects). A formal definition of the
function can be found in Listing E.63.

Function jrHostingAspect. The function jrHostingAspect : ∆ × ∆ → ∆ takes two arguments t
and s. The argument t is the syntax tree of an ADORA model and s must be a subtree of t, and s must
describe a join relationship. The function returns the syntax tree of the aspect module to which s belongs.
If s is not contained in t, the empty element is returned. A formal definition of the function can be found
in Listing E.64.

Function ordering. The function ordering : ∆ → {before,instead,after} takes one argu-
ment s. It must contain the syntax tree of a join relationship as otherwise the result of the function is
undefined. It returns one of the ordering keywords before, instead, or after which indicate how
the source element or chunk is woven with respect to the target. If the join relationship does not have

15An ancestor aspect is an aspect module in the decomposition hierarchy which encloses the given aspect, whereas
a descendant aspect is an aspect module contained in the given aspect.

E.5 Aspect Specific Functions 349

Listing E.61: The auxiliary function findJoinRelationshipCycle .

1 function findJoinRelationshipCycle(
2 model, target, startAspect)
3 input
4 model ∈ ∆ \ T; target ∈ ∆;
5 startAspect ∈ ∆;
6 return
7 retVal ∈ { true, false };
8 declare
9 tempTarget ∈ ∆; tempSource ∈∆;
10 aspectSet ∈ P(∆); tempElement ∈∆;
11 connections ∈ ∆; jrs ∈ P(∆);
12 tempElement2 ∈ ∆;
13 begin
14 tempTarget← ε; tempSource← ε;
15 aspectSet← ∅; retVal← ε;
16
17 if (type(target) ∈ {
18 AssociationDefinition,
19 TransitionDefinition }
20 begin
21 tempTarget← target(model, target);
22 tempSource← source(model, target);
23 if (type(tempTarget) =
24 AspectDefinition)
25 begin
26 aspectSet← aspectSet ∪ {
27 tempTarget };
28 end
29 if (type(tempSource) =
30 AspectDefinition)
31 begin
32 aspectSet← aspectSet ∪ {
33 tempSource };
34 end
35 aspectSet← enclosingAspects(
36 model, tempTarget, aspectSet);
37 aspectSet← enclosingAspects(
38 model, tempSource, aspectSet);
39 aspectSet← containedAspects(
40 tempTarget, aspectSet);
41 aspectSet← containedAspects(
42 tempSource, aspectSet);
43 end else begin
44 if (type(target) =

45 AspectDefinition)
46 begin
47 aspectSet← aspectSet ∪ { target };
48 end
49 aspectSet← enclosingAspects(
50 model, target, aspectSet);
51 aspectSet← containedAspects(
52 target, aspectSet);
53 end
54
55 foreach (tempElement ∈ aspectSet)
56 begin
57 if (tempElement = startAspect)
58 retVal← true;
59 end
60
61 foreach (tempElement ∈ aspectSet)
62 begin
63 if (retVal = false) begin
64 connections← childOfType(
65 tempElement,
66 AspectConnections, 1);
67 if (connections 6= ε) begin
68 jrs← childrenSetOfType(
69 connections,
70 JoinRelationshipDefinition);
71 foreach (tempElement2 ∈ jrs)
72 begin
73 if (retVal = false) begin
74 tempTarget← target(
75 model, tempElement2);
76 retVal←
77 findJoinRelationshipCycle(
78 model,
79 tempTarget,
80 startAspect);
81 end
82 end
83 end
84 end
85 end
86 end

350 Chapter E. Functions on Syntax Trees

Listing E.62: The function gatherAspects .

1 function gatherAspects(model, aspects)
2 input
3 model ∈ ∆;
4 aspects ∈ ∪

k
∆k, where k ∈ N0;

5 return
6 retVal ∈ ∪

k
∆k, where k ∈ N0;

7 declare
8 i ∈ N0;
9 child ∈ ∆;
10 begin
11 i← 0;
12 retVal = aspects;
13 while (i < arity(model)) begin
14 child← childi(model);

15 if (child /∈ T) begin
16 if (type(child) = AspectDefinition)
17 begin
18 retVal← insertarity(retVal)(
19 retVal, child);
20 end else begin
21 retVal← gatherAspects(
22 child, retVal);
23 end
24 end
25 i = i + 1;
26 end
27 end

Listing E.63: The function hasJoinRelationshipCycles .

1 function hasJoinRelationshipCycles
2 (model, jr)
3 input
4 model ∈ ∆ \ T;
5 jr ∈ ∆ ∧
6 type(jr) = JoinRelationshipDefinition
7 return
8 retVal ∈ { true, false };
9 declare
10 startAspect ∈ ∆;

11 target ∈∆;
12 begin
13 startAspect← source(model, jr);
14 target← target(model, jr);
15 retVal← findJoinRelationshipCycle(
16 model, target, startAspect);
17 end
18

Listing E.64: The function jrHostingAspect .

1 function jrHostingAspect(model, jr)
2 input
3 model ∈ ∆;
4 jr ∈ ∆ ∧
5 type(element) =
6 JoinRelationshipDefinition;
7 return
8 host ∈∆;

9 begin
10 host← treeAncestor(
11 model,
12 jr,
13 { (AspectDefinition, 2) });
14 end

E.5 Aspect Specific Functions 351

Listing E.65: The function ordering .

1 function ordering(jr)
2 input
3 jr ∈ ∆ ∧
4 type(jr) = JoinRelationship;
5 return
6 ordering ∈ { before,
7 instead, after} ⊂ T;
8 begin
9 ordering←
10 childOfType(jr, before, 1);
11 if (ordering = ε) begin
12 ordering←

13 childOfType(jr, instead, 1);
14 if (ordering = ε) begin
15 ordering←
16 childOfType(jr, after, 1);
17 if (ordering = ε) begin
18 ordering← before;
19 end
20 end
21 end
22 end

Listing E.66: The function priority .

1 function priority(jr)
2 input
3 jr ∈ ∆ ∧ type(jr) = JoinRelationship;
4 return
5 p ∈ {1, 2, . . . , 10} ⊂ N;
6 declare
7 o ∈ {1, 2, . . . , 10} ⊂ T;
8 f : {1, 2, . . . , 10}→ { 1, 2,. . . , 10 } =
9 { (1,1), (2,2), . . . , (10,10) };

10 begin
11 o← child(childOfType(jr, Priority, 1),1);
12 if (o 6= ε) begin
13 p← f(o);
14 end else begin
15 p← 1;
16 end
17 end

any of the three ordering keywords, the default keyword before is returned. A formal definition of the
function can be found in Listing E.65.

Function priority. The function priority : ∆ → {1, 2, . . . , 10} ⊂ N takes the syntax tree of a join
relationship s as argument and returns its priority. The method returns the default priority 1 if there is no
priority specified in the join relationsip. A formal definition of the function can be found in Listing E.66.

Function serverComponentAssociations. The function serverComponentAssociations : ∆ ×
∆ → ∪

k
∆k, where k ∈ N0, takes two arguments. The first argument t is the syntax tree describing

an ADORA model. The second argument s is the syntax tree contained in t which must describe an aspect
module. The function seeks for all associations which connect s with any (server) component. The syntax
trees of the found associations are returned as a tuple. The function returns the empty tuple ∅ if s is not
part of t or there are no associations connecting the aspect described by s with a server component. A
formal definition of the function can be found in Listing E.67.

Function targetModule. The function targetModule : ∆ ×∆ → ∆ takes two arguments. The first
argument t is the syntax tree of an ADORA model. The second argument s should be the syntax subtree
of a join relationship’s target element. The element described by s must be part of the syntax tree t.

352 Chapter E. Functions on Syntax Trees

Listing E.67: The function serverComponentAssociations .

1 function serverComponentAssociations
2 (model, aspect)
3 input
4 model ∈ ∆;
5 aspect ∈ ∆;
6 return
7 retVal ∈ ∪

k
∆k, where k ∈ N0;

8 declare
9 connections ∈ P(∆);
10 a ∈ ∆;
11 begin
12 retVal← ∅;
13 if (type(aspect) = AspectDefinition) begin

14 connections← filterSet(
15 connections(aspect),
16 AssociationDefinition);
17 connections← connections ∪
18 filterSet(
19 targetConnections(model, aspect),
20 AssociationDefinition);
21 foreach a ∈ connections begin
22 retVal← insertarity(retVal)(
23 retVal, a);
24 end
25 end
26 end

The function returns the next component (ComponentDefinition) or aspect (AspectDefinition) in the
decomposition hierarchy which directly or indirectly contains s. A formal definition of the function can
be found in Listing E.68.

E.6 Transformation Functions

Function adaptCloneReferences. The auxiliary function adaptCloneReferences : ∆×∪
i
M i, where

i ∈ N0 takes two arguments t and m. The argument t is the syntax tree of an ADORA model or any ele-
ment contained in a model, and m is a tuple consisting of pairs of mappings between original and copied
elements. The function seeks for all element references in t that refer to an original contained in the map-
ping of m. Any found reference is replaced by the reference to the corresponding cloned element. This
helper function is used by the createCloneMap function to substitute the original references by references
to the corresponding cloned elements. A formal definition of the function can be found in Listing E.69.

Function cloneElement. The auxiliary function cloneElement : ∆×∆×∪
k
Mk × {true, false} →

∪
i
M i, where i, k ∈ N0, takes four arguments. The first argument t is the syntax tree of an ADORA model.

The second argument s is the syntax tree of any uniquely identifiable ADORA element contained in t. The
third element m is an exsiting clone map which contains already cloned elements. The fourth argument
b is a boolean value which indicates whether this method is called recursively or by another function. for
an initial call of the function, b must be false. The function takes the syntax tree s and creates a clone of
it. The clone is identical to s except for any contained unique element identifier. Moreover, any subtree of
the type ScenarioDe�nition is removed from the clone. Each unique element identifier is adapted so that
it is unique within t. Consequently each subelement contained in t is also cloned. Each cloned element
and each cloned subelement is appended, together with its original, as a new pair to the clone map m. A
formal definition of the function can be found in Listing E.70.

E.6 Transformation Functions 353

Listing E.68: The function targetModule.

1 function targetModule(model, element)
2 input
3 model ∈ ∆;
4 element ∈ ∆;
5 return
6 retVal ∈ ∆ ∪ { ε };
7 declare
8 temp ∈ ∆; i ∈ N0;
9 begin
10 i← 0;
11 retVal← ε;
12 while (i < arity(children(model)) ∧
13 retVal = ε)
14 begin
15 if (childi(model) /∈ T) begin
16 temp← childi(model);
17 if (temp = element) begin
18 retVal← element;

19 end else begin
20 retVal←
21 targetModule(temp, element);
22 if (retVal 6= ε ∧
23 retVal = element)
24 begin
25 if (type(model) ∈ {
26 AspectDefinition,
27 ComponentDefinition }) begin
28 retVal← model;
29 end
30 end
31 end
32 end
33 i← i + 1;
34 end
35 end

Listing E.69: The function adaptCloneReferences .

1 function adaptCloneReferences
2 (element, cloneVector)
3 input
4 element ∈ ∆;
5 cloneVector ∈ ∪

k
∆k,

6 where k ∈ N0;
7 return
8 retVal ∈ ∆;
9 declare
10 i ∈ N0;
11 ch ∈∆;
12 ref ∈ T;
13 mappedRef ∈ ∆;
14 begin
15 retVal← element; i← 0;
16 while (i < arity(retVal)) begin
17 ch← childi(retVal);
18 if (ch ∈∆ \ T) begin
19 if (type(ch) = ElementReference)

20 begin
21 ref = elementReference(ch);
22 mappedRef← mappedReference(
23 ref, cloneVector);
24 if (mappedRef 6= ε) begin
25 deletei(retVal);
26 inserti(mappedRef, i);
27 end
28 end else begin
29 ch← adaptCloneReferences(
30 ch, cloneVector);
31 deletei(retVal);
32 inserti(ch, i);
33 end
34 end
35 i← i + 1;
36 end
37 end

354 Chapter E. Functions on Syntax Trees

Listing E.70: The function cloneElement .

1 function cloneElement(model, element,
2 cloneVector, isFirstCall)
3 input
4 model ∈ ∆;
5 element ∈ ∆;
6 cloneVector ∈ ∪

k
Mk, where k ∈ N0;

7 isFirstCall ∈ { true, false };
8 return
9 retVal ∈ ∪

k
∆k, where k ∈ N;

10 declare
11 ch1 ∈ ∆;
12 ch2 ∈ ∆;
13 children ∈ ∪

k
∆k, where k ∈ N;

14 original ∈ ∆;
15 begin
16 i← 0; original← element;
17 if (isFirstCall) begin
18 element← removeScenarios(element);
19 end
20 while (i < arity(children(element)) begin
21 ch1← childi(element);
22 if (ch1 ∈ ∆ \ T) begin
23 if (type(ch1) =
24 UniqueModelElementidentifier)
25 begin
26 ch2 = createClonedId(
27 model, element);
28 end else begin
29 cloneVector = cloneElement(
30 model, ch1, cloneVector, false);
31 ch2 = πarity(cloneVector)−1(

32 cloneVector);
33 children = children(element);
34 children← deletei(children);
35 children← inserti(ch2);
36 delete1(element);
37 element← insert1(element,
38 children);
39 end
40 end
41 i← i + 1;
42 end
43
44 if (childOfType(element,
45 UniqueModelElementIdentifier, 1) 6= ε)
46 begin
47 children = ∅;
48 insert0(children, original);
49 insert1(children, element);
50 insertarity(cloneVector)(cloneVector,
51 children);
52 end
53 if (¬ isFirstCall ∧
54 (childOfType(element,
55 UniqueModelElementIdentifier, 1)
56 = ε)
57) begin
58 insertarity(cloneVector)(cloneVector,
59 element);
60 end
61 retVal← cloneVector;
62 end

Function createAdditionalExitStateClone. The function createAdditionalExitStateClone : ∆×
∆→ ∪

k
Mk, where k ∈ N0, takes two arguments and creates a new state and a new exit transition. These

elements are needed in the case of the before weaving of a behavior chunk (cf. Section G.1.1. The first
argument t is the syntax tree of the model. The second argument s is the syntax tree of the exit point for
which the additional state has to be created. The function returns a tuple with one pair (s, c) ∈ M . The
syntax tree s is the syntax tree of the (original) exit point, whereas c is the created additional state. This
tuple can be part of a clone map. It can be added to the clone map by the function createCloneMap (see
below). Thus, the exit point s is mapped to the additional state. Furthermore, the syntax tree of the state c
also contains a transition which is re�exive. The weaving process reassigns the target of this transition to
the crosscut transition. The function returns the empty tuple ∅ if s is not the syntax tree of an exit point.
A formal definition of the function can be found in Listing E.71.

E.6 Transformation Functions 355

Listing E.71: The function createAdditionalExitStateClone .

1 function createAdditionalExitStateClone(
2 model,exitPoint)
3 input
4 model ∈ ∆;
5 exitPoint ∈ ∆;
6 return
7 map ∈∆ ×∆;
8 declare
9 name ∈∆; cloneid ∈ ∆;
10 transitionDefCh ∈ ∪

k
∆k, where k ∈ N0;

11 transition ∈ ∆; transitionId ∈ T;
12 targetRef ∈ ∆; transitionUId ∈∆;
13 stateDefCh ∈ ∆; state ∈∆;
14 begin
15 map← ∅;
16 if (type(exitPoint) = ExitPointDefinition)
17 begin
18 cloneid← createCloneId(model,
19 exitPoint);
20 name← childOfType(model,
21 StateName, 1);
22 if (name = ε ∨ specialIdentifier(
23 childOfType(name,
24 SpecialIdentifier, 1)) = ε)
25 begin
26 name← generateUniqueName(

27 model, exitPoint);
28 end
29 transitionId←
30 uniqueElementIdentifier(cloneid);
31 transitionUId←
32 createUniqueElementIdentTree(
33 generateUniqueElementIdentifier(
34 model, transitionId));
35 targetRef←
36 createElementReferenceTree(
37 transitionId);
38 transitionDefCh←
39 (transitionUId, to, targetRef);
40 transition← (TransitionDefinition,
41 transitionDefCh);
42 stateDefCh← (state, name,
43 cloneid, connections,
44 transition, end,
45 connections, end,
46 state, name);
47 state← (StateDefinition,
48 stateDefCh);
49 map← (exitPoint, state);
50 end
51 end

Function createCloneId. The auxiliary function createCloneId : ∆×∆→ ∆ takes two arguments.
The first argument t is the syntax tree of an ADORA model and s a syntax subtree contained in t. The
ADORA element specified by argument s must be identified by a unique model element identifier. The
function takes this unique model element idenfier and generates a new identifier which is unique with
respect to the elements in t. It is returned as a syntax tree of the type UniqueModelElementIdenti�er. The
function is used by createAdditionalExitStateClone. There is no formal description of it, as the present
work does not anticipate an identifier scheme for ADORA models.

Function createCloneMap. The function createCloneMap : ∆ × P(∆) × ∪
k
Mk → ∪

j
M j , where

k ∈ N0, j ∈ N0, and M is a pair of ADORA syntax trees, computes the mapping between a set of given
elements and the corresponding clone copies of these elements. It takes three arguments: the first argument
t is the syntax tree of an ADORA model. The second argument m is a set of syntax trees contained in t
and which have a unique model element identifier. The elements in m must be subtrees of t. The third
argument c is a tuple of a previously computed clone map which is incorporated by the function into the
computed clone map. The argument c can be ∅ if no clone map has been previously computed.

The function takes the elements in m and creates a tuple which contains pairs of ADORA syntax
trees. A pair is a mapping between an original element and a clone copy of it. The clone copy gets a

356 Chapter E. Functions on Syntax Trees

Listing E.72: The function createCloneMap.

1 function createCloneMap
2 (model, elements, cloneMap)
3 input
4 model ∈ ∆; elements ∈ P(∆);
5 cloneMap ∈ ∪

k
Mk, where k ∈ N0;

6 return
7 retVal ∈ ∪

k
Mk, where k ∈ N0;

8 declare
9 i ∈ N0; element ∈∆; clone ∈∆;
10 newCh ∪

k
Mk, where k ∈ N0;

11 ch1 ∈ ∪
k
Mk, where k ∈ N0;

12 begin
13 retVal← cloneMap; i← 0;
14 foreach element in elements begin

15 if (element ∈∆ minus T) begin
16 retVal = cloneElement(model,
17 element, retVal, true);
18 end
19 end
20 while (i < arity(retVal)) begin
21 ch1← πi(retVal); element← π0(ch1);
22 clone← π1(ch1);
23 clone←
24 adaptCloneReferences(clone, retVal);
25 newCh← ∅; insert0(newCh, element);
26 insert1(newCh, clone); deletei(retVal);
27 inserti(retVal, newCh);
28 end
29 end

new model element identifier which is unique in the syntax tree t. The return value of the function is a
tuple containing pairs of the form (oi, ci) ∈ M , where oi is the syntax tree of an element contained in m
and ci the corresponding clone. Other uniquely identified elements16 described by subtrees of oi are also
cloned and receive their own entries in the resulting clone mapping list. However, scenarios which are
contained as subtree of an element in m are not cloned, but removed from the clone copies. This happens
due to the fact that scenarios build an orthogonal decomposition hierarchy which is cloned separately.
Furthermore, references between cloned elements are adapted. Thus, if oi refers oj in the clone map, then
correspondingly ci refers to cj . A formal definition of the function can be found in Listing E.72.

Function �ndClone. The function findClone : ∆ × ∪
k
Mk → ∆, where k ∈ N0, maps a given

original to a corresponding clone copy of a syntax tree. The first argument o denotes the syntax tree of an
original element whose clone copy is searched. The second argumentm is the clone map consisting of the
mapping pairs between the original syntax trees and the cloned syntax trees. It is produced by the functions
createCloneMap and createAdditionalExitStateClone which are described above. The function seeks
for the pair (oi, ci) in m which has an element oi that has the same unique element identifier as o and
returns ci. The empty word ε is returned if there is no element found. A formal definition of the function
can be found in Listing E.73.

Function �ndOrderingGroups. The auxiliary function findOrderingGroups : ∪
k
∆k →M3, where

k ∈ N0, takes an argument m which is a tuple of syntax trees that describe join relationships. It groups
the join relationships according to their ordering before, instead, after and returns a triple (b, i, a), where
b is the group of before, i the group of instead, and a the group of after join relationships. Syntax trees in
m which are not join relationships are ignored. If no join relationships for a group are found, the group is

16For example, a given component x may have parts, such as states. The parts have an own unique identifier and
are contained as sub tree in x.

E.6 Transformation Functions 357

Listing E.73: The function findClone.

1 function findClone(origInp, cloneMap)
2 input
3 origInp ∈∆;
4 cloneMap ∈ ∪

k
Mk, where k ∈ N0;

5 return
6 clone ∈∆;
7 declare
8 identifier ∈∆;
9 orig ∈∆;
10 origKey ∈∆;
11 i ∈ N0;
12 begin
13 identifier← childOfType(origInp,

14 UniqueModelElementIdentifier, 1);
15 i← 0; clone← ε;
16 while (i < arity(cloneMap) ∧ clone = ε)
17 begin
18 orig← π0(πi(cloneMap));
19 origKey← childOfType(orig,
20 UniqueModelElementIdentifier, 1);
21 if (identifier = origKey) begin
22 clone← π1(πi(cloneMap));
23 end
24 i← i + 1;
25 end
26 end

represented by the an empty tuple ∅. The function is used topologicJrSort . Its formal definition can be
found in Listing E.74.

Function �rstJr. The function firstJr : ∪
k
∆k → ∆, where k ∈ N0, takes one argument m which must

be a topologically sorted list of join relationships created by the function topologicJrSort (cf. Section 9.1
and Section E.6). The argument m is a list of elements (m0,m1, . . . ,mn), where mi contains tuples
impacting the same target. An element mk is a three-tuple (mb

k,m
i
k,m

a
k) ∈M , where mb

k is a tuple of all
before, mi

k of all instead, and ma
k a tuple of all after join relationships pointing at the same target. Note

that tuples and subtuples may be empty, i.e., contain no join relationships. The function returns the first
element in this tuple structure. The search is started at the left-most element. The function returns the
empty word ε, if m does not contain any join relationships. A formal definition of the function can be
found in Listing E.75.

Function gatherJrs. The auxiliary Function gatherJrs : ∆ × ∆ × ∪
k
∆k → ∪

p
∆p, where k, p ∈ N0

takes three arguments. The first argument t is a syntax tree of an ADORA model. The second argument m
is also a syntax tree of an ADORA model which is used for the recursive descent of the function. For an
initial call, usually m = t. The third argument is a tuple of join relationships which is also used for the
recursive descent. It is usually the empty tuple ∅ for the initial call of the function. The function traverses
the model and returns all found join relationships in a tuple. The order in the tuple represents the order
in which the join relationships are found in the model. A formal definition of the function is given in
Listing E.76.

Function generateUniqueElementIdenti�er. The auxiliary function generateUniqueElementIden-
ti�er : ∆ × T → T takes two arguments. The first argument t is the syntax tree of an ADORA model.
The second argument m must be a unique model element identifier. The function generates a new unique
element id which is unique with respect to t and m and returns the corresponding token. The function is
used by createAdditionalExitStateClone. There is no formalized description of this function, because

358 Chapter E. Functions on Syntax Trees

Listing E.74: The function findOrderingGroups .

1 function findOrderingGroups(jrs)
2 input
3 jrs ∈ ∪

k
∆k, where k ∈ N0 ∧

4 ∀ l ∈ N0 :
5 0 ≤ l < arity(jrs)⇒
6 type(πl(jrs)) =
7 JoinRelationshipDefinition;
8 return
9 retVal ∈M3;
10 declare
11 before ∈ ∪

k
Mk, where k ∈ N0;

12 instead ∈ ∪
k
Mk, where k ∈ N0;

13 after ∈ ∪
k
Mk, where k ∈ N0;

14 curr ∈∆;
15 ordering ∈ { before, instead,
16 after };
17 i ∈ N0;
18 begin
19 before← ∅; instead← ∅;
20 after← ∅; retVal← ∅; i← 0;
21 curr← ε; ordering← ε;

22 while (i < arity(jrs)) begin
23 curr← πi(jrs);
24 ordering← ordering(curr);
25 if (ordering = before)
26 begin
27 insertarity(before)(before, curr);
28 end else if (ordering = instead)
29 begin
30 insertarity(insert)(insert, curr);
31 end else if (ordering = after)
32 begin
33 insertarity(after)(after, curr);
34 end
35 i← i + 1;
36 end
37 before← prioritySort(before);
38 instead← prioritySort(instead);
39 after← prioritySort(after);
40 insertarity(retVal)(retVal, before);
41 insertarity(retVal)(retVal, instead);
42 insertarity(retVal)(retVal, after);
43 end

Listing E.75: The function firstJr .

1 function firstJr(list)
2 input
3 list ∈ ∪

k
∆k, where k ∈ N0;

4 return

5 retVal ∈∆;
6 begin
7 retVal← π0(�atenTuple(list, ∅));
8 end

E.6 Transformation Functions 359

Listing E.76: The function gatherJrs .

1 function gatherJrs(model, subTree, retVal)
2 input
3 model ∈ ∆;
4 subTree ∈∆;
5 return
6 retVal ∈ ∪

k
∆k, where k ∈ N0;

7 declare
8 i ∈ N0;
9 begin
10 i← 0;
11 while (i < arity(children(model))) begin
12 if (type(childi(subTree)) =
13 JoinRelationshipDefinition)
14 begin

15 if (type(source(model,
16 childi(subTree))) 6=
17 EnvironmentObjectDefinition)
18 begin
19 insertarity(retVal)(retVal, childi);
20 end
21 end else if (childi(subTree) /∈ T) begin
22 retVal← gatherJrs(
23 model, childi(subTree), retVal);
24 end
25 i← i + 1;
26 end
27 end

the present work does not anticipate an identifier scheme for ADORA models.

