
Modeling and Evolving Crosscutting Concerns in ADORA

Silvio Meier, Tobias Reinhard, Reinhard Stoiber and Martin Glinz
Department of Informatics, University of Zurich, Switzerland

{ smeier | reinhard | stoiber | glinz }@ifi.unizh.ch

Abstract

For an effective handling of crosscutting concerns dur-
ing the software process, adequate support is required not
only in design and coding, but also in requirements engi-
neering. For this purpose, we have developed an aspect-
oriented extension of the requirements modeling language
ADORA. In this paper, we present an extension of our ap-
proach which makes it capable of supporting the evolution
of aspect-oriented requirements models for both functional
and non-functional aspects.

1 Introduction

In the past few years, early aspects and their identifica-
tion and separation have gained more and more attention
in the research field of Aspect-Oriented Software Develop-
ment (AOSD). However, the current approaches have sev-
eral problems: some support functional crosscutting con-
cerns only, others do not support evolution or can handle
textually represented requirements only (c.f. Section 6).

We have developed a technique for visually modeling
crosscutting concerns (CCCs) as aspects at the require-
ments and architectural stage for the modeling language
ADORA [7]. However, this approach does not support the
evolution of aspects and is restricted to functionally repre-
sented requirements. In this paper, we present an extension
of our approach which makes it capable of modeling high-
level non-functional requirements and supporting the evo-
lution of both functional and non-functional CCCs from a
very coarse level to precise requirements. The main contri-
bution is the ability to model partial aspects and abstract
join relationships. With these features, we support (i) mod-
eling of non-functional requirements as aspects, (ii) early
separation of crosscutting concerns in the requirements en-
gineering process and (iii) systematic evolution of aspects
in the software process. The remainder of the paper is or-
ganized as follows: Section 2 briefly presents our termi-
nology, discusses the connection between non-functional
requirements and CCCs and introduces the basics of the

ADORA modeling approach. Section 3 summarizes the
aspect-oriented extension for modeling functional aspects
in ADORA. Section 4 presents an extension of aspect-
oriented ADORA with partial aspects and abstract join re-
lationships. Section 5 exemplifies the approach by present-
ing an extended example. Section 6 discusses related work.
Section 7 concludes the paper with a short discussion of
achievements, limitations, and future work.

2 Background

2.1 Terminology

We define the term concern according to [17]: “a con-
cern is any matter of interest in a software system”.

Crosscutting is defined as a relationship between two ar-
tifacts A and B where A constrains B and B has no influence
on the way how it is constrained by A. This definition con-
forms to those used by others, e.g. [12, 9, 13]. In our ap-
proach, crosscutting relationships are called join relation-
ships. A concern is called crosscutting if it manifests in
artifacts that crosscut other artifacts. Any non-crosscutting
concern is called a conventional concern.

2.2 Non-functional Requirements
vs. Crosscutting Concerns

There is numerous work in the field (e.g. [8, 12, 10])
which supports the hypothesis that non-functional require-
ments (NFRs) are a major source for aspects. Basically,
there are two arguments for treating non-functional require-
ments as crosscutting concerns. Firstly, most NFRs con-
strain the system to be built in a crosscutting manner. Sec-
ondly, it is desirable to state every single requirement as a
separate entity [12, 14]. For NFRs, this can be achieved by
treating NFRs as crosscutting concerns and stating them as
aspects.

We distinguish three different types of NFRs: NFRs of
type (i) eventually evolve into a concrete piece of code and
contribute directly to the functionality of the system. NFRs
of type (ii) result in decisions at the architectural, design

or implementation stage of the software process. They do
not trace to any specific piece of code, but influence how
a system is built and executed. Hence, NFRs of type (ii)
are observable when a system is executed. Finally, NFRs
of type (iii) evolve to decisions which do not contribute di-
rectly to what or how the final system performs, but rather
influence the software process. For example, a security re-
quirement that evolves into concrete functionality such as
authentication or encrypted transmission is of type (i). Per-
formance requirements are of type (ii). Maintainability is a
typical NFR of type (iii).

