

A Classification of Stereotypes for Object-Oriented
Modeling Languages

Stefan Berner

1

, Martin Glinz

1

 and Stefan Joos

2

1

University of Zurich, Winterthurerstr. 190
CH-8057 Zurich, Switzerland

{berner, glinz}@ifi.unizh.ch

2

Robert Bosch GmbH, Postfach 30 02 20,
D-70469 Stuttgart, Germany

stefan.joos@de.bosch.com

Abstract.

The Unified Modeling Language UML and the Open Modeling Lan-
guage both have introduced stereotypes as a new means for user-defined exten-
sions of a given base language. Stereotypes are a very powerful feature. They
allow modifications ranging from slight notational changes up to the redefinition
of the base language. However, the power of stereotypes entails risk. Badly
designed stereotypes can do harm to a modeling language. In order to exploit the
benefits of stereotypes and to avoid their risks, a better understanding of the
nature and the properties of stereotypes is necessary.

In this paper, we define a framework that classifies stereotypes according to
their expressive power. We identify specific properties and typical applications
for stereotypes in each of our four categories and illustrate them with examples.
For each category, we discuss strengths and weaknesses of stereotypes and
present a preliminary set of stereotype design guidelines.

1 Introduction

Since about 1990 a broad variety of object-oriented modeling languages have been
developed [1][2][3][4][9][11][13][14][17]. These languages are used to describe the
requirements and the design of a software system. Since 1996, various attempts have
been made to unify different methods and languages. As a result of this endeavor, two
languages have been developed: the Unified Modeling Language UML [12] and the
Open Modeling Language OML [6]. Both UML and OML introduce a distinctive new
feature: they allow users to extend or even to modify the base language in order to
adapt the language to specific situations or needs. The language construct that is used
to implement this feature is called a

stereotype

.
In the context of object-oriented modeling, the notion of stereotypes was introduced

before by Rebecca Wirfs-Brock [16]. Her principal idea is to provide a secondary clas-

This work was partially supported by the Swiss National Science Foundation under grant Nº 20-47196.96.

sification for objects: stereotypes classify objects according to their use, independently
of the primary classification by classes and class inheritance. This classification helps
to better organize a model and improves system understanding. Wirfs-Brock uses a
fixed number of stereotype classes, namely: domain-, design-, control-, delegation-,
structure-, service-, and interface-objects as well as information objects.

UML and OML both generalize Wirfs-Brock's notion of stereotypes from a second-
ary classification to a concept that allows for general extensions of the base language.
A stereotype in UML and OML can add new properties to elements of the underlying
language or can modify existing ones. (In the following, we will call the underlying
language that is being stereotyped the

base language.

) For example, a stereotype can

extend

 UML classes to include a property that designates a class to belong to the
model, the view or the controller in a model-view-controller pattern. On the other
hand, in older versions of UML an

Actor

 was expressed using a stereotype that rede-
fined the language element

Class

.
In this paper we discuss the UML/OML kind of stereotypes in a general context of

object-oriented modeling languages. However, as the notion of stereotypes is not lim-
ited to object-oriented approaches, we define a stereotype independently of object-ori-
entation as follows:

D

EFINITION

. A

stereotype

 in a modeling language is a well-formed mechanism
for expressing user-definable extensions, refinements or redefinitions of elements
of the language without (directly) modifying the meta-model of the language.

Stereotypes provide language users with limited metamodeling capabilities without
giving them (direct) access to the metamodel of the language. This is a very powerful
mechanism. However, as is frequently the case with powerful features, stereotypes
have both a bright and a dark side. On the bright side, stereotypes can lead to modeling
languages which are more flexible and expressive and which are better adaptable to
specific problem types and application domains. On the dark side, unsystematic or
excessive use of stereotypes can lead to a proliferation of incompatible dialects of a
language and can make a language both difficult to handle and to understand. Thus,
unconsidered use of stereotypes can do more harm than good.

Like language design in general, designing good stereotypes is a difficult and demand-
ing task. ‘Good’ in this context means:

• Every stereotype is properly defined. The definition balances formality and
understandability in an optimal way. Intuitive semantics and formal definition of
semantics (if existing) are congruent. The stereotype does not introduce inconsis-
tencies into the language.