Function generateUniqueName. The auxiliary function generateUniqueName : ∆×∆→ ∆ takes
two arguments. The first argument t is a syntax tree of an ADORA model, and the second argument s is
a syntax subtree of t which describes an element contained in the model. The function extracts the name
syntax tree of s and creates a new unique name with respect to the context of s. The corresponding syntax
tree of the generated name is returned. This fucntion is used by createAdditionalExitStateClone. There
is no concrete formal description as the present work does not anticipate a naming scheme for ADORA

models.

Function generateUniqueRole. The function generateUniqueRole : ∆×∆×∆→ ∆ takes three
arguments. The first argument t is the syntax tree of an ADORA model. The second argument a is a syntax
subtree of t and describes an association. The third argument s is a syntax subtree of t which specifies a
role of the association described by a. The function returns the syntax tree of a role which is based on s
and which has a unique name with respect to t and a. The cardinality of the returned role is the same as
given by s. The function returns the empty word ε if any of the following conditions is fulfilled: (i) a is
not an association, (ii) s is not role, (iv) s is not contained in a, or (v) a is not contained in t. Note that
there is no formal algorithmic description of this function. This is due to the fact that the function depends
on the naming schema for roles that is not anticipated by the present work.

Function identicalElement. The function identicalElement : ∆ × ∆ → ∆ takes two arguments.
The first argument t is the syntax tree of an ADORA model. The second argument s is the syntax tree
describing an element tagged by a unique model element identifier. The function reads the model element
identifier of s and retrieves the syntax subtree in t which is tagged by the same unique model element
identifier as that of s. The function returns the empty word ε if no element with the same identifier as s is
contained in t.

The function is necessary because the syntax tree of an element may change during the time taken
for a model transformation. Therefore, an element need not necessarily be exactly equal at two different

360 Chapter E. Functions on Syntax Trees

Listing E.77: The function identicalElement .

1 function identicalElement(model, element)
2 input
3 model ∈ ∆;
4 element ∈ ∆;
5 return
6 retVal ∈ ∆
7 declare
8 idtree ∈∆;
9 id ∈ T ∪ ∅;

10 begin
11 retVal← ε;
12 idtree← childOfType(element,
13 UniqueModelElementIdentifier, 1);
14 id← uniqueElementIdentifier(idtree);
15 retVal← find(model, id);
16 end

points in time, and a comparison for equality between trees of the same model element but with different
model versions may fail. However, despite changes, the element can still be identified uniquely. There-
fore, this function can be employed to retrieve a given element from a different model version resulting
during the transformation of a model syntax tree. When using this function for the description of weav-
ing transformations, there is the convention that all properties of the retrieved syntax tree are the same
as for the originating tree, unless stated otherwise. A formal definition of the function can be found in
Listing E.77.

Function isPredecessorGroup. The auxiliary function isPredecessorGroup : ∆ × ∪
k
Mk × ∪

p
∆p,

where k, p ∈ N0, takes three arguments. The first argument t is the syntax tree of an ADORA model. The
second and third argumentm and q contain a multiple nested-tuple structure consisting of join relationship
syntax trees. The function checks for each join relationship inmwhether a predecessor join relationship in
p exists.17 If at least one join relationship of m has a predecessor in p, the method returns true, otherwise
the method returns false. The function isPredecessorGroup is used by the function sortTargetGroups
to determine the weaving order of transitively crosscutting aspects. Its formal definition can be found in
Listing E.78.

Function mappedReference. The auxiliary function mappedReference : T ×∪
k
Mk → ∆ takes two

arguments. The first argument r should be a terminal symbol that is a unique element identifier. The
second argument must be clone map produced by createCloneMap. The function takes r and searches
for an orginal which has a unique model element identifier that is equal to r. It returns the clone copy of
the found original. If there is no element with an identifier r in the clone map, the function returns the
empty word ε. This function is used by adpatCloneReferences . Its formal definition can be found in
Listing E.79.

Function prioritySort. The auxiliary function prioritySort : ∪
k
∆k → ∪

k
∆k, where k ∈ N0 takes one

argument m which must be a tuple of join relationship syntax trees. It returns a tuple which contains all
elements inm sorted according to their priority. Syntax trees inmwhich do not describe join relationships
are interpreted with the lowest priority. The function is used by findOrderingGroups , and is described
more formally in Listing E.80.

17The predecessor relationship between two join relationships is explained in Section 9.1.1.

E.6 Transformation Functions 361

Listing E.78: The function isPredecessorGroup.

1 function isPredecessorGroup
2 (model, targetGroup, compareGroup)
3 input
4 model ∈ ∆;
5 targetGroup ∈ ∪

k
Mk, where k ∈ N0;

6 compareGroup ∈ ∪
k
Mk, where k ∈ N0;

7 return
8 isBefore ∈ { true, false };
9 declare
10 encAspects ∈ P(∆); i ∈ N0; j ∈ N0;
11 tg1 ∈ ∪

k
Mk, where k ∈ N;

12 tg2 ∈ ∪
k
Mk, where k ∈ N;

13 e1 ∈∆;
14 begin
15 isBefore← false;
16 tg1← �atenChildren(targetGroup, ε);
17 tg2← �atenChildren(compareGroup, ε);

18 i← 0;
19 while (i < arity(tg1) ∧
20 isBefore = false) begin
21 e1← jrHostingAspect(model, πi(tg1));
22 j← 0;
23 while (j < arity(tg2) ∧
24 isBefore 6= false) begin
25 encAspects← enclosingAspects(
26 model, πj(tg2), ∅);
27 if (e1 ∈ encAspects) begin
28 isBefore← true;
29 end
30 j← j + 1;
31 end
32 i← i + 1;
33 end
34 end

Listing E.79: The function mappedReference.

1 function mappedReference(id, cloneVector)
2 input
3 id ∈ T;
4 cloneVector ∈ ∪

k
Mk,

5 where k ∈ N0;
6 return
7 retVal ∈ ∆;
8 declare
9 ch1 ∈ ∪

k
Mk,

10 where k ∈ N0;
11 orig ∈∆; clone ∈∆;
12 ref ∈ ∆; i ∈ N0; sid ∈ T;
13 begin
14 retVal← ε;
15 i← 0;
16 while (i < arity(cloneVector)) begin
17 ch1← πi(cloneVector);
18 orig← π0(ch1);

19 clone← π1(ch1);
20 ref← childOfType(orig,
21 UniqueModelElementidentifier, 1)
22 if (ref 6= ε) begin
23 sid = uniqueElementIdentifier(ref);
24 if (sid = id) begin
25 ref←childOfType(clone,
26 UniqueModelElementIdentifier,
27 1);
28 sid← uniqueElementIdentifier(
29 ref);
30 retVal← (ElementReference,
31 ((SpecialIdentifier, (sid)));
32 end
33 end
34 i← i + 1;
35 end
36 end

362 Chapter E. Functions on Syntax Trees

Listing E.80: The function prioritySort .

1 function prioritySort(jrs)
2 input
3 jrs ∈ ∪

k
Mk, where k ∈ N0 ∧

4 ∀ x ∈ jrs :
5 type(x) = JoinRelationshipDefinition;
6 return
7 jrs ∈ ∪

k
Mk, where k ∈ N0;

8 declare
9 i ∈ N0;
10 j ∈ N0;
11 value ∈ N;
12 t1 ∈∆;
13 begin
14 i← 1;
15 while (i < arity(jrs)) begin

16 t1← πi(jrs);
17 value← priority(t1);
18 j← j - 1;
19 while (j >= 0 ∧
20 priority(πj(jrs) < value) begin
21 insertj+1(jrs, πj(jrs));
22 deletej+2(jrs);
23 j← j - 1;
24 end
25 insertj+1(jrs, t1);
26 deletej+2(jrs);
27 i← i + 1;
28 end
29 end

Function removeScenarios. The auxiliary function removeScenarios : ∆ → ∆ has one argument
s which is an ADORA syntax tree. The function traverses s and removes all subtrees of the type Scenari-
oDe�nition. The function is used by cloneElement , because the weaving of embedded components and
scenarios in aspects is done in two different steps of the weaving (cf. Section 9.2.2, 9.2.4 and 9.2.5). A
formal definition of removeScenarios can be found in Listing E.81.

Function sortTargetGroups. The auxiliary function sortTargetGroups : ∆×∪
k
∆k → ∪

k
∆k, where

k ∈ N0 takes two arguments. The first argument t is the syntax tree of an ADORA model. The second
argument m is a tuple which contains tuples of join relationship groups. Each group contains join rela-
tionships which have the same target. The join relationships in m must be part of t. The function returns
the target groups in m sorted by the predecessor relationship (cf. Section 9.1.1 and p. 360) and is used by
topologicJrSort . It is described formally in Listing E.82.

Function topologicJrSort. The function topologicJrSort : ∆ → ∪
k
Mk, where k ∈ N implements

the topological sorting of the join relationships. It takes an ADORA model syntax tree t and returns a tuple
containing the syntax trees of all topologically ordered join relationships, except the join relationships
between crosscutting environment objects. The empty tuple ∅ is returned if there are no join relationships
in t0. The resulting tuple has the structure (m0,m1, . . . ,mp), where p ∈ N0. The element mk ∈ M
denotes a tuple of the join relationships impacting the same target. It is structured in turn as a tuple
of the form (mb

k,m
i
k,m

a
k), where mb

k denotes the join relationships with a before, mi
k with an instead

and ma
k with an after ordering. The tuple mo

k, where o denotes the ordering index b, i, or a, is in turn a
tuple containing the syntax trees of the join relationships (jok,0, j

o
k,1, . . . ,m

o
k,q) ordered according to their

priority. The function is described formally in Listing E.83.

E.6 Transformation Functions 363

Listing E.81: The function removeScenarios .

1 function removeScenarios(element)
2 input
3 element ∈ ∆;
4 return
5 element ∈ ∆;
6 declare
7 i ∈ N0; j ∈ N0;
8 child ∈ ∆;
9 children ∈ ∪

k
∆k, where k ∈ N0;

10 compParts ∈ ∪
k
∆k, where k ∈ N0;

11 removeCompParts ∈ { true, false };
12 begin
13 i← 0;
14 children← children(element);
15 while (i < arity(children)) begin
16 child← πi(children);
17 if (type(child) = ScenarioDefinition)
18 begin
19 children← deletei(children);
20 end else if (child /∈ T) begin
21 child← removeScenarios(child);
22 children← deletei(children);

23 children← inserti(children, child);
24 end
25 if (type(child) = ComponentParts)
26 begin
27 removeCompParts← true;
28 compParts← children(child);
29 j← 0;
30 while (j < arity(compParts)) begin
31 if (πj(compParts) /∈ T) begin
32 removeCompParts← false;
33 end
34 j← j + 1;
35 end
36 if (removeCompParts) begin
37 children← deletei(children);
38 end
39 end
40 i← i + 1;
41 end
42 element← delete1(element);
43 element← insert1(element, children);
44 end

Listing E.82: The function sortTargetGroups .

1 function sortTargetGroups(model,
2 targetGroups)
3 input
4 model ∈ ∆;
5 targetGroups ∈ ∪

k
Mk, where k ∈ N0;

6 return
7 targetGroups ∈ ∪

k
Mk, where k ∈ N0;

8 declare
9 currTg ∈ ∪

k
Mk, where k ∈ N0;

10 i ∈ N0;
11 j ∈ N0;
12 begin
13 i← 1;
14 while (i < arity(targetGroups)) begin
15 currTg← πi(targetGroups);

16 j← i - 1;
17 while (j >= 0 ∧ isPredecessorGroup(
18 model, currTg, πj(targetGroups)))
19 begin
20 insertj+1(targetGroups,
21 πj(targetGroups));
22 deletej+2(targetGroups);
23 j← j - 1;
24 end
25 insertj+1(targetGroups, currTg);
26 deletej+2(targetGroups);
27 i← i + 1;
28 end
29 end

364 Chapter E. Functions on Syntax Trees

Listing E.83: The function topologicJrSort .

1 function topologicJrSort(model)
2 input
3 model ∈ ∆ \ T;
4 return
5 retVal ∈ ∪

k
Mk, where k ∈ N0;

6 declare
7 jrs ∈ ∪

k
∆k, where k ∈ N0;

8 i ∈ N0;
9 targetGroup ∈ ∪

k
Mk, where k ∈ N0;

10 currJr ∈∆;
11 begin
12 jrs← gatherJrs(model, model, ∅);
13 retVal← ∅;
14 while (arity(jrs) > 0) begin
15 targetGroup← ∅;
16 insert0(targetGroup, π0(jrs));
17 delete0(jrs);
18
19 i← 0;
20 while (i < arity(jrs)) begin

21 currJr← πi(jrs);
22 if (target(model, currJr) =
23 target(model,
24 π0(targetGroup)))
25 begin
26 insertarity(targetGroup)(
27 targetGroup, currJr);
28 deletei(jrs);
29 end
30 i← i + 1;
31 end
32
33 targetGroup← findOrderingGroups(
34 targetGroup);
35 insertarity(retVal)(retVal,
36 targetGroup);
37 end
38 retVal← sortTargetGroups(
39 model, retVal);
40 end

365

Appendix F

Formal Language Constraints of
Aspect-Oriented Constructs

This section provides the formal definition of the language constraints needed for the aspect-oriented
elements presented in Chapter 7. Note that the functions used for describing the predicates can be found
in the catalog in Appendix E.

F.1 Aspect Module

The footer and the header of an textual aspect module definition must contain the same name. This is
ensured by the constraint in Definition C2, where t is the syntax tree of the aspect module. The constraint
is leniently checked at a user-defined time.

childOfType(t,AspectName, 1) = childOfType(t,AspectName, 2) ∧
childOfType(t,AspectName, 1) 6= ′′ (C2)

F.2 Behavior Description

F.2.1 State Groups Must Be Well-Formed

A state group in an aspect module must have either one start state or one exit point, but not both. This
constraint is formally expressed in Definition C3. In this formula, t and s are the syntax trees of the
ADORA model and the aspect module, respectively. This constraint is leniently enforced and must be
satisfied before weaving the model.

366 Chapter F. Formal Language Constraints of Aspect-Oriented Constructs

∀x ∈ stateGroups(t, parts(s)) :(
(|exitPoints(x)| = 1 ∧ |startStates(x)| = 0) ∨

(|exitPoints(x)| = 0 ∧ |startStates(x)| = 1)
) (C3)

F.2.2 No Out-Going Join Relationships from Crosscutting Statecharts

No state or component which is part of a crosscutting statechart, i.e., a state group with one start state,
may have an outgoing join relationship. This is expressed by the Constraint C4. In this definition, J
denotes the set of all join relationships of the aspect module described by the syntax tree s. The term t
is the syntax tree of the ADORA model. This constraint is strictly enforced before a join relationship is
inserted in the model. In the case of a violation, the insertion is not allowed.

∀x ∈ stateGroups(t, parts(s)) :(
(|startStates(x)| > 0)⇒ ∀j ∈ J : (∀y ∈ x : source(j) 6= y)

)
where J = filterSet(connections(s), JoinRelationshipDefinition)

(C4)

F.2.3 No Crossing of the Aspect Border by Transitions

A transition originating in a state group which is part of an aspect may not cross the border of the aspect.
This fact is expressed by the constraint in Definition C5, where s is the syntax tree of the aspect module
and t the syntax tree of the corresponding ADORA model. The constraint is strictly enforced.

stateGroups(t, parts(s)) 6= ∅ ⇒ ∀x ∈ stateGroups(t, parts(s)) : ∀y ∈ x : y ∈ descendants(s) (C5)

F.2.4 Transitions May Connect to Exit Points

In the previous versions of ADORA, no exit point element existed. As it exists in the aspect-oriented ver-
sion, transitions must be connectable to them. The corresponding language constraint must be overridden
by the formal constraint given in Definition C6. In the predicate s is the syntax tree of the transition and t
the syntax tree of the ADORA model. This constraint is strictly enforced.

type(target(t, s)) ∈ {ComponentDefinition,StateDefinition,ExitPointDefinition}
(C6)

F.3 User View 367

F.3 User View

F.3.1 No Crossing of Aspect Border by a Scenario Connection
The connections between the nodes of a scenario group may not cross the border of an aspect. This
language constraint is expressed in Definition C7, where t is the syntax tree of the ADORA model and
s the syntax tree of the aspect module containing the scenario elements to be check. This constraint is
strictly enforced.

∀x ∈ scenarioGroups(t, parts(s)) :
∀y ∈ x : filterSet(connections(y),ScenarioConnection) 6= ∅ ⇒
∀z ∈ filterSet(connections(y),ScenarioConnection) :

target(t, z) ∈ descendants(s)

(C7)

F.3.2 Well-Formed Scenario Chunks
A well-formed scenario chunk is a scenario group which has to satisfy one the following two conditions.
First, if there is a join relationship outgoing from the scenario group, no associations may be outgoing
from any node in the scenario group. Second, a scenario group does not need to have an out-going join
relationship, but if there is one, it has to originate from the root node of the scenario group. The following
two auxiliary predicates are used to express the corresponding constraints.

• The predicate sgHasAssociation : P(∆) → {true, false} takes a set of syntax trees m as argu-
ment. Each syntax tree inm describes a scenario node which is member of the same scenario group.
The method returns true if m contains at least one node which is connected with an association to
another element. This predicate is formally specified in Definition F.1. If the input is invalid, false
is returned.

• The predicate sgHasJoinRelationship : ∆ × P(∆) ×∆ → {true, false} takes three arguments.
The argument t is the syntax tree of the ADORA model,m is a set of syntax trees forming a scenario
group, and j is a syntax tree of a join relationship. The predicate returns true if at least one node
contained in m is the source of j. This predicate is formally given in Definition F.2.

sgHasAssociation(m) = ∃y ∈ m :
(filterSet(connections(y),AssociationDefinition) ∪
filterSet(targetConnections(t, y),AssociationDefinition) 6= ∅)

(F.1)

sgHasJoinRelationship(t,m, j) = ∃y ∈ m : source(t, j) = y (F.2)

368 Chapter F. Formal Language Constraints of Aspect-Oriented Constructs

The language constraint for well-formed scenario chunks is given by DefinitionC8, where s represents
the syntax tree of the aspect module and t the syntax tree of the corresponding ADORA model. It is strictly
enforced.

∀x ∈ scenarioGroups(t, parts(s)) : ¬sgHasAssociation(x)⇒
∃J = filterSet(connections(s), JoinRelationshipDefinition) :
∀j ∈ J :(

sgHasJoinRelationship(t, x, j)⇒
∀z ∈ x \ rootScenarios(x) :

source(t, j) 6= z)
(C8)

F.3.3 Well-Formed Crosscutting Scenariocharts

A well-formed crosscutting scenariochart must satisfy three conditions. First, it must be connected by an
association to at least one environment object. Second, no join relationships may originate in any of the
nodes of the scenario group, and third, non-root nodes may not have an association connected to another
node.

This constraint is strictly enforced. It is specified in Definition C9, where s is the syntax tree of the
aspect module and t the syntax tree of the ADORA model. The constraint uses the auxiliary predicates
sgHasJoinRelationship and sgHasAssociations which are defined above.

∀x ∈ scenarioGroups(t, parts(s)) : sgHasAssociation(x)⇒
(∀y ∈ x \ rootScenarios(x) :

filterSet(connections(y),AssociationDefinition) ∪
filterSet(targetConnections(t, y),AssociationDefinition) = ∅) ∧

∀j ∈ J : ¬sgHasJoinRelationship(t, x, j)

where J = filterSet(connections(s), JoinRelationshipDefinition)

(C9)

F.3.4 Disallowed Embedding of A Scenario Node in a Component Belong-
ing to a Statechart

A scenario node may not be part of a component which belongs to a statechart. This constraint is leniently
enforced before an aspect-oriented model is woven. It is formally specified in C10, where t is the syntax
tree of the ADORA model and s the syntax tree of the aspect to be check.

F.4 Join Relationships 369

∀x ∈ filterSet(descendants(s),ScenarioDefinition) :
∃y = decompositionParent(t, x) :

type(y) = ComponentDefinition ⇒
∃z = connections(y) ∪ targetConnections(t, y) :

filterSet(z,TransitionDefinition) = ∅

(C10)

F.4 Join Relationships

F.4.1 Constituents of Non-Partial Join Relationships

A non-partial join relationship can either connect the state of a behavior chunk with a transition, a scenario
chunk with a scenario node, or an environment object with an environment object. The formal definition
of this language constraint can be found in Definition C11, where t is the syntax tree of the ADORA model
and s is the sub-tree describing the join relationship. The set S contains the syntax trees of elements that
are part of the aspect to which the join relationship s belongs and can be the syntax trees of all scenario
root nodes, all components that are part of a statechart, and all states are parts of the aspect where s
originates. This constraint is strictly enforced.

¬partial(s)⇒
source(t, s) ∈ S ∧

(
(type(source(t, s)) = ScenarioDefinition ∧ type(target(t, s)) = ScenarioDefinition) ∨
(type(source(t, s)) = StateDefinition ∧ type(target(t, s)) = TransitionDefinition) ∨
(type(source(t, s)) = EnvironmentObjectDefinition ∧
type(target(t, s)) = EnvironmentObjectDefinition)

)
where S =rootScenarios(parts(jrHostingAspect(t, s))) ∪

filterSet(parts(jrHostingAspect(t, s)),StateDefinition) ∪
{x|x ∈ filterSet(parts(jrHostingAspect(t, s)),ComponentDefinition) ∧
∃y ∈ stategroups(parts(jrHostingAspect(t, s))) : x ∈ y}

(C11)

F.4.2 Constituents of Partial Join Relationships

Partial join relationships may connect either an aspect, a state or a scenario with either an aspect, a tran-
sition, a state, an association, a component, or a scenario. Moreover, an environment object may also
be connected by a partial join relationship with another environment object. This constraint is strictly
enforced and formally defined in Definition C12, where t is the syntax tree of the ADORA model and s is
the join relationship contained in t.

370 Chapter F. Formal Language Constraints of Aspect-Oriented Constructs

partial(s)⇒
(
source(t, s) ∈ S ∪ {jrHostingAspect(t, s)} ∧

(type(target(t, s)) = AspectDefinition ∨ type(target(t, s)) = TransitionDefinition ∨
type(target(t, s)) = StateDefinition ∨ type(target(t, s)) = AssociationDefinition∨
type(target(t, s)) = ComponentDefinition ∨ type(target(t, s)) = ScenarioDefinition)

)
∨

(type(source(t, s)) = EnvironmentObjectDefinition ∧
type(target(t, s)) = EnvironmentObjectDefinition)

where S =rootScenarios(parts(jrHostingAspect(t, s))) ∪
filterSet(parts(jrHostingAspect(t, s)),StateDefinition) ∪
{x | x ∈ filterSet(parts(jrHostingAspect(t, s)),ComponentDefinition) ∧
∃y ∈ stategroups(parts(jrHostingAspect(t, s))) : x ∈ y}

(C12)

F.4.3 Join Relationships Connecting to Scenariochart Root Nodes

A concrete join relationship connecting a scenario chunk node and the root node of a target scenario must
have the ordering instead. This constraint is leniently enforced before the aspect-oriented model is woven.
Its formal Definition can be found in Constraint C13, where t is the syntax tree of the ADORA model and
s the syntax tree of the join relationship.

type(source(t, s)) = ScenarioDefinition ∧
type(target(t, s)) = ScenarioDefinition ∧
partial(s) = false ⇒

∃x = descendants(targetModule(t, target(t, s))) :
∃y = rootScenarios(t,filterSet(x,ScenarioDefinition)) :

target(t, s) ∈ y ⇒
ordering(s) = instead

(C13)

F.4.4 No Cycles in Join Relationships

A join relationship may not lead to a cycle within the aspect structure. This constraint is strictly enforced,
and it is formally expressed by the Constraint C14. The variable t denotes the syntax tree of the ADORA

model, and s the syntax tree of the join relationship.

hasJoinRelationshipCycles(t, s) = false
(C14)

F.5 Crosscutting Environment Objects 371

F.4.5 Border Crossing of the Join Relationship

A join relationship may not cross the border of the aspect’s parent. This constraint is strictly enforced and
formally given in Definition C15. The variable t denotes the syntax tree of the ADORA model and s the
syntax tree of join relationship.

target(t, s) ∈ descendants(decompositionParent(t, jrHostingAspect(t, s)))
(C15)

F.4.6 Priority within the Range of 1–10

The priority of a join relationship must be between 1 and 10. This constraint is formally defined by the
Definition C16, where s is the syntax tree of the join relationship. This constraint is leniently enforced.

priority(s) ∈ {1, 2 . . . 10} ⊂ N
(C16)

F.5 Crosscutting Environment Objects

F.5.1 Only One Join Relationship between Two Environment Objects

Between the same two environment objects, more than one join relationship is not meaningful. This
restriction is strictly enforced and specified more formally by Constraint C17, where s denotes the syntax
tree of the environment object and t the syntax tree of the model.

∀x ∈filterSet(connections(s), JoinRelationshipDefinition) :

∀y ∈filterSet(connections(s), JoinRelationshipDefinition) :
(x 6= y)⇒ target(t, x) 6= target(t, y)

(C17)

F.5.2 Crosscutting Environment Objects Must Be Connected To a Scenar-
iochart

A crosscutting environment object must be connected with an association to a crosscutting scenariochart.
The corresponding constraint is leniently enforced before the weaving is executed. It is described formally
in C18, where s denotes the syntax tree of the environment object and t the syntax tree of the ADORA

model.