2.3 ADORA– An Object-Oriented Require-
ments and Architecture Language

ADORA is a language for modeling requirements speci-
fications and software architectures [4]. Fig. 1 shows a li-
brary system described as a typical ADORA model, which
is used as an example throughout this paper.

ManageCatalog

BorrowBooks

ReadCatalog

ReadCatalog

Object Object Set Scenario State Actor Abstract Association
Association

BorrowBooks

Authorize
Authenticate

LibrarySystem

UserInfo

[not authenticated]
receive authenticate(Sender id)
over Authenticate |
call; send searchUserID()
over SendUserInfo Authorizing

receive userID()
over GetUserId |
send composeUserCredentials()
to UserCredentials

receive userCredentials()
from UserCredentials |
send authorized()
over Authorize [ReceiverId]

Authorization...

[authenticated] |
send authorized()
over Authorize
[ReceiverId]

Wait

GetUserId
SendUserInfo

ManageUsers

ManageUserInfo
ReadUserInfo

BorrowManager...

SelectBooks...
1

ManageBooks

LibraryUser BookAdministrator UserAdministrator

Authorize
Authenticate

Authorize
Authenticate

BookAdministration...

Books...

UserAdministration...

Users...

Register
Borrowing...

3

2
Authenticate...

Figure 1. A part of a library system modeled
in ADORA

A major difference between ADORA and other object-
oriented modeling languages is that ADORA uses abstract
objects (i.e. prototypical objects that have a name, but are
not instantiated with attribute values) instead of classes as
the basic modeling elements [4]. Using abstract objects al-
lows hierarchical decomposition of models in a straightfor-
ward way with a simple and clear semantics. Decompo-
sition, in turn, yields abstraction and the possibility of vi-
sualizing components in their context, thus making models
easier to understand and evolve.

In Fig. 1, all rectangles represent abstract objects. Hier-
archical structure is modeled by nesting objects, which in
turn implicitly describes part-of-relationships between ob-
jects. Shadowed rectangles are object sets, i.e. they model

collections of objects. For example, the library system con-
tains an abstract object BookAdministration and an object
set Books. Abstract objects and object sets are also called
components.

For visualization, ADORA employs views. All views are
generated from a common underlying model so that multi-
ple views are always consistent among each other. The so-
called base view consists solely of the hierarchical structure
built of the objects and object sets. Beside this base view,
additional views describe other facets of the system. In
Fig. 1, all views are visible in combination. The structural
view comprises the associations between objects and/or ob-
ject sets, and the associations between actors and scenar-
ios. Associations model information flow. Hence, associ-
ations may model directed structural relationships as well
as the communication between components. The behav-
ior view integrates states (drawn as rounded rectangles) and
state transitions into the object hierarchy at all places where
the internal behavior of the system has to be modeled. To-
gether with the decomposition hierarchy, we can define the
semantics of the behavior view with a simplified version of
a statechart semantics. The context view shows the external
actors (drawn as hexagons) of the system which are con-
nected by associations to type scenarios [4]. Type scenarios
are equivalent to use cases in UML. The scenarios (drawn
as ovals) build the user view of an ADORA model. As inter-
action is frequently local, the scenarios are embedded in the
object hierarchy at the position where they apply. Scenarios
can also be decomposed into sub-scenarios, using a mod-
ified form of Jackson’s JSP diagrams [5] as notation. In
our modified version of JSP diagrams, iteration is a prop-
erty of all possible node types. We also added parallel de-
composition and made the notation layout-independent by
numbering sequences of actions. The functional view de-
scribes the properties (i.e. the attributes and operations) of
components. This view is not combined with other views
and therefore not visualized with the rest of the model.

The ADORA language allows both semi-formal and for-
mal modeling. Semi-formal means that some elements of
a model don’t abide by the formal semantics of the mod-
eling language. A typical example is a state transition (a
formal concept) for which the triggering condition is given
in natural language.