• Every stereotype is useful. That means (1) it provides a concept or feature that the
base language does not have and (2) it eases the application of the language in a
given context or application domain.

• The set of all stereotypes is consistent. A stereotype must not be inconsistent with
other stereotypes, unless a stereotype is explicitly declared to be mutually exclu-
sive with other, contradictory ones.

• The set of stereotypes is orthogonal. When a stereotype introduces a new distinc-
tive feature or concept into a language, then this feature should not be provided
by another stereotype, too.

The task of designing good stereotypes would become considerably easier if we had a
proper design methodology or at least a set of design guidelines for their creation.
However, neither a methodology nor guidelines presently exist. In order to develop
guidelines (and finally arrive at a methodology), a deeper understanding of the nature
of stereotypes and of the implications of their use is necessary.

In this paper, we contribute to the solution of the stereotype design problem. We
introduce a classification of stereotypes according to their expressiveness – that means
according to their potential to alter the syntax and semantics of the base language.
Every class represents a related set of purposes for using stereotypes and has specific
stereotype design requirements associated with it. For each class, we give a first-cut set
of guidelines for designing and defining stereotypes of this class.

To our knowledge, there is almost no related work on classification and design of
stereotypes. Eriksson and Penker [5] classify the standard (i.e. predefined) stereotypes
of UML according to the language concept they are applied to. For user-defined stereo-
types, however, there is no classification. In the literature on UML and OML (e.g.
[12][5][6]), the design and definition of stereotypes is treated in a very vague and
superficial fashion only. In an earlier paper in German [10], we have introduced the
idea of our classification framework along with some examples and a preliminary dis-
cussion of weaknesses and benefits.

The rest of the paper is organized as follows: Following the introduction we present
our classification and illustrate it with examples. In the next section, we identify
strengths and weaknesses of stereotypes in each of our four categories. In section 2, we
demonstrate how a rigorous definition of a non-trivial stereotype should look like and
present a preliminary set of guidelines for the design of stereotypes. The paper con-
cludes with some remarks about our achievements and future research directions.

2 A Classification of Stereotypes

The extent to which stereotypes alter a language ranges from mere notational varia-
tions to a complete redefinition of the language.

Simple stereotypes typically change the notation (i.e. the concrete syntax and/or
visual representation) of a language element and/or introduce new features that serve
as a kind of ‘structured comment’. Powerful stereotypes, on the other hand, impose
semantic restrictions on the added language elements or even redefine the semantics of
language elements. This can go up to a complete syntactic and semantic redefinition of
the base language. We classify stereotypes according to their expressiveness into four
categories:

•

Decorative stereotypes

 vary the concrete syntax of a language.

•

Descriptive stereotypes

 extend the syntax of a language such that additional
information can be expressed.

•

Restrictive stereotypes

 extend the syntax of a language and impose semantic
restrictions on these extensions.

•

Redefining stereotypes

 modify the (core) semantics of a language element.

Note that our classification forms an inclusion hierarchy, not a partition. The more
powerful categories include all the potential of the less powerful ones (see Figure 1). In
the following subsections, we describe the four categories more in detail and provide
examples.

2.1 Decorative Stereotypes

D

EFINITION

. A

decorative stereotype

 modifies the concrete syntax of a language
element and nothing else.

Thus, decorative stereotypes vary the way in which a language element is visually rep-
resented. They do not introduce any essential additional information or new concepts
into the base language. The represented model and the essence of the language that
expresses the model remain unchanged.

A decorative stereotype improves the understandability of a model in the same way
that a good illustration improves the understandability of a text. However, it can also
worsen the understandability in the same way that an erratic illustration does. As the
interpretation of signs depends on the personal and cultural background of the viewer,
it can become quite tricky to decide whether a decorative stereotype eases or hampers
understandability. Some form of usability testing can act as a decision-maker here. But
the potential benefit of the new stereotype – remember it is ‘just’ a decorative one –
must be promising enough to justify the testing effort.

Decorative stereotypes are typically used to adapt the notation of a language or of
some of its elements to some given standard or to personal preferences.