372 Chapter F. Formal Language Constraints of Aspect-Oriented Constructs

filterSet(connections(s), JoinRelationshipDefinition) 6= ∅ ⇒
∃y ∈ filterSet(connections(s),AssociationDefinition) ∪

filterSet(targetConnection(t, s),AssociationDefinition) :
enclosingAspects(t, target(t, y), ∅) ∪
enclosingAspects(t, source(t, y), ∅) 6= ∅

(C18)

F.5.3 No Association of a Crosscutting Environment to More than One As-
pect

A crosscutting environment object may be connected to several different crosscutting scenariocharts.
However, these scenariocharts must be part of the same aspect. This constraint is leniently checked before
the weaving of a model and formally described in Constraint C19, where t denotes the syntax tree of the
ADORA model and s the syntax tree of the environment object.

filterSet(connections(s), JoinRelationshipDefinition) 6= ∅ ⇒(
∀x ∈ A : type(source(t, x)) = EnvironmentObjectDefinition ⇒(
∀y ∈ A :x 6= y ∧ source(t, y) = s ∧ type(target(t, y)) 6= EnvironmentObjectDefinition ⇒

enclosingAspects(t, target(t, y)) = enclosingAspects(t, target(t, x))
))

∧
(
∀x ∈ A : type(target(t, x)) = EnvironmentObjectDefinition ⇒(
∀y ∈ A :x 6= y ∧ target(t, y) = s ∧ type(source(t, y)) 6= EnvironmentObjectDefinition ⇒

enclosingAspects(t, source(t, y)) = enclosingAspects(t, source(t, x))
))

where A =filterSet(targetConnections(t, s),AssociationDefinition) ∪
filterSet(connections(s),AssociationDefinition)

(C19)

F.6 Aspect Decomposition

F.6.1 Aspect-Re�ned Aspect Modules May Contain only Aspect Modules
An aspect containing embedded aspects may not contain other elements than aspects. This constraint is
strictly enforced and formally given in Definition C20, where s is the syntax tree of an aspect.

(∃x ∈ parts(s) : type(x) = AspectDefinition)⇒
(∀y ∈ parts(s) : type(y) = AspectDefinition) (C20)

F.6 Aspect Decomposition 373

F.6.2 Associations Originating within an Aspect May not Cross the Border
of the Aspect

If one constituent node of an association is part of an aspect A, then the other constituent node must also
be part of A. This fact is formally expressed in the Constraint C21, where s denotes the syntax tree of the
association and t the syntax tree of the ADORA model. This constraint is strictly enforced.

enclosingAspects(t, target(t, s), ∅) = enclosingAspects(t, source(t, s), ∅) (C21)

F.6.3 Components and Aspects Must Be Connectable
Aspects and components must be connectable by associations, which extends the original meaning of as-
sociations in ADORA. This constraint must be strictly enforced. It is formally specified in Constraint C22,
where s is the syntax tree of the association and t the syntax tree of the ADORA model.

(type(target(t, s)) = ComponentDefinition ∧
type(source(t, s)) = ComponentDefinition) ∨

(type(target(t, s)) = AspectDefinition ∧
type(source(t, s)) = ComponentDefinition) ∨

(type(target(t, s)) = ScenarioDefinition ∧
type(source(t, s)) = EnvironmentObjectDefinition) ∨
(type(target(t, s)) = EnvironmentObjectDefinition ∧
type(source(t, s)) = EnvironmentObjectDefinition) ∨

(type(target(t, s)) = ScenarioDefinition ∧
type(source(t, s)) = ComponentDefinition ∧
childOfType(source(t, s),external) 6= ε) ∨

(type(source(t, s)) = AspectDefinition ∧
type(target(t, s)) = ComponentDefinition) ∨

(type(source(t, s)) = ScenarioDefinition ∧
type(target(t, s)) = EnvironmentObjectDefinition) ∨

(type(source(t, s)) = ScenarioDefinition ∧
type(target(t, s)) = ComponentDefinition ∧

childOfType(target(t, s),external) 6= ε)

(C22)

375

Appendix G

Formal Weaving Semantics

The present appendix gives the formal description of the weaving semantics which was delineated infor-
mally in Chapter 9. Section 9.4.3 explained the schema by which the present work describes the formal
weaving semantics. It uses an axiomatic semantics which employs various functions that operate on
ADORA syntax trees. These functions allow retrieval of particular properties of a model represented by
the syntax tree. In the most cases, the names of functions are self-documenting. However, all of them are
explained in detail and formally described in the catalog of functions in Appendix E.

Analogously to the informal description in Chapter 9, the formal description is split into two parts.
Section G.1 describes the weaving semantics of non-partial elements and Section G.2 the semantics for
partial elements.

G.1 Formal Weaving Semantics of Non-Partial Elements
This section presents the weaving semantics of non-partial aspect-oriented elements.

G.1.1 Weaving Semantics of Behavior Chunks

This section describes formally the weaving semantics of behavior chunks whose informal description is
presented in Section 9.2.1.

Given Elements

The operation φg weaves a behavior chunk. For its formal description, several elements are given as
prerequisites. The model tg−1 is the input and tg the output model. Note that the model φg−1 is either an
intermediate model resulting from the weaving of a previous join relationship, or it is the initial aspect-
oriented model. The term jrlist defined in Formula (G.1) denotes the topologically sorted list of join
relationships. The current join relationship j is defined by the formula given in (G.2). Furthermore, the
entry point of the behavior chunk is given by the term entryState specified in Formula (G.3). A short
hand targetTransition for the target of j, i.e., the transition which is crosscut by the behavior chunk, is
defined in Formula (G.4).

376 Chapter G. Formal Weaving Semantics

jrlist = topologicalJrSort(tg−1) (G.1)

j = firstJr(jrlist) (G.2)

entryState = source(tg−1, j) (G.3)

targetTransition = target(tg−1, j) (G.4)

Precondition of φg

In order that the postcondition of φg can be satisfied when executing the operation, the precondition in
(G.5) must be satisfied. It states that the source node of the join relationship must either be a state or a
component, and the target must be a transition. Note that the join relationship can also be partial when
executing φg (cf. Section G.2.1).

(
type(entryState) = StateDefinition ∨

type(entryState) = ComponentDefinition
)
∧

type(targetTransition) = TransitionDefinition
(G.5)

Postcondition of φg

The postcondition that must be satisfied in order that a behavior chunk can be woven consists of several
predicates which must all evaluate to true so far that the postcondition of φg to be satisfied. The terms
defined in the formulae (G.6)–(G.10) are used to simplify the postcondition predicates in the following:
stateGroup is a set of syntax trees describing the nodes of the behavior chunk which will be woven by φg
into the target module.1 The expression exitPoints specifies the set of exit points of the behavior chunk.
Even though it is a set of exit points, there can only be one exit point, as defined by the language constraint
in Section 7.4.2. The target module tModule denotes the aspect or component which contains the target
transition targetTransition after the weaving of the behavior chunk. The term exitState denotes the
target state of the crosscut transition.

stateGroup = findStateGroupMembers(tg−1, ∅, entryState) (G.6)

exitPoints = exitPoints(stateGroup) (G.7)

tModule = identicalElement(tg, targetModule(tg−1, j)) (G.8)

exitState = target(tg−1, targetTransition) (G.9)

The term cloneMap defined in Formula (G.10) denotes the tuple which contains the mapping between
the original states, components, and transitions of the behavior chunk and the clone copies. Two different
cases have to be distinguished. In the case the join relationship j has a before ordering, an additional
state and an additional transition have to be introduced besides the cloned elements of the behavior chunk.
This is done by the function createAdditionalExitStateClone. The resulting map contains a mapping
between the exit point of the behavior chunk and an extra state. In the case of an instead and after join

1Remember that the transitions of the state group are contained in the description of the statechart nodes.

G.1 Formal Weaving Semantics of Non-Partial Elements 377

relationship, only the states, components, and transitions of the behavior chunk are cloned: there is no
mapping between the exit point and an extra state and an extra transition.

cloneMap =

createCloneMap(tg−1, stateGroup\exitPoints, if ordering(j) =
createAdditionalExitStateClone(tg−1, exitPoints)) before

createCloneMap(tg−1, stateGroup\exitPoints, ∅) if ordering(j) 6=
before

(G.10)

The actual postcondition of φg consists of several predicates. The first predicate in (G.11) specifies
that copies of the states and the corresponding transitions of the behavior chunk are found in the target
module after the weaving.

(
∀x ∈ stateGroup\exitPoints :

identicalElement(tg,findClone(x, cloneMap)) ∈ parts(tModule)
)
∧(

ordering(j) = before⇒ ∀x ∈ exitPoints :
identicalElement(tg,findClone(x, cloneMap)) ∈ parts(tModule)

) (G.11)

The predicate in (G.12) specifies how the cloned behavior chunk is connected to the crosscut behavior
in the case that j is a before join relationship (cf. Fig 9.5 (a)). The extra state contained in the clone map
is part of the target module. It has an outgoing exit transition that has no condition part but the same
action part as the crosscut transition.2 The exit transition is connected to the target state (exitState) of
the crosscut transition. Furthermore, the crosscut transition is reassigned to the entry point of the cloned
behavior chunk and its action part is deleted.

ordering(j) = before⇒(
∀x ∈ exitPoints :(
∀y ∈ connections(findClone(x, cloneMap)) :
∃z = identicalElement(tg, y) :

target(tg, z) = identicalElement(tg, exitState) ∧
actionPart(z) = actionPart(targetTransition) ∧
conditionPart(z) = ε))

∧
(
∃reassignedTransition = identicalElement(tg, targetTransition) :

conditionPart(reassignedTransition) =
conditionPart(targetTransition) ∧

actionPart(reassignedTransition) = ε ∧
target(tg, reassignedTransition) = findClone(entryState, cloneMap))

(G.12)

2The extra state and the additional transition are created by the createCloneMap function.

378 Chapter G. Formal Weaving Semantics

The situation illustrated by Fig. 9.5 (b) is described in Predicate (G.13). It formally describes how the
cloned behavior chunk is connected to the crosscut behavior in the case that j has an instead ordering.
The clone of the exit state’s incoming transition is reconnected to the target state of the crosscut transition.
The crosscut transition is reassigned to the entry state of the cloned behavior chunk and its action part is
deleted.

ordering(j) = instead⇒(
∀x ∈ exitPoints :(
∀y ∈ targetConnections(tg−1, x) :
∃z = identicalElement(tg,findClone(y, cloneMap)) :

target(tg, z) = identicalElement(tg, exitState)))
∧
((
∃reassignedTransition = identicalElement(tg, targetTransition) :

conditionPart(reassignedTransition) = conditionPart(targetTransition) ∧
actionPart(reassignedTransition) = ε ∧
target(tg, reassignedTransition) = findClone(entryState, cloneMap)))

(G.13)

Figure 9.5 (c) is described in Predicate (G.14) and specifies how the cloned behavior chunk is con-
nected to the crosscut behavior for an after join relationship. Basically, the transformation does the same
as for the instead case, except that the action part is not deleted from the crosscut transition.

ordering(j) = after⇒(
∀x ∈ exitPoints :(
∀y ∈ targetConnections(tg−1, x) :
∃z = identicalElement(tg,findClone(y, cloneMap)) :

target(tg, z) = identicalElement(tg, exitState)))
∧
((
∃reassignedTransition = identicalElement(tg, targetTransition) :

conditionPart(reassignedTransition) = conditionPart(targetTransition) ∧
actionPart(reassignedTransition) = actionPart(targetTransition) ∧
target(tg, reassignedTransition) = findClone(entryState, cloneMap)))

(G.14)

If a target transition is impacted by more than one join relationship, the weaving needs a processing
of the subsequently woven join relationships, as illustrated in Fig. 9.6, and Fig. 9.7. The processing is

G.1 Formal Weaving Semantics of Non-Partial Elements 379

described by additional predicates. In (G.15) several additional terms are defined. They help to simplify
the subsequent predicates.

beforeGroup = π0(π0(jrlist))
insteadGroup = π1(π0(jrlist))
afterGroup = π2(π0(jrlist))

(G.15)

The handling of multiple join relationships impacting the same target transition, as illustrated by
Fig. 9.6 (a)–(c), is described by Predicate (G.16). It describes how subsequently woven join relationships
are handled if j is a before join relationship. All join relationships targeting the same transition in tg−1

which are woven after j are reassigned to the newly created exitTransition3.

ordering(j) = before⇒
(

∃!y ∈ exitPoints :
∃!u = identicalElement(tg,findClone(y, cloneMap)) :
∃!exitTransition ∈ connections(u) :(

∀i ∈ N : 1 ≤ i < arity(beforeGroup)⇒
target(tg, identicalElement(tg, πi(beforeGroup))) = exitTransition)
∧(
∀i ∈ N0 : 0 ≤ i < arity(insteadGroup)⇒

target(tg, identicalElement(tg, πi(insteadGroup))) = exitTransition)
∧(
∀i ∈ N0 : 0 ≤ i < arity(afterGroup)⇒

target(tg, identicalElement(tg, πi(afterGroup))) = exitTransition))

(G.16)

The handling of multiple join relationships impacting the same target transition, illustrated by Fig. 9.7
(a) and (b), is described by Predicate (G.17). It specifies how subsequently woven join relationships are
handled if j is an instead relationship.

3There is only one exit transition in the set.

380 Chapter G. Formal Weaving Semantics

ordering(j) = instead⇒
(

∃!x ∈ exitPoints :
∃!y ∈ targetConnections(tg−1, x) :
∃!exitTransition = identicalElement(tg,findClone(y, cloneMap)) :(

∀i ∈ N : 1 ≤ i < arity(insteadGroup)⇒
(

∃jr = identicalElement(tg, πi(insteadGroup)) :
target(tg, jr) = exitTransition ∧
ordering(jr) = after)
∧
(
∀i ∈ N0 : 0 ≤ i < arity(afterGroup)⇒

target(tg, identicalElement(tg, πi(afterGroup))) = exitTransition)))

(G.17)

Predicate (G.18) describes the handling of the subsequently woven join relationships if j is an after
join relationship, as illustrated by Fig. 9.7 (c). The target of such a join relationship is reassigned to the
exit transition of the woven crosscutting behavior.

ordering(j) = after⇒
(

∃!x ∈ exitPoints :
∃!y ∈ targetConnections(tg−1, x) :
∃!exitTransition = identicalElement(tg,findClone(y, cloneMap)) :(

∀i ∈ N : 1 ≤ i < arity(afterGroup)⇒
target(tg, identicalElement(tg, πi(afterGroup))) = exitTransition))

(G.18)

Finally, the woven join relationship j must be removed from the model before the next weaving step
is entered, which is describe in Predicate G.19.

identicalElement(tg, j) = ε (G.19)

G.1.2 Formal Weaving Semantics of Scenario Chunks

The weaving semantics of scenario chunks has been informally presented in Section 9.2.2. This section
describes the weaving semantics for scenariocharts formally.

G.1 Formal Weaving Semantics of Non-Partial Elements 381

Given Elements

The operation φg weaves a scenario chunk into a target module. There are various elements given for the
execution of this operation. The input model of the function is denoted in the following as tg−1, the output
model as tg.4 The term jrlist in (G.20) denotes the list of topologically sorted join relationships. The
term j in Formula (G.21) defines the join relationship j which is woven by φg. Furthermore, the formulas
(G.22) and (G.23) define the root node of the scenario chunk and the target scenario node, respectively.

jrlist = topologicalJrSort(tg−1) (G.20)

j = firstJr(jrlist) (G.21)

chunkRoot = source(tg−1, j) (G.22)

targetNode = target(tg−1, j) (G.23)

Precondition of φg

The precondition given by Predicate (G.24) must be fulfilled in order to guarantee the correct execution
of φg for scenario chunks, i.e., the postcondition φg. It states that the source and the target of the join
relationship must be a scenario node. Note that the join relationship can be partial (cf. Section G.2.1).

type(chunkRoot) = ScenarioDefinition ∧
type(targetNode) = ScenarioDefinition

(G.24)

Postcondition of φg

The postcondition of φg needs to satisfy several predicates. For a simpler definition of them, the auxiliary
terms in (G.25)–(G.30) are defined. Term tModule in (G.25) defines the target module, i.e., the aspect or
the component which contains the target of the join relationship, in the resulting model tg. In (G.26), the
term scenarioChunk represents all nodes which are part of the scenario chunk. The term cloneMapg in
(G.27) specifies the clone map for all scenario chunk nodes. It has an index, as it is accessed later by the
weaving operation which weaves embedded components (cf. Section G.1.5). In (G.28), a short hand for the
clone copy of the chunk’s root node is given. Formula (G.29) specifies the woven clone wovenChunkRoot
of the root chunk node in the resulting model tg. Finally, in (G.30), the term targetSiblings defines a tuple
containing all siblings of the target scenario node also containing the target node.

tModule = targetModule(tg, identicalElement(tg, targetNode)) (G.25)

scenarioChunk = findScenarioGroupMembers(tg−1, ∅, chunkRoot) (G.26)

cloneMapg = createCloneMap(tg−1, scenarioChunk , ∅) (G.27)

clonedChunkRoot = findClone(chunkRoot , cloneMapg) (G.28)

wovenChunkRoot = identicalElement(tg, clonedChunkRoot) (G.29)

targetSiblings = scenarioSiblings(tg−1, targetNode) (G.30)

4The model tg−1 results either from the weaving of another join relationship or it is the initial model.

382 Chapter G. Formal Weaving Semantics

The first predicate that must be satisfied by the postcondition of φg for the weaving of scenario chunks
is given in (G.31). It states that the clone copies of the scenario chunk are inserted into the target module.
The root of the cloned chunk is connected with the parent of the target node. Furthermore, the cloned
chunk root node gets the scenario type of the target node. This predicate must be satisfied for each of
the cases described by Figure 9.8 (a)–(e). Note that scenario chunk nodes can be contained in embedded
components (cf. Section 7.5.2). However, such nodes are first woven into the target module as direct
children, as the embedded component will be woven at a later point in time (cf. Section G.1.5).

(
∀x ∈scenarioChunk\{chunkRoot} :

findClone(x, cloneMapg) ∈ parts(tModule)
)
∧(

scenarioParent(tg, wovenChunkRoot) =
identicalElement(tg, scenarioParent(tg−1, targetNode))

)
∧(

wovenChunkRoot ∈ parts(tModule)
)
∧(

scenarioType(wovenChunkRoot) = scenarioType(targetNode)
)

(G.31)

In the case, where the behavior chunk is woven into a scenario of the type sequence, further predi-
cates are needed to describe the weaving semantics. For a simple definition of them, several terms are
introduced. First, the term greaterSiblings in (G.32) must be defined. It describes the set of target node
siblings that have a sequence number which is equal or greater than the target node. Note that the target
node is also contained in the set greaterSiblings .

greaterSiblings =

{x|∃i ∈ N0 : if scenarioType(
0 ≤ i < arity(targetSiblings) ∧ targetNode) =
seqNo(targetNode) ≤ sequence

seqNo(πi(targetSiblings)) ∧
x = πi(targetSiblings)}

∅ else

(G.32)

The weaving semantics for the situation in Fig. 9.8 (a) is described by the Predicate (G.33). It describes
how a chunk is woven before a target node that has the scenario type sequence. The cloned root node of
the chunk gets the sequence number of the target scenario node. The sequence numbers of the target
scenario as well as the sequence number of its siblings with a greater sequence number are increased by
one.

scenarioType(targetNode) = sequence ∧ ordering(j) = before⇒
(

seqNo(wovenChunkRoot) = seqNo(targetNode) ∧
∀y ∈greaterSiblings :

seqNo(y) + 1 = seqNo(identicalElement(tg, y)))
(G.33)

G.1 Formal Weaving Semantics of Non-Partial Elements 383

For the definition of the instead weaving semantics, the auxiliary term tScenarioGroup given in
(G.34) is defined. It specifies the target scenario group tScenarioGroup, i.e., the scenario group, to
which the target node belongs.

tScenarioGroup = findScenarioGroupMembers(tg−1, ∅, targetNode) (G.34)

In the case that the target node is the root of a scenario tree, as illustrated Fig. 9.8 (b), the terms in
the Formulae (G.35) and (G.36) are required. They specify the incoming (sRootAssoc) and outgoing
(tRootAssoc) associations of the (target) root node, respectively.

tRootAssoc = {u|∃!x ∈ rootScenarios(tg−1, tScenarioGroup) :
∃z = targetConnections(tg−1, x) :
∀y ∈ filterSet(z,AssociationDefinition) :
y = u}

(G.35)

sRootAssoc = {u|∃!x ∈ rootScenarios(tg−1, targetScenarioGroup) :
∃z = connections(x) :
∀y ∈ filterSet(z,AssociationDefinition) :
y = u}

(G.36)

Predicate (G.37) actually describes how a scenario chunk impacting a root scenario, as shown in
Fig. 9.8 (b), is woven. It defines that the target scenario and the corresponding scenario group are removed
from the model. The source and target associations are connected to the woven clone copy of the scenario
chunk.

ordering(j) = instead ∧ targetNode ∈ rootScenarios(tg−1, tScenarioGroup)⇒
((

∀x ∈tScenarioGroup :
identicalElement(tg, x) = ε)

∧
(
∀x ∈tRootAssoc :

target(tg, identicalElement(tg, x)) = wovenChunkRoot)
∧
(
∀x ∈sRootAssoc :

source(tg, identicalElement(tg, x)) = wovenChunkRoot))

(G.37)

In Predicate (G.38), the weaving semantics for the situation illustrated in Fig. 9.8 (c) is specified
formally. It describes the semantics of the weaving of an instead join relationship which targets a non-
root scenario node of type sequence. The cloned scenario chunk root in the woven model has the same
sequence number as the target node. Apart from the case where the target node is of type sequence, the
predicate also handles the instead weaving for target nodes which have another type than sequence: the
target node of any type, e.g., alternative, sequence, or parallel, as well as all child nodes and grand-child
nodes are removed from the model.

384 Chapter G. Formal Weaving Semantics

ordering(j) = instead ∧
targetNode /∈ rootScenarios(tg−1, tScenarioGroup)⇒

(
scenarioType(targetNode) = sequence⇒

(
seqNo(wovenChunkRoot) = seqNo(targetNode) ∧
∀y ∈ greaterSiblings :

y 6= targetNode ⇒
seqNo(y) = seqNo(identicalElement(tg, y)))

∧ ∀y ∈ findScenarioSubtreeMembers(tg−1, ∅, targetNode) :
identicalElement(tg, y) = ε)

(G.38)

Last but not least, the weaving semantics for a scenario chunk that is woven with an after ordering is
given in (G.39). The predicate specifies that the cloned root node of the chunk gets the sequence number
of the target node, incremented by one. Moreover, the siblings with a greater sequence number than the
target node have their sequence number incremented by one.

scenarioType(targetNode) = sequence ∧ ordering(j) = after⇒
(

seqNo(wovenChunkRoot) = seqNo(targetNode) + 1 ∧
∀y ∈greaterSiblings :

seqNo(y) > seqNo(targetNode)⇒
(

seqNo(identicalElement(tg, y)) = seqNo(y) + 1))
(G.39)

There must be some more predicates which specify the case where multiple join relationships impact
the same target node, as illustrated by Figure 9.9 and 9.10. This is necessary in order that the subsequently
woven join relationship result in a logically correct model (cf. Section 9.2.2). However, for this post
processing, only the cases listed in Fig. 9.10 are relevant, as they give rise to a need for a manipulation of
the remaining join relationships.

Two auxiliary terms are introduced to simplify the following postcondition predicates of φg. The ad-
ditional terms insteadGroup and afterGroup in formulae (G.40) and (G.41) define the join relationships
impacting the same target as j. They specify each as an n-tuple containing the instead or an after join
relationships, respectively.

insteadGroup = π1(π0(jrlist) (G.40)

afterGroup = π2(π0(jrlist) (G.41)

The situation where more than one instead join relationship impacts the same root scenario node must
be handled as illustrated in Fig. 9.10 (a). The formal definition of this semantics is given in Predicate

G.1 Formal Weaving Semantics of Non-Partial Elements 385

(G.42). In the case described, the instead join relationships with a lower priority than j are removed from
the model.

scenarioType(targetNode) = sequence ∧ ordering(j) = instead ∧
targetNode ∈rootScenarios(tg−1, tScenarioGroup)⇒

(
∀i ∈N : 1 ≤ i < arity(insteadGroup)⇒

identicalElement(tg, πi(insteadGroup)) = ε)
(G.42)

Predicate (G.43) handles the case where two or more instead join relationships impact the same target
node, as illustrated in Fig. 9.10 (b). The target of any other instead join relationship processed after j is
reassigned to the woven chunk root node. Moreover, its ordering is set to after.

scenarioType(targetNode) = sequence ∧ ordering(j) = instead ∧
targetNode /∈rootScenarios(tg−1, targetScenarioGroup)⇒

(
∀i ∈N : 1 ≤ i < arity(insteadGroup)⇒

(
∃!u = identicalElement(tg, πi(insteadGroup)) :

target(tg, u) = wovenChunkRoot ∧
ordering(u) = after))

(G.43)

Figure 9.10 (c) illustrates the semantics for the post processing of after join relationships which im-
pact the same scenario node as j with an instead ordering. The formal description of the corresponding
post processing step is given in Predicate (G.44). The target of all following after join relationships is
reassigned to the woven clone of the chunk root node.

scenarioType(targetNode) = sequence ∧ ordering(j) = instead ∧
∀i ∈N0 : 0 ≤ i < arity(afterGroup)⇒

(
∃!u = identicalElement(tg, πi(afterGroup)) :

target(tg, u) = wovenChunkRoot))
(G.44)

Figure 9.10 (d) exemplifies how to handle the situation where two or more after join relationships
impact the same scenario node. The semantics is similar to the instead/after case. It is described in
Predicate (G.45).