Furthermore, ADORA supports partial models, i.e. mod-
els that are intentionally incomplete [15, 18]. In a partial
model, some parts have not been modeled yet or will not
be modeled at all. The difference to unintentional incom-
pleteness is that the incomplete elements are known to be
incomplete and therefore marked as such. Partial modeling
is particularly useful in an evolutionary requirements mod-
eling process, where we want to evolve a model in a con-
trolled way through a series of iterations. In ADORA, we
have two constructs for describing partial models: the first

one is the so-called is-partial property which indicates that a
component is incomplete. This is especially useful if a sys-
tem part is incomplete, imprecisely defined or at a coarse
level, i.e. the system part is intended to be evolved further.
The second construct is the so-called abstract association,
which is represented as a bold line (see, for example, the
association from UserAdministrator to UserAdministration
in Fig. 1). Abstract associations can be used if the modeler
knows that there is some communication between compo-
nents, but at the time of modeling it is not clear how the
concrete communication will look like. Note that ADORA
supports not only partial models, but also partial views [4].
Partial views are an abstraction mechanism that is used for
deliberately hiding certain model elements or levels of de-
tail from a diagram (e.g. when a high-level abstract view of
a system is desired). Partially viewed or modeled elements
are indicated by names with three trailing dots (e.g. the ob-
ject BorrowManager). In [15] we have sketched a process
for evolving ADORA models.

3 Modeling Functional Crosscutting Con-
cerns as Aspects in ADORA

In this section, we briefly present our aspect-oriented
extension of ADORA [7]. This extension allows to model
crosscutting functionality as aspects, thus yielding a better
modularization of ADORA models. A modeler can switch
between the aspect-oriented view of an ADORA model and
a normal view where all aspects are woven into the model.
This feature helps modelers to understand models with
crosscutting parts better.

BorrowManager...

BookAdministration...

Authorization...

receive list() |
send getList() over
ReadCatalog

receive borrow() |receive borrowFinished() |

receive list() |
send getList() over
ReadCatalog

receive editingFinished() |

receive editBooks() |
send prepareEdit()

receive deleteBooks() |
send prepareDelete()

receive deletionFinished() |

Search
Books...

Borrow
Books...

Wait
DeleteBooks...

SearchBooks...

EditBook...

Wait

BorrowBooks

Administrate
Books

SelectBooks...
1 Register

Borrowing...
2

1
DeleteBooks...

2

RemoveBooks
o

EditBookData
o

SearchBooks...
1

EditBook...
2

receive authorized()
over Authorize |

Authenticate

receive userPWEntered() |
send authenticate() over
Authenticate

Authentication

Authenticate

Authorized

Enter
Username

1 Enter
Password

2

LibrarySystem...

before

before

before

before

before

before

LibraryUser BookAdministrator

Authorize
Authenticate

Aspect Container Exit Point Join Relationship

SearchBooks...

Figure 2. The library system containing an
authentication aspect.

The aspect-oriented extension of ADORA is based on
three concepts: (i) Aspect containers represent modules of

