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ABSTRACT
Requirements models for large systems typically cannot be
developed in a single step, but evolve in a sequence of it-
erations. We have developed such an iterative modeling
process which is based on the interactive simulation of yet
incomplete and semi-formal models. Missing parts are com-
pleted interactively by the user simulating the model. We
start by modeling type scenarios (i.e. use cases) and simu-
late these interactively before having specified any system
behavior. Such simulation runs yield exemplary system be-
havior in form of message sequence charts (MSCs). The
modeler can then generalize this recorded partial behavior
into statecharts. The resulting model is simulated again, (i)
for validating that the modeled behavior matches the previ-
ously recorded behavior, and (ii) for recording new yet un-
specified behavior in a next iteration step. Thus, recording
MSCs by playing-through the scenarios and transforming
MSCs to statecharts stimulate and drive each other.

In this paper we focus on two elements of our approach:
firstly, we describe the syntax and semantics of our scenario
language. Secondly, we give an example how our modeling
process works.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques
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1. INTRODUCTION
When developing large requirements models in an iter-

ative process, the models are typically incomplete and not
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completely formalized during the development process. Mod-
eling proceeds by progressively making models more com-
plete and more formal. The process stops when the model
has reached the desired degree of formality and complete-
ness (which will vary depending on risk, time and budget).
Hence, a modeling language should support such a process
by providing features for modeling intentional partial incom-
pleteness and a variable degree of formality.

Such an iterative process crucially depends on early and
frequent model validations. Reviews quickly become too ex-
pensive when they have to be performed frequently and re-
peatedly. On the other hand, classic automated techniques
such as simulation or model checking cannot be applied be-
cause they require formal models.

Principally, simulation would be a quite appropriate tech-
nique for both requirements engineers and customers to vali-
date whether a model behaves as desired: they can play with
the model’s dynamics by entering stimuli and receiving sys-
tem reactions. Therefore, we have developed an interactive
simulation technique that allows to simulate incomplete and
semi-formal models by inquiring missing information inter-
actively from the expert who runs the simulation. The infor-
mation provided by the expert is recorded so that regression
simulation becomes possible [12].

This technique also enables an iterative, outside-in de-
velopment process for requirements models that starts with
some external behavior specified by type-level user-system-
interaction scenarios (aka use cases) and progressively elicits
and defines system behavior with simulations that are driven
by playing through the scenarios (Figure 1).

The process is based on the following observations. The
behavior of a system can be specified in two different ways:

• It can be specified in an exemplary way by a set of typ-
ical play-throughs of the user-system-interaction sce-
narios. These play-throughs constitute message se-
quence charts (MSCs), which give an outline how the
system should behave. The description is exemplary,
because each run covers only a certain interaction with
the system.

• When all potential ways how a component can behave
are known, the component’s behavior can be modeled
generically, for example with statecharts. In contrast
to MSCs, statecharts cover all potential interactions
between the component and its environment.

Exemplary behavior is cognitively easier to develop and
also better suited for discussing models with a customer for
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Figure 1: Process of enriching model with behavior.

validation purposes. So it is a good starting point for sys-
tem modeling. However, as exemplary behavior just gives
an outline of certain situations, we eventually need generic
behavior models. The problem is that generic modeling from
scratch is difficult and requires considerable effort and ex-
pertise.

Hence, a modeling language should support both types
of behavioral modeling, and an iterative modeling process
should provide transitions from exemplary to generic mod-
eling. The existing algorithms for transforming MSCs into
statecharts (for example [13]) have drawbacks concerning
the readability and the validation of the generated state-
charts.

We therefore take an alternative approach, where the con-
struction of statecharts from exemplary behavior is manual,
but systematically guided and informed by simulation runs
which in turn are produced by interactively playing through
a set of exemplary scenario executions [11].

Vice versa, having generically specified the behavior of a
component improves and eases the subsequent simulation
runs as the modeled behavior is being integrated into the
simulation, thus making it more precise and requiring less
interactivity during simulation runs.

When used this way, the two modeling modes, viz. record-
ing exemplary system behavior by playing through scenarios
and modeling system behavior generically, stimulate each
other and drive the model development towards more com-
plete and more formal specifications. Fig. 1 illustrates how
an alternating application of simulation runs and behav-
ioral generalizations contribute to the evolution of a system
model.