386 Chapter G. Formal Weaving Semantics

scenarioType(targetNode) = sequence ∧ ordering(j) = after ∧
∀i ∈N : 1 ≤ i < arity(afterGroup)⇒

(
∃!u = identicalElement(tg, πi(afterGroup)) :

target(tg, u) = wovenChunkRoot))
(G.45)

Finally, the woven join relationship j must be removed from the model before the next weaving
operation is executed. This fact is specified in Predicate G.46.

identicalElement(tg, j) = ε (G.46)

G.1.3 Formal Weaving Semantics of Crosscutting Statecharts
This section presents the formal the weaving semantics for crosscutting statecharts, which was informally
presented in Section 9.2.3. The operation φm weaves all crosscutting statecharts contained in the model
tm−1. It is the first operation after all join relationships are woven. The weaving consists of multiple
substeps. First, all aspects in the model are determined, then, the end target modules are located for
each aspects. This is done by the algorithm specified by the function endTargetModules described in
Section 9.1. After the execution of φm, the crosscutting statecharts are woven into the corresponding end
target modules.

Given Elements

The index m represents the number of weaving steps executed previously. It is specified in Formula
(G.47). Correspondingly, the model tm−1 denotes the model before weaving the crosscutting statecharts.

m = arity(flatenTuple(topologicalJrSort(t0))) + 1 (G.47)

Precondition of φm
The precondition stated in Predicate (G.48) must be fulfilled before the operation φm is executed. It states,
that all join relationships of the aspect-oriented models must be woven.

arity(flatenTuple(topologicalJrSort(tm−1))) = 0 (G.48)

Postcondition of φm
For the execution of the weaving operation, all aspects in the model need to be processed. They are given
by the term aspects in formula (G.49).

aspects = gatherAspects(t0) (G.49)

G.1 Formal Weaving Semantics of Non-Partial Elements 387

After executing φm, the main predicate of the postcondition given in (G.50) must be satisfied. It
ensures all crosscutting statecharts contained in the aspects of the given model are woven into the corre-
sponding end target modules. It therefore employs the subpredicate ccStatechartsWoven.

∀i ∈ N0 : 0 ≤ i < arity(aspects)⇒
∃tModules = endTargetModules(t0, πi(aspects), ∅) :
∀k ∈ N0 : 0 ≤ k < arity(tModules)⇒

∃j = (
∑

0≤d<i
arity(endTargetModules(t0, πd(aspects), ∅))) + k +m :

ccStatechartsWoven(πi(aspects), πk(tModules), j)

(G.50)

The subpredicate ccStatechartsWoven(aspect , targetModule, h) ensures that the crosscutting state-
charts of a given aspect are woven into the given end target module targetModule. The parameter h is
the index of the current substep. The model th−1 represents the model before weaving the crosscutting
statechart into the target module and th the model after the weaving.

Furthermore, several auxiliary terms are defined in the formulas (G.51)–(G.53). They are used to
simplify the subpredicates in the following. Formula (G.51) describes the set of nodes and transitions
which are part of a crosscutting statechart in the given aspect .

crosscuttingStatechartNodes =
{x|∃!w = identicalElement(th−1, aspect) :
∃y = stateGroups(th−1, parts(w)) :
∃z ∈ y :(
|startStates(z)| = 1 ∧
∀v ∈ z : v = x

)
}

(G.51)

Formula (G.52) defines the clone map for all elements that are part of a crosscutting statechart in the
aspect . In (G.53), a short hand tModule of the target module in the resulting model is defined. Thus,
tModule is the target module that contains the woven crosscutting statecharts.

cloneMap = createCloneMap(th−1, crosscuttingStatechartNodes, ∅) (G.52)

tModule = identicalElement(th, targetModule) (G.53)

The actual predicate defining the result of ccStatechartsWoven is given in (G.54) and states that the
clone copies of the statecharts of the aspect are contained in tModule after the execution of φm.

∀x ∈crosscuttingStatechartNodes :
findClone(x, cloneMap) ∈ parts(tModule)

(G.54)

388 Chapter G. Formal Weaving Semantics

G.1.4 Formal Weaving Semantics of Crosscutting Scenariocharts
This section presents the formal weaving semantics for crosscutting scenariocharts, which has been infor-
mally presented in Section 9.2.4.

Given Elements

The weaving operation φp weaves the crosscutting scenariocharts. Several elements are given for the
formal specification of this operation. The term aspects in (G.55) is shorthand for all aspect modules of
the initial model. The term defined by Formula (G.56) describes the number of sub steps d needed for the
weaving of the crosscutting statecharts (cf. Section G.1.3). The formula in (G.57) describes the index p of
the operation φp. It is based on the index m, defined in (G.47), and d. Correspondingly, the model before
the weaving the crosscutting scenariocharts is denoted as tp−1.

aspects = gatherAspects(t0) (G.55)

d =
arity(aspects)∑

k=0

arity(endTargetModules(t0, πk(aspects), ∅)) (G.56)

p = m+ d (G.57)

Precondition of φp

Before φp can be executed, the weaving of the crosscutting statechart (φm) must be finished.

Postcondition of φp

After the execution of φp, the main predicate of the postcondition given in (G.58) must be satisfied. It
ensures that for all aspects in the given model the crosscutting scenariocharts are woven with the corre-
sponding end target modules. It employs the subpredicate ccScenariochartsWoven.

∀i ∈ N0 : 0 ≤ i < arity(aspects)⇒
∃tModules = endTargetModules(t0, πi(aspects), ∅) :
∀k ∈ N0 : 0 ≤ k < arity(tModules)⇒

∃j = (
∑

0≤d<i
arity(endTargetModules(t0, πd(aspects), ∅))) + k + p :

ccScenariochartsWoven(πi(aspects), πk(tModules), j)

(G.58)

The subpredicate ccScenariochartsWoven(aspect , targetModule, h) takes one aspect and one of
its end target modules (targetModule) and the index h. This subpredicate ensures that the crosscutting
scenariocharts of the aspect are woven into the targetModule. The argument h is an index which denotes
the step number executed in the transformation process. There are several auxiliary formulae and three
main predicates describing this subpredicate. The auxiliary formulas are given in (G.59)–(G.65). In
(G.59), the shorthand for the target module after the weaving of the crosscutting scenariochart is defined.

G.1 Formal Weaving Semantics of Non-Partial Elements 389

tModule = identicalElement(th, targetModule) (G.59)

The term ccSNodesh in (G.60) represents the scenario nodes which are part of a crosscutting scenar-
iochart in the current aspect.5 The term has an index h, because it is accessed again in a later substep,
when the embedded components are woven (cf. the weaving of embedded components in Section G.1.5).

ccSNodesh =
{x|∃oAspect = identicalElement(th−1, aspect) :
∃w = filterSet(descendants(oAspect),ScenarioDefinition) :
∃y ∈ scenarioGroups(th−1, w) :(

∃!z ∈ rootScenarios(th−1, y) :
(filterSet(connections(z),AssociationDefinition) ∪
(filterSet(targetConnections(th−1, z),AssociationDefinition) 6= ∅))
∧ ∀z ∈ y : z = x

}

(G.60)

Formula (G.61) contains the roots nodes of the set crosscutting scenariochart nodes. The clone map
of all scenario nodes is defined in (G.62). The term cloneMaph has an index h and is therefore accessible
for later stages in the weaving process (cf. the weaving of embedded components in Section G.1.5).

rootNodes = rootScenarios(th−1, ccSNodesh) (G.61)

cloneMaph = createCloneMap(th−1, ccSNodesh, ∅) (G.62)

Formula (G.63) defines the associations which are connected to the root nodes of the scenariocharts
and which have environment objects or external components as a source. Note that this term is defined for
simplifying the next term definition.

tgRootAssocs =
{y|∀x ∈ rootNodes :

∀z ∈ filterSet(targetConnections(th−1, x),AssociationDefinition) :
y = z

}

(G.63)

In (G.64), the set of all incoming and outgoing associations from the scenariochart root nodes are
defined. The defined term rootAssociationsh has an index, as it is accessed during later stages of the
weaving process (cf. the weaving of environment objects in Section G.1.6).

5A crosscutting scenariochart is a scenario group which has at least one association connecting its root node with
an environment object (cf. Section 7.5.2).

390 Chapter G. Formal Weaving Semantics

rootAssociationsh =
{y|∀x ∈ rootNodes :

∀z ∈ filterSet(connections(x),AssociationDefinition) :
x = z

} ∪ tgRootAssocs

(G.64)

Formula (G.65) specifies the clone map associationCloneMaph for all nodes, as well as all incoming
and outgoing associations of the root nodes. It has an index as it is accessed in subsequent weaving steps
(cf. the weaving of environment objects in Section G.1.6).

associationCloneMaph = createCloneMap(th−1, rootAssociations, cloneMaph) (G.65)

In (G.66), the first predicate of ccScenariochartsWoven is given. It describes that the clone copies
of the crosscutting scenariochart nodes are contained in the target module after the weaving. Note that
the scenario nodes of a crosscutting scenariochart may be part of an embedded component. However, the
operation φp does not handle the placement of the cloned scenario nodes in the corresponding embedded
components, as they are cloned later in the weaving process. Instead, they are first placed directly as parts
of the end target module.

(
∀x ∈ccSNodesh \ rootNodes :

findClone(x, cloneMaph) ∈ parts(tModule)
)
∧(

∀x ∈rootNodes :
identicalElement(th,findClone(x, cloneMaph)) ∈ parts(tModule)

) (G.66)

The predicate given in (G.67) specifies how the incoming and outgoing associations of the scenar-
iochart root nodes are handled. If the source of an original association is a scenario node, the cloned
association is an outgoing association of the cloned scenario node. If the source of an original association
is an environment object or an external component, the clone of the association is outgoing from that node.

G.1 Formal Weaving Semantics of Non-Partial Elements 391

∀x ∈rootAssociationsh :
(

∃associationSource = source(th−1, x) :
∃clonedConn = identicalElement(th,findClone(x, associationCloneMaph)) :

type(associationSource) = ScenarioDefinition ⇒
(

∃clonedAssocSource = findClone(associationSource, cloneMaph) :
∃clonedRoot = identicalElement(th, clonedAssocSource) :

clonedConn ∈ connections(clonedRoot))
∧
(
(type(associationSource) = EnvironmentObjectDefinition ∨
(type(associationSource) = ComponentDefinition ∧
childOfType(associationSource,external, 1) 6= ε))⇒

(
clonedConn ∈ connections(identicalElement(th, associationSource)))))

(G.67)

Finally, the Predicate (G.68) states, that the original associations between the environment object (or
an external component) and the crosscutting scenariochart of the aspect are removed from the model.
This is done in the last substep when the crosscutting scenariocharts of the aspect are woven into the last
target module.

∃l = arity(aspects) :(d=l∑
d=0

arity(endTargetModules(t0, πd(aspects), ∅))
)

+ p = h⇒

∀x ∈ rootAssociationsh :
(

identicalElement(th, x) = ε)
(G.68)

G.1.5 Formal Weaving Semantics of Embedded Components
The weaving semantics of embedded components has been explained informally in Section 9.2.5 and is
specified formally in the present section.

Given Elements

The operation φq weaves the embedded components contained in the aspects of model t0 into the corre-
sponding end target modules. For the definition of the pre- and postcondition of φq, several formulas and
predicates are required. The term aspects in (G.69) is a shorthand that represents all aspect modules in t0.
Formula in (G.70) defines a term d that is short hand for the number of steps needed for the weaving of
the crosscutting scenariocharts, described in Section G.1.4. It calculates the number of end target modules

392 Chapter G. Formal Weaving Semantics

summed up for each aspect. The formula in G.71 specifies the index q of the operation φq. It is based
on the indices p (cf. Section G.1.4, G.57) and d (G.70). Correspondingly, the model before weaving any
embedded components is denoted as tq−1.

aspects = gatherAspects(t0) (G.69)

d =
arity(aspects)∑

k=0

arity(endTargetModules(t0, πk(aspects), ∅)) (G.70)

q = p+ d (G.71)

Precondition of φq

Before the operation φq can be executed, the weaving of the crosscutting scenariocharts (φp) must be
finished.

Postcondition of φq

The postcondition consists of the main predicate given in (G.72). It ensures that for all aspects in the
given model, the embedded components are woven into the target modules. Therefore, it employs the
subpredicate embeddedComponentsWoven .

∀i ∈ N0 : 0 ≤ i < arity(aspects)⇒
∃tModules = endTargetModules(t0, πi(aspects), ∅) :
∀k ∈ N0 : 0 ≤ k < arity(tModules)⇒

∃j = (
∑

0≤d<i
arity(endTargetModules(t0, πd(aspects), ∅))) + k + q :

embeddedComponentsWoven(πi(aspects), πk(tModules), j)

(G.72)

The subpredicate embeddedComponentsWoven(aspect , targetModule, h) ensures that all embedded
components contained in the aspect are woven into the given end target module targetModule. It is
based on several formulas and predicates. The argument h denotes the substep for the weaving and the
term th denotes in the following the model which results from this sub step. In (G.73), the term tModule
is specified which is shorthand for the target module contained in the resulting model.

tModule = identicalElement(th, targetModule) (G.73)

The term eComponents in (G.74) describes the embedded components contained in the aspect .

G.1 Formal Weaving Semantics of Non-Partial Elements 393

eComponents =
{x|∃y ∈ filterSet(parts(aspect),ComponentDefinition) :
∃z = identicalElement(th−1, y) :(

∃conn = connections(z) :
∃tConn = targetConnections(z, th−1) :

(filterSet(conn,TransitionDefinition) ∪
filterSet(tConn,TransitionDefinition) = ∅)

)
∧

x = z

}

(G.74)

The term cloneMap given in (G.75) defines a shorthand for the clone map of all embedded compo-
nents. Remember that the cloned embedded components do not contain any scenarios, as they are removed
when being cloned by the createCloneMap function. This is necessary because scenarios which are part
of scenario chunks and crosscutting scenariocharts in the aspect have been cloned and woven separately
in the previous steps.

cloneMap = createCloneMap(eComponents, ∅) (G.75)

The first predicate of the postcondition given in (G.76) of the operation φq defines that for each em-
bedded component of the aspect , a corresponding clone is copied into the target module of the resulting
model.

(
∀x ∈eComponents :

∃z = identicalElement(th,findClone(x, cloneMap)) :
z ∈ parts(tModule)

)) (G.76)

There are two further predicates which ensure a proper assignment of the crosscutting scenariochart
nodes to the woven embedded components. There are some auxiliary formulas defined first. The formula
given in (G.77) defines a shorthand c for the index of the clone map used for the weaving of the crosscutting
scenariocharts for the aspect and the targetModule. The term ccSNodes in (G.78) denotes all scenario
nodes of crosscutting statecharts that have been woven into the targetModule from the aspect by function
φp. The term ccSNodes is originally defined in Formula (G.60). The clone map for the woven crosscutting
scenariochart nodes is given in (G.79).

c = p+ (h− q) (G.77)

ccSNodes = ccSNodesc (G.78)

scenarioCloneMap = cloneMapc (G.79)

Crosscutting scenariocharts are woven by the operation φp (cf. Section G.1.4) as direct subparts into
the target module, no matter whether they are part of an embedded component or not. Predicate (G.80)

394 Chapter G. Formal Weaving Semantics

specifies that the woven crosscutting scenariochart nodes whose originals are a part of an embedded com-
ponent are moved into the corresponding clone of the embedded components.

ccSNodes 6= ∅ ⇒
(

∀z ∈ ccSNodes :
∃!y = identicalElement(tc−1, z) :
∃!parent = identicalElement(th−1, decompositionParent(tc−1, y)) :

type(parent) = ComponentDefinition ⇒
(

∃!clonedScenario = findClone(z, scenarioCloneMap) :
∃!clonedParent = findClone(parent , cloneMap) :

identicalElement(th, clonedScenario) ∈
parts(identicalElement(th, clonedParent))))

(G.80)

Apart from the nodes of the crosscutting scenariocharts, the nodes of the scenario chunks may also
have to be moved into a woven embedded component. For this purpose, the auxiliary term jrs in (G.81)
that represents the join relationships of the model t0 has to be defined.

jrs = flatenTuple(topologicalJrSort(t0)) (G.81)

Predicate (G.82) specifies that the scenario nodes of the woven scenario chunks whose originals are
embedded in components must be moved into the corresponding embedded component in the target. For
this purpose, the scenario chunks and the clone map created in the corresponding step are used.

G.1 Formal Weaving Semantics of Non-Partial Elements 395

∀k ∈ N0 : 0 ≤ k < arity(jrs)⇒
(

∃jr = πk(jrs) :
identicalElement(th−1, jrHostingAspect(t0, jr)) = aspect ⇒

(
∃srcNode = source(t0, jr) :

type(srcNode) = ScenarioDefinition ⇒
(

∀y ∈ findScenarioGroupMembers(t0, ∅, srcNode) :
∃oScNode = identicalElement(tk, y) :
∃cScNode = findClone(oScNode, cloneMapk+1) :
∃wScNode = identicalElement(tk+1, cScNode) :
∃oParent = decompositionParent(tk, oScNode) :

type(oParent) = ComponentDefinition ⇒
(

∃oEmbComp = identicalElement(th−1, oParent) :
∃cEmbComp = findClone(oEmbComp, cloneMap) :

identicalElement(th,wScNode) ∈
parts(identicalElement(th, cEmbComp))))))

(G.82)

G.1.6 Formal Weaving Semantics of Environment Objects

The informal weaving semantics definition of the crosscutting environment objects is given in Section 9.2.6.
This section will give the corresponding formal description.

Given Elements

The operation φu weaves the crosscutting environment objects contained in the model t0 into the crosscut
end target modules. For the definition of φu’s pre- and postcondition, several terms and predicates are
needed. The term aspects in (G.83) is a shorthand term that describes all aspect modules in t0. The term
d in Formula (G.84) represents the number of steps needed for the weaving of embedded components,
described in Section G.1.5. It is computed from the number of end target modules summed for each
aspect in the model t0. The formula in G.85 describes the index u of the operation φu. It is based on the
indices q, defined in (G.71), and d. Correspondingly, the model before the weaving of the crosscutting
environment objects is denoted as tu−1.

396 Chapter G. Formal Weaving Semantics

aspects = gatherAspects(t0) (G.83)

d =
arity(aspects)∑

k=0

arity(endTargetModules(t0, πk(aspects), ∅)) (G.84)

u = q + d (G.85)

Precondition of φu
The precondition for executing φu is that the weaving of the embedded components (φq) has finished.

Postcondition of φu
After the execution of φu, the crosscutting environment objects are woven and the postcondition must be
fulfilled. It consists of the main predicate given in (G.86). This predicate ensures that for all aspects in
the given model, the associated crosscutting environment objects are woven into the crosscut environment
objects.6 It therefore employs the subpredicate ccEnvironmentObjectsWoven .

∀i ∈ N0 : 0 ≤ i < arity(aspects)⇒
∃tModules = endTargetModules(t0, πi(aspects), ∅) :
∀k ∈ N0 : 0 ≤ k < arity(tModules)⇒

∃j = (
∑

0≤d<i
arity(endTargetModules(t0, πd(aspects), ∅))) + k + u :

ccEnvironmentObjectsWoven(πi(aspects), πk(tModules), j)

(G.86)

The subpredicate ccEnvironmentObjectsWoven(aspect , targetModule, h) ensures that the crosscut-
ting environment objects associated with the aspect are woven. The end target module targetModule
contains the crosscutting scenariochart associated with the environment objects in the woven model (cf.
operation φp, Section G.1.4). The index h denotes the number of the weaving substep. Correspondingly,
th−1 is the model before the crosscutting environment objects associated with aspect are woven.

For simplifying ccEnvironmentObjectsWoven in the following, some shorthand terms are intro-
duced in (G.87)–(G.91). The index c in (G.87) denotes the index of the weaving step when the crosscutting
scenariocharts of the aspect have been woven into the targetModule. The term rAssocs in (G.88) denotes
the original associations between the root nodes of the crosscutting scenariocharts of the aspect and the
environment objects. This term is originally defined in Formula (G.64). Finally, the term aCloneMap in
(G.89) denotes the clone map of the associations in rAssocs , defined originally by formula (G.65).

c = p+ h− u (G.87)

rAssocs = rootAssociationsc (G.88)

aCloneMap = associationCloneMapc (G.89)

6An environment object is associated with an aspect if one of its scenariocharts is connected by an association
to the environment object.

G.1 Formal Weaving Semantics of Non-Partial Elements 397

The term in (G.90) defines the subset sEoAssocs ⊆ rAssocs of associations which are connected to
the root node of a scenariochart that have an environment object as source node.

sEoAssocs =
{x|∃y ∈ rAssocs :

type(source(tc−1, y)) = EnvironmentObjectDefinition ∧
x = y

}

(G.90)

Correspondingly, in (G.91), the subset tEoAssocs ⊆ rAssocs contains the associations which have
an environment object as target node.

tEoAssocs =
{x|∃y ∈ rAssocs :

type(target(tc−1, y)) = EnvironmentObjectDefintion ∧
x = y

}

(G.91)

The predicates given in (G.92)–(G.95) must be satisfied in order to satisfy the postcondition of sub-
predicate ccEnvironmentObjectsWoven. Predicate (G.92) states how an association A between an envi-
ronment object E and the root node of a woven crosscutting statechart R must be processed, in the case
that E is the source of A. A is cloned as many times as there are join relationships outgoing from E and
crosscutting other environment objects. The clones are connected to the corresponding targets of the join
relationships. In terms of Fig. 9.17 and assuming that E1 is the source of γ and δ, this predicate describes
the creation of the clones ω, σ, η, and ϕ and their connecting to the corresponding target environment
object.

∀sAssoc ∈ sEoAssocs :
∃eojrs = findEoJrs(tc, sAssoc) :
∀k ∈ N0 : 0 ≤ k < arity(eojrs)⇒
∃!jr = identicalElement(th−1, πk(eojrs)) :
∃!clonedAssoc =

identicalElement(th−1,findClone(sAssoc, aCloneMap)) :
∃!newCloneMap = createCloneMap(th−1, {clonedAssoc}, ∅) :
∃!reClonedAssoc = findClone(clonedAssoc,newCloneMap) :
∃!newClonedAssoc = identicalElement(th, reClonedAssoc) :

identicalElement(th, target(th−1, jr)) =
source(th,newClonedAssoc) ∧

target(th,newClonedAssoc) =
identicalElement(th, target(th−1, clonedAssoc))

(G.92)

398 Chapter G. Formal Weaving Semantics

The predicate in (G.93) specifies the equivalent weaving semantics for the situation where the cross-
cutting environment object is the target of the association.

∀tAssoc ∈ tEoAssocs :
∃eojrs = findEoJrs(tc, tAssoc) :
∀k ∈ N0 : 0 ≤ k < arity(eojrs)⇒
∃!jr = identicalElement(th−1, πk(eojrs)) :
∃!clonedAssoc =

identicalElement(th−1,findClone(tAssoc, aCloneMap)) :
∃!newCloneMap = createCloneMap(th−1, {clonedAssoc}, ∅) :
∃!reClonedAssoc = findClone(clonedAssoc,newCloneMap) :
∃!newClonedAssoc = identicalElement(th, reClonedAssoc) :

identicalElement(th, target(th−1, jr)) =
target(th,newClonedAssoc) ∧

source(th,newClonedAssoc) =
identicalElement(th, source(th−1, clonedAssoc))

(G.93)

Predicate (G.94) and (G.95) specify the removal of the associations introduced when weaving the
crosscutting scenariocharts. They also define that the crosscutting environment objects and the corre-
sponding join relationships must be removed. The removal of these elements must not be executed before
the last end target module of the aspect is processed. With respect to Fig. 9.17, Predicate (G.94) de-
notes the removal of γ and δ, E1, and the join relationships, under the assumption that they have E1 as
source. Predicate (G.95) describes the same semantics for the case where the associations γ and δ have
the environment object E1 as target.

sEoAssocs 6= ∅ ∧
∃tm = endTargetModules(t0, aspect , ∅) :

πarity(tm)−1(tm) = targetModule ⇒
∀sAssoc ∈ sEoAssocs :(

arity(findEoJrs(tc−1, sAssoc)) > 0⇒
identicalElement(th, source(tc−1, sAssoc)) = ε

)
∧(

∃!clonedAssoc =
identicalElement(th−1,findClone(sAssoc), aCloneMap) :

clonedAssoc 6= ε ∧
identicalElement(th, clonedAssoc) = ε ∧
targetRole(th, clonedAssoc) = ε

)
∧(

∃eojrs = findEoJrs(tc−1, sAssoc) :
∀k ∈ N0 : 0 ≤ k < arity(eojrs)⇒

identicalElement(th, πk(eojrs)) = ε
)

(G.94)

G.1 Formal Weaving Semantics of Non-Partial Elements 399

tEoAssocs 6= ∅ ∧
∃tm = endTargetModules(t0, aspect , ∅) :

πarity(tm)−1(tm) = targetModule ⇒
∀tAssoc ∈ tEoAssocs :(

arity(findEoJrs(tc, tAssoc)) > 0⇒
identicalElement(th, target(tc−1, tAssoc)) = ε

)
∧(

∃!clonedAssoc =
identicalElement(th−1,findClone(tAssoc), aCloneMap) :

clonedAssoc 6= ε ∧
identicalElement(th, clonedAssoc) = ε ∧
targetRole(th, clonedAssoc) = ε

)
∧(

∃eojrs = findEoJrs(tc, tAssoc) :
∀k ∈ N0 : 0 ≤ k < arity(eojrs)⇒

identicalElement(th, πk(eojrs)) = ε
)

(G.95)

G.1.7 Formal Weaving Semantics of the Functional Speci�cation

This section presents the formal weaving semantics for the functional specification of aspects which was
presented informally in Section 9.2.7.

Given Elements

The operation φv weaves the functional specifications contained in the aspects of a model into the cor-
responding end target modules. For the definition of the pre- and postcondition of φv, several terms and
predicates are required. The term aspects in (G.96) is a shorthand term that represents all aspect modules
in the aspect-oriented model t0. In (G.97) the number of steps d of the previous operation φu is calculated.
The term in G.98 describes the index v of the operation φv. It is based on the index u, originally defined
in (G.85), and on d. The term tv−1 stands for the model before weaving the functional specification.

aspects = gatherAspects(t0) (G.96)

d =
arity(aspects)∑

k=0

arity(endTargetModules(t0, πk(aspects), ∅)) (G.97)

v = u+ d (G.98)

Precondition of φv

The operation φu must be finished before φv can start.