Decorative
Stereotypes

Descriptive
Stereotypes Restrictive

Stereotypes

Redefining
Stereotypes

Figure 1. Classification of stereotypes according to their expressive power into four categories
and their inclusion hierarchy

Examples

• In textual representations, a decorative stereotype can be used to change key
words (like ENTITY_TYPE instead of CLASS, etc.), and if accessible, text/char-
acter attributes (font, style, size, color, etc.) or other formats (indents, alignments,
line spacing, etc.).

• In graphic representations, a decorative stereotype can change graphic symbols or
other attributes like colors, line width, etc. Figure 2 depicts a typical application
of a decorative stereotype: In UML the graphic notation of the class symbol is
replaced by that of OOAD [1]. Note that this is a pure cosmetic change. Both the
abstract syntax and the semantics of UML classes remain untouched.

2.2 Descriptive Stereotypes

D

EFINITION

. A

descriptive stereotype

 extends or modifies the abstract syntax of a
language element and defines the pragmatics of the newly introduced element.
The semantics of the base language remains unchanged. Additionally, a descrip-
tive stereotype may modify the notation (the concrete syntax) of the stereotyped
language element.

Thus, descriptive stereotypes are on a pure syntactic level. They do not impose any
semantic restrictions on the extended or modified syntax. The persons who use a
descriptive stereotype must rely on the description of the stereotype pragmatics in
order to use and interpret the stereotype properly.

As a descriptive stereotype can also modify the concrete syntax of the stereotyped
language element, it includes the expressiveness of a decorative stereotype. When
compared with simple comments, descriptive stereotypes have the advantage of a well-
defined syntactic structure, which makes some formal checking and analyses possible.

Secondary classifications (in the sense of Wirfs-Brock’s stereotypes [16]) and stan-
dardized annotations are typical applications of descriptive stereotypes. Standardized
annotations have the form

keyword <value>

 where

 <value>

 must conform to a given type.

Examples

• A classification of objects according to Jacobson’s OOSE [9] into Entity-, Inter-
face-, and Control classes or distinguishing different kinds of relationships (asso-
ciation, usage, part-of, …) in a language which provides only ‘primitive’
relationships are examples of secondary classifications.

(Booch93)(UML)

classclass

Figure 2. An example for a decorative stereotype

• An extension of the definition of a UML class with a stereotype

ConfigInfo

 that
consists of

Author : string

,

Created : date

,

LastModified : date

 is a standardized annota-
tion which allows to specify the author and the creation/modification dates of a
class in a controlled way. Note that

string

 and

date

 are static data types that can be
checked on a purely syntactic level. Semantic restrictions would lead to restric-
tive stereotypes (see section 2.3).
It should also be noted that a

Tagged Value

 in UML is equivalent to a simple
descriptive stereotype. So, in UML an alternative to this stereotype

ConfigInfo

would be the usage of three user-defined tags:

author

,

created

 and

lastModified

.

2.3 Restrictive Stereotype

D

EFINITION

. A

restrictive stereotype

 is a descriptive stereotype that additionally
defines the semantics of the newly introduced element.

Typically, the semantics impose compulsory structural restrictions on the newly intro-
duced language element – hence the name restrictive stereotype. A restrictive stereo-
type does not change the semantics of the base language – it only extends it by the
semantics of the stereotype.

The concept of restrictive stereotypes allows for a fully formal definition of the ste-
reotype. However, in practice the definition will frequently be semi-formal only. This
is no surprise when considering that most contemporary specification languages
(including UML) do not have a completely formal definition of their semantics.

Restrictive stereotypes are first-class members in the language they are added to.
They have the same expressive power and can be defined with the same degree of rigor
as the elements of the base language themselves. Restrictive stereotypes are typically
used to add missing features to some elements of a language, to strengthen weak fea-
tures or to introduce a metalanguage on top of a given language.

Examples

• A class category construct (borrowed from OOAD [1]) can be introduced into
UML in order to strengthen UML’s rather weak package construct. In order to
behave like the original class categories of OOAD, the stereotype must fulfill the
following restrictions:

– A class category must only contain classes or other class categories.

– Any relationship between two class categories must be a uses-relationship.

– Inside a class category a class may be tagged for being exported using instan-
ces of another stereotype, namely a descriptive stereotype export on classes.
Classes outside a class category may have relations only with those compo-
nents of a class category that are tagged for being exported.