In this paper, we focus on the following two elements of
our approach: In Chapter 2, we describe our scenario nota-
tion, as a well-suited and precisely defined scenario language

is a critical building block of our approach. In Chapter 3, we
demonstrate our modeling process with an example. Chap-
ter 4 covers related work and Chapter 5 provides a discussion
and some concluding remarks.

2. OUR SCENARIO NOTATION
In our modeling language Adora [3], scenarios are mainly

used for two purposes: (i) Scenarios describe the communi-
cation protocol between the modeled system and the actors
in the context of the system, i.e. the behavior as it is system-
externally seen by the actors. Therefore, scenarios are used
to drive simulations. (ii) The evolution of a system model
is done by the means of scenarios. Each model version of
the system is derived from the corresponding versions of the
scenarios. This procedure is embedded in an iterative re-
quirements process described in [11].

A scenario can be hierarchically decomposed using sce-
nariocharts. A scenariochart structures scenarios as a tree
[2, 3]: each scenario is connected to all its children scenar-
ios. The notation is derived from Jackson diagrams [7], with
an extension to include concurrency. Note that scenarios in
Adora are type scenarios, i.e. they describe a set of possible
execution paths.

2.1 Scenariochart Syntax and its Graphical
Mapping

In contrast to UML, the syntax of the Adora language is
not defined by a graphical metamodel but by an EBNF [14].
Adora models can be represented as an abstract syntax tree
of the EBNF grammar. There exists a mapping between
the production rules of the EBNF grammar (more precise:
the nodes in the abstract syntax tree) and the graphical
elements used to visualize the language [14]. Tab. 1 shows
the EBNF grammar for the scenariocharts. For the sake
of simplicity, we show an abstract grammar of the syntax
which contains only the most important productions for the
definition of scenariocharts.

In the following, we will explain how the production rules
of Tab. 1 will be mapped to graphical elements. When dis-
cussing the elements of scenariocharts, we add in parenthe-
ses the name of the corresponding element in the grammar
(see Tab. 1) in italics. Fig. 2 graphically exemplifies all the
elements used for building a scenario tree. A scenario node
(ScenarioDefinition) is graphically represented by the shape
of an ellipse containing a name which describes the scenario.
As an example, the scenario nodes with Description A, De-
scription B, etc. can be found in in Fig. 2. A scenario
node is of a specific type (ScenarioType) which determines
how the node and its sub-nodes are interpreted. In Fig. 2
the unattributed node is the so-called root node, which de-
notes the top element of the scenario tree. Nodes attributed
with two parallel lines denote concurrently executed scenar-
ios. Nodes containing a number describe scenarios which are
executed in sequence and last but not least, scenarios con-
taining a circle shape denote alternatively executed nodes.

In contrast to Jackson diagrams, there are no iteration
nodes in scenariocharts. Instead, iteration is specified by
a so-called iteration property and an additional expression
describing a predicate which must be true for visiting the
node in a further iteration cycle. Every node type can have
such an iteration property. Graphically, an iteration prop-
erty is denoted by an asterisk. The node with Description
B in Fig. 2 gives an example.



ScenarioDefinition ::= [ ‘partial’ ] ScenarioType ‘scenarios’ ScenarioIdentifier
[ ‘on’ GuardPart ] [ ‘iteration’ Expression ] [ ScenarioConnections ]
[ TransformationElements ] ‘end’ ‘scenarios’ Identifier

Identifier ::= Identifier
ScenarioType ::= ( ‘alternative’ | ‘sequence’ ( [ < INTEGER LITERAL > ] | ‘parallel’ | ‘root’ [ Cardi-

nality ] )
ScenarioConnections ::= ‘connections’ ( ScenarioConnectionDefinition | AssociationDefinition )* ‘end’ ‘connec-

tions’
ScenarioConnectionDefinition ::= ‘scenarioconnection’ ‘to’ QualifiedIdentifier
GuardPart ::= ‘[’ Expression ( ‘;’ Expression )* ‘]’
TransformationElements ::= ( TransformInput | TransformOutput ) ( ‘;’ ( TransformInput | TransformOutput ) )*
TransformInput ::= ( ‘transform’ ‘input’ [ ‘cached’ ] ) ( Identifier ‘(’ [ ParameterList ] ‘)’ ) [ ‘over’ Identifier|

‘to’ QualifiedIdentifier ]
TransformOutput ::= ( ‘transform’ ‘output’ [ ‘cached’ ] ) ( Identifier ‘(’ [ ParameterList ] ‘)’ ) [ ‘over’