400 Chapter G. Formal Weaving Semantics

Postcondition of φv

There are various predicates that must be satisfied by the operation φv. In (G.99), the main predicate
for the postcondition of φv is given. It ensures that the functional specification of each aspect is woven
into each of its end target modules. The actual postcondition is specified in detail by the subpredicate
functionalSpecificationWoven .

∀i ∈ N0 : 0 ≤ i < arity(aspects)⇒
∃tModules = endTargetModules(t0, πi(aspects), ∅) :
∀k ∈ N0 : 0 ≤ k < arity(tModules)⇒

∃j = (
∑

0≤d<i
arity(endTargetModules(t0, πd(aspects), ∅))) + k + v :

functionalSpecificationWoven(πi(aspects), πk(tModules), j)

(G.99)

The subpredicate functionalSpecificationWoven(oAspect , targetModule, h) describes the postcon-
dition for the weaving of the functional specification of oAspect into the target module targetModule.
The argument h denotes the index of the current substep. The model th−1 denotes the model before
weaving aspects into targetModule, th is the model after the weaving.

For specifying the subpredicate, a set of shorthand terms are required, which are defined in the follow-
ing. The following formulae (G.100)–(G.108) define terms that describe tuples containing the elements
of an aspect’s functional specification.

aspect = identicalElement(th−1, oAspect) (G.100)

aFunctionalSpec = functionalSpec(aspect) (G.101)

aProvides = provides(aFunctionalSpec) (G.102)

aRequires = requires(aFunctionalSpec) (G.103)

aProperties = standardizedProperties(aFunctionalSpec) (G.104)

aInvariants = invariants(aFunctionalSpec) (G.105)

aDataType = dataTypeDeclarations(aFunctionalSpec) (G.106)

aAttributes = attributes(aFunctionalSpec) (G.107)

aOperations = operations(aFunctionalSpec) (G.108)

The formulae (G.109)–(G.117) define the shorthand for elements of the target module’s functional
specification.

G.1 Formal Weaving Semantics of Non-Partial Elements 401

tModule = identicalElement(th−1, targetModule) (G.109)

tFunctionalSpec = functionalSpec(tModule) (G.110)

tProvides = provides(tFunctionalSpec) (G.111)

tRequires = requires(tFunctionalSpec) (G.112)

tProperties = invariants(tFunctionalSpec) (G.113)

tInvariants = standardizedProperties(tFunctionalSpec) (G.114)

tDataType = dataTypeDeclarations(tFunctionalSpec) (G.115)

tAttributes = attributes(tFunctionalSpec) (G.116)

tOperations = operations(tFunctionalSpec) (G.117)

The terms (G.118)–(G.125) specify the elements of the woven functional specification of the tModule
in the resulting model th.

wFunctionalSpec = functionalSpec(identicalElement(th, tModule)) (G.118)

wProvides = provides(wFunctionalSpec) (G.119)

wRequires = requires(wFunctionalSpec) (G.120)

wInvariants = invariants(wFunctionalSpec) (G.121)

wProperties = standardizedProperties(wFunctionalSpec) (G.122)

wDataType = dataTypeDeclarations(wFunctionalSpec) (G.123)

wAttributes = attributes(wFunctionalSpec) (G.124)

wOperations = operations(wFunctionalSpec) (G.125)

For each part of the functional specification, such as the attributes, the invariants, etc., a predicate
has to be defined, which describes the result of the weaving operation. Predicate (G.126) defines the
postcondition for the provides elements. It states that all elements declared in the list of provided elements
of the aspect’s functional specification are appended to the list of provided elements of the target module.
The predicates (G.127)–(G.132) describe the weaving semantics correspondingly for the other elements
of the functional specification.

∀k ∈N0 : 0 ≤ k < arity(aProvides) + arity(tProvides)⇒
(

(k < arity(tProvides)⇒
πk(tProvides) = πk(wProvides)) ∧

(k ≥ arity(tProvides)⇒
πk−arity(tProvides)(aProvides) = πk(wProvides)))

(G.126)

402 Chapter G. Formal Weaving Semantics

∀k ∈N0 : 0 ≤ k < arity(aRequires) + arity(tRequries)⇒
(

(k < arity(tRequires)⇒
πk(tRequires) = πk(wRequries)) ∧

(k ≥ arity(tRequires)⇒
πk−arity(tRequires)(aRequires) = πk(wRequires)))

(G.127)

∀k ∈N0 : 0 ≤ k < arity(aInvariants) + arity(tInvariants)⇒
(

(k < arity(tInvariants)⇒
πk(tInvariants) = πk(wInvariants)) ∧

(k ≥ arity(tInvariants)⇒
πk−arity(tInvariants)(aInvariants) = πk(wInvariants)))

(G.128)

∀k ∈N0 : 0 ≤ k < arity(aProperties) + arity(tProperties)⇒
(

(k < arity(tProperties)⇒
πk(tProperties) = πk(wProperties)) ∧

(k ≥ arity(tProperties)⇒
πk−arity(tProperties)(aProperties) = πk(wProperties)))

(G.129)

∀k ∈N0 : 0 ≤ k < arity(aDataTypes) + arity(tDataTypes)⇒
(

(k < arity(tDataTypes)⇒
πk(tDataTypes) = πk(wDataTypes)) ∧

(k ≥ arity(tDataTypes)⇒
πk−arity(tDataTypes)(aDataTypes) = πk(wDataTypes)))

(G.130)

∀k ∈N0 : 0 ≤ k < arity(aAttributes) + arity(tAttributes)⇒
(

(k < arity(tAttributes)⇒
πk(tAttributes) = πk(wAttributes)) ∧

(k ≥ arity(tAttributes)⇒
πk−arity(tAttributes)(aAttributes) = πk(wAttributes)))

(G.131)

G.1 Formal Weaving Semantics of Non-Partial Elements 403

∀k ∈N0 : 0 ≤ k < arity(aOperations) + arity(tOperations)⇒
(

(k < arity(tOperations)⇒
πk(tOperations) = πk(wOperations)) ∧

(k ≥ arity(tOperations)⇒
πk−arity(tOperations)(aOperations) = πk(wOperations)))

(G.132)

G.1.8 Formal Weaving Semantics of Server Components
The formal definition for the weaving of server components is given informally in Section 9.2.8. This
section presents the corresponding formal specification.

Given Elements

The operation φw weaves the associations between aspects and server components into the target modules
of the aspects and adapts the role names referred to by the modules involved. For the definition of the
pre- and postcondition of φw, several formulae and predicates are given. The term aspects in (G.133) is a
shorthand term that describes all aspect modules in the aspect-oriented model t0. The shorthand term d in
(G.134) describes the number of steps needed for the weaving of the functional specification, described in
Section G.1.7. It sums up the number of end target modules for each aspect of the given model. The term
in G.135 describes the index w of the operation φw. It is based on the indices v, defined in (G.98), and
d. Correspondingly, the model before weaving the server components is denoted as tw−1, the model after
the weaving as tw.

aspects = gatherAspects(t0) (G.133)

d =
arity(aspects)∑

k=0

arity(endTargetModules(t0, πk(aspects), ∅)) (G.134)

w = v + d (G.135)

Precondition of φw

The operation φv must be finished before φw can be executed.

Postcondition of φw

After the execution of φw, the associations between each aspect and the associated server components are
woven with the corresponding end target modules and the behavior description is adapted. The postcondi-
tion of φw is described by the main predicate given in (G.136). It ensures that for each combination of an
aspect, a target module, and an association connecting the aspect with a server component, the association
is woven correctly in the resulting model. For this purpose, the subpredicate scWoven is employed. Note
that calcIndex in Predicate (G.136) is a helper function that is used to compute the corresponding index

404 Chapter G. Formal Weaving Semantics

of the substep. Furthermore, the term numScSubSteps in (G.137) describes the total number of weaving
substeps. It is used by the subpredicate scWoven to calculate the index of the model which results after
the weaving of all server components.

∀l ∈ N0 : 0 ≤ l < arity(aspects)⇒
∃tModules = endTargetModules(t0, πl(aspects), ∅) :
∀i ∈ N0 : 0 ≤ i < arity(tModules)⇒
∃assocs = serverComponentAssociations(t0, πi(aspects)) :
∀k ∈ N0 : 0 ≤ k < arity(assocs)⇒

scWoven(πl(aspects), πi(tModules), πk(Assocs),
calcIndex (aspects, l, i, k),numScSubSteps)

where calcIndex (aspects, l, i, k) =∑
0≤d<l

(
arity(endTargetModules(t0, πd(aspects), ∅))(

arity(serverComponentAssociations(t0, πd(aspects))))
) +

(i− 1)
(
arity(serverComponentAssociations(t0, πl(aspects)))

)
+ k

(G.136)

numScSubSteps =∑
0≤d<arity(aspects)

(
arity(endTargetModules(t0, πd(aspects), ∅))

)(
arity(serverComponentAssociations(t0, πd(aspects)))

) (G.137)

The subpredicate scWoven(oAspect , oTargetModule, oAssoc, h, j) ensures that the original asso-
ciation oAssoc between a given oAspect and a server component is woven for the given target module
oTargetModule. The argument h is the index of the current weaving substep. Correspondingly, the input
model of a substep is th−1 and the resulting model th. The argument j denotes the number of substeps
that need to be executed to weave all server components of a model. Thus, th+j represents the model after
the weaving of the server components.

The subpredicate scWoven consists of several terms and predicates. The term aspect in (G.138)
denotes the aspect oAspect before the weaving of its associations. In (G.139), the shorthand term for the
end target module contained in the resulting model is given. The term aCloneMap in (G.141) defines
the clone map for the given association. It provides the mapping between the original association and the
clone of the association between the server component and the target module tModule. In (G.142), the
term associationClone defines the clone of the association .

aspect = identicalElement(th−1, oAspect) (G.138)

tModule = identicalElement(th, oTargetModule) (G.139)

association = identicalElement(th−1, oAssoc) (G.140)

aCloneMap = createCloneMap(th−1, {association}, ∅) (G.141)

associationClone = findClone(th−1, aCloneMap) (G.142)

G.1 Formal Weaving Semantics of Non-Partial Elements 405

The term severComponent in formula (G.143) denotes the server component which is connected by
the given association to the given aspect .

serverComponent =

source(th−1, association)

if type(target(th−1, association)) =
AspectDefinition

target(th−1, association) else

(G.143)

The predicates in (G.144)–(G.147) describe how the cloned association is connected to the server
component and the given target module in the resulting model th. Predicates (G.144) and (G.145) describe
the case where the server component is the source of the association. Predicates (G.146) and (G.147)
describe the case where the aspect is the source.

source(th−1, association) = serverComponent ⇒
source(th, associationClone) = identicalElement(th, serverComponent)

(G.144)

target(th−1, association) = aspect ⇒
target(th, associationClone) = tModule

(G.145)

target(th−1, association) = serverComponent ⇒
target(th, associationClone) = identicalElement(th, serverComponent)

(G.146)

source(th−1, association) = aspect ⇒
source(th, associationClone) = tModule

(G.147)

Apart from specifying the source and the target of the cloned association, the role of the clonedAsso-
ciation in model th must be substituted with roles names that are unique in the model. Formula (G.148)
and (G.149) create a source and a target role which are based on the roles attached to association but
which have a unique name with respect to the model th−1.

clonedSourceRole = generateUniqueRole(th−1, association,
sourceRole(association))

(G.148)

clonedTargetRole = generateUniqueRole(th−1, association,
targetRole(th−1, association))

(G.149)

The predicates (G.151) and (G.151) specify that the cloned source and target role are attached as roles
of the cloned association in model th.

406 Chapter G. Formal Weaving Semantics

sourceRole(identicalElement(th, associationClone)) = clonedSourceRole (G.150)

targetRole(identicalElement(th, associationClone)) = clonedTargetRole (G.151)

The original association role names must be replaced by the generated roles names, in every receive
and send statement of transitions, the functional specifications, and the transform expressions of scenarios.
The formulae (G.152) and (G.153) define the term clonedSourceRoleName and clonedTargetRoleName
that represent the bare role names7 as special identifier or qualified identifier. Formulae (G.154) and
(G.155) contain the bare source and target role name of the original association .

clonedSrcRoleName = roleName(clonedSourceRole) (G.152)

clonedTgtRoleName = roleName(clonedTargetRole) (G.153)

srcRoleName = roleName(sourceRole(association)) (G.154)

tgtRoleName = roleName(targetRole(th−1, association)) (G.155)

In the following formulas, several terms are defined in order to simplify the predicates which specify
the replacing of the roles in the behavior description of the server component and the target module. In
(G.156), the term targetModuleParts specifies all parts in the target module in th−1.

targetModuleParts = parts(identicalElement(th−1, oTargetModule)) (G.156)

The formula (G.157) defines the term targetModuleTransitions which represents all transitions out-
going from the elements that are contained as direct children in the target module.8

targetModuleTransitions =
{x|∃y ∈ targetModuleParts :

∃z ∈ filterSet(connections(y),TransitionDefinition) :
x = z

}

(G.157)

Correspondingly to the parts and transitions of the target module, the parts of the server component
and the corresponding transitions are defined by the terms in formulae (G.158) and (G.159).

serverComponentParts = parts(identicalElement(th−1, serverComponent)) (G.158)

serverComponentTransitions =
{x|∃y ∈ serverComponentParts :
∃z ∈ filterSet(connections(y),TransitionDefinition) :

x = z

}

(G.159)

7That means without the cardinalities of the role.
8Note that only the transitions outgoing from the direct children in the target module are in a position to access

the roles of the woven association. In contrast, transitions contained in the children are not allowed to refer to the
association roles.

G.1 Formal Weaving Semantics of Non-Partial Elements 407

The term in (G.160) unifies the transitions contained in the server component and the target module
into one set. It is used by the following predicates.

oTransitions = targetModuleTransitions ∪ serverComponentTransitions (G.160)

The following two predicates specify that all referred role names of the original association , contained
in the transitions of the server component and the current target module, are replaced by the role names of
the cloned transition. This semantics is specified for receive statements in (G.161) and for send statements
in (G.162).

∀oTrans ∈ oTransitions :
(

∃wTrans = identicalElement(th, oTrans) :
∃eTrans = identicalElement(th+j , oTrans) :
∃oRecs = orderedChildrenOfType(oTrans,MessageReceive, ∅) :
∃wRecs = orderedChildrenOfType(wTrans,MessageReceive, ∅) :
∃eRecs = orderedChildrenOfType(eTrans,MessageReceive, ∅) :(
∀i ∈ N0 : 0 ≤ i < arity(eRecs)⇒ ∃eChn = channelNames(πi(eRecs)) :

(∀k ∈ N0 : 0 ≤ k < arity(eChn)⇒
πk(eChn) 6= srcRoleName ∧ πk(eChn) 6= tgtRoleName)

)
∧

∀i ∈ N0 : 0 ≤ i < arity(oRecs)⇒
(

∃oChn = channelNames(πi(oRecs)) :
∀l ∈ N0 : 0 ≤ l < arity(oChn)⇒

(
∃wChn = channelNames(πi(wRecs)) :

πl(oChn) = srcRoleName ⇒
((

∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedSrcRoleName
))

∧ πl(oChn) = tgtRoleName ⇒
((

∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedTgtRoleName
)))))

(G.161)

408 Chapter G. Formal Weaving Semantics

∀oTrans ∈ oTransitions :
(

∃wTrans = identicalElement(th, oTrans) :
∃eTrans = identicalElement(th+j , oTrans) :
∃oSends = orderedChildrenOfType(oTrans,MessageSend , ∅) :
∃wSends = orderedChildrenOfType(wTrans,MessageSend , ∅) :
∃eSends = orderedChildrenOfType(eTrans,MessageSend , ∅) :(
∀i ∈ N0 : 0 ≤ i < arity(eSends)⇒ ∃eChn = channelNames(πi(eSends)) :

(∀k ∈ N0 : 0 ≤ k < arity(eChn)⇒
πk(eChn) 6= srcRoleName ∧ πk(eChn) 6= tgtRoleName)

)
∧

∀i ∈ N0 : 0 ≤ i < arity(oSends)⇒
(

∃oChn = channelNames(πi(oSends)) :
∀l ∈ N0 : 0 ≤ l < arity(oChn)⇒

(
∃wChn = channelNames(πi(wSends)) :
πl(oChn) = srcRoleName ⇒

((
∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedSrcRoleName

))
∧ πl(oChn) = tgtRoleName ⇒

((
∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedTgtRoleName

)))))

(G.162)

The term oTargetFuncSpec in Formula (G.163) is short hand for the functional specification of the
target module before weaving the association . The term in (G.164) is an abbreviation for the functional
specification after the weaving of the association , and the term in (G.165) describes the functional spec-
ification of the target module after weaving all server components. The formulae (G.166), (G.167), and
(G.168) describe a tuple of all message send statements contained in the functional specification of the
target module before and after the weaving of the association , and after weaving all server components,
respectively.

oTargetFuncSpec = functionalSpec(identicalElement(th−1, oTargetModule)) (G.163)

wTargetFuncSpec = functionalSpec(tModule) (G.164)

eTargetFuncSpec = functionalSpec(identicalElement(th+j , oTargetModule)) (G.165)

oTargetFsMsgSends = orderedChildrenOfType(oTargetFuncSpec,MessageSend) (G.166)

wTargetFsMsgSends = oderedChildrenOfType(wTargetFuncSpec,MessageSend) (G.167)

eTargetFsMsgSends = oderedChildrenOfType(eTargetFuncSpec,MessageSend) (G.168)

Predicate (G.169) specifies that after the weaving, all the role names of the original association
occurring in message send statements of the functional specification are substituted after the weaving by
the corresponding generated role names.

G.1 Formal Weaving Semantics of Non-Partial Elements 409

∀i ∈ N0 : 0 ≤ i < arity(oTargetFsMsgSends)⇒
(

∃oMsgSend = πi(oTargetFsMsgSends) :
∃wMsgSend = πi(wTargetFsMsgSends) :
∃eMsgSend = πi(eTargetFsMsgSends) :(
∃eChn = channelNames(eMsgSend) :
∀k ∈ N0 : 0 ≤ k < arity(eChn)⇒
πk(eChn) 6= srcRoleName ∧ πk(eChn) 6= tgtRoleName)
∧ ∃oChn = channelNames(oMsgSend) :
∀k ∈ N0 : 0 ≤ k < arity(oChn)⇒

(
∃wChn = channelNames(wMsgSend) :
πk(oChn) = srcRoleName ⇒

((
∃l ∈ N0 : 0 ≤ l < arity(wChn) ∧ πl(wChn) = clonedSrcRoleName

))
∧ πk(oChn) = tgtRoleName ⇒

((
∃l ∈ N0 : 0 ≤ l < arity(wChn) ∧ πl(wChn) = clonedTgtRoleName

))))

(G.169)

Correspondingly to (G.163)–(G.169), in (G.170)–(G.176), the replacement of the association roles is
described for the functional specification of the server component.

oSCompFuncSpec = functionalSpec(identicalElement(th−1, oTargetModule)) (G.170)

wSCompFuncSpec = functionalSpec(tModule) (G.171)

eSCompFuncSpec = functionalSpec(identicalElement(th+j , oTargetModule)) (G.172)

oSCompFsMsgSends = orderedChildrenOfType(oSCompFuncSpec,MessageSend) (G.173)

wSCompFsMsgSends = oderedChildrenOfType(wSCompFuncSpec,MessageSend) (G.174)

eSCompFsMsgSends = oderedChildrenOfType(eSCompFuncSpec,MessageSend) (G.175)

410 Chapter G. Formal Weaving Semantics

∀i ∈ N0 : 0 ≤ i < arity(oSCompFsMsgSends)⇒
(

∃oMsgSend = πi(oSCompFsMsgSends) :
∃wMsgSend = πi(wSCompFsMsgSends) :
∃eMsgSend = πi(eSCompFsMsgSends) :(
∃eChn = channelNames(eMsgSend) :
∀k ∈ N0 : 0 ≤ k < arity(eChn)⇒
πk(eChn) 6= srcRoleName ∧ πk(eChn) 6= tgtRoleName)
∧ ∃oChn = channelNames(oMsgSend) :
∀k ∈ N0 : 0 ≤ k < arity(oChn)⇒

(
∃wChn = channelNames(wMsgSend) :
πk(oChn) = srcRoleName ⇒

((
∃l ∈ N0 : 0 ≤ l < arity(wChn) ∧ πl(wChn) = clonedSrcRoleName

))
∧ πk(oChn) = tgtRoleName ⇒

((
∃l ∈ N0 : 0 ≤ l < arity(wChn) ∧ πl(wChn) = clonedTgtRoleName

))))

(G.176)

The references to the roles of theassociation must also be adapted in the transform expressions of
the target module and the server component. Formula (G.177) specifies a term targetModuleScenarios
which represents all scenarios contained as direct children in the target module.9 Similarly, in the term
of Formula (G.178), the scenario nodes contained in the server component are given. Finally, the term
oScenarios defines in (G.179) the unified set of all scenarios contained in the target module and the server
component.

targetModuleScenarios =
{x|∃y ∈ filterSet(targetModuleParts,ScenarioDefinition) :

x = y

}

(G.177)

serverCompScenarios =
{x|∃y ∈ filterSet(targetModuleParts,ScenarioDefinition) :

x = y

}

(G.178)

oScenarios = targetModuleScenarios ∪ serverCompScenarios (G.179)

In order that the weaving operation φw works correctly, the Predicate (G.180) must be satisfied. It
specifies that all occurrences of references to the source and target role names of the original association

9Only the transformation expressions of the scenarios which are direct children can access the roles of the
associations.

G.1 Formal Weaving Semantics of Non-Partial Elements 411

contained in transform input expressions must be replaced by the corresponding roles names of the cloned
association. Predicate (G.181) specifies the corresponding weaving semantics for all transform output
expressions.

∀oScen ∈ oScenarios :
(

∃wScen = identicalElement(th, oScen) :
∃eScen = identicalElement(th+j , oScen) :
∃oTform = orderedChildrenOfType(oScen,TransformInput , ∅) :
∃wTform = orderedChildrenOfType(wScen,TransformInput , ∅) :
∃eTform = orderedChildrenOfType(eScen,TransformInput , ∅) :(
∀k ∈ N0 : 0 ≤ k < arity(eTform)⇒ ∃eChn = channelNames(πk(eTform)) :
∀i ∈ N0 : 0 ≤ i < arity(eChn)⇒
πi(eChn) 6= srcRoleName ∧ πi(eChn) 6= tgtRoleName)
∧
(
∀i ∈ N0 : 0 ≤ i < arity(oTform)⇒

(
∃oChn = channelNames(πi(oTform)) :
∀l ∈ N0 : 0 ≤ l < arity(oChn)⇒

(
∃wChn = channelNames(πi(wTform)) :
πl(oChn) = srcRoleName ⇒

((
∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedSrcRoleName

))
∧ πl(oChn) = tgtRoleName ⇒

((
∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedTgtRoleName

))))))

(G.180)

412 Chapter G. Formal Weaving Semantics

∀oScen ∈ oScenarios :
(

∃wScen = identicalElement(th, oScen) :
∃eScen = identicalElement(th+j , oScen) :
∃oTform = orderedChildrenOfType(oScen,TransformOutput , ∅) :
∃wTform = orderedChildrenOfType(wScen,TransformOutput , ∅) :
∃eTform = orderedChildrenOfType(eScen,TransformOutput , ∅) :(
∀k ∈ N0 : 0 ≤ k < arity(eTform)⇒ ∃eChn = channelNames(πk(eTform)) :
∀i ∈ N0 : 0 ≤ i < arity(eChn)⇒
πi(eChn) 6= srcRoleName ∧ πi(eChn) 6= tgtRoleName)
∧
(
∀i ∈ N0 : 0 ≤ i < arity(oTform)⇒

(
∃oChn = channelNames(πi(oTform)) :
∀l ∈ N0 : 0 ≤ l < arity(oChn)⇒

(
∃wChn = channelNames(πi(wTform)) :
πl(oChn) = srcRoleName ⇒

((
∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedSrcRoleName

))
∧ πl(oChn) = tgtRoleName ⇒

((
∃k ∈ N0 : 0 ≤ k < arity(wChn) ∧ πk(wChn) = clonedTgtRoleName

)))))

(G.181)

Finally, the associations between the server component and the aspect must be deleted, after the weav-
ing of the server components. The corresponding semantics is described in Predicate G.182.

identicalElement(th+j , association) = ε ∧
targetRole(th+j , association)) = ε

(G.182)

G.1.9 Formal Semantics of the Postprocessing
The informal description of the post processing is given in Section 9.2.10. The present section gives the
corresponding formal weaving semantics.

Given Elements

The operation φn describes the weaving semantics for the handling of the aspect modules. The index n
is calculated as by n = w + numScSubSteps , where numScSubSteps is given by formula (G.137). It
denotes the number of transformation steps that have been executed by the operation φw to weave the
server components.

Precondition of φn

Before executing φn, the operation, φw must first finish its execution.

G.2 Formal Weaving Semantics for Partial Aspect-Oriented Elements 413

Postcondition of φn

After the last transformation step, the resulting model tn must not contain any aspect modules. This
semantics is specified by the predicate in (G.183).

filterSet(descendants(tn),AspectDefinition) = ∅ (G.183)

G.2 Formal Weaving Semantics for Partial Aspect-Oriented
Elements

G.2.1 Formal Weaving Semantics of Partial Join Relationships Connect-
ing Scenario/Behavior Chunks with a Scenario/Transition

The formal definition of the partial weaving semantics extends the weaving operation φg. Thus, the pre-
and postcondition given in Section G.1.1 and Section G.1.2 have to be extended.

