
Proceedings of the 3rd ICSE International Workshop on Scenarios and State Machines: Models, Algorithms and Tools, Edinburgh, May 2004

Systematically Combining Specifications of Internal and External System
Behavior Using Statecharts

Martin Glinz
Department of Informatics, University of Zurich

Winterthurerstrasse 190
CH-8057 Zurich, Switzerland

glinz@ifi.unizh.ch

Abstract

In contemporary model-based specifications, we typi-
cally find a naive combination of models of the externally
visible behavior of a system (typically expressed as sce-
narios or use cases) and of the internal system behavior
(partially represented in explicit state models and par-
tially expressed as data). However, a systematic combi-
nation and integration of the two behavior aspects has not
yet been investigated.

In this paper, I sketch a systematic approach for mod-
eling both external and internal behavior of a system with
statecharts in an integrated, non-redundant way. The
main idea is to start with statecharts that model external
behavior in the form of use cases or type scenarios and
then add statecharts that model internal behavior only
where the scenario/use case statecharts do not suffice for
expressing the behavior of the system.

1. Introduction

It is well known that state machines can be used both
for modeling system behavior (typically internal behavior
of the components of a system) and for modeling interac-
tion between actors and a system (the externally visible
behavior or short the external behavior of a system).

In internal behavior modeling, a state represents a
situation where the system reacts to those events that trig-
ger one of the state’s outgoing state transitions, while the
actions specified for the state transitions describe what the
system does when a state transition occurs.

When modeling actor-system interaction, every state
transition specifies a stimulus coming from an actor and a
response by the system. States typically model a time
interval where the system waits for the next stimulus from
an actor.

Modeling languages such as UML [11], [12] allow
both interaction modeling and internal behavior modeling

with state machines. However, UML does not care about
the methodological aspects of using these models. For
example, the state machine of Fig. 1 can be interpreted as
a use case, i.e. an external view of the system, as well as a
specification of the system’s internal behavior.

ready

 selection

 payment

 delivery

selection key pressed

register selection
 selection key pressed

 register selection

canceled
give money back;
initialize

canceled
initialize

 coin inserted
 take coin

 coin inserted
 take coin

 requested sum paid
 print ticket

 ticket taken
 initialize

Figure 1. Model of a simple ticket vending machine

In situations where the system behavior is more com-
plex than in the example given in Fig. 1, a pure external
behavior specification typically fails, because there is
externally visible behavior which depends on results of
previous interactions. In this situation, behavior must
either be specified by interaction traces (which is not
practically feasible in most cases) or a model of internal
system states is required.

On the other hand, a purely internal behavior model
also fails because it ignores the interaction of the external

actors with the system. Hence, most contemporary speci-
fications combine a model of external behavior (typically
in the form of use cases) with a model of internal behavior
(both implicitly given by data and explicitly in state ma-
chines attached to objects). However, today we do this
combination in a naive way, not caring about the relation-
ships and interdependencies between the two kinds of
behavior models.

A similar problem arises when modeling components
in UML 2.0 [12]. On the one hand, a component in UML
2.0 has interfaces which require a specification of the
externally visible behavior of the component. On the other
hand, we also have to model the internal behavior of the
component, in particular the interaction between its con-
stituent objects and/or inner components.

If we use statecharts both for external and internal be-
havior modeling, so that formal integration of the two
behavior aspects is possible, we come across some ques-
tions that—to the best of my knowledge—have not been
investigated yet:
• How shall the models be combined so that integration

makes sense and has useful semantics?
• Does the combination yield redundant models? If yes,

is this redundancy useful (for example, for validation
purposes) or is it an unwanted source of potential in-
consistencies?

• If we do not want redundant models, how can we
achieve that?
In this paper, I sketch a systematic approach for mod-

eling both user-system interaction and system-internal
behavior with statecharts [6] in an integrated, non-redun-
dant way. The main idea is to start with statecharts that
model type scenarios1 (or use cases in UML terminology)
and then add statecharts that model internal behavior only
where the interaction statecharts do not suffice for ex-
pressing the behavior of the system.