• The support for requirements tracing is very weak in UML. The existing

Trace

dependency is quite unspecific. Its use is optional and lacks detailed semantics

([12] p. 56). Thus, mandatory requirements tracing that is enforced by a tool is
almost impossible using

Trace

. A significantly improved requirements tracing fea-
ture can be introduced into UML by first introducing a restrictive stereotype

requirementId : int

 with a restriction

unique

. Using this stereotype, every element of
an UML requirements model can be tagged with a unique number identifying it.
Now we introduce another restrictive stereotype

traceBackToRequirements : array of
int

 with the restriction that these integers must be existing requirement identifiers.
Using this stereotype, we can trace design elements back to their requirements by
attaching a set of requirement identifiers to every element of an UML design
model. Note that neither a descriptive stereotype nor the UML

Trace

 would suf-
fice to accomplish this task, because they would also accept values other than
valid requirement identifiers.

• A meta-language for the identification of design patterns [7] in a model can be
introduced on top of a modeling language with restrictive stereotypes: the ele-
ments of a design model can be tagged with the pattern name and the role they
play in this pattern (see Figure 4). Structural restrictions that the pattern imposes
on the elements that instantiate the pattern can be enforced by defining restric-
tions for the pattern language stereotypes accordingly (see Figure 3).

The last example from the above list also demonstrates a situation where it is clearly
preferable to define a feature with stereotypes instead of including it in the base lan-
guage: patterns evolve and are frequently application-dependent. Thus, the set of those
patterns that can be used and have to be documented in a model should be definable on
the level of projects or organizations, and, hence, not be a part of the base language.
Restrictive stereotypes are the appropriate means for doing so.

2.4 Redefining Stereotype

D

EFINITION

. A

redefining stereotype

 redefines a language element, changing its
original semantics. Concerning syntax, a redefining stereotype behaves in the
same way as a restrictive one.

With decorative, descriptive and restrictive stereotypes, instances of the stereotype
remain valid instances of the stereotyped language element. For redefining stereotypes,
this is no longer true. A redefining stereotype can introduce a new language element
that is no longer related to the element of the base language that it stereotypes.

Using redefining stereotypes, deep and radical changes can be imposed to a lan-
guage. New language concepts can be introduced. In its extreme, redefining stereo-
types can embed another language in a given base language.

Examples

• In earlier version of UML, some model elements that do not belong to the core of
the language were defined as redefining stereotypes, e.g.

Use Case

 and

Actor

 were
stereotypes of

Class

.

• A subset of the specification language Z [18] can be embedded in UML using a
redefining stereotype Scheme for UML classes. Instances of Scheme are no
longer classes, but valid Z schemes.

3 Strengths and Weaknesses of Stereotypes

In this section, we discuss the pros and cons of stereotypes both in general and for our
four categories in particular.

The main general advantage of stereotypes is that they make a language

flexible

 and

adaptable

. When used properly, they improve a modeling language, making models
easier to express and to understand.

On the other hand, there are two general drawbacks and risks.

• Working with stereotypes requires effort for designing and maintaining them, and
for training all the users and readers of a stereotyped language how to use and
interpret the stereotypes.

• Badly designed stereotypes and the use of an excessive number of stereotypes
both turn the potential benefit of stereotypes into its contrary: they harm a lan-
guage, making it more difficult to use and to understand.

The potential benefit of stereotypes as well as the drawbacks and risks grow with
increasing power of the stereotypes. In the sequel, we identify and discuss specific
strengths and weaknesses of the stereotypes in the four categories of our classification.

Decorative Stereotypes.

The definition of decorative stereotypes is easy and requires
little effort. Furthermore, it is easy to incorporate the features required for the defini-
tion and use of decorative stereotypes into a tool. When used to adapt the language
syntax to a given standard, decorative stereotypes improve the understandability of the
language for all persons working with this standard.

On the other hand, decorative stereotypes threaten the very purpose of any language
– that is, communication among people. When everybody uses her or his own decora-
tive stereotypes, we quickly end up in the same situation as the ancient people of Babel
when attempting to build their tower... Furthermore, a decorative stereotype does not
add any real power to a language, it is mere ‘syntactic sugar’.