Given Elements

For the description of the partial join relationship, the given elements of Section G.1.1 and Section G.1.2
are also applied. The term jrlist in (G.184), denotes the list of topologically sorted join relationships.
The current (partial) join relationship is given by (G.185). The source and the target element of the
join relationship are defined in (G.186) and (G.187). The term g denotes the index of the operation.
Correspondingly, tg−1 is the model before weaving the partial join relationship and tg the model after the
weaving.

jrlist = topologicalJrSort(tg−1) (G.184)

j = firstJr(jrlist) (G.185)

sourceElement = source(tg−1, j) (G.186)

targetElement = target(tg−1, j) (G.187)

Precondition

The precondition for the weaving of behavior and scenario chunks, which is given in Predicate (G.5)
and (G.24), is extended by Predicate (G.188). It states that the join relationship between a behavior/sce-
nario chunk and the target transition/scenario must be partial in order that the following postcondition can
be satisfied.

414 Chapter G. Formal Weaving Semantics

(
(type(sourceElement) = ScenarioDefinition ∧

type(targetElement) = ScenarioDefinition) ∨
(type(sourceElement) ∈ {StateDefinition,ComponentDefinition} ∧

type(targetElement) = TransitionDefinition)
)
∧

partial(j) = true

(G.188)

Postcondition

After the execution the weaving operation φg, the target module is set to partial if the woven join relation-
ship is partial. Predicate (G.189) states this fact.

partial(identicalElement(tg, targetModule(tg−1, targetElement))) = true (G.189)

G.2.2 Formal Weaving Semantics of Partial Join Relationships Connect-
ing other Elements

The operation φg is also responsible for weaving abstract join relationships which do not connect a behav-
ior/scenario chunk and a transition/scenario, respectively (cf. Section 9.3.2). The operation has to satisfy
the given pre- and postcondition.

Given Elements

Several predicates and terms are required for specifying the semantics of φg. The term jrlist in (G.190),
denotes the list of topologically sorted join relationships. The current (partial) join relationship j is given
by (G.191), and its source and the target element are defined in (G.192) and (G.193), respectively. The
term g denotes the index of the operation. Correspondingly, tg−1 is the model before and tg after the
weaving of j.

jrlist = topologicalJrSort(tg−1) (G.190)

j = firstJr(jrlist) (G.191)

sourceElement = source(tg−1, j) (G.192)

targetElement = target(tg−1, j) (G.193)

Precondition

The Precondition in (G.194) specifies that the extension of the operation tg must process the partial join
relationships which are not handled by the semantics described in Section G.2.1, G.1.1, or G.1.2.

G.2 Formal Weaving Semantics for Partial Aspect-Oriented Elements 415

(
(type(sourceElement) = ScenarioDefinition ∧

type(targetElement) 6= ScenarioDefinition) ∨
(type(sourceElement) ∈ {StateDefinition,ComponentDefinition} ∧

type(targetElement) 6= TransitionDefinition) ∨
(type(sourceElement) = AspectDefinition)

)
∧

partial(j) = true

(G.194)

Postcondition

The postcondition for φg consists of several terms and Predicates. The origin of j is an aspect module.
A shorthand term for it before the weaving of j is defined in (G.195). The term tElement in (G.196)
represents the target element after the weaving of j. The term in (G.198) denotes the informal descriptions
of the target element before and in (G.197) after the weaving, respectively. In (G.199) the informal
description of the aspect module is specified as the term commentAspect . The term textModelAspect in
(G.200) represents the textual description of the aspect module.10 It is needed, as the textual description
of the aspect module will be injected during the weaving process into the target module.

aspect = jrHostingAspect(tg−1, j) (G.195)

tElement = identicalElement(tg, targetElement) (G.196)

wCommentTElement = π1(childOfType(tElement , InformalDescription, 1)) (G.197)

oCommentTElement = π1(childOfType(targetElement , InformalDescription, 1)) (G.198)

commentAspect = π1(childOfType(aspect , InformalDescription, 1)) (G.199)

textModelAspect = ρ−1(identicalElement(t0, aspect)) (G.200)

Predicate (G.201) defines the weaving semantics in the case that the abstract join relationship j has a
before ordering. The comment and the textual representation of the aspect are woven before the comment
of the target module. The bullet (•) denotes the concatenation of informal descriptions.

ordering(j) = before⇒
wCommentTElement = commentAspect • textModelAspect • oCommentTElement (G.201)

Similarly, Predicate (G.202) specifies the weaving semantics for the partial join relationship j with
an instead ordering. The comment on the target module is replaced by the comment and the textual
representation of the aspect module.

ordering(j) = instead⇒
wCommentTElement = commentAspect • textModelAspect

(G.202)

10Here the original aspect of the model t0 is used, as some join relationships of the aspect may have already been
deleted by previously executed weaving operations.

416 Chapter G. Formal Weaving Semantics

Predicate (G.203) specifies the weaving semantics for the partial join relationship j with an after or-
dering. The informal description of the aspect and its textual representation are inserted after the comment
on the target module.

ordering(j) = after⇒
wCommentTElement = oCommentTElement • commentAspect • textModelAspect

(G.203)

Predicate (G.204) specifies that if and only if the target element is a module, i.e., an aspect or a
component, is it set to partial after the weaving of j. If the term targetElement does not denote a module
tModule, e.g., in the case where it is an association, it is equal to ε and the partial property is not set.

partial(tElement) = true (G.204)

The operation φg needs a post processing of all instead join relationships which impact the same
target, as otherwise only the comment on the last woven join relationship is contained in the informal
description of the target. If there is more than one instead join relationship impacting the same target,
only the first one is woven with an instead semantics. The weaving order of the subsequently processed
join relationships is changed to after. The term defined in (G.205) represents the instead group of all join
relationships impacting the same target element as j. Predicate (G.206) describes the actual semantics.

insteadGroup = π1(π0(jrlist)) (G.205)

ordering(j) = instead⇒
(

∀i ∈N : 1 ≤ i < arity(insteadGroup)⇒
∃!jr = identicalElement(tg, πi(insteadGroup)) :

ordering(jr) = after)
(G.206)

Finally, the woven abstract join relationship j must be removed from the resulting model. This is
defined by Predicate (G.207).

identicalElement(tg, j) = ε (G.207)

G.2.3 Formal Weaving Semantics of Partial Join Relationships between
Crosscutting Environment Objects

The weaving of partial join relationships between (crosscutting) environment objects was informally de-
scribed in Section 9.3.3. The formal weaving semantics extends the weaving semantics of the non-partial
case described in Section G.1.6.

G.2 Formal Weaving Semantics for Partial Aspect-Oriented Elements 417

Given Elements

Only the term given in (G.208) is needed in the following for the formal description. It denotes a tuple of
all join relationships contained in the aspect-oriented model.

jrs = gatherJrs(t0, t0, ∅) (G.208)

Moreover, the index v which is defined in (G.98) is also used in the following. It denotes the index of
the weaving step directly following the processing of the crosscutting environment objects.

Precondition of φu
The extension of φu has the same precondition as φu, i.e., the weaving of the embedded components (φq)
must have finished.

Postcondition of φu
The predicate in (G.209) describes the postcondition for the extension of φu. It states that an environment
object that is targeted by partial join relationship is partial after the weaving of all crosscutting environment
objects.

∀k ∈ N0 : 0 ≤ k < arity(jrs) ⇒
∃tElement = identicalElement(tv−1, target(tv−1, πk(jrs))) :

type(tElement) = EnvironmentObject ∧ partial(πk(jrs)) = true ⇒
partial(tElement) = true

(G.209)

G.2.4 Formal Weaving Semantics of Partial Aspect Modules
For the description of the weaving semantics of partial aspect modules, the operation φg defined in Sec-
tion G.1.1 and G.1.2 is extended.

Given Elements

There are several given elements required for describing the semantics of the extended operation φg. The
term g denotes the index of the operation. Correspondingly, tg−1 is the model before weaving the join
relationship and tg denotes the model after the weaving. The term jrlist in (G.210), defines the list of
topologically sorted join relationships. The term j in (G.211) represents the currently processed join
relationship. A short hand for the (partial) aspect is given by the term aspect defined in (G.212), and the
source and the target element of j are defined in (G.213) and (G.214), respectively.

jrlist = topologicalJrSort(tg−1) (G.210)

j = firstJr(jrlist) (G.211)

aspect = jrHostingAspect(tg−1, j) (G.212)

sourceElement = source(tg−1, j) (G.213)

targetElement = target(tg−1, j) (G.214)

418 Chapter G. Formal Weaving Semantics

Precondition

The precondition for the extended operation φg is given in Predicate (G.215). It must be fulfilled in order
that the corresponding postcondition can be satisfied. It expresses that the extension for the operation φg
is only executed if the following conditions are satisfied. First, the join relationship connects a behav-
ior/scenario with a scenario node or a state/component with a transition, and second, the aspect where j
originates is partial. Note that the case where the aspect is partial but the precondition is not satisfied is
handled by the operation described in Section G.2.2.

(
(type(sourceElement) = ScenarioDefinition ∧

type(targetElement) = ScenarioDefinition) ∨
(type(sourceElement) ∈ {StateDefinition,ComponentDefinition} ∧

type(targetElement) = TransitionDefinition)
)
∧ partial(aspect)

(G.215)

Postcondition

The postcondition is defined by several terms and predicates. The term in (G.216) is short hand for the
target module before the weaving. The Formula (G.217) defines the target module after the weaving.
In (G.218), the informal description of the target module before the weaving is given. In (G.219) the
corresponding informal description after the weaving is specified. The term (G.220) defines a short hand
for the informal description of the aspect module.

targetModule = targetModule(tg−1, targetElement) (G.216)

tModule = identicalElement(tg, targetModule) (G.217)

oCommentTModule = π1(childOfType(targetModule, InformalDescription, 1)) (G.218)

wCommentTModule = π1(childOfType(tModule, InformalDescription, 1)) (G.219)

commentAspect = π1(childOfType(aspect , InformalDescription, 1)) (G.220)

Predicate (G.221) defines the weaving semantics for the informal description of a partial aspect. It
is appended to the comment on the target module. The bullet (•) denotes a concatenation of informal
descriptions.

wCommentTModule = oCommentTModule • commentAspect (G.221)

Predicate (G.222) defines that the partial property of the target module is set after the weaving of j.

partial(tModule) = true (G.222)

419

Appendix H

More Details on the Tool Implementation

This appendix elaborates on particular facets of the ADORA implementation which are roughly discussed
in Chapter 11. Section H.1 particularizes how the visual information is stored in the proposed meta-model
implementation. In Section H.2, the rules for mapping the ADORA EBNF grammar given in Appendix B
to an object-oriented meta-model are discussed in detail. Finally, Section H.3 discusses some details about
the implementation of the constraint checking plug-in.

H.1 Relating the Visual Representation to the Model Elements
The part of the meta-model implementation presented in Section 11.2 neither deals with the spatial layout
nor with the visibility information of the ADORA language elements. However, the graphical visualization
of a model element, as well as the abstraction mechanisms presented in Section 5.1.4 need this kind of
information.

The object-oriented meta-model implementation distinguishes between the actual model information
and the information needed for the visual representation. Both parts are strongly separated from each other.
The visual information is encapsulated in its own class hierarchy which is connected to the corresponding
model element. The model elements and the corresponding visual representation are referenced by the
class Speci�cation of the object-oriented meta-model implementation. The corresponding organization in
the meta-model is shown in Fig. H.1.

An ADORA Speci�cation consists of the Model information and a separate set of Representations. In
turn, a Model consists of a set of Node and Connection objects which comprise the model information.
Furthermore, a set of Representation objects provides the spatial layout and visibility information of the
model element and is associated with the object of the corresponding model element.

Figure H.2 is another view of the meta-model implementation. It shows some of the subclasses of the
Representation class which are associated with the corresponding model objects. For example, an instance
of the class ComponentRepresentation contains the layout and visibility information for model elements
of the class Component.

The abstract super class of all representations is Representation. It encapsulates the basic layout and
visibility information which is common to all representation subclasses. Each concrete representation,
e.g., the class ComponentRepresentation, extends this base class and specifies further visualization at-
tributes specific to the model element.

Each representation object is a facade [Gamm95] of the corresponding model element. Thus, all

420 Chapter H. More Details on the Tool Implementation

SpecificationModel Representations

consistsOf
11

consistsOf
1 1

Node

partial : boolean
name : String

contains

11..*

Representation

x : int
y : int
width : int
height : int
visibility : boolean

contains

1

1..*
Connection

sourceConnections1 0..*

targetConnections

1

0..*

contains1

1..*

Figure H.1: An overview of the relationships between the specification, the ADORA model
nodes, and its representation.

model properties are accessed through the corresponding representation object. A controller of the MVC
architecture in the ADORA tool accesses the representation instances of a model element and not directly
the object containing the properties of the model element. In Fig. H.2, this fact is given by the class
AdoraModelElementController which represents the abstract base class of all controllers in the ADORA

tool.1 Using the representation classes as facade allows having more than one visual representation2 of
the same specification. This is also the basic requirement for multi-user editing of models [Moda03].

Note that the architecture for the layout information of an ADORA model which is presented above
denotes the desired final state of implementation. However, the version 1.1 of the ADORA meta-model
implementation that has been finished at the time of writing is in an intermediate state. The visual repre-
sentation properties are currently not separated from the model information. Thus they are both contained
in the model classes. Nonetheless, it is planned to separate the layout information from the model infor-
mation in a future release of the tool.

H.2 Mapping between EBNF Rules and Classes in the Object-
Oriented Meta-model

The actual mapping from the EBNF grammar to the classes of the meta-model implementation follows a
set of rules. The most important ones are brie�y discussed in the following. They are exemplified by the
grammar rules given in Table 11.1 and the class model shown in Fig. 11.3:

1Correspondingly, the class AdoraView represents the abstract base class of all views of the MVC pattern in the
ADORA tool.

2In terms of the MVC pattern, a visual representation is a view.

H
.2

M
apping

betw
een

E
B

N
F

R
ules

and
C

lasses
in

the
O

bject-O
riented

M
eta-m

odel
421

Representation

x : int
y : int
width : int
height : int
visibility : boolean

EnvironmentObjectRepresentation ScenarioRepresentationAspectRepresentation ComponentRepresentation StateRepresentation ExitPointRepresentation

TransitionRepresentation ScenarioConnectionRepresentation JoinRelationshipRepresentationAssociationRepresentation

EnvironmentObject Aspect State ExitPoint

represents
1

1..*
represents

1
1..* represents

1
1..*

represents
1

1..* represents
1

1..*

Association ScenarioConnection JoinRelationshipTransition

Scenario

represents
1..*

1

represents
1..*

1 represents
1..*

1
represents

1..*

1
represents

1..*

1

AdoraModelElementController

1

1..*

AdoraView

11

Component

Figure H.2: An overview of the representation of the meta-model elements.

422 Chapter H. More Details on the Tool Implementation

• If a grammar rule pi ∈ P is referred to only by one other grammar rule pk, and pk is mapped to a
class Ck, then the information contained in pi is represented by Ck as an attribute.3

Example (H.1). The auxiliary rule ComponentName is only referred to by the grammar rule Compo-
nentDe�nition, and therefore it is mapped to the attribute name of the class Component. However,
due to the generalization of the class structure, which is discussed above, the attribute name is
declared in the class Node.

• If there is a rule pi which is mapped to a class Ci, the the information of any terminal symbols that
are part of pi is mapped to Ci as an attribute. Nevertheless, pure syntactical elements, such as the
semicolon used as separator between textual elements, are not mapped, as they do not contain any
semantical information.

Example (H.2). The optional terminals partial, external, and start denote specific prop-
erties of a component and are mapped to the boolean attributes partial, external, and start in the
class Component. However, due to the generalization in the class structure, the attribute partial is
defined in the class Node.

Example (H.3). The terminal is in the ComponentDe�nition rule is purely syntactical and is there-
fore not mapped to an attribute of the class Component.

• The information described by a grammar rule pi ∈ P is represented by a separate class Ci of the
meta-model implementation if pi is referred to by more than one other grammar rules. Thus, if
Ps ⊂ P denotes the set of grammar rules which refer to pi, the condition |Ps| > 1 must hold
in order that the rule pi is mapped to Ci. Moreover, each class Ck in the object-oriented meta-
model which is derived from a rule pk ∈ Ps must be connected to Ci either by an association, a
composition or an aggregation relationship.

Example (H.4). The rule ComponentDe�nition in Table 11.1 is referred to by several other rules,
therefore it manifests in a class. Thus, the class Component in Fig. 11.3 represents an abstract
object or an object set in the meta-model.

Example (H.5). The grammar rule Cardinality referred to by the ComponentDe�nition rule is
mapped to a class, as it is also referred to by several other rules, such as the AssociationDe�ni-
tion, the ScenarioDe�nition, and the EnvironmentObjectDe�nition rule (cf. the full grammar in
Appendix B). The reference becomes manifest in the composition relationship between the class
Association, the class Scenario, the class EnvironmentObject, the class Component and the Cardi-
nality class.

• The UniqueModelElementIdenti�er, which is used in textual ADORA models to identify model
elements uniquely, is not mapped to the meta-model, either as class or as an attribute. This is due
to the fact that in object-oriented systems, objects are implicitly identified uniquely.

Example (H.6). To be uniquely identifiable within a model, a textual description of a component,
which is specified by the ComponentDe�nition rule, has a unique model element identifier. How-
ever, the corresponding class in the meta-model implementation does not contain a corresponding
attribute or anything similar.

3P denotes the set of all grammar rules, cf. p. 88.

H.3 Using the Constraints Checking Plug-in and ICL 423

• The relationships between different language elements defined by the grammar are expressed either
by the nesting of the elements or by referencing them over an identifier relationship, i.e., by a name
or a unique model element identifier (cf. Section 6.1.5). Relationships between the textual elements
are mapped to relationships between the corresponding classes.

Example (H.7). The rule Cardinality represents the cardinality of an association, a component, a
scenario, or an environment object. Thus, the cardinality rule becomes manifest in the class Cardi-
nality, whereas the reference between a component, an association, a scenario, or an environment
object and the corresponding cardinality is mapped to a composition relationship between the cor-
responding classes.

Example (H.8). The reference to ComponentParts in the rule ComponentDe�nition denotes a part-
of relationship between the component and its parts. This part-of relationship is mapped to the
aggregation named parts between the classes Container and a Node.4

Example (H.9). In textual models, the relationship between a connection and its source node is ex-
pressed by embedding the connection’s textual description in the textual description of the source
node, whereas the relationship between the connection and its target node is expressed by a refer-
ence (cf. Section 6.1.6).
Each type of connection in the ADORA meta-model implementation is represented by a subclass
of the Connection class. Thus, for each rule specifying a connection, there is a corresponding
subclass. Furthermore, the relationship between the source node and the target node is expressed
by a corresponding relationship in the meta-model implementation.
The rule ComponentDe�nition refers to the rule ComponentConnections which specifies the out-
going connections. This relationship is mapped to the association sourceConnections between the
classes Node and Connection in the meta-model implementation. The reference to the target node
is described correspondingly by the association targetConnections.5

• Model parts which have no graphical representation, such as transition labels or the functional
specification of a component, are handled as text in the meta-model implementation. However,
such an element is transformed to a syntax tree if there is the need to process it, e.g., when it has
to be interpreted during the simulation or transformed during the weaving of a model. Therefore,
these elements are also mapped to a class in the meta-model implementation. Nevertheless, the
corresponding classes are not shown by Fig. 11.3.

Example (H.10). The FunctionalSpeci�cation rule is represented mapped to a text attribute in the
Component class.

H.3 Using the Constraints Checking Plug-in and ICL
This section discusses the use of the constraints checking plug-in in the ADORA tool. As discussed in
Section 11.3, leniently enforced constraints are implemented by using ICL and the constraints checking

4Apart from components, states and aspects can also contain nodes as parts. Therefore, this relationship is
generalized and defined by the super-classes.

5The source or target connection relationship is generalized, as all nodes may have incoming or outgoing con-
nections.

424 Chapter H. More Details on the Tool Implementation

Listing H.1: Constraint C3 formulated for the ADORA tool in ICL.
1 constraint StateGroupsInAspectMustBeWellFormed
2 category "weaving"
3 description "Ensures that the state groups of an aspect are well-formed"
4 on (aspect : Aspect) is
5
6 aspect#log.stateGroups().size() > 0 implies
7 (for-all x : StateGroup in aspect.stateGroups() |
8 x.exitPoints().size() == 1 and x.startStates().size() == 0 or
9 x.exitPoints().size() == 0 and x.startStates().size() == 1)
10
10 ifFalse (@result.setMessage("The state groups of the aspect" +
10 "are not well-formed!");@)
11 end

plug-in. Listing H.1 illustrates what an ICL constraint for the presented meta-model implementation looks
like. It describes the leniently checked Constraint C3 from page 366 which is enforced before weaving a
model. It states that all the state groups of an aspect are well-formed, i.e., that they contain either exactly
one start state or exactly one exit point but not both.

An ICL constraint has a name which is used to identify it uniquely. It may optionally have a category
and a description. The category is used to define when the constraint has to be satisfied. An ICL constraint
has at least one argument. The first argument defines the scope in the model for which the constraint is
responsible. In the example, the constraint references objects of the type Aspect. The following first-order
predicate can refer to this argument by the specified name. All properties, i.e., attributes and methods,
defined in the meta-model class can be used to phrase the first order-predicate. For example, the method
stateGroups() of the class Aspect is used to retrieve the set of all state groups in the aspect.6

The identifiers in an ICL predicate can be annotated with a #log �ag. It means that the corresponding
element is logged in the case of a false evaluation of the corresponding expression part. After checking
the constraint, the logged elements which were involved in the constraint violation can be retrieved, which
allows the error to be more precisely located in the model.

A leniently enforced constraint can be violated until a specific point in time, e.g., before a model
is woven or simulated. For assigning the constraints to a specific point in time, each constraint can be
assigned to a category. Other plug-ins using the constraint checker plug-in can initiate the checking of
a certain constraint category. For example, the simulation or the weaving plug-in can tell the constraint
checker to check constraints that belong to the category weaving or simulation, respectively. In the exam-
ple of Listing H.1, the constraint is assigned to the category weaving and is therefore checked before the
model is woven.

Checked constraints which fail are reported by the constraints plug-in. Figure H.3 shows a screen shot
of the constraints plug-in after the checking of the constraint in Fig. C3 has failed. In the case presented,
the state group of the aspect shown is malformed because it contains a start state as well as an exit point.
The corresponding tool window indicates the violation with a message which can be employed by the user
to navigate to the malformed element in the model.

6Note that the StateGroup Method referred to by the ICL constraint is not shown in the meta-model design of
Fig. 11.3 on page 226.

H.3 Using the Constraints Checking Plug-in and ICL 425

Figure H.3: A screen shot of the constraint checker view in the ADORA tool.

BIBLIOGRAPHY 427

Bibliography

[Akc 92] Akşit, M., Bergmans, L., and Vural, S. An Object-Oriented Language-Database Integration
Model: The Composition-Filters Approach. In O. L. Madsen (Ed.), Proceedings of the 6th
European Conference on Object-Oriented Programming (ECOOP '92), volume 615, pages
372–395, Utrecht, Netherlands, 1992. Springer.

[Aldr04] Aldrich, J. Open Modules: Reconciling Extensibility and Information Hiding. In Pro-
ceedings of the Workshop on Software Engineering Properties of Languages for Aspect
Technologies, held in conjunction with AOSD '04, 2004.

[Aldr05] Aldrich, J. Open Modules: Modular Reasoning about Advice. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP '05), Edinburgh, UK, 2005.

[Alex03] Alexander, I. Misuse Cases: Use Cases with Hostile Intent. Software, IEEE, 20(1):58–66,
Jan/Feb 2003.

[Arau03] Araújo, J. and Moreira, A. M. D. An Aspectual Use-Case Driven Approach. In Proceedings
of the VIII Jornadas de Ingeniería de Software y Bases de Datos (JISBD '03), pages 463–
468, Alicante, Spain, 2003.

[Arau04] Araújo, J., Whittle, J., and Kim, D.-K. Modeling and Composing Scenario-Based Require-
ments with Aspects. In 12th IEEE Requirements Engineering Conference, pages 58–59,
2004.

[Arau05] Araújo, J., Baniassad, E., Clements, P., Moreira, A., Rashid, A., and Tekinerdogan, B.
Early Aspects: The Current Landscape – Draft. Technical Report CMU/SEI-2005-TN-xxx,
Carnegie Mellon University (CMU), 2005.

[Balz05] Balzer, S., Eugster, P., and Meyer, B. Can Aspects Implement Contracts? In Proceedings of
the 2nd International Workshop on Rapid Integration of Software Engineering Techniques
(RISE), volume 3943 of Lecture Notes in Computer Science, pages 145–157, Heraklion,
Crete, Greece, September 2005. Springer.

[Bani04a] Baniassad, E. and Clarke, S. Finding Aspects in Requirements with Theme/Doc. In Pro-
ceedings of the Workshop on Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, held in conjunction with AOSD '04, Lancaster, UK, 2004.

[Bani04b] Baniassad, E. and Clarke, S. Investigating the Use of Clues for Scaling Document-Level
Concern Graphs. In Proceedings of the Workshop on Early Aspects: Aspect-Oriented Re-
quirements Engineering and Architecture Design, held in conjunction with OOPSLA '04,
Vancouver, Canada, Oct. 2004.

428 BIBLIOGRAPHY

[Bani04c] Baniassad, E. and Clarke, S. Theme: An Approach for Aspect-Oriented Analysis and
Design. In Proceedings of the International Conference on Software Engineering (ICSE
'04), Edinburgh, UK, 2004.

