
Flexible Sketch-Based Requirements Modeling

Dustin Wüest and Martin Glinz

Department of Informatics, University of Zurich, Switzerland
{wueest,glinz}@ifi.uzh.ch

Abstract. [Context and motivation] Requirements engineers and stakeholders
like to create informal, sketchy models in order to communicate ideas and to
make them persistent. They prefer pen and paper over current software model-
ing tools, because the former allow for any kind of sketches and do not break
the creative flow. [Question/problem] To facilitate requirements management,
engineers then need to manually transform the sketches into more formal mod-
els of requirements. This is a tedious, time-consuming task. Furthermore, there
is a risk that the original intentions of the sketched models and informal annota-
tions get lost in the transition. [Principal ideas/results] We present the idea for a
seamless, tool-supported transition from informal, sketchy drafts to more formal
models such as UML diagrams. Our approach uses an existing sketch recognizer
together with a dynamic library of modeling symbols. This library can be aug-
mented and modified by the user anytime during the sketching/modeling process.
Thus, an engineer can start sketching without any restrictions, and can add both
syntax and semantics later. Or the engineer can define a domain-specific model-
ing language with any degree of formality and adapt it on the fly. [Contribution]
In this paper we describe how our approach combines the advantages of model-
ing with the freedom and ease of sketching in a way other modeling tools cannot
provide.

Keywords: Requirements sketching, adaptable formalization, requirements mod-
eling

1 Introduction

When modeling requirements during requirements elicitation, stakeholders and require-
ments engineers would benefit from being able to freely draw sketches first and convert
these into models later. This is due to the fact that sketching fosters creativity [7, 3] and
can also be applied by stakeholders who do not master a modeling language with a for-
mal syntax. However, the power and ease of sketching comes at the expense of a media
break, i.e., of later having to re-create the sketched models from scratch in a modeling
tool in order to be able to manage requirements properly. This re-creation process is
time consuming, error-prone, and can lead to a loss of information [5].

Sketch recognition tools have been created to relieve the task of converting sketches
into models (e.g. [4, 10]). However, such tools rely on predefined notations, so that the
user needs to know the underlying modeling language and is restricted to its vocabulary.
Hence, in terms of expressivity and creativity, sketch recognition tools do not help.
Moreover, they introduce the problem of sketch recognition errors.



In this paper, we give a preview of a new approach that (i) allows users to sketch
any informal models, (ii) provides means for assigning syntax and semantics to sketched
elements on the fly, and (iii) supports the transformation of sketches into classic semi-
formal models (e.g., a class diagram or a statechart) by a semi-automated method, thus
avoiding media breaks. The goal of our approach is to unite the flexibility of uncon-
strained sketching with the power of formal modeling.

The rest of the paper is structured as follows. In the next Section we give an overview
of our planned research. Section 3 discusses related work. In Section 4 we conclude the
paper.

2 Flexible Sketch-Based Requirements Modeling

2.1 Main Goal

The goal of the planned research is to provide a sketch-based modeling approach. We
envision that our approach allows requirements engineers and stakeholders to sketch
any informal models. Users should not be restricted in what they may draw, nor should
they need to decide for a specific notation beforehand. Further, our approach should sup-
port the semi-automated transition of sketches into classic models. Our key research ac-
tivities include: (i) identify the needs of requirements engineers with respect to sketch-
based modeling, (ii) provide method and tool support, and (iii) evaluate the approach
and demonstrate its practical benefits.

We plan to realize tool support by incorporating an existing sketch recognition
framework that compares drawn shapes with the symbols included in a library. In con-
trast to other approaches, our symbol library does not hold a predefined modeling lan-
guage, but is dynamic: users can augment and modify it at any time during the modeling
process (see Fig. 1). Syntax and semantics can be added to the sketches on demand, and
modeling may be performed on various levels of formality.

Meta-
Modeling

Modeling

Sketch 
Recognition

Meta-
Modeling

Modeling Sketch 
Recognition

a) b)

Fig. 1. (a) Existing sketch recognition approaches restrict users to do tasks in a given order.
(b) Our envisaged approach allows to change flexibly between tasks.



2.2 Scenarios for Flexible Sketch-Based Requirements Modeling

We illustrate the usefulness of our approach with two typical elicitation scenarios. Both
describe a meeting of a requirements engineer with stakeholders in an early phase of
elicitation.

Scenario 1. A requirements engineer and two stakeholders stand in front of an elec-
tronic whiteboard. The interface of our envisaged tool is projected onto the whiteboard.
The stakeholders start to sketch requirements. They do not use a specific notation since
they are not familiar with modeling languages. Towards the end of the meeting, there
are annotated rectangles, circles, and arrows on the board. In a discussion with the
stakeholders, the requirements engineer clarifies the meanings of the symbols. After
the meeting, the engineer selects one of the drawn symbols and assigns a type to it. The
tool adds the symbol to the symbol library. Similar symbols are then identified auto-
matically. Next, the engineer selects one of the arrows and defines it as a Connector that
determines the order of two connected symbols. The engineer also defines the type of
the connection as being a temporal relationship. The other arrows are recognized au-
tomatically. The engineer has now a minimalistic modeling language and a formalized
version of the sketched model in that language. The engineer further defines new sym-
bols that represent the drawn symbols in a formalized version of the sketch, and can
now switch between the sketch version and the formal version.