Descriptive Stereotypes.

Descriptive stereotypes enrich a language in a controlled
way by introducing structured annotations (comparable to tagged values in UML) and
secondary classifications. This is clearly better than providing the same information
with comments only, because descriptive stereotypes can be made mandatory and are
amenable to syntactic checking and analyses. The definition of descriptive stereotypes
is easy and requires little effort: only the syntax and a short natural language statement
on the pragmatics of the stereotype are required. These properties make descriptive
stereotypes a favorite candidate for adapting a language to company-wide or project-
specific documentation standards.

On the negative side, the power of descriptive stereotypes is very limited, because
they are purely syntactical. This is frequently insufficient, in particular for structured
annotations. As soon as we want to impose semantic restrictions on the application of a
stereotype and/or on the values of its variables, a descriptive stereotype no longer
works and a restrictive one is required instead. Thus, a descriptive stereotype cannot
improve bad or weak features of the base language. Neither can it supply a real feature
(that means one with significant semantics) that is missing in the base language.
Finally, in the same way that too many comments can ‘drown’ the code of a program,
using too many descriptive stereotypes can yield clumsy and hardly readable models,
where the essence of the model disappears in a flood of annotations.

Restrictive Stereotypes.

Restrictive Stereotypes add real power to a language. Their
capabilities go far beyond those of descriptive or decorative stereotypes. Not only can
they add structured annotations with semantic restrictions, but also essential features
that are missing in the base language. Restrictive stereotypes also can improve bad or
weak features of the base language. Another powerful feature of restrictive stereotypes
is their capability for defining a metalanguage on top of the base language (see the pat-
tern examples in sections 2.3 and 4). In contrast to descriptive stereotypes, it is possi-
ble to check models for their compliance not only with syntax rules, but also with
given semantic restrictions. When these restrictions are formally defined, checking can
be automated and built into a tool.

Finally, a well-defined language forces its users to adhere to a basic set of modeling
and design principles that the language is founded upon. Restrictive stereotypes can do
the same for the features they introduce into the base language.

On the negative side, restrictive stereotypes have the following disadvantages and lim-
itations.

• Designing restrictive stereotypes is expensive. The designers require a profound
knowledge of: the desired properties of the stereotype to be designed, the base
language, the general principles of good language design, and the metalanguage
that is used to specify the semantics of the stereotype. Ignoring these require-
ments leads to bad (i.e. incomprehensible, contradictory or simply wrong) stereo-
types. Badly designed restrictive stereotypes damage the base language instead of
improving it.

• In order to define restrictive stereotypes properly, the metamodel of the base lan-
guage should provide a mechanism for a formal specification of the semantics of
the stereotype. This is a demanding requirement, which, for example, is only par-
tially met by UML. Only a formal specification makes it possible to automati-
cally check restrictions defined by a stereotype (of course, only those that can be
automatically checked at all). Without this capability, restrictive stereotypes lose
much of their power and finally become similar to descriptive ones.

• Defining too many restrictive stereotypes has the same disadvantages as
described for descriptive stereotypes.

Redefining Stereotypes.

Redefining stereotypes give the users full control over the
base language. In contrast to restrictive stereotypes, a redefining stereotype does not
merely extend the semantics of the base language, it modifies it. Instances of a redefin-
ing stereotype do no longer need to be instances of the stereotyped base language ele-
ment. This capability has two major advantages:

• The base language can be extended by new features that have nothing to do with
the element of the base language that is being stereotyped. It is even possible to
(virtually) delete the stereotyped element from the base language by restricting
the allowed number of non-stereotyped instances to zero. Of course it is impossi-
ble to really delete an element from the base language, because a stereotype can-
not delete elements from the metamodel. However, by restricting the number of
allowed instances of a language element to zero accomplishes the same effect as
a real deletion.

• Starting from a common general-purpose language, highly specialized languages
can be derived for every specific problem or application domain. This can help to
keep the base language simple an clean.

On the negative side, all the disadvantages and limitations listed above for restrictive
stereotypes also apply to redefining stereotypes, but to an even stronger degree. Three
problems deserve special attention.