AssociationIdentifier | ‘from’ QualifiedIdentifier ]
QualifiedIdentifier ::= ( ( Identifier ( ‘.’ Identifier )* ) )
Identifier ::= <IDENTIFIER>
ParameterList ::= ParameterDefinition ( ( ‘,’ ParameterDefinition ) )*
ParameterDefinition ::= ( Identifier ‘:’ DataTypeName )
DataTypeName ::= ( Identifier | PrimitiveDataTypeName )
PrimitiveDataTypeName ::= ( ‘boolean’ | ‘string’ | ‘integer’ | ‘float’ | ‘time’ | ‘id’ )

Table 1: The EBNF definition of ADORA scenariocharts.
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Figure 2: Notation of a scenario tree.



Scenarios are usually connected by an association from
the root node to the corresponding actor. This association
submits the input stimuli from the actor and sends responses
back to the actor. Leaf nodes can contain so-called trans-
formation expressions (TransformationElements), i.e. either
(TransformInput) elements which specify the kind of input
stimuli for a system, or (TransformOutput) elements which
specify the kind of responses for a system.

Each node can contain a guard (GuardPart) which must
evaluate to true in order to execute. In Fig. 2 for example,
the node with Description G has a guard.

Nodes are connected by scenario connections (Scenario-
Connection). In Adora, diagrams have no orientation, i.e.
there is no top or bottom in the diagrams. Therefore, in
contrast to Jackson diagrams, we have to use directed con-
nections to define an order in the scenario tree. This is done
by denoting the parent node with a filled circle at the con-
nection end point.

In Adora, components (i.e. abstract objects or object
sets) are used to describe the structure of a system. They
can be decomposed hierarchically. We consider scenarios
and components to be complementary in a specification.
Scenarios are associated with components (by drawing them
inside a component), but the association is not considered
to be a a part-of relationship.

In the following two sections, we discuss the static and the
dynamic semantics of scenariocharts. We use the following
notations as a means for the semantics description. The
function type(s : scenario) returns the type of the given
scenario s. The function iteration(s : scenario) returns true
if the given node s has the iteration property set. We denote
a parent node as S whereas a sub-node is denoted as S ′

i,
where 0 6 i < n and n is equal to the number of sub-nodes
of S. In brief, we just write S for the parent node and S ′ for
the set of child nodes and S ′

i for one specific node out of the
set S ′.

2.2 Static Semantics
In addition to the syntax rules described above, there are

several static semantic constraints that must be fulfilled by
scenario models. For the sake of completeness, we give a
brief description of the most important constraints.

• The scenariochart must be a tree. This can not be
guaranteed by the grammar in Tab. 1, because the
connections are just referring the connected elements
by names. Therefore, there must be an additional con-
straint which guarantees that no cycles are contained
in the scenariochart and that each node has only one
parent.

• Scenarios are embedded in components. Let the sce-
nario S be embedded in the component C. For the sake
of information hiding [9], a sub-scenario S ′

i of a sce-
nario S must be embedded also in the component C
or in one of the sub-components of C.

• The nodes on the same level of the scenario tree have to
be of the same type as their siblings: If the node S has
the sub nodes S ′, then the type of each sub node type(S ′

i)
has to be equal to the type of its siblings.

• Leaf nodes may not have an iteration property, i.e. if
the number of sub-nodes of a given node S is zero,
then iteration(S) must return false.

• The sequence numbering for nodes on the same level
describing a sequence of scenarios must be unique: If
the node S has the sub-nodes S ′ and the type for every
sub node type(S ′

i) equals ‘sequence’, then each sub-
node S ′

i has to have a unique sequence number.

2.3 Scenariochart Semantics
A scenario tree is executed by traversing each node (Sce-

narioDefinition) of an abstract syntax tree generated by the
grammar in Tab. 1 in in-order sequence. The execution of a
node S starts when S is entered. From that moment, S is
called in execution until the node is left. The execution of
node S ends if all sub nodes in S ′ have finished their execu-
tion (i.e. their traversal has been finished).

If a (TransformInput) element is found during the traver-
sal, the system is waiting for an input stimulus from the user
simulating the system. If a (TransformOutput) element is
found during the traversal, the scenario tree waits for events
from the system that can be transformed to a response. The
execution of the scenario tree waits until such a stimulus is
received. Input stimuli are caught and transformed into an
event that could be handled by the behavioral description
of the system model. Events that are caught by an out-
put transformation are transformed into a response for the
environment.