Scenario 2. Some days before the meeting, the stakeholder sends a documentation
of a domain-specific language (DSL) including two notations to the requirements engi-
neer, who is also knowledgeable in metamodeling. The stakeholder intends to use the
same language in the meeting. With the help of the documentation, the engineer creates
the DSL description within our software tool. This work results in two symbol libraries,
one for each notation. When the engineer and the stakeholder meet, most of the sym-
bols drawn by the stakeholder are immediately recognized by the software tool. Some
symbols are not identified because they are distorted. The engineer selects them and
assigns the correct type manually. The stakeholder also introduces a new symbol not
included in the DSL description. The engineer adds the symbol to the description by
assigning a type to it. In total, the stakeholder draws two diagrams using the notations
that are part of the DSL. Both diagrams include the same rectangular symbol, but it has
a different meaning in each of the diagrams. To enable correct symbol recognition, the
engineer tags the elements of the first diagram (e.g. by encircling them) and assigns the
proper symbol library to the tagged elements. Then the engineer does the same for the
second diagram.

2.3 The Elements of Our Approach

In the following paragraph we discuss the required features and components of a soft-
ware tool that supports the activities described in the scenarios.

Modeling Interface. A tool following our approach has to support both informal
and formal requirements modeling activities. On one hand, it must allow unconstrained
sketching on an empty canvas. On the other hand, the tool must provide a way to edit
(e.g. scale, move, copy) objects and to formalize the sketches. Both modes must be
integrated in a unified, unobtrusive, simple interface.



Symbol Libraries and Multiple Contexts. A symbol library includes symbols that
can be recognized when a user is drawing them. Symbol libraries must be modifiable at
any time. Further, we envision separate libraries for different modeling languages, and
therefore a tool must be able to manage a list of symbol libraries. People like to use
and mix different visual conventions [5], thus the tool must support the use of different
notations at the same time. When a user starts to draw symbols that are part of multiple
symbol libraries (which can happen very quickly for overloaded, simple shapes such
as rectangles or circles), it is impossible for the tool to detect the correct language
automatically. Even if the user adheres to one particular language such as UML, some
shapes have different meanings in different diagram types. Thus a user must have the
option to tag parts of the sketch and define the context by choosing the correct library
for the recognition from a list. Explicitly assigning contexts also helps when symbols
are used inconsistently.

Sketch Recognition Framework. A recognition framework processes sketches on
two levels. Low level recognition combines groups of individual pen strokes to distinct
symbols. High level recognition compares drawn symbols with those in the symbol li-
brary. For our tool, the recognition framework must be able to handle a dynamic symbol
library. Sketch recognition algorithms can be divided into two categories: while an of-
fline algorithm starts the recognition process only after the user has finished sketching,
an online algorithm starts processing right away when the user begins to draw, and takes
temporal properties of drawn strokes into account. These temporal properties provide
additional hints for the sketch recognition engine. As our approach is interactive, we
will need an online algorithm. We plan to modify an existing online sketch recognition
algorithm such that it fits our needs.

Modeling Language Definition. The tool must provide an interface that helps users
in defining a modeling language. Users must be able to easily add new symbols to the
symbol library. They also need convenient means for adding syntax and semantics to
symbols. No scripting or programming should be required during the metamodeling
task. Creating a lightweight, sketch-based interface that also allows to add all kinds of
syntax and semantics is a challenging task. This is probably the most critical part of the
tool. Therefore, our work will not only be based on research in the fields of requirements
engineering (RE) and sketch recognition, but also relies on findings from work in the
human-computer-interaction domain. The interactivity and the flexibility of a tool add a
great deal to its usability. The graphical user interface for the language definition needs
to be seamlessly integrated into the sketch environment.

2.4 Benefits and Limitations

Our tool will allow requirements engineers to formalize sketches into models without
having to recreate them, and therefore eliminate media breaks. It gives them the flexi-
bility to co-evolve diagrams and meanings of the drawn elements, and also allows them
to define a DSL first, start sketch-based modeling using this DSL and then augment or
modify the DSL in the modeling process.

The co-evolution usage style is more flexible than any existing tool-supported ap-
proach, but is probably limited to simple, lightweight modeling languages. Otherwise,
this style requires too much metamodeling overhead and can only be used properly



by metamodeling experts. Working with a lightweight modeling language [6] matches
our intention of supporting early requirements engineering. At this stage, when stake-
holders and requirements engineers sketch their intentions and creative ideas, using
a lightweight language is crucial, because adherence to a sophisticated modeling lan-
guage would impede the creative flow [7, 3].

The DSL style has similarities to using a meta-edit tool (the modeling language
definition has to be entered first), but gives more freedom to users as it allows adding
or modifying symbol definitions during the modeling process. This style is particularly
useful when metamodeling experts predefine a symbol library for a standard modeling
language such as UML, which then can be extended by requirements engineers with
domain-specific elements.