• The introduction of every redefining stereotype creates a new dialect of the base
language that is semantically different. If everybody creates her or his own rede-
fining stereotypes, this is a deadly threat to the very essence of any language:
enabling communication between people that have to share information.

• Among all kinds of stereotypes, redefining stereotypes require the highest effort
for creation, training and maintenance.

• Making redefining stereotypes is language design, a task requiring special knowl-
edge and experience that typical users of a language do not have. Letting these
people nevertheless do language design bears a high risk of failure. And, by the
way, modelers are usually employed for creating models, not modeling lan-
guages.

4 Defining Stereotypes

If we want to use stereotypes properly, we must have them properly defined first. How-
ever, this is not quite easy. The UML and OML reference manuals [12][6] are both
considerably vague about the definition of stereotypes. The UML metamodel [15] is
somewhat more precise. According to this model, the definition of a stereotype con-
sists of a name, the host (language element(s) being stereotyped), an (optional) new
graphic symbol and optional sets of UML tagged values and constraints. However, the
UML metamodel still gives the stereotype designer (too) many degrees of freedom:
Arbitrary notations may be used for the definition of tag data and constraints. Thus,

anything goes, ranging from a primitive (name, host) declaration up to a highly sophis-
ticated definition of the syntax and semantics of a stereotype.

The support for the definition of stereotypes in current tools tends towards the mini-
mum: it is mostly restricted to the modification of graphical symbols – that is to say, to
the definition of decorative stereotypes.

In order to define stereotypes of all categories properly, the base language should
provide a framework for the definition of stereotypes that is well adapted to these cate-
gories. The required elements are shown in Table 1.

In Figure 3, we give a short example how the definition of a restrictive stereotype
should look like. We define a stereotype

Observer

 which supports the application of the
observer pattern [7].

stereotype

Observer { /* the name of the stereotype */

host

Class; /* Classes can be stereotyped by this stereotype */

properties

 { /* declaration of the syntactic properties
String id; the stereotype introduces */
[‘Observable’, ‘Observer’] role;

}

restrictions

 { /* restrictions for a restrictive stereotype */
(role = ‘Observable’)

implies

/* Observable/Subject must have specific methods */

Table 1.

Elements of a proper stereotype definition

Decorative
Stereotypes

Descriptive
Stereotypes

Restrictive
Stereotypes

Redefining
Stereotypes

S

YNTAX

:

Unique name for the stereotype

yes yes yes yes

Host (the language element(s) that can be ste-
reotyped)

yes yes yes yes

Concrete syntax: graphic symbol, etc.

yes yes yes yes

Pragmatics (concept behind the stereotype, for
what it shall be used), given with text

(yes) yes yes yes

Syntactic properties of the stereotype (a set of:
keyword type [initial value])

no yes yes yes

S

EMANTICS

:

Restrictions that have to be fulfilled by all model
elements that are instances of the stereotype

*

* Restrictions that shall be formally analyzable and checkable must be formally specified, for example with a constraint
language like OCL [8]. Any other restrictions may be stated semi-formally or informally.

no no yes yes

Formally defined semantics, including restric-
tions for model elements that are not instances
of the stereotype

no no no yes

((

exists

 a, d, n

in

 self.operations |
(a = “attach”)

and

 (d = “detach”)

and

 (n = “notify”))

and

 …)

and

(role = ‘Observer’)

implies

/* Observer must have update method and … */
((

exists

 u

in

 self.operations |
u = “update”)

and

 (self.subject -> notEmpty) /* there must be an observable for this observer … */

and

 (

exists

 c

in

 self.subject | /* … this means, an associated class … */

exists

 s

in

 c.stereotypes | /* … with a matching stereotype … */
(s = Observer)

and

 (s.role = ‘Observable’)

and

 (s.id = id))

and

 …)
}

}

Figure 3.

Example for the definition of a restrictive stereotype

Observer

. When this stereotype is
assigned to a class, an id and a role must be specified. The restrictions prescribe that depending
on the role the class must have some specific methods and that an observer must have a corre-
sponding observable/subject.