The rest of the paper is organized as follows: Section
two gives an overview of the approach and illustrates it
with an example. In Section three, the integration problem
is discussed. Section four gives some conclusions, surveys
related work and provides directions of further research.

2. The approach

2.1 Basic ideas

The basic idea, which is laid out in this paper, is to
have an integrated, non-redundant state machine model of
both external and internal behavior of a system, using the
external behavior model as the lead model.

1 A type scenario is an ordered set of interactions between partners that

represents a set of possible interaction steps. A use case is a type
scenario.

This means that external system behavior is modeled
first. Internal behavior models are systematically added in
all situations where the external behavior models do not
suffice, thus leading to a specification where the two be-
havior aspects are modeled complementary and non-
redundantly. In the integrated model, it shall still be
clearly visible which state machines model externally
visible behavior and which ones represent internal be-
havior. We achieve this by stereotyping the state ma-
chines.

Giving preference to external behavior modeling
makes sense because
• in requirements models this is what people are inter-

ested in,
• in design models, external behavior modeling supports

information hiding and component building.

2.2 Using the tools and materials metaphor

The tools and materials metaphor [14] is used for pro-
viding guidance which components of a system need
which kind of behavior model. This metaphor classifies
the components2 of a system into three categories:
• ‘Tools’ assist external actors in doing the actors’ tasks:

they receive stimuli from them and produce appropri-
ate responses. In order to do their job, ‘tools’ process
‘materials’.

• ‘Materials’ represent artifacts (or containers storing
artifacts) that are being processed (created, modified,
queried,...) by ‘tools’ or ‘automata’. ‘Materials’ are
passive.

• ‘Automata’ work without being triggered by an exter-
nal event. They either run continuously or are trig-
gered internally. Automata are active, processing ‘ma-
terials’ or using ‘tools’.
It turns out that external actors interact with ‘tools’ in

this metaphor. ‘Automata’ act on their own, while ‘mate-
rials’ are used by ‘tools’ and/or ‘automata’. Hence, any
component being classified as a ‘tool’ in the metaphor
needs a specification of its external behavior. This specifi-
cation must be augmented by internal behavior models for
all ‘materials’ that exhibit state-dependent behavior. Fi-
nally, all components being classified as ‘automata’ need
a specification of their behavior. As they are parts of the
system, we also need an internal behavior model for them.

2.3 An example

As an example, we use a ticket vending system which
is more sophisticated than the machine given in Figure 1.

2 In requirements specifications, components are identifiable, separable

subproblems of the given problem, whereas in design specifications
components represent design items with high cohesion and low
coupling.

Let us assume that the system consists of four parts:
• Vending is responsible for vending tickets. It is similar

to the system specified in Figure 1, but has an addi-
tional timeout feature.

• Supervisor supervises the condition of mechanical
components such as the coin vault, ticket printer, ticket
paper roll, etc.

• Logging logs all vending transactions and all events
detected by Supervisor or caused by aborted transac-
tions.

• Maintenance handles offline parametrization and serv-
icing of the machine.
A model of the behavior of this system will be devel-

oped in the subsections below.

2.4 The four modeling steps

The proposed modeling method proceeds in four steps:
(1) Classify the components of the system according to the

tools and materials metaphor [14],
(2) Model the external behavior of the ‘tool’ components,
(3) Model the internal behavior of the ‘materials’ and

‘automata’ components,
(4) Integrate the resulting statecharts.

The steps are not a strict, waterfall-like sequence,
where a step must be completed before the next one can
start. Rather they are meant as a sequence of thinking
about models: for any piece of model development, mod-
eling external behavior comes first, then internal behavior
is considered and the two behavior specifications are
integrated.

2.5 The classification step

In the first step, the problem is split into parts and the
parts are classified into ‘tools’, ‘materials’ and ‘automata’.
The ‘tool’ parts interact with external actors or devices
and thus exhibit externally visible behavior. The ‘materi-
als’ and ‘automata’ parts have system-internal interaction
only and, hence, their behavior is internal.