crosscutting concerns (CCCs)1 and comprise a description
of crosscutting elements, such as behavior and scenarios.
(ii) Join relationships denote explicitly where the CCCs af-
fect other concerns. (iii) View mechanisms provide abstrac-
tion for aspect-oriented ADORA models.
Aspect Container. In an ADORA model, an aspect con-
tainer is represented as a beveled rectangle that encapsulates
the system’s internal behavior, type scenarios and other el-
ements of a CCC. In Fig. 2, a partial view of the Library
System (see Fig. 1) is visualized, containing the Authenti-
cation concern as an aspect.
Behavior Chunks. The internal behavior is described by
a statechart chunk, i.e. a fragmentary statechart. As a be-
havior chunk is not a self-contained description of the be-
havior, it does not have a start state. A behavior chunk
contains one unique exit point for the crosscutting behav-
ior. The exit point is denoted by a rounded rectangle with
a double outline. In Fig. 2, the crosscutting behavior is de-
scribed by the Authenticate state, its out-going transitions
and the exit point. The actions that might be taken from this
state are described by a reflexive transition triggered by the
userPWEntered() event and another transition triggered by
the authorized() event. The latter transition ends at the exit
point of the crosscutting behavior, which denotes the point
where the crosscutting behavior is left.
Scenario Chunks. So-called scenario chunks model the
crosscutting type scenarios of a CCC. A scenario chunk is a
fragmentary scenario model and consists of nodes and sce-
nario connections as described in Section 2.3. In Fig. 2, the
authentication, as it is seen from the actors, is described by
the three scenarios Authenticate, EnterUsername and Enter-
Password. The latter two are sub-scenarios of Authenticate.
Join Relationships. Join relationships indicate where an
aspect impacts on other concerns, i.e. they denote the target
points of weaving in scenario or behavior chunks. They ei-
ther connect a state of a behavior chunk with a transition or a
root scenario node of a scenario chunk with a scenario node.
Join relationships are graphically represented as dashed ar-
rows, as shown in Fig. 2. They can be attributed with an
order and a priority (see the section about weaving seman-
tics below).
View Concept. The view concept of the original ADORA
language (see Section 2.3) is extended for handling as-
pects [7]. Aspects are represented primarily in their own
view comprising aspect containers, behavior chunks, sce-
nario chunks and join relationships. The aspect view can be
hidden, i.e. the focus can be set only on those model parts
with the conventional concerns. Additionally, any aspect
construct, such as join relationships, aspect containers, be-
havior and scenario elements, can be hidden individually,
allowing to create a partial aspect view. Furthermore, as ev-

1In contrast, components are modules of conventional concerns in
ADORA.

ery aspect-oriented ADORA model can be transformed into
a conventional one by applying our weaving semantics (see
below), the modeler also has the possibility to switch be-
tween the aspect-oriented and the conventional view of a
model. This feature helps modelers to understand aspects
both as separate concerns and in the context where they ap-
ply.
Weaving Semantics. The weaving semantics [7] of aspect-
oriented ADORA defines the mapping of aspect-oriented
constructs to conventional ones. Join relationships indicate
the targets of the weaving process. They can be attributed
with an ordering keyword indicating the weaving order of
the crosscutting behavior or scenario in relation with the
crosscut transition or scenario. The ordering keyword must
be either before, after or instead. The default value is be-
fore.

Furthermore, a priority defines the precedence of com-
peting aspects. An aspect is competing with another as-
pect if both of them crosscut the same target element with
the same ordering keyword. The priority is specified by a
number between 1 (lowest) and 10 (highest). If no prior-
ity is given, the lowest priority is taken as default value.
The aspect with the higher priority is woven first. If both
aspects have the same priority, one of them is chosen non-
deterministically to be the first one in the weaving order.

The weaving semantics for crosscutting behavior is illus-
trated in Fig. 3. On the left hand side, the aspect-oriented
model is given; the woven version is on the right hand side.
Fig. 3a, b, and c describe the semantics of the before, in-
stead, and after ordering, respectively. The weaving of the
crosscutting behavior is related to the action in the transi-
tion description a | b of the crosscut transition, where a is
the triggering event and b the executed action. Hence, for
the weaving, the transition and its description are split up
and the crosscutting behavior is inserted before, after or in-
stead the action of the crosscut transition. In the before case,
an additional state is required for ensuring that action d is
executed before action b.

The nodes in ADORA scenario trees are typed as se-
quence, alternative, parallel, or root. Hence, weaving of
a crosscutting scenario chunk is only defined when its root
node has the same type as the target node. Scenario chunks
with root node types parallel or alternative have rather triv-
ial weaving semantics. They are just added as siblings
of the target node, no matter what ordering or priority is
given. However, the weaving semantics for sequential sce-
nario chunks (i.e. those with root node type sequence) needs
to consider the order of nodes in the target scenario. A se-
quential scenario chunk is inserted either before, after or
instead of the target scenario node. The sequence numbers
of the target node and its siblings are adapted accordingly to
preserve the order of scenario execution. Fig. 4 illustrates
the weaving semantics for sequential scenario chunks.