[Bara04] Barais, O., Cariou, E., Duchien, L., Pessemier, N., and Seinturier, L. TranSAT: A Frame-
work for the Specification of Software Architecture Evolution. In Proceedings of the 1st
Workshop on Coordination and Adaptation Techniques for Software Entities (WCAT), held
in conjunction with ECOOP '04, Oslo, Norway, June 2004.

[Basi75] Basili, V. R. and Turner, A. J. Iterative Enhancement: A Practical Technique for Software
Development. IEEE Trans. Software Eng., 1(4):390–396, 1975.

[Berg01] Bergmans, L. and Akşit, M. Composing Crosscutting Concerns Using Composition Filters.
Communications of the ACM, 44(10):51–57, 2001.

[Bern99a] Berner, S., Glinz, M., and Joos, S. A Classification of Stereotypes for Object-Oriented
Modeling Languages. In Proceedings of the 2nd International Conference on the Uni�ed
Modeling Language (UML '99), volume 1723 of Lecture Notes in Computer Science, pages
249–264. Springer, 1999.

[Bern99b] Berner, S., Schett, N., Xia, Y., and Glinz, M. An Experimental Validation of the ADORA
Language. Technical Report 99.07, Department of Informatics, University of Zurich, 1999.

[Bern02] Berner, S. Modellvisualisierung für die Spezi�kationssprache ADORA [Model Visualization
for the Speci�cation Language ADORA (in German)]. PhD thesis, University of Zurich,
2002.

[Bind99] Binder, R. V. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999.

[Bjor78] Bjørner, D. and Jones, C. B. Eds. The Vienna Development Method: The Meta-Language,
volume 61 of Lecture Notes in Computer Science. Springer, 1978.

[Blos00] Blosser, J. Explore the Dynamic Proxy API – Use Dynamic Proxies to Bring Strong Typing
to Abstract Data Types. JavaWorld, http://www.javaworld.com, November 2000.

[Boeh81] Boehm, B. W. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ,
1981.

[Boeh88] Boehm, B. W. A Spiral Model of Software Development and Enhancement. IEEE Com-
puter, 21(5):61–72, 1988.

[Bone04] Bonér, J. AspectWerkz - Dynamic AOP for Java. In Proceeding of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD '04), Lancaster, UK, 2004.

[Bono04] Bonomo, I. Aspektorientierte Software-Entwicklung – unter besonderer Berücksichtigung
der begrif�ichen Zusammenhänge und der Einbettung in den Entwicklungsprozess [Aspect-
Oriented Software Development - With Respect to the Terminological Interrelationships
and their Embedding in the Software Process (in German)]. Diploma Thesis, University of
Zurich, 2004.

BIBLIOGRAPHY 429

[Brab05] Brabrand, C., Møller, A., and Schwartzbach, M. I. Dual Syntax for XML Languages.
In Proceedings of the Workshop on Database Programming Languages (DBPL'05), vol-
ume 3774 of Lecture Notes in Computer Science, pages 27–41, Trondheim, Norway, 2005.
Springer.

[Brow96] Brownsword, L. and Clements, P. A Case Study in Successful Product Line Development.
Technical Report CMU/SEI-96-TR-016, Carnegie Mellon University (CMU), 1996.

[Burk04] Burke, B. Aspect-Oriented Annotations. OnJava, http://www.onjava.com, September 2004.

[Buxt69] Buxton, J. N. and Randell, B. Eds. Software Engineering Techniques: Report of a confer-
ence sponsored by the NATO Science Committee. Brussels, Scientific Affairs Division,
NATO. Scientific Affairs Division, North Atlantic Treaty Organization (NATO), Rome,
Italy, Oct. 1969.

[Cap93] Cap, C. H. Theoretische Grundlagen der Informatik [Theorectical Foundations of Computer
Science (in German)]. Springer, Wien, 1993.

[Cede05] Cederqvist, P. Version Management with CVS. Free Software Foundation, version 1.11.22
edition, 2005. CVS Version 1.11.22.

[Chec03] Chechik, M., Devereux, B., Easterbrook, S., and Gurfinkel, A. Multi-Valued Sym-
bolic Model-Checking. ACM Transactions on Software Engineering and Methodology,
12(4):371–408, 2003.

[Chit05] Chitchyan, R., Rashid, A., Sawyer, P., Bakker, J., Alarcón, M. P., Garcia, A., Tekinerdogan,
B., Clarke, S., and Jackson, A. Survey of Aspect-Oriented Analysis and Design Approaches.
AOSD-Europe Project Deliverable No. AOSD-Europe-ULANC-9, University of Lancaster,
May 2005. Editor(s): R. Chitchyan, A. Rashid.

[Chit06] Chitchyan, R., Sampaio, A., Rashid, A., and Rayson, P. A Tool Suite for Aspect-Oriented
Requirements Engineering. In Proceedings of the International Workshop on Early aspects,
held in conjunction with ICSE '06, pages 19–26, New York, NY, USA, 2006. ACM.

[Chit07] Chitchyan, R., Rashid, A., Rayson, P., and Waters, R. Semantics-based composition for
aspect-oriented requirements engineering. In AOSD '07: Proceedings of the 6th interna-
tional conference on Aspect-oriented software development, pages 36–48, New York, NY,
USA, 2007. ACM Press.

[Chun00] Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. Non-functional Requirements in Software
Engineering. Kluwer Academic Publishers, Boston, USA, 2000.

[Clar84] Clark, L. A linguistic contribution to goto-less programming. Commun. ACM, 27(4):349–
350, 1984.

[Clar05] Clarke, S. and Baniassad, E. Aspect-Oriented Analysis and Design - The Theme Approach.
Addison-Wesley, Upper Saddle River, New Jersey, USA, 2005.

[Clel06] Cleland-Huang, J., Settimi, R., Zou, X., and Solc, P. The Detection and Classification
of Non-Functional Requirements with Application to Early Aspects. In Proceedings of

430 BIBLIOGRAPHY

the 14th IEEE International Requirements Engineering Conference (RE '06), pages 36–45,
Minneapolis, USA, 2006.

[Clem01] Clements, P. and Northrop, L. Software Product Lines: Practices and Patterns. Addison-
Wesley Professional, 2001.

[Cock01] Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2001.

[Cock02] Cockburn, A. Agile Software Development. Addison-Wesley, 2002.

[Coly04] Colyer, A., Rashid, A., and Blair, G. On the Separation of Concerns in Program Families.
Technical report, Lancaster University, January 2004.

[Coly06] Colyer, A., Harrop, R., Vasseur, R. J. A., Beuche, D., and Beust, C. Point/Counterpoint.
IEEE Software, 23(1):72–75, Jan.-Feb. 2006.

[Cono99] Conolly, T., Begg, C., and Strachan, A. Database Systems – Second Edition. Addison-
Wesley Longman Limited, Harlow, Essex, England, 1999.

[Cons00] Constantinides, C. A., Bader, A., Elrad, T. H., Netinant, P., and Fayad, M. E. Designing an
Aspect-Oriented Framework in an Object-Oriented Environment. ACM Computing Survey,
page 41, 2000.

[Cons04] Constantinides, C., Skotiniotis, T., and Störzer, M. Panel Discussion: AOP Considered
Harmful. In Proceedings of the 1st European Interactive Workshop on Aspect Systems
(EIWAS), Berlin, Germany, September 2004.

[Corn70] Corneil, D. G. and Gotlieb, C. C. An efficient algorithm for graph isomorphism. J. ACM,
17(1):51–64, 1970.

[Cram07] Cramer, C. Verwendung und Prüfung von Integritätsbedingungen in der Model-
lierungssprache ADORA [Using and Checking of Integrity Constraints in the ADORA Mod-
eling Language (in German)]. Diploma thesis, University of Zurich, May 2007.

[Dard93] Dardenne, A., van Lamsweerde, A., and Fickas, S. Goal-Directed Requirements Acquisi-
tion. Science of Computer Programming, 20(1-2):3–50, 1993.

[Dari96] Darimont, R. and van Lamsweerde, A. Formal Refinement Patterns for Goal-Driven Re-
quirements Elaboration. In Proceedings of the 4th ACM SIGSOFT symposium on Founda-
tions of software engineering (SIGSOFT '96), pages 179–190, New York, NY, USA, 1996.
ACM.

[Dari97] Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A. GRAIL/KAOS: An Envi-
ronment for Goal-Driven Requirements Engineering. In Proceedings of the International
Conference on Software Engineering (ICSE '97), pages 612–613, Kyoto, Japan, 1997.

[Davi92] Davis, A. M. Software Requirements: Objects, Functions and States. Prentice Hall, 1992.

[Davi93] Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Lede-
boer, G., Reynolds, P., Sitaram, P., Ta, A., and Theofanos, M. Identifying and Measuring
Quality in a Software Requirements Specification. In Proceedings of the First International
Software Metrics Symposium, 1993.

BIBLIOGRAPHY 431

[Davi01] Davies, N., Cheverst, K., Mitchell, K., and Efrat, A. Using and Determining Location in a
Context-Sensitive Tour Guide. IEEE Computer, 8(34):35–41, 2001.

[DeMa78] DeMarco, T. Structured Anaysis and System Speci�cation. Yourdon Press, New York, USA,
1978.

[Dijk68] Dijkstra, E. W. Letters to the Editor: Go to Statement Considered Harmful. Communica-
tions of the ACM, 11(3):147–148, 1968.

[Dijk72] Dijkstra, E. W. The Humble Programmer. Communications of the ACM, 15(10):859–866,
1972.

[Dijk76] Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

[Dijk82] Dijkstra, E. W. Essay: On the Role of Scientific Thought, EWD. 447, 30 August 1974,
Neuen, Netherlands. In Selected Writings on Computing: A Personal Perspective. Springer-
Verlag, 1982.

[Duan07] Duan, C. and Cleland-Huang, J. A Clustering Technique for Early Detection of Dominant
and Recessive Cross-Cutting Concerns. In Proceedings of the Workshop on Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture Design, held in conjunction
with ICSE '07, Minneapolis, USA, 2007.

[Eade91] Eades, P., Lai, W., Misue, K., and Sugiyama, K. Preserving the Mental Map of a Diagram.
In Proceedings of Compugraphics '91, pages 34–43, 1991.

[Ecli07a] Eclipse Foundation. The Eclipse Homepage. http://www.eclipse.org, October 2007.

[Ecli07b] Eclipse Foundation. The Graphical Editing Framework (GEF) — Homepage.
http://www.eclipse.org/gef/, November 2007.

[Eigl04] Eiglsperger, M., Gutwenger, C., Kaufmann, M., Kupke, J., Jünger, M., Leipert, S., Klein,
K., Mutzel, P., and Siebenhaller, M. Automatic Layout of UML Class Diagrams in Orthog-
onal Style. Information Visualization, 3(3):189–208, 2004.

[Elra01] Elrad, T., Akşit, M., Kiczales, G., Lieberherr, K., and Ossher, H. Discussing Aspects of
AOP. Communication of the ACM, 44(10):33–38, 2001.

[Faga86] Fagan, M. E. Advances in Software Inspections. IEEE Transactions on Software Engineer-
ing, 12(7):744–751, 1986.

[Feli02] Felici, M. Requirements Evolution — Understanding Formally Software Engineering
Processes within Industrial Contexts. Technical Report Bando n. 203.15.11, Consiglio
Nazionale delle Ricerche, LFCS, Division of Informatics, The University of Edinburgh,
2002.

[Film00] Filman, R. E. and Friedman, D. P. Aspect-Oriented Programming Is Quantification and
Obliviousness. In Proceedings of the Workshop on Advanced Separation of Concerns,
held in conjunction with OOPSLA 2000, pages 21–35, Minneapolis, USA, 2000. Addison-
Wesley.

432 BIBLIOGRAPHY

[Fink92] Finkelstein, A., Kramer, J., Nuseibeh, B., and Goedicke, M. Viewpoints: A Framework
for Integrating Multiple Perspectives in System Development. International Journal of
Software Engineering and Knowledge Engineering, 2(1):31–58, 1992.

[Fink96] Finkelstein, A. and Sommerville, I. The Viewpoints FAQ. Software Engineering Journal,
11(1):2–4, 1996.

[Floy84] Floyd, C. A Systematic Look at Prototyping. In R. Budde, K. Kuhlenkamp, L. Mathiassen,
and R. Züllighoven (Eds.), Approaches to Prototyping, pages 1–18, Berlin, 1984. Springer.

[Gal01] Gal, A., Schröder-Preikschat, W., and Spinczyk, O. AspectC++: Language Proposal and
Prototype Implementation. In Proceedings of the Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, held in conjunction OOPSLA 2001, Tampa, Florida,
October 2001.

[Gamm95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns. Addison-Wesley
Professional, 1995.

[Glin95] Glinz, M. An Integrated Formal Model of Scenarios Based on Statecharts. In W. Schäfer
and P. Botella (Eds.), Proceedings of the 5th European Software Engineering Conference
(ESEC '95), pages 254–271. Lecture Notes in Computer Science 989, Springer, 1995.

[Glin02a] Glinz, M. Statecharts For Requirements Specification – As Simple As Possible, As Rich
As Needed. In Proceedings of Workshop on Scenarios and State Machines: Models, Algo-
rithms, and Tools, held in conjunction with ICSE '02, 2002.

[Glin02b] Glinz, M., Berner, S., and Joos, S. Object-Oriented Modeling with ADORA. Information
Systems, 27(6):425–444, 2002.

[Glin05] Glinz, M. Software Engineering – Eine Einführung [Software Engineering – An Introduc-
tion (in German)]. University of Zurich, 2005. Lecture Notes in Computer Science.

[Glin07a] Glinz, M. On Non-Functional Requirements. In Proceedings of the 15th IEEE International
Requirements Engineering Conference (RE '07), Delhi, India, 2007.

[Glin07b] Glinz, M. and Gall, H. Script for the Bachelor Course in Software Engineering. Univeristy
of Zurich, 2007. Lecture Notes, Winter Term 2005/2006.

[Glin07c] Glinz, M., Seybold, C., and Meier, S. Simulation-Driven Creation, Validation and Evolu-
tion of Behavioral Requirements Models. In Proceedings of the Dagstuhl-Workshop Mod-
ellbasierte Entwicklung eingebetteter Systeme (MBEES 2007), Informatik-Bericht 2007-01,
pages 103–112., Dagstuhl, Germany, 2007. TU Braunschweig.

[Gray01] Gray, J., Bapty, T., Neema, S., and Tuck, J. Handling Crosscutting Constraints in Domain-
Specific Modeling. Communications of the ACM, 44(10):87–93, 2001.

[Gree59] Greenwald, I. D. and Kane, M. The Share 709 System: Programming and Modification.
Journal of the ACM, 6(2):128–133, 1959.

BIBLIOGRAPHY 433

[Gris00a] Griss, M. L. Implementing Product-Line Features by Composing Aspects. In Proceedings
of the 1st Conference on Software Product Lines: Experience and Research Directions,
pages 271–288, Norwell, MA, USA, 2000.

[Gris00b] Griss, M. L. Implementing Product-Line Features with Component Reuse. In Proceeding
of the 6th International Conerence on Software Reuse (ICSR), pages 137–152, 2000.

[Groh04] Groher, I. and Baumgarth, T. Aspect-Orientation from Design to Code. In Proceedings of
the Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architec-
ture Design, held in conjunction with AOSD 2004, 2004.

[Grun99] Grundy, J. C. Aspect-Oriented Requirements Engineering for Component-Based Software
Systems. In Proceedings of the 4th IEEE International Symposium on Requirements Engi-
neering (RE '99), pages 84–91, Washington, DC, USA, 1999.

[Grun00] Grundy, J. Multi-Perspective Specification, Design and Implementation of Software Com-
ponents Using Aspects. International Journal of Software Engineering and Knowledge
Engineering, 10(6):713–734, December 2000.

[Gutt77] Guttag, J. V. Abstract Data Type and the Development of Data Structures. Communications
of the ACM, 20(6):396–404, 1977.

[Hann01] Hannemann, J. and Kiczales, G. Overcoming the Prevalent Decomposition of Legacy Code.
In Proceedings of the Workshop on Advanced Separation of Concerns, held in conjunction
with ICSE '01, Toronto, Canada, 2001.

[Hans75] Hansen, P. B. The Programming Language Concurrent Pascal. IEEE Transactions on
Software Engineering, 1(2):199–207, June 1975.

[Hare87] Harel, D. A Visual Formalism for Complex Systems. Science of Computer Programming,
8(3):231–274, June 1987.

[Harr93] Harrison, W. and Ossher, H. Subject-Oriented Programming: A Critique of Pure Objects.
SIGPLAN Notice, 28(10):411–428, 1993.

[Harr02] Harrison, W. H., Ossher, H. L., and Tarr, P. L. Asymmetrically vs. Symmetrically Orga-
nized Paradigms for Software Composition. Tech. rep., IBM Research Division, 2002.
http://domino.watson.ibm.com/library/cyberdig.nsf/0/2a4097e93456d0cf85256ca9006dac2
9?Open Document.

[Heck06] Heckel, R. Graph Transformation in a Nutshell. In Proceedings of the School on Foun-
dations of Visual Modelling Techniques (FoVMT '06) of the SegraVis Research Training
Network, volume 148 of Electronic Notes in TCS, pages 187–198. Elsevier, 2006.

[Herr02] Herrmann, S. Composable Designs with UFA. In Proceedings of the Workshop on Aspect-
Oriented Modeling with UML, held in conjunction with AOSD '02, Enschede, Netherlands,
2002.

[Ho00] Ho, W.-M., Pennaneac’h, F., and Plouzeau, N. UMLAUT: A Framework for Weaving UML-
based Aspect-Oriented Designs. In Proceedings of the 33rd Conference on Technology of
Object-Oriented Languages and Systems (TOOLS '00), pages 324–334, 2000.

434 BIBLIOGRAPHY

[Hoar69] Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Communications of the
ACM, 12(10):576–580, 1969.

[Hoar74] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. Communications of
the ACM, 17(10):549 – 557, 1974.

[IEEE90] IEEE — The Institute of Electrical and Electronics Engineers. Standard Glossary of Soft-
ware Engineering Terminology. IEEE Std. 610.12-1990, Dec. 1990.

[IEEE98] IEEE — The Institute of Electrical and Electronics Engineers. IEEE Recommended Practice
for Software Requirements Speci�cations. IEEE Std 830-1998, 1998.

[IEEE00] IEEE — The Institute of Electrical and Electronics Engineers. IEEE Recommended Practice
for Architectural Description of Software-Intensive Systems. IEEE Std. 1471-2000, 2000.

[ISO 96] ISO — The International Standardization Organization. Information Technology - Syntactic
Metalanguage - ExtendedBNF (Backus Naur Form). ISO/IEC Std. 14977:1996, 1996.

[ISO 01] ISO — The International Standardization Organization. ISO/IEC 9126-1:2001: Software
engineering – Product quality – Part 1: Quality model. ISO/IEC Std. 9126-1, 2001.

[ISO 05] ISO — The International Standardization Organization. ISO/IEC 9899: TC, Programming
languages – C. ISO/IEC Std. 9899, 2005.

[Jack75] Jackson, M. Principles of Program Design. Academic Press, New York, 1975.

[Jaco92] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, 4th edition edition, 1992.

[Jaco03] Jacobson, I. Use Cases and Aspects – Working Seamlessly Together. Journal of Object
Technology, 2(4):7–28, 2003.

[Jaco05] Jacobson, I. and Ng, P.-W. Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, Pearson Education, 2005.

[Joos99] Joos, S. ADORA-L - eine Modellierungssprache zur Spezi�kation von Software-
Anforderungen [ADORA-L – A Modeling Language for Specifying Software Requirements
(in German)]. PhD thesis, University of Zurich, Zurich, 1999.

[Kand03] Kandé, M. M. A Concern-Oriented Approach To Software Architecture. Thesis no. 2796
(2003), Ecole Politechnique Fédérale de Lausanne (EPFL), 2003.

[Kang90] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-
021, Carnegie Mellon University, 1990.

[Katz04] Katz, S. and Rashid, A. PROBE: From Requirements and Design to Proof Obligations
for Aspect-Oriented Systems. Technical Report COMP-002-2004, Computing Department
Lancaster University, Lancaster, UK, 2004.

[Keen88] Keene, S. E. A programmer's guide to object-oriented programming in Common LISP.
Addison-Wesley, Longman Publishing, Boston, MA, USA, 1988.

BIBLIOGRAPHY 435

[Kell57] Kelly, P. J. A Congruence Theorem for Trees. Paci�c Journal of Mathematics, 7:961â �AŞ–
968, 1957.

[Kicz91] Kiczales, G., des Rivieres, J., and Bobrow, D. G. The Art of the Metaobject Protocol. The
MIT Press, Cambridge, Massachusetts, 1991.

[Kicz97] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. Aspect-Oriented Programming. In Proceedings of the 15th European Conference
on Object-Oriented Programming (ECOOP '97), pages 327–353, 1997.

[Kicz01a] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. An
Overview of AspectJ. In Proceedings of the European Conference on Object-oriented Pro-
gramming (ECOOP '01), pages 327–353, 2001.

[Kicz01b] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. Getting
Started with AspectJ. Communications of the ACM, 44(10):59–65, 2001.

[Koto98] Kotonya, G. and Sommerville, I. Requirements Engineering. John Wiley & Sons, 1998.

[Kreb04] Krebs, J. Entwicklung einer Ausführungsmaschine für die Simulation / Animation von for-
malen ADORA-Modellen [Development of an execution machine for the simulation / an-
imation of formal ADORA models (in German)]. Diploma thesis, University of Zurich,
2004.

[Kule04] Kulesza, U., Garcia, A., and Lucena, C. Towards a Method for the Development of
Aspect-Oriented Generative Approaches. In Proceedings of the Workshop on Early As-
pects: Aspect-Oriented Requirements Engineering and Architecture Design, held in con-
jucntion with OOPSLA '04, Vancouver, Canada, 2004.

[Ladd03] Laddad, R. AspectJ in Action, Practical Aspect-Oriented Programming. Manning Publica-
tions Company, New York, 2003.

[Ladd05] Laddad, R. AOP and Metadata: A Perfect Match. http://www.ibm.com/developerworks/
java/library/j-aopwork3/, March 2005.

[Lams01] van Lamsweerde, A. Goal-Oriented Requirements Engineering: A Guided Tour. In Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering, 2001.,
pages 249–262, 2001.

[Lehm97] Lehman, M. M., Ramil, J., Wernick, P. D., Perry, D. E., and M.Turski, W. Metrics and
Laws of Software Evolution — The Nineties View. In Proceedings of the 4th International
Software Metrics Symposium, pages 20–32, 1997.

[Leve93] Leveson, N. and Turner, C. S. An Investigation of the Therac-25 Accidents. IEEE Com-
puter, 26(7):18–41, 1993.

[Lieb89] Lieberherr, K. J. and Holland, I. Formulations and Benefits of the Law of Demeter. SIG-
PLAN Notice, 24(3):67–78, 1989.

436 BIBLIOGRAPHY

[Lieb97] Lieberherr, K. J. and Orleans, D. Preventive Program Maintenance in Demeter/Java (Re-
search Demonstration). In Proceedings of the International Conference on Software Engi-
neering (ICSE '97), pages 604–605, Boston, MA, 1997. ACM Press.

[Lieb01] Lieberherr, K., Orleans, D., and Ovlinger, J. Aspect-Oriented Programming with Adaptive
Methods. Communications of the ACM, 44(10):39–41, 2001.

[Mari04] Marin, M., van Deursen, A., and Moonen, L. Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004)., pages
132–141, 2004.

[Meie05] Meier, S. and Glinz, M. Problems when Introducing Aspect-Oriented Constructs in Models
of Functional Requirements and Possible Solutions to these Problems. In Workshop on
Models and Aspects: Handling Cross-Cutting Concerns in MDSD, held in conjunction with
ECOOP '05, 2005.

[Meie06] Meier, S., Reinhard, T., Seybold, C., and Glinz, M. Aspect-Oriented Modeling with Inte-
grated Object Models. In Proceedings of the Modellierung '06, pages 129–144, 2006.

[Meie07] Meier, S., Reinhard, T., Stoiber, R., and Glinz, M. Modeling and Evolving Crosscutting
Concerns in ADORA. In Proceedings of the Workshop on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design, held in conjunction with ICSE '07,
Minneapolis, USA, May 2007.

[Meie09a] Meier, S. A Concurrency Control Mechanism and Redundancy Avoidance for Behaivor
Descriptions of the ADORA language. Technical Report ifi-2009.05, Department of Infor-
matics, 2009.

[Meie09b] Meier, S. An Empirical Validation of the Aspect-Oriented Extension for the ADORA lan-
guage. Technical Report ifi-2009.06, Department of Informatics, 2009.

[Mens05] Mens, T., Straeten, R. V. D., and Simmonds, J. Software Evolution with UML and XML,
H. Yang (ed.), chapter A Framework for Managing Consistency of Evolving UML Models,
pages 1–31. Idea Group Publishing, 2005.

[Meye92] Meyer, B. Applying “Design by Contract”. IEEE Computer, 25(10):40–51, Oct. 1992.

[Moda03] Modarres, H. Design and Implementation of a Repository for Distributed Multi-User
Graphical Editors. Diploma thesis, University of Zurich, 2003.

[More02] Moreira, A., Araújo, J., and Brito, I. Crosscutting Quality Attributes for Requirements
Engineering. In Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE '02), pages 167–174, Ischia, Italy, July 2002.

[More05a] Moreira, A., Araújo, J., and Rashid, A. A Concern-Oriented Requirements Engineering
Model. In O. Pastor and J. F. e Cunha (Eds.), Proceedings of the 17th Conference on
Advanced Information Systems Engineering (CAiSE '05), number 3520 in Lecture Notes in
Computer Science, pages 293–308. Springer, June 2005.

BIBLIOGRAPHY 437

[More05b] Moreira, A., Araújo, J., and Rashid, A. Multi-Dimensional Separation of Concerns in
Requirements Engineering. In Proceedings of the 13th IEEE International Conference on
Requirments Engineering (RE '05), pages 285–296, Paris, France, Sept. 2005.