Figure 4 gives an example where the stereotype

Observer

 is applied to three classes. It
should be noted that the latest released version of UML Semantics ([15] p. 53) does
allow a model element to be assigned more than one stereotype, whereas the Language
Reference Manual [12] forbids this, so that the definition of class B in Figure 4 would
be illegal according to [12] but legal according to [15]. The authors of [12] motivate
their decision with the argument of simplicity ([12] p. 450). In our view, this is a bad
decision that seriously restricts the applicability of stereotypes.

5 Guidelines for Stereotype Design

As mentioned earlier, designing stereotypes is a demanding task and the potential ben-
efit of stereotypes heavily depends on taking the right design decisions.

From our experience with stereotypes we have assembled a preliminary set of
guidelines for stereotype design.

C

«Observer['Observer',"B"]»

update()

B

«Observer['Observer',"A"]»
«Observer['Observable',"B"]»

attach()
detach()
notify()
update()

A

«Observer['Observable',"A"]»

attach()
detach()
notify()

subject

1

subject

1

Figure 4. Example for the application of the stereotype Observer. In this example, Class B
observes Class A and Class C observes Class B. Thus, Class B is acting both as an observable/
subject and as an observer.

General Advice

• Define a stereotype policy and enforce it: who (identify roles) has the right to
define stereotypes of which category (e.g. according to our classification) for
which purpose and with which scope (e.g. individual, project, department-wide,
and company-wide).

• Make sure that every stereotype is properly defined and documented.

• Have every stereotype definition reviewed prior to using it.

• Avoid the creation of stereotypes when its scope is below the level of a project.

• Whenever you define a new stereotype, make sure that you will be able to main-
tain it in the scope and for the duration of its use.

• Make the stereotype definitions available to all people who need to know them
and train these people how to apply and how to interpret them, respectively.

• Define less stereotypes and apply the existing ones more uniformly and with a
wider scope.

Guidelines for Decorative Stereotypes

• Thoroughly examine the need for a decorative stereotype. Does the new symbol
increase the semiotic value of a language element significantly? If you are not
sure that there is a benefit in terms of increased understandability, then do not
waste time with decorative stereotypes.

• Do not try to be an artist. Do not ever create a decorative stereotype because you
have the feeling that a model looks better then.

• Use decorative stereotypes only to adapt the concrete syntax of a notation to a
compulsory company or customer standard.

Guidelines for Descriptive Stereotypes

• Before defining a stereotype for an annotation or secondary classification, thor-
oughly determine that this is a required standard information with some concept
behind it. A model style guide helps to decide.

• Decide whether it is better to include an annotation in the model or to document it
separately. If the latter is true, do not define a stereotype.

• When annotations or classifications neither are a required standard nor have a
clear concept behind them, use notes or other commenting constructs instead.
Notes indicate that the interpretation of the given information is completely up to
reader whereas a descriptive stereotype points out that there is a specific syntax
and pragmatics in place.

• Do not try to cure symptoms. Descriptive stereotypes will not cure an unstruc-
tured model or the wrong choice of language element, diagram type, etc.

Guidelines for Restrictive Stereotypes

• Thoroughly investigate and discuss the need for the language extensions or mod-
ifications that shall be introduced with a restrictive stereotype.

• Never define restrictive stereotypes on the fly.

• Leave the definition of restrictive stereotypes to language and method specialists.
For example, state in your stereotype policy (see above) that restrictive stereo-
types may only be defined by your software methods group and that a formal val-
idation and approval process has to be employed.

• Take care that a restrictive stereotype is really a restrictive stereotype and not a
redefining one. State the semantics of the stereotype as precisely and formally as
possible.

Guidelines for Redefining Stereotypes

• Do not do it. If you must do it, do it with extreme care and let only experienced
language and method specialists do it.

• Explicitly forbid the definition of redefining stereotypes by individual engineers
or within projects.

• Organize the definition of a redefining stereotype as a project of its own. Impose a
rigorous design, validation and approval process.

6 Summary and Conclusions

Stereotypes are powerful, but care and experience is required to harness this power.
Our classification helps to better understand the nature of stereotypes and to control
their application. Every category in this classification represents a typical kind of
applications for stereotypes. Hints for proper definition of stereotypes and preliminary
design guidelines have been presented.