B

X

a | b

c | d
instead a | c | d

Y

a | c | d | b

a | b c | d

a)

b)

c)

A

YX

a | b

c | d
before

A B

B

YX

a | b

c | d
after

A

A BX Y

A BX

A BX

Figure 3. The weaving semantics for behavior
chunks. Left side: aspect-oriented models,
right side: woven models

The weaving of an aspect-oriented ADORA model also
involves the functional description and may cause further
changes in the structure of the model. However, for this
paper, the discussion of these issues is out of scope. A more
thorough discussion of the weaving semantics can be found
in [7].

A

B
1 C 2

X

Y 1
Z

2

before
a)

b)

c)

X

Y 1
Z

2

after

X

Y 1
Z

2

instead

A

B
1 C 2

A

B
1 C 2

A

B
2 C 3X

Y 1
Z

2

1

A
B

1 C 3

X
Y 1 Z

2
2

A

B
1

Y 1
Z

2
X 2

Figure 4. The weaving semantics for sequen-
tial scenario chunks. Left side: aspect-
oriented models, right side: woven models

4 Evolution Support for Aspects in ADORA

As discussed in Section 2.3, the conventional ADORA
language supports the evolution of conventional concerns in
requirements models by two constructs [18, 15]: the partial
indicator and the abstract association. Both elements indi-
cate an intentional incompleteness and a future evolution of
the corresponding elements.

The aspect-oriented extension of the ADORA language
in [7] provides the possibility for modeling functional as-
pects and operationalized NFRs of type (i). However,
a comprehensive approach for evolving aspect-oriented

ADORA models is missing yet. In this section, we extend
our approach with language support for the evolution of
aspects. Both functional and non-functional concerns are
evolvable. However, as NFRs can be regarded as high-level
CCCs which are a major source of aspects (see Section 2.1),
we focus on the modeling and evolution of NFRs. For the
support of aspect evolution, additional language concepts
have to be introduced: partial aspects, abstract join rela-
tionships and the corresponding weaving semantics for the
new elements.
Partial Aspects. Partial aspects are intentionally incom-
pletely modularized CCCs. In ADORA, a partial aspect is
denoted by three trailing dots after the aspect’s name, i.e.
in the same way as we denote the incompleteness of com-
ponents, states and scenarios (cf. Section 2.3). The in-
completeness of an aspect manifests in different ways. In
an early stage of model development, an aspect may be
coarsely specified only, i.e. there is missing or unclear in-
formation about the aspect or its formality is on an inappro-
priate level.

At the beginning of its evolution, an aspect might be
expressed very informally by natural language. Each ele-
ment in ADORA, including aspects, can contain textual in-
formation. For example, a security NFR might be stated as
”The system must be secure”, which can be stored as text
in the aspect. In subsequent steps, this requirement in nat-
ural language may be re-stated in a more precise, or more
formal way. In particular, aspects which represent NFRs
can be realized by more specific sub-concerns. For ex-
ample, in the case of the security NFR there may be the
sub-concerns Protect Confidentiality and Preserve Integrity.
Sub-concerns are supported by nesting aspect constructs as
exemplified in Fig. 5a) where a concern consists of the two
sub-concerns SubAspect1 and SubAspect2. This language
extension helps to decompose high-level non-functional re-
quirements into more concrete NFRs and thereby enables a
better traceability of the NFRs.
Abstract Join Relationships. Abstract Join Relation-
ships indicate an intentional incompleteness of a crosscut-
ting relationship. They are visualized as bold dashed ar-
rows. There are three cases where abstract join relationships
might occur. Case (a) results from not fully evolved func-
tional aspects, such as not yet operationalized type (i) NFRs
or functional CCCs. Join relationships out-going from these
aspects have to be abstract, because the originating behavior
chunk or scenario cannot be determined yet. Case (b) yields
abstract join relationships because the target element is still
under evolution and therefore is not modeled yet. Instead,
a substitute element has to be targeted. Case (c) happens
when NFRs of the type (ii) or (iii) are not yet operational-
ized in the model. However, they will never be functionally
operationalized. Instead, they will result in decisions during
the architectural or implementation phase which is, beside

the partial indicator of the aspect, expressed by the abstract
join relationship.