[Morg94] Morgan, C. and Vickers, T. On the Re�nement Calculus. Springer, 1994.

[Myer04] Myers, G. J., Badgett, T., Thomas, T. M., and Sandler, C. The Art of Software Testing —
Revised and Updated Second Edition. John Wiley and Sons, 2004.

[Nuse04] Nuseibeh, B. Keynote on Crosscutting Requirements. In Proceedings of the 3rd Inter-
national Conference on Aspect-oriented Software Development (AOSD '04), pages 3–4,
Lancaster, UK, 2004.

[OMaG03a] OMaG — Object Management Group. Overview and Guide to OMG's Model-Driven Ar-
chitecture (MDA). OMG document: omg/03-06-01, 2003.

[OMaG03b] OMaG — Object Management Group. UML 2.0 Superstructure Speci�cation. OMG docu-
ment: ptc/03-08-02, 2003.

[OMaG06] OMaG — Object Management Group. UML 2.0 Object Constraint Language. OMG doc-
ument: 06-05-0, 2006.

[OMaG07] OMaG — Object Management Group. OMG Systems Modeling Language. OMG docu-
ment: formal/07-09-01, 2007.

[Orle01] Orleans, D. and Lieberherr, K. DJ: Dynamic Adaptive Programming in Java. In Proceed-
ings of the Third International Conference on Meta-level Architectures and Separation of
Crosscutting Concerns (Re�ection '01), Lecture Notes in Computer Science, pages 73–80,
Kyoto, Japan, September 2001. Springer.

[Ossh01] Ossher, H. and Tarr, P. Using Multidimensional Separation of Concerns to (Re)Shape
Evolving Software. Communications of the ACM, 44(10):43–50, 2001.

[Oste05] Ostermann, K., Mezini, M., and Bockisch, C. Expressive Pointcuts for Increased Modu-
larity. In A. P. Black (Ed.), Proceedings of the European Conference on Object-Oriented
Programming (ECOOP '05), volume 3586 of LNCS, pages 214–240. Springer, 2005.

[Paak95] Paakki, J. Attribute Grammar Paradigms – A High-Level Methodology in Language Imple-
mentation. ACM Computing Surveys, 27(2):197–225, 1995.

[Parn72] Parnas, D. L. On the Criteria to be Used in Decomposing Systems into Modules. Commu-
nications of the ACM, 15(12):1053–1058, 1972.

[Parn76] Parnas, D. L., Handzel, G., and Würges, H. Design and Specification of the Minimal Subset
of an Operating System Family. IEEE Transactions on Software Engineering, SE-2(4):301–
307, Dec. 1976.

[Perr87] Perry, D. E. Software Interconnection Models. In Proceedings of the 9th International
Conference on Software Engineering (ICSE '87), pages 61–69, Monterey, CA, USA, March
1987. ACM Press.

438 BIBLIOGRAPHY

[Petr62] Petri, C. A. Kommunikation mit Automaten [Communication Using Automata (in German)].
PhD thesis, University of Bonn, 1962.

[Petr95] Petre, M. Why Looking Isn’t Always Seeing: Readership Skills and Graphical Program-
ming. Communications of the ACM, 38(6):33–43, Communications of the ACM 1995.

[Pint03] Pinto, M., Fuentes, L., and Troya, J. M. DAOP-ADL: An Architecture Description Lan-
guage for Dynamic Component and Aspect-Based Development. In Proceedings of the 2nd
International Conference on Generative Programming and Component Engineering (GPCE
'03), pages 118–137, Erfurt, Germany, 2003. Springer.

[Plot81] Plotkin, G. D. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[Pohl05] Pohl, K., Böckle, G., and van der Linden, F. J. Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, 2005.

[Pool01] Poole, J. D. Model-Driven Architecture: Vision, Standards and Emerging Technologies.
In Proceedings of the Workshop on Metamodeling and Adaptive Object Models, held in
conjuction with ECOOP '01, 2001.

[Rand96] Randell, B. The 1968/69 NATO Software Engineering Reports. In Proceedings of the
Seminar “History of Software Engineering”, Schloss Dagstuhl, Germany, August 1996.

[Rash03] Rashid, A., Moreira, A., and Araújo, J. Modularisation and Composition of Aspectual
Requirements. In Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD '03), pages 11–20, Boston, USA, 2003.

[Rash06] Rashid, A. and Moreira, A. Domain Models are NOT Aspect Free. In Proceedings of the
Conference on Model-Driven Engineering Languages and Systems (MoDELS '06), pages
155–169, 2006.

[Rech97] Rechenberg, P. and Pomberger, G. Eds. Informatik Handbuch — Erste Au�age [Computer
Science Compendium — 1st Edition (in German)]. Hanser Verlag, München, 1997.

[Reen79] Reenskaug, T. Models — Views — Controllers. Technical Note, December 1979.

[Rein06] Reinhard, T., Seybold, C., Meier, S., Glinz, M., and Merlo-Schett, N. Human-Friendly
Line Routing for Hierarchical Diagrams. In Proceedings of the 21st IEEE International
Conference on Automated Software Engineering (ASE'06), pages 273–276., Tokyo, Japan,
2006.

[Rein07] Reinhard, T., Meier, S., and Glinz, M. An Improved Fisheye Zoom Algorithm for Visualiz-
ing and Editing Hierarchical Models. In Proceedings of the 2nd Workshop on Requirements
Visualization (REV '07), held in conjunction with RE '07, 2007.

[Rein08] Reinhard, T., Meier, S., Stober, R., Cramer, C., and Glinz, M. Tool support for the naviga-
tion in graphical models. In Proceedings of the 30th International Conference on Software
Engineering (ICSE'08), pages 823–826, Leipzig, Germany, 2008.

BIBLIOGRAPHY 439

[RERG07] RERG — Requirements Engineering Research Group. ADORA Tool Web Site.
http://www.ifi.unizh.ch /req/adora/update, September 2007.

[Robe99] Robertson, S. and Robertson, J. Mastering the Requirements Process. Addison-Wesley,
Pearson Education, 1999.

[Rose04] Rosenhainer, L. Identifying Crosscutting Concerns in Requirements Specifications. In
Proceedings of the Workshop on Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, held in conjunction with AOSD '04, 2004.

[Royc70] Royce, W. Managing the Development of Large Software Systems. In Proceedings IEEE
WESCON '70, Reprinted in the Proceedings 9th International Conference on Software En-
gineering (ICSE), 1987, pages 328–338, August 1970.

[Roze97] Rozenberg, G. Ed. Handbook of Graph Grammars and Computing by Graph Transforma-
tion: Volume 1: Foundations. World Scientific Publishing, 1997.

[Rumb05] Rumbaugh, J., Jacobson, I., and Booch, G. The Uni�ed Modeling Language Reference
Manual – Second Edition. Addison-Wesley, Pearson Education, 2005.

[Rupp04] Rupp, C., Günther, A., Götz, R., Hahn, J., Cziharz, T., Haupt, A., and Schüpferling, D.
Requirements Engineering and Requirements Mangement — 3rd Edition [Requirements-
Engineering und -Management (in German) — 3. Au�age]. Carl Hanser, 2004.

[Saku04] Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., and Komiya, S. Association As-
pects. In Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development (AOSD '04), pages 16–25, Lancaster, UK, 2004.

[Samp05] Sampaio, A., Loughran, N., Rashid, A., and Rayson, P. Mining Aspects in Requirements. In
Proceedings of the Workshop on Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, held in conjunction with AOSD '05, 2005.

[Sawy96] Sawyer, P., Sommerville, I., and Viller, S. PREview: Tackling the Real Concerns of Re-
quirements Engineering. Technical report, Cooperative Systems Engineering Group, 1996.

[Scha96] Schach, S. R. Classical and Object-Oriented Software Engineering. Irwin, 1996.

[Sche98] Schett, N. Konzeption und Realisierung einer Notation zur Formulierung von Integritäts-
bedingungen für ADORA-Modelle [A Notation for the De�ntion of Integrity Constraints in
ADORA Models – Conception and Implementation (in German)]. Diploma thesis, Univer-
sity of Zurich, 1998.

[Sche04] Schenk, F. Konzeption und Umsetzung einer Stimuli-Ein-/Ausgabeschnittstelle für die Simu-
lation von Anforderungsmodellen [Conception and Implementation of a Stimuli Input/Out-
put Interface for the Simulation of Requirements Models (in German)]. Diploma thesis,
University of Zurich, 2004.

[Schm06] Schmidt, D. C. Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

440 BIBLIOGRAPHY

[Schu98] Schürr, A., Winter, A. J., and Zündorf, A. Handbook on Graph Grammars: Applications,
Vol. 2. Grzegorz Rozenberg (ed.), chapter The Progres Approach: Language and Environ-
ment, pages 487–550. World Scientific, 1998.

[Scot71] Scott, D. and Strachey, C. Towards a Mathematical Semantics for Computer Languages.
Computers and Automata, pages 19–46, 1971.

[Seyb03] Seybold, C., Glinz, M., Meier, S., and Merlo-Schett, N. An Effective Layout Adaptation
Technique for a Graphical Modeling Tool. In Proceedings of the 25th International Con-
ference on Software Engineering (ICSE'03), pages 826–827, Portland, USA, 3–10 2003.

[Seyb04a] Seybold, C., Meier, S., and Glinz, M. Evolution of Requirements Models by Simulation. In
Proceedings of the 7th International Workshop on Principles of Software Evolution (IWPSE
'04), held in conjunction with RE '04, pages 43–48, Kyoto, Japan, 2004.

[Seyb04b] Seybold, C., Meier, S., and Glinz, M. Simulation of Semi-Formal Requirements Models
as a Means for their Validation and Evolution. Technical Report 2004.02, Department of
Informatics, University of Zurich, 2004.

[Seyb06a] Seybold, C. Simulation und Evolution von teilformalen ADORA-Modellen [Simulation and
Evolution of Semi-Formal ADORA Models (in German)]. PhD thesis, University of Zurich,
2006.

[Seyb06b] Seybold, C., Meier, S., and Glinz, M. Scenario-Driven Modeling and Validation of Re-
quirements Models. In Proceedings of 5th International Workshop on Scenarios and State
Machines: Models, Algorithms and Tools, held in conjunction with ICSE '06, Shanghai,
China, May 2006.

[Somm97] Sommerville, I. and Sawyer, P. Requirements Engineering — A good Practice Guide. John
Wiley & Sons, Inc., 1997.

[Spiv89] Spivey, J. M. The Z Notation: A Reference Manual. Prentice-Hall, Inc., 1989.

[Stac73] Stachowiak, H. Allgemeine Modelltheorie [General Model Theory (in German)]. Springer-
Verlag, Wien, 1973.

[Stan02] Stanley M. Sutton, J. and Rouvellou, I. Modeling of Software Concerns in Cosmos. In
Proceedings of the 1st International Conference on Aspect-Oriented Software Development
(AOSD'02), pages 127–133, Enschede, Netherlands, 2002.

[Stei02] Stein, D., Hanenberg, S., and Unland, R. A UML-Based Aspect-Oriented Design Nota-
tion for AspectJ. In Proceedings of the 1st International Conference on Aspect-Oriented
Software Development (AOSD '02), pages 106–112, New York, NY, USA, 2002. Enschede,
Netherlands.

[Stei05] Steimann, F. Domain Models are Aspect-Free. In Proceedings of the Conference on Model-
Driven Engineering Languages and Systems (MoDELS '05), volume 3713/2005 of Lecture
Notes in Computer Science, pages 171–185. Springer, 2005.

BIBLIOGRAPHY 441

[Stei06] Steimann, F. The Paradoxical Success of Aspect-Oriented Programming. In Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA '06), pages 481–497, Montréal, Canada, 2006.

[Stoi07] Stoiber, R., Meier, S., and Glinz, M. Visualizing Product Line Domain Variability by
Aspect-oriented Modeling. In Proceedings of the 2nd Workshop on Requirements Visu-
alization (REV '07), 2007.

[Stoi08] Stoiber, R., Reinhard, T., and Glinz, M. Visualization support for software product line
modeling. In Proceedings of the 2nd International Workshop on Visualization in Software
Product Line Engineering (ViSPLE'08) held in conjunction with SPLC'08, Limerick, Ire-
land, 2008.

[Stor05] Störzer, M. and Graf, J. Using Pointcut Delta Analysis to Support Evolution of Aspect-
Oriented Software. In Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM'05), pages 653–656, Budapest, Hungary, 2005.

[Sull05] Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., and Rajan, H.
Information hiding interfaces for aspect-oriented design. In ESEC/FSE-13: Proceedings of
the 10th European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 166–175, New
York, NY, USA, 2005. ACM.

[Sun 07a] Sun Microsystems. The Java Standard Edition Homepage. http://java.sun.com/javase/,
October 2007.

[Sun 07b] Sun Microsystems. The JavaCC Homepage. https://javacc.dev.java.net/, November 2007.

[Sutt03] Sutton, S. M. Concerns in a Requirements Model - A Small Case Study. In Proceedings of
the Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architec-
ture Design, held in conjunction with AOSD '03, Boston, USA, 2003.

[Sutt04] Sutton, S. M. and Rouvellou, I. Concern Modeling for Aspect-Oriented Software Develop-
ment. In R. E. Filman, T. Elrad, S. Clarke, and M. Akşit (Eds.), Aspect-Oriented Software
Development, pages 479–505. Addison-Wesley, 2004.

[Tane97] Tanenbaum, A. S. and Woodhull, A. S. Operating Systems — 2nd Edition. Prentice-Hall,
1997.

[Tarr99] Tarr, P. L., Ossher, H., Harrison, W. H., and Sutton, S. M. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In Proceedings of the 21st International Conference
on Software Engineering (ICSE '99), pages 107–119, 1999.

[Tenn76] Tennent, R. D. The Denotational Semantics of Programming Languages. Communications
of the ACM, 19(8):437–453, 1976.

[Ullm76] Ullmann, J. R. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.

[Vass04] Vasseur, A. Dynamic AOP and Runtime Weaving for Java - How does AspectWerkz Ad-
dress it? In Proceedings of the Dynamic AOP Workshop, held in conjunction with AOSD
'04, March 2004.

442 BIBLIOGRAPHY

[W3C 07] W3C — World Wide Web Consortium. XSL Transformations (XSLT) Version 2.0, January
2007.

[Wage02] Wagelaar, D. and Bergmans, L. Using a Concept-Based Approach to Aspect-Oriented Soft-
ware Design. In Proceedings of the Workshop on Aspect-Oriented Modeling, held in con-
junction with AOSD '02, Enschede, Netherlands, March 2002.

[Whit00] Whittle, J. and Schumann, J. Generating Statechart Designs From Scenarios. In Pro-
ceedings of the 24th International Conference on Software Engineering (ICSE'00), pages
314–323, 2000.

[Whit04] Whittle, J. and Araújo, J. Scenario Modelling with Aspects. IEE Software, 151(4):157–171,
2004.

[Wirt70] Wirth, N. The Programming Language Pascal. Technical Report 1, Fachgruppe Computer-
Wissenschaften, ETH Zürich, Nov. 1970. Published also at Acta Informatica 1, 35 — 63
(1971).

[Wund05] Wunderlich, L. AOP – Aspektorientierte Programmierung in der Praxis [AOP – Aspect-
Oriented Programming in Practice (in German)]. entwickler.press, Frankfurt, Germany,
2005.

[WWWC06] WWWC — World Wide Web Consortium, T. Bray, J. Paoli and M. C. Sperberg-McQueen,
E. Maler, F. Yergeau, and J. Cowan (Eds). XML 1.1 (Second Edition) — W3C Recommen-
dation. http://www.w3.org/TR/2006/REC-xml11-20060816/, August 2006.

[Xia04] Xia, Y. A Language De�nition Method for Visual Speci�cation Languages. PhD thesis,
University of Zurich, 2004.

[Yu01] Yu, E. Agent-Orientation as a Modelling Paradigm. Wirtschaftsinformatik, 43(2):123–132,
April 2001.

[Yu04] Yu, Y., do Prado Leite, J. C. S., and Mylopoulos, J. From Goals to Aspects: Discover-
ing Aspects from Requirements Goal Models. In 12th IEEE Requirements Engineering
Conference (RE '04), pages 38–47, Kyoto, Japan, 2004.

Curriculum Vitae

Name: Silvio Rochus Meier

Date of Birth: May 8th, 1973

Place of Citizenship: Muri (AG), Switzerland

1980-1985 Grammar school, Muri (AG)

1985-1990 Secondary- and District-School, Muri (AG)

1990-1994 High school with main focus on economics and business administration,
Wohlen (AG)

1994-1995 One semester of computer science, Swiss Federal Institute of Technology,
Zurich

1995 IT Supporter, Zurich Insurances, Zurich

1995-2001 Studies of computer science, University of Zurich, and Student worker: IT
support and software developer

2001-2002 Freelance software engineer

2002-2008 Assistant and doctoral student at the University of Zurich

	List of Figures
	List of Tables
	Listings
	I Basics and Motivation of Aspect-Oriented Requirements Engineering
	Introduction
	Motivation
	Gaps in Existing Aspect-Oriented RequirementsApproaches
	Goals of the Present Work
	Contribution
	Structure of this Thesis

	Basics of Requirements Engineering and Modeling
	Requirements Engineering
	Functional and Non-Functional Requirements
	Requirements Process

	Requirements Document
	General Quality Characteristics
	Degree of Formality and Detailedness
	Constructive vs. Descriptive Specification

	Modeling
	General Model Theory
	Languages for the Visual Modeling of Software Systems

	Aspect-Oriented Software Development
	Fundamental Terms and Concepts of AOSD
	Concerns and Separation of Concerns
	Crosscutting Concerns vs. Core Concerns
	Tangling, Scattering, and the Resulting Problems
	Decoupling Crosscutting Concerns
	Separation vs. Composition
	Complexity Caused by the Use of Aspect-Oriented Artifacts
	Characteristics of Aspects
	Connection between Concerns and Requirements

	State of the Art Approaches
	Categorizing Aspect-Oriented Approaches
	Approaches to Aspect-Oriented Programming
	Approach to Software Design
	Approaches to Software Architecture
	Approaches to Requirements Engineering

	Criticism of AOSD
	Criticism of AOSD at the Requirements Stage
	Problems with the Understandability of Aspect-Oriented Constructs
	Breaking the Principle of Information Hiding
	Fragile Join Points
	Further Criticism

	Discussion

	Motivating a Novel Aspect-Oriented Requirements Engineering Approach
	Gaps in the Existing Approaches
	Proposal for a New Aspect-Oriented Requirements Engineering Approach

	Basics of the Adora Approach
	Language Concepts of Adora
	Modeling with Abstract Objects
	Hierarchical Decomposition
	Integrated Modeling Language Concepts
	Visual Abstraction Mechanisms
	Variable Degree of Formality
	Requirements Evolution Support

	Overview of the Adora Language
	Base View
	Structural View
	Behavioral View
	User View
	Context View
	Functional View
	Additional Structures

	Analyzing and Defining the Adora Language
	Adora Grammar
	Grammar Definition
	Applying the Grammar to Textual Adora Models
	Representing Informal Elements
	Expressing Model Relationships by Nesting Textual Models
	Identifying Adora Model Elements
	The Representation of Connections
	Non-Graphical Language Elements

	Formalizing the Model Data Structure and Operations
	A Data Structure for the Textual Representation of Adora Models
	Functions on Syntax Trees

	Language Constraints
	Time-Dependant Enforcement of Constraints
	Example of a Constraint Description

	Graphical Mapping

	II The Aspect-Oriented Adora Modeling Approach
	Aspect-Oriented Language Extension for Adora
	Motivation
	Overview of the new Aspect-Oriented Approach
	Aspect Module
	Grammar Production Rules
	Language Constraints

	Crosscutting Behavior
	Production Rules
	Language Constraints

	Crosscutting User View
	Production Rules
	Language Constraints

	Join Relationships
	Production Rules
	Language Constraints

	Crosscutting Environment Objects
	Grammar Production Rules
	Language Constraints

	Crosscutting Functional Specification
	Grammar Production Rules
	Language Constraints

	Aspect Decomposition
	Grammar Production Rules
	Language Constraints

	Summary and Discussion

	Visualization of Aspect-Oriented Model Elements
	Applying Abstractions to Aspects
	View Transition Semantics for Aspect Modules
	Join Relationships

	Extending the View Concept
	Discussion

	Composing Aspect-Oriented Adora Models
	Weaving Process Overview
	Weaving Preparation
	Weaving Transformation

	Weaving Semantics of Non-Partial Aspect-Oriented Model Elements
	Weaving Semantics of Behavior Chunks
	Weaving Semantics of Scenario Chunks
	Weaving of Crosscutting Statecharts
	Crosscutting Scenariocharts
	Weaving of Embedded Components
	Weaving Environment Objects
	Weaving the Functional View of an Aspect
	Weaving Server Components Connected to Aspects
	Solving Naming Conflicts, Handling Context Mappings, and Adjusting Scope
	Post processing

	Weaving Semantics Involving Partial Aspect-Oriented Elements
	Partial Join Relationship Connecting Scenario/Behavior Chunks with a Scenario/Transition
	Partial Join Relationship Connecting Other Elements
	Weaving Semantics of Partial Join Relationships Between Environment Objects
	Weaving Partial Aspects

	Formal Weaving Semantics
	A Description Schema for the Adora Weaving Semantics
	Description Schema of the Adora Weaving Semantics
	Illustration of the Formal Weaving Semantics

	Weaving the Layout Information
	Summary and Discussion

	Applying the Aspect-Oriented Adora Approach
	Adora Modeling Process Overview
	Functional Requirements Model Increment
	Detection of Functional Crosscutting Requirements
	Eliciting/Refining Non-functional Requirements
	Discussion

	III Adora Tool Implementation and Validation
	Tool Implementation
	Tool Overview
	Features of the Adora Tool

	Meta-Model Implementation
	Choosing an Appropriate Design for the Meta-model Implementation
	Grammar Mapping
	Tool Support for the Mapping of the Meta-model
	Discussion of the Adora Tool Implementation

	Constraints Checking
	Model Transformations

	Experimental Validation of the Aspect-Oriented Modeling Approach
	Experiment
	Planning and Preparation of the Experiment
	Case Studies
	Realization of the Experiment

	Analysis of the Results
	Validity of the experiment

	Summary

	IV Conclusions
	Conclusions
	Discussion and Contribution of the Present Work
	Summary, Discussion, and Contribution

	Outlook
	Conclusion

	V Appendix
	Discussion of Aspect-Oriented Requirements Approaches
	Evaluation Criteria
	Conventional Approaches
	PREView
	NFR Framework
	KAOS Approach
	I* Approach
	Use Case Method

	Aspect-Oriented Approaches
	AORE with Arcade
	ARGM
	AOSD/UC
	SMA
	AUCDA
	Cosmos
	CORE
	AOREC
	Theme/Doc

	EBNF of the Aspect-Oriented Adora language
	Extended Backus Naur Form
	Regular Expressions in the Grammar
	EBNF Grammar of the Adora Language
	Production Rules of Identifiers and References

	Mapping of Graphical Adora Model Elements
	Textual Adora Example Model
	Example of a Conventional Adora Text Model
	Example of Textual Description of an Aspect Module

	Functions on Syntax Trees
	Formalized Data Structure for Syntax Tree
	Alphabetical Catalog of Functions
	Primitive Functions
	Basic Functions
	Aspect Specific Functions
	Transformation Functions

	Formal Language Constraints of Aspect-Oriented Constructs
	Aspect Module
	Behavior Description
	State Groups Must Be Well-Formed
	No Out-Going Join Relationships from Crosscutting Statecharts
	No Crossing of the Aspect Border by Transitions
	Transitions May Connect to Exit Points

	User View
	No Crossing of Aspect Border by a Scenario Connection
	Well-Formed Scenario Chunks
	Well-Formed Crosscutting Scenariocharts
	Disallowed Embedding of A Scenario Node in a Component Belonging to a Statechart

	Join Relationships
	Constituents of Non-Partial Join Relationships
	Constituents of Partial Join Relationships
	Join Relationships Connecting to Scenariochart Root Nodes
	No Cycles in Join Relationships
	Border Crossing of the Join Relationship
	Priority within the Range of 1--10

	Crosscutting Environment Objects
	Only One Join Relationship between Two Environment Objects
	Crosscutting Environment Objects Must Be Connected To a Scenariochart
	No Association of a Crosscutting Environment to More than One Aspect

	Aspect Decomposition
	Aspect-Refined Aspect Modules May Contain only Aspect Modules
	Associations Originating within an Aspect May not Cross the Border of the Aspect
	Components and Aspects Must Be Connectable

	Formal Weaving Semantics
	Formal Weaving Semantics of Non-Partial Elements
	Weaving Semantics of Behavior Chunks
	Formal Weaving Semantics of Scenario Chunks
	Formal Weaving Semantics of Crosscutting Statecharts
	Formal Weaving Semantics of Crosscutting Scenariocharts
	Formal Weaving Semantics of Embedded Components
	Formal Weaving Semantics of Environment Objects
	Formal Weaving Semantics of the Functional Specification
	Formal Weaving Semantics of Server Components
	Formal Semantics of the Postprocessing

	Formal Weaving Semantics for Partial Aspect-Oriented Elements
	Formal Weaving Semantics of Partial Join Relationships Connecting Scenario/Behavior Chunks with a Scenario/Transition
	Formal Weaving Semantics of Partial Join Relationships Connecting other Elements
	Formal Weaving Semantics of Partial Join Relationships between Crosscutting Environment Objects
	Formal Weaving Semantics of Partial Aspect Modules

	More Details on the Tool Implementation
	Relating the Visual Representation to the Model Elements
	Mapping between EBNF Rules and Classes in the Object-Oriented Meta-model
	Using the Constraints Checking Plug-in and ICL

	Bibliography