The discussion in section 3 and the guidelines in section 5 make clear that using
decorative and redefining stereotypes both is highly problematic. Variations of the con-
crete syntax or the style of representation as well as a fundamental redefinition of the
semantics of the base language should be done very restrictively only. Hence, descrip-
tive and restrictive stereotypes are the most important ones in practice. Stereotypes
from these two categories are especially useful to:

• make models more expressive by augmenting them with additional information
in a standardized way

• compensate for deficits and weaknesses in a given modeling language in order to
make it better adapted to some classes of problems or to given domains.

Stereotypes are no silver bullet. Their application does not automatically result in ‘bet-
ter’ models. They always increase the complexity of the base language and introduce
overhead for definition, training and maintenance. So, before introducing language
extensions or modifications on the basis of stereotypes, it should be made sure that
these are clearly beneficial.

Our further research on stereotypes will be directed towards empirical work on the
usefulness of our classification, on better capabilities for the definition of stereotypes
and on improving and validating the design guidelines. Finally, this endeavor should
end up in a sound methodology for stereotypes.

References

[1] Booch, G. (1994): Object-Oriented Analysis and Design with Applications, 2nd ed.
Redwood City, Ca.: Benjamin/Cummings.

[2] Champeaux de, D., Lea, D., Faure, P. (1993): Object-Oriented System Development.
Reading, Mass., etc.: Addison-Wesley.

[3] Coad, P., Yourdon E. (1991): Object-Oriented Analysis. Englewood Cliffs, N. J.:
Prentice Hall.

[4] Embley, D.W., Kurtz, B.D., Woodfield, S.N. (1992): Object-Oriented Systems
Analysis. Englewood Cliffs, N. J.: Prentice Hall.

[5] Eriksson, H.-E., Penker, M. (1998): UML Toolkit. New York: John Wiley & Sons.
[6] Firesmith, D., Henderson-Sellers, B. H., Graham, I., Page-Jones, M. (1998): Open

Modeling Language (OML) – Reference Manual. SIGS reference library series.
Cambridge, etc.: Cambridge University Press.

[7] Gamma, E. (1995): Design Patterns: Elements Of Reusable Object-Oriented Software.
Reading, Mass., etc.: Addison-Wesley.

[8] IBM et al. (1997): Object Constraint Language Specification; Version 1.1. [http://
www.software.ibm.com/ad/oc]

[9] Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G. (1992): Object-Oriented
Software Engineering – A Use Case Driven Approach. Reading, Mass., etc.: Addison-
Wesley.

[10] Joos, S., Berner, S. Glinz, M. (1998): Stereotypen und ihre Verwendung in
objektorientierten Modellen – eine Klassifikation [Stereotypes and Their Usage in
Object-Oriented Models – A Classification (in German)]. In: K.Pohl, A. Schürr, G.
Vossen (eds.): Proceedings of the GI workshop Modellierung’98. TR 6/98-I, Uni-
versity of Münster, Germany. 111-115.

[11] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (1991): Object-
Oriented Modeling and Design. Englewood Cliffs, N. J.: Prentice Hall.

[12] Rumbaugh, J., Jacobson, I., Booch, G. (1998): The Unified Modeling Language
Reference Manual. Reading, Mass., etc.: Addison-Wesley.

[13] Selic, B., G. Gullekson, P. T. Ward (1994): Real-Time Object-Oriented Modelling.
New York: John Wiley & Sons.

[14] Shlaer, S., Mellor, S.J. (1988): Object-Oriented Systems Analysis: Modelling the
World in Data. Englewood Cliffs, N. J.: Prentice Hall.

[15] Unified Modeling Language Specification (1998): UML Semantics v1.1. Framingham,
Mass: Object Management Group. [http://www.omg.org/techprocess/meetings/
schedule/Technology_Adoptions.html#tbl_UML_Specification]

[16] Wirfs-Brock, R., Wilkerson, B., Wiener, L. (1994): Responsibility-Driven Design:
Adding To Your Conceptual Toolkit. ROAD 1, No. 2; (July-August 1994), 27-34.

[17] Wirfs-Brock, R., Wilkerson, B., Wiener, L. (1993): Designing Object-Oriented Soft-
ware. Englewood Cliffs, N. J.: Prentice Hall.

[18] Wordsworth, J.B. (1992): Software Development with Z. Reading, Mass., etc.:
Addison-Wesley.