Several situations are illustrated in Fig. 5b-h. Figure 5b
shows a situation where the aspect which is the origin of
the crosscutting relationship is fully evolved. The final tar-
get does not yet exist, because it will be a direct or indirect
child element of the given partial abstract object. Hence, the
abstract join relationship points at the partial abstract object
as a substitute for the final element. Fig. 5c and 5d describe
a similar situation, where both the originating aspect and
the target are partial. Hence, both the final originator and
the final target are not clear yet and the join relationship has
to be abstract. In Fig. 5e, the aspect is fully operational-
ized and the join relationship targets at the given transition
g | h. Nevertheless, the crosscutting join relationship is ab-
stract, which means that it is not yet clear whether the tran-
sition is the final target of the join relationship. Fig. 5f is an
analogous situation to 5b where the target is a partial sce-
nario. Figure 5g shows the case where an NFR constrains
the communication channel of the targeted association. For
example, this might happen in the case of a performance
requirement which stipulates a minimum bandwidth for the
communication. Such an NFR ends in a decision and is re-
alized at a later stage. The meaning of Figure 5h is obvious:
a partial aspect targets another partial one.

Abstract
Object...c) d)

e) f)

g) S T h)

g | h

Bc | dA...Aspect... Aspect...

Aspect...
As-
pect 1...

As-
pect 2...

Aspect...

SubAs-
pect1...

SubAs-
pect 2...

a)
Aspect
X

Ya | b

Abstract
Object...

b)

C D

Aspect
X Y

e | f

Aspect
DE

F

X Y
W...

1

2

o
1

o

Figure 5. Usage of partial aspects and ab-
stract join relationships.

Weaving Semantics. As argued in Section 3, it is cru-
cial for the understanding of a model to have the possibil-
ity of switching between the woven and the aspect-oriented
model. Therefore it is necessary to extend the weaving se-
mantics in Section 3, which is done in a straightforward
manner. Owing to the different degree of formality, the
content of a partial aspect is handled as text. Semi-formal
or formal elements (e.g. the behavior chunk in Fig. 5e) are
transformed to text and embedded in the generated text
chunk. After the weaving, the textual description of the
partial aspect is inserted into the text chunk of each tar-

get element. Thereby, no information is lost in the woven
model. Abstract join relationships may also contain an or-
dering keyword which indicates whether the generated text
is inserted before, after or instead the text of the target el-
ement. A priority number finally indicates the arrangement
of the text chunks from competing aspects. Both the order-
ing and the priority of the generated text may give a hint to
the model reader for the conflict resolution between com-
peting aspects.
Scalability. The scalability of the ADORA approach and the
presented extension is supported by two concepts: firstly,
by the ability to generate partial views, i.e. to hide elements
which are not in the focus of interest (c.f. Section 2.3) and
secondly, by the ability to decompose models hierarchically.

5 Extended Example

In this section, we present an example illustrating how
the language features presented above can be used in an
evolutionary requirements process, e.g. the one presented
in [15]. The example concentrates on the evolution of non-
functional aspects. The process may start with an initial
analysis of very coarse functional and non-functional re-
quirements. This initial elicitation is done with state of the
art techniques. After that, a first ADORA model can be cre-
ated which will be evolved in subsequent steps.

In Fig. 6a, the initial model for the library system is
shown at an early stage in the requirements process. It in-
cludes a set of high-level NFRs, i.e. a Security, Maintain-
ability and Performance requirement. The abstract join re-
lationships indicate that the library system is crosscut by
these NFRs. The document symbols in the aspect containers
represent text chunks containing further information. Dur-
ing the evolution, the model is evolved by refining the con-
ventional and the crosscutting concerns. Figure 6b and Fig-
ure 6c show subsequent steps in the evolution of the require-
ments model.