Transforming input stimuli and responses creates the need
for handling continuous environment variables which have to
be mapped on variables in the system. This problem is part
of the so-called four variable problem [10]. Especially the
sampling of environment variables or sending the responses
back to the environment often occurs at a point of time when
the values can not be processed by the system or the environ-
ment respectively. This is the case because the system or the
environment is not in the correct state to handle the events
or stimuli at the time when they occur. To overcome this
problem we introduce the concept of cached stimuli which
is described by the production rule (TransformInput) and
(TransformOutput) respectively.

A cached stimulus is stored when it occurs. It is consumed
by the corresponding transform expression and sent to the
system or the environment as soon as the leaf node with
the corresponding transform expression is traversed. After
reading, the cache is cleared.

A scenario node is only visited if its guard (GuardPart)
evaluates to true. If no guard is specified, the guard is inter-
preted as true. If the guard evaluates to false, the visiting
of the current node is discarded, i.e. the node is not vis-
ited at all and execution proceeds with the next node in the
traversal order.

The order of execution is specified by the type of the sce-
nario node (ScenarioType), as well as by the iteration prop-
erty of the parent scenario as follows:

• root: This type marks a node as a root node of a
scenario tree. A root node is only executed if its guard
evaluates to true.

• sequence: The sub-nodes S ′ of the node S which
fulfill the predicate type(S ′

i) equals ‘sequence’, will be
visited sequentially. Therefore, each sub-node S ′

i has
to specify also a unique integer number, which defines
the order in the sequential execution. A sequence sce-
nario node is only executed if its guard evaluates to
true. If this is not the case, the next sequence scenario



sibling or the successor of S in the visiting order is
executed.

• alternative: The sub-nodes S ′ of the node S which
fulfill the predicate type(S ′

i) equals ‘alternative’ will be
handled alternatively. This means that as soon as S is
visited, every guard of the alternative scenarios in S ′ is
evaluated. There are three distinct cases: (i) Exactly
one guard of in S ′ evaluates to true. In this case,
the corresponding alternative node is visited. (ii) The
guards of more than one of the nodes in S ′ evaluate to
true. In this case, the user simulating the model has to
choose exactly one of the possible nodes to visit. The
chosen node will be visited. (iii) No guard of the nodes
in S ′ evaluates to true. In this case, the node S finishes
its execution and the next node in the execution order
of the tree is visited.

• parallel: The nodes in S ′ for which the predicate
type(S ′

i) equals ‘parallel’ will be handled in parallel.
In this case, the execution is forked. Each sub sce-
nario S ′

i, 0 6 i < n of the node S visits independently
the corresponding scenario sub tree. The concurrent
visiting happens in a asynchronous manner. The exe-
cution of S is finished (i.e. an execution join is done)
as soon as the execution of each node in S ′ is finished.
A node with the scenario type parallel is only executed
if its guard evaluates to true. If this is not the case,
only the parallel sibling nodes with guard conditions
evaluated to true are executed. If no guard of the par-
allel scenarios of the nodes in S ′ evaluates to true, S is
left without visiting any children.

• A scenario node S can contain an iteration property
which means that the sub-scenario nodes in S ′ are vis-
ited as many times as the predicate (Expression) for
the iteration evaluates to true.

3. SCENARIO-DRIVEN SIMULATION

3.1 Simulation Interface
When we talk about simulation, we mean an event-driven,

discrete simulation. We do not consider real-time or contin-
uous simulations.

Our system model is composed of hierarchically struc-
tured, abstract objects. Each object represents a state and
may be further decomposed by other objects and by embed-
ded statecharts. All objects and states together form one
joint, hierarchical statechart.

The simulation engine executes the specified system be-
havior, i.e. on occurring events it performs transitions be-
tween states and executes specified actions. As soon as an
event appears that cannot be handled, the simulation is in-
terrupted to allow the user to interactively handle this event:
whether it shall be received at all, by which object and which
actions shall be performed on this event. Afterwards, the
simulation continues as usual. More details on our interac-
tive simulation engine can be found in [12].

For each modeled actor, the user simulating the model
may create an instance launching the traversal of the con-
nected scenariochart. The simulation stops at leaf nodes
allowing the user simulating the model to enter stimuli or
receive system reactions. The graphical interface to enter

stimuli is automatically built from the transform expres-
sions specified at the leaf nodes of the scenariocharts. For
example, the following transform expression:

transform input SITZ_H(value : float) over Interface_S2

results in the dialog shown in Fig. 3.