2.5 Current Research Status

A literature review has shown that while there is a lot of ongoing research in sketch
recognition, sketch-based tools do not focus on the RE domain and also have defi-
ciencies in terms of flexibility and ease of sketch-based modeling. From discussions
with requirements engineering experts about this topic, we conclude that our approach
will provide value to requirements engineers. We currently have completed a prelimi-
nary concept of our approach. Right now we are comparing different sketch recognition
concepts and look at theories about graphical user interfaces. Future steps include the
creation of a tool prototype, its evaluation with a case study, and its improvement.

3 Related Work

Related research in this area includes software tools that incorporate a natural drawing
interface and a sketch recognition engine, e.g. SUMLOW [4], and Tahuti [10]. These
tools use predefined libraries and thus only support certain languages.

Some meta-tools allow users to define their own languages, e.g. Marama [9] and
MetaEdit+ [11]. The meta-tool then builds the actual modeling tool. If users want to
change the language, they have to go back to the meta-tool, modify the definitions, and
tell the meta-tool to rebuild the modeling tool.

Domain-independent sketch recognition toolkits like SketchREAD [1] and InkKit
[12] can handle additional domain languages. These notations must either be scripted/
programmed or imported via a library plug-in. Thus, these tools are better suited for
developers rather than requirements engineers.

Gross [8] and Avola et al. [2] present sketch recognition frameworks that work with
dynamic libraries of user defined shapes. While Avola et al. focus on the technical
details of sketch recognition, Gross additionally enables users to define some spatial
constraints between shapes. Apart from this, none of the two approaches support user
defined syntax and semantics. We will reuse a sketch recognition framework like the
one presented in [2] for our work.



4 Conclusions

State-of-the-art sketch-based interfaces either lack formalization functionality or re-
strict users to use specific modeling languages. Although some of the discussed tools
can be used for requirements engineering, they are not built for this purpose. We en-
visage a tool that is tailored to the needs of requirements engineers and allows uncon-
strained sketching with a subsequent, semi-automated formalization of the sketches.
With this approach we overcome media break problems. As we are at the beginning
of our research, next steps include building and evaluating a prototype tool in order to
assess the usefulness of such a tool and our approach.

References

1. Alvarado, C., Davis, R.: SketchREAD: a Multi-Domain Sketch Recognition Engine. In: 17th
Annual ACM Symposium on User Interface Software and Technology. pp. 23–32. ACM,
New York (2004)

2. Avola, D., Del Buono, A., Gianforme, G., Paolozzi, S., Wang, R.: SketchML: a Representa-
tion Language for Novel Sketch Recognition Approach. In: 2nd International Conference on
Pervasive Technologies Related to Assistive Environments. pp. 1–8. ACM, New York (2009)

3. Black, A.: Visible Planning on Paper and on Screen: the Impact of Working Medium on
Decision-Making by Novice Graphic Designers. Behavior and Information Technology 9,
283–296 (1990)

4. Chen, Q., Grundy, J., Hosking, J.: SUMLOW: Early Design-Stage Sketching of UML Dia-
grams on an E-Whiteboard. Softw. Pract. Exper. 38(9), 961–994 (2008)

5. Cherubini, M., Venolia, G., DeLine, R., Ko, A.J.: Let’s Go to the Whiteboard: How and
Why Software Developers Use Drawings. In: ’07 SIGCHI Conference on Human Factors in
Computing Systems. pp. 557–566. ACM, New York (2007)

6. Glinz, M.: Very Lightweight Requirements Modeling. In: 18th IEEE International Require-
ments Engineering Conference. pp. 385–386. IEEE Computer Society, Washington (2010)

7. Goel, V.: Sketches of Thought: a Study of the Role of Sketching in Design Problem-Solving
and its Implications for the Computational Theory of the Mind. Ph.D. thesis, University of
California at Berkeley, Berkeley (1991)

8. Gross, M.D.: Stretch-A-Sketch: a Dynamic Diagrammer. In: ’94 IEEE Symposium on Visual
Languages. IEEE Computer Society, Washington (1994)

9. Grundy, J., Hosking, J.: Supporting Generic Sketching-Based Input of Diagrams in a
Domain-Specific Visual Language Meta-Tool. In: 29th International Conference on Software
Engineering. pp. 282–291. IEEE Computer Society, Washington (2007)

10. Hammond, T., Davis, R.: Tahuti: a Geometrical Sketch Recognition System for UML Class
Diagrams. In: ’02 AAAI Spring Symposium on Sketch Understanding. pp. 59–68. AAAI
Press, Menlo Park (2002)

11. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: a Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment. In: Constantopoulos, P., Mylopoulos, J., Vassiliou, Y.
(eds.) Advanced Information Systems Engineering, LNCS, vol. 1080, pp. 1–21. Springer,
Heidelberg (1996)

12. Plimmer, B., Freeman, I.: A Toolkit Approach to Sketched Diagram Recognition. In: 21st
British HCI Group Annual Conference on People and Computers. pp. 205–213. British Com-
puter Society, Swinton (2007)