In the course of their evolution, NFRs are rendered more
precisely by eliciting the NFRs in more detail and by elab-
orating their natural language description. Furthermore,
NFRs can be decomposed into sub-requirements, which is
expressed by embedding them in the parent NFR (c.f. Sec-
tion 4). Figure 6c shows a subsequent step in the system’s
evolution which illustrates the refinement of NFRs. For
example, the Performance requirement consists of a sub-
requirement for the response time, which in turn consists
of a sub-requirement for the ConnectionBandwidth. The
Performance requirement and its sub-requirement are par-
tial. The Security requirement is refined to a partial sub-
requirement Authentication. The partial indicator of Secu-
rity is removed, which means that its evolution is finished at
this point.

Join relationships can be refined in two ways: they are ei-

ther relocated or multiplied. Both evolution steps are caused
by the evolution/refinement of its originating aspect or tar-
get element. For example in Fig. 6b, the component Li-
brarySystem was evolved resulting in having a new sub-
component BorrowManager causing the relocation of the
particular join relationship to the new sub-component. Fig-
ure 6c shows a subsequent evolution step of the library sys-
tem where the out-going join relationships of the Authenti-
cation and the Performance aspect are multiplied. In con-
trast to these examples, the Maintainability NFR is neither
decomposed to a sub-NFR nor is its join relationship re-
fined.

In subsequent steps, the evolution of the requirements
is continued in a similar way. This process ends when the
NFRs are operationalized. Type (i) NFRs are operational-
ized if they are described functionally, which is illustrated
for the security concern in Fig. 2. The elaboration of NFRs
of type (ii) and type (iii) ends at the point where they turn
into decisions in the architecture or design of the software
system.

Security...

Library
System...

Performance...

Maintainability...

LibrarySystem...

Users...

Borrow
Manager...

Manage
Users...

Manage
Books...

Security
Authentication...

Books...

Performance...

Connection
Band
Width...

ResponseTime...
Maintainability...a) c)

Security...

LibrarySystem... Performance...

Maintainability...b)

Borrow
Manager...

Figure 6. Three evolution steps of the Library
System.

6 Related Work

Chitchyan et al. [2] provide an overview of existing work
on aspect-oriented requirements engineering.

Goal-oriented approaches, such as [3, 19], support the
evolution of functional and non-functional requirements.
However, they do not support the separation of crosscutting
concerns.

Araújo et al. [1] model both aspectual and non-aspectual
behavior as scenarios, transform these into state machines,
and integrate the state machines. However, the resulting
model can be rather difficult to read and modelers cannot
switch forth and back between aspectual and woven views.

Sousa et al. [16] combine a use case driven approach
with the NFR framework. The approach is able to evolve
aspect-oriented software systems from early requirements

to design, but does not provide a coherent graphical nota-
tion.

Jacobson [6] as well as Clarke and Baniassad [13]
mainly support the separation of functional concerns.

Moreira et al. [8] introduce a n-dimensional separation
of concerns in requirements models, treating functional
and non-functional concerns uniformly. However, their ap-
proach works on textually represented requirements only.

7 Conclusions

Achievements. We have presented an aspect-oriented
modeling approach which supports the evolution of func-
tional and non-functional crosscutting concerns in require-
ments engineering and early architectural design. We have
demonstrated our approach with a focus on evolving non-
functional crosscutting concerns. Our concepts have been
implemented in the prototype of the ADORA tool [11]. Our
weaving semantics, together with the visualization mech-
anisms in the ADORA approach [4, 7] allow a modeler to
switch between aspect-oriented and conventional views of
a model. Furthermore, the view concept allows to abstract
from details that are not in the focus of interest and therefore
supports the scalability of our approach.

Limitations and future work. Our approach is cur-
rently restricted to requirements and architecture. It sup-
ports neither evolution nor traceability to artifacts in later
stages of the software process. Furthermore, conflicts be-
tween aspects are currently handled by prioritizing the com-
peting aspects, i.e. a tradeoff analysis and conflict resolution
for competing partial aspects have to be done manually. Fi-
nally, aspect weaving is not yet fully implemented in the
ADORA tool. In our future work, we plan to provide bet-
ter support for tradeoff analysis of competing aspects and
to improve the implementation of aspect weaving.