Figure 3: Dialog to enter a input stimulus.

3.2 Example: Car Door Control System
As an example application, we refer to the specification of

a control system for car doors given in [6]. A first version of
the model is given in Fig. 4. Some scenarios have been mod-
eled already whereas the system is yet unspecified except the
three main objects mentioned in the specification.

In a first step, we decide to focus on the seat positioning
via the user management switches. There are four switches
inside the car to recall four different seat positions (for differ-
ent drivers). A seat may be adjusted in five different ways:
seat height in the front and back, angle of the back, seat dis-
tance to the wheel, and tightness of the casing. While being
seated, seat adjustments must be done in a comfortable way,
i.e. the relaxing adjustments must happen before constric-
tions take place (in order not to trap the driver), and not
more than two movements may be done at the same time.
However, when unlocking the car with a radio transmitter
(there are two different ones for two drivers), the seat posi-
tion shall be adjusted as fast as possible to be ready before
the driver enters the car. The switches inside the car are
connected to the door control system via interface S1, the
radio transmitter uses the CAN-bus for communication.

In our example, we start with a simulation of a typical
sequence of interactions how the seat adjustment could take
place, see Fig. 5. At that time, there is no behavior spec-
ified in the system. All objects taking part in the simu-
lation (CAN, S1, User Management and Seat Adjustment)
are being played by the user. This means that for each in-
coming event, the user specifies the corresponding actions
that should take place. As we are currently concentrating
on the user management, we are not interested in the actual
seat positioning. That is why we do not continue to handle
the messages in the Seat Adjustment object (marked with
a cross in Fig. 5). This may be the focus of further simula-
tions.

Therewith, we have outlined some exemplary behavior for
the involved objects. We could either proceed by recording
more simulation runs to enrich the system with exemplary
behavior. Or we continue with the generalization of the
existing behavior.

We have done the latter for the User Management object
in Fig. 6. Up to now, it can exactly handle the recorded
sequence chart, nothing else. However, for all following sim-
ulations, the specified behavior does not need to be played
by the user any more. It will be taken from the statechart
instead. Only new behavior must be played by the user.
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Figure 4: Modeled scenarios of a door locking system.
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Figure 6: Generalized behavior of sequence chart in
Fig. 5 in object User Management.

This allows to focus on new behavior. Subsequent simula-
tion runs may become stepwise more complex.

Simulations and behavioral generalizations can alternately
take place to drive the model evolution to a certain degree
of completeness that is desired.

4. RELATED WORK
To the best of our knowledge, there is only one approach

which is closely related to ours: Harel et al. developed the
Play-Engine [4] that allows to play and test behavior of
an incomplete component interactively via a prototypically
built user interface. Harel focuses on the interface being
developed whereas we are focusing the model being devel-
oped. Our main focus lies on adequate support of the re-
quirements engineer in the modeling process. The model
can be executed in any state of completeness to drive the
further development of the model.

Simulation as a means of validating a model is not a re-
placement for model checking approaches [8, 1, 5]. Simula-
tion is used earlier in the process to validate the model and
drive the further development of the model when it is not
yet formal and complete enough to allow model checking.

5. CONCLUSIONS
Sequence charts and statecharts are complementary means

for describing behavior that both help describing a system
in a clearer way. Sequence charts are better suited for stake-
holder discussions, whereas statecharts describe all valid be-
havior in a generalized way. Tied together in the way de-
scribed in this paper, they support an evolutionary modeling
process for requirements models and ease the way of validat-
ing the system model.

Simulations, on the one hand, are a means for producing
exemplary interaction with a system and actors. On the
other hand, simulations execute the modeled statecharts,
thus enabling automatic regression validation and limiting
the need for interactive simulations to those parts of the
model that the modeler is currently working on. Both ac-
tivities stimulate each other to further develop the model.
The mixture of playing and generalizing is a good means to
develop large systems iteratively.

Hence, a modeling language that is able to express in-
completeness and semi-formality and a tool supporting a
corresponding simulation technique provide strong support
for modeling and validating requirements models in an evo-
lutionary style.

6. REFERENCES
[1] S. M. Easterbrook and M. Chechik. Guest Editorial:

Special Issue on Model Checking in Requirements
Engineering. Requirements Engineering, 7(4):221–224,
2002.

[2] M. Glinz. An Integrated Formal Model of Scenarios
Based on Statecharts. In W. Schäfer and P. Botella,
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