References

[1] J. Araújo, J. Whittle, and D.-K. Kim. Modeling and Com-
posing Scenario-Based Requirements with Aspects. In Proc.
12th IEEE International Requirements Engineering Confer-
ence (RE’04), pages 58–59, 2004.

[2] R. Chitchyan, A. Rashid, P. Sawyer, J. Bakker, M. P. Alar-
con, A. Garcia, B. Tekinerdogan, S. Clarke, and A. Jack-
son. Survey of Aspect-Oriented Analysis and Design. In R.
Chitchyan, A. Rashid (eds.): AOSD-Europe Project Deliver-
able No. AOSD-Europe-ULANC-9., 2005.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed Requirements Acquisition. Science of Computer
Programming, 20(1):3–50, 1993.

[4] M. Glinz, S. Berner, and S. Joos. Object-Oriented Modeling
with ADORA. Information Systems, 27(6):425–444, 2002.

[5] M. Jackson. Principles of Program Design. Academic Press,
New York, 1975.

[6] I. Jacobson. Use Cases and Aspects Working Seamlessly
Together. Journal of Object Technology, 2(4):7–28, 2003.

[7] S. Meier, T. Reinhard, C. Seybold, and M. Glinz. Aspect-
Oriented Modeling with Integrated Object Models. In Mod-
ellierung 2006, pages 129–144, 2006.

[8] A. Moreira, J. Araújo, and A. Rashid. Multi-Dimensional
Separation of Concerns in Requirements Engineering. In
Proc. 13th IEEE International Requirements Engineering
Conference (RE’05), pages 285–296, 2005.

[9] H. Ossher and P. Tarr. Using Multidimensional Separation
of Concerns to (Re)Shape Evolving Software. Communica-
tions of the ACM, 44(10):43–50, 2001.

[10] A. Rashid, A. Moreira, and J. Araújo. Modularisation
and Composition of Aspectual Requirements. In Proc. 3rd
Aspect-Oriented Software Development Conference (AOSD
2004). ACM Press, 2003.

[11] RERG. The ADORA Tool Web Site of the Requirements
Engineering Research Group (RERG) of the University of
Zurich
http://www.ifi.unizh.ch/rerg/research/projects/adora/tool/.

[12] L. Rosenhainer. Identifying Crosscutting Concerns in Re-
quirements Specifications. In Early Aspects 2004 Work-
shop: Aspect-Oriented Requirements Engineering and Ar-
chitecture Design (AOSD 2004), 2004.

[13] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and
Design - The Theme Approach. Addison-Wesley, Upper
Saddle River, New Jersey, USA, 2005.

[14] S. Robertson and J. Robertson. Mastering the Requirements
process. Addison-Wesley, ACM Press, 1999.

[15] C. Seybold, S. Meier, and M. Glinz. Evolution of Require-
ments Models By Simulation. In Proc. 7th International
Workshop on Principles of Software Evolution (IWPSE’04),
pages 43–48, 2004.

[16] G. Sousa, S. Soares, P. Borba, and J. Castro. Separation
of Crosscutting Concerns from Requirements to Design:
Adapting the Use Case Driven Approach. In Early Aspects
Workshop: Aspect-Oriented Requirements Engineering and
Architecture Design (AOSD 2004), 2004.

[17] J. Stanley M. Sutton and I. Rouvellou. Modeling of Soft-
ware Concerns in Cosmos. In AOSD’02: Proc. 1st Inter-
national Conference on Aspect-Oriented Software Develop-
ment, pages 127–133, New York, NY, USA, 2002. ACM
Press.

[18] Y. Xia and M. Glinz. Extending a Graphic Modeling Lan-
guage to Support Partial and Evolutionary Specification. In
Proc. 11th Asia-Pacific Software Engineering Conference
(APSEC 2003), pages 186–196.

[19] E. Yu. Towards Modelling and Reasoning Support for Early-
Phase Requirements Engineering. In Proc. 3rd IEEE Inter-
national Symposium on Requirements Engineering (RE’97),
pages 226–235, 1997.