Example. In our example introduced in 2.4 above,
Vending and Timeout are classified as ‘tools’, because they
assist the user in accomplishing her/his task, viz. buying
tickets. Supervisor is classified as an ‘automaton’ because
it is triggered cyclically by an internal clock. Logging is
classified as a ‘material’, because it mainly represents an
artifact, viz. the log of transactions and events. Mainte-
nance again is classified as a ‘tool’, because it assists the
operator in accomplishing her/his task.

2.6 The external behavior modeling step

This step is comparable to classic use case modeling.
For every ‘tool’ component of the system, the type sce-

narios (in UML terminology: the use cases) are identified.
Every type scenario is modeled as a statechart.

Every state transition represents a step in a type sce-
nario, where the triggering event represents the stimulus
coming from an external actor, while the triggered actions
represent the response by the system. Responses can be
(1) messages to an external actor or device, (2) actions
that change the state of the system, or both.

In order to simplify integration, all statecharts are
modeled so that they are compositional [5].

cancel OR timeout

insert coin AND
coin ≥ amount

take coin;
clear display;
print ticket;
return change

cancel OR timeout
clear display

give money back;
clear display

take ticket and change
OR timeout

select ticket
register selection;
display amount

re-select ticket
register selection;
display amount

insert coin AND
coin < amount

take coin;
display new
amount insert coin AND

coin ≥ amount
take coin;
clear display;
print ticket;
return change

ready

selection

payment

delivery

insert coin AND
coin < amount

take coin;
display new
amount

user action

user action

45 s after
entering
running

timeout

Timeout

idle

running

user action := select ticket OR re-select ticket OR insert coin OR
take ticket and change OR cancel

Vending

log sale

Figure 2. The external behavior of the Vending and
Timeout components modeled with scenario state-

charts (scenario statecharts are denoted by a
double-arrow symbol)

Example. For our example, the behavior models of
Vending and Timeout are given in Figure 2. The double
arrow symbol in the upper left edge of the statecharts is a

stereotype, marking these statecharts as being type sce-
narios. The behavior model for Maintenance is omitted
here.

2.7 The internal behavior modeling step

In this step, the internal behavior of the ‘automata’ and
‘materials’ components is modeled. This step is compara-
ble to classic system behavior modeling with state ma-
chines.

The ‘automata’ components are active. Their state
transitions are typically triggered by internal events and in
turn trigger actions and other internal events.

The ‘materials’ components, on the other hand, are
passive. Their statechart is a classic class or object be-
havior description, specifying the sequences of operations
that are allowed on an object. Hence, the events triggering
the state transitions are method invocations and there are
no explicit actions for these transitions.

Example. Figure 3 gives the models of Supervisor and
Logging in our example. The square symbol in the upper
left edge of the statecharts is a stereotype, marking these
statecharts as being internal behavior specifications.

logging off

logging on

start logging

log
transaction log

event

download log

stop logging

Logging

scan devices

60 s after
entering idle scan

complete

problem detected

idle

scanning

Supervise

problem

log event;
go offline

reset

Figure 3. The internal behavior of Supervisor (an
‘automaton’) and Logging (a ‘material’) modeled with
internal statecharts (internal statecharts are denoted

by a square box symbol)

2.8 The model integration step

In the final step, the statecharts that were modeled in
the two previous steps are integrated into a single state-
chart which then is a non-redundant model of the com-
plete behavior of the system. Obviously, this statechart
contains the constituent statecharts from steps 2 and 3 as
sub-statecharts.

During the integration process, inconsistencies be-
tween the parts to be integrated must be detected and re-
solved. Equally, missing information must be identified
and added. Hence, the integration process cannot be
automated. It is a manual, method-guided process.

In order to describe this process, some general discus-
sion of integration and inconsistency problems is needed
first. Therefore, integration is presented in a section of its
own below.

3. Integration issues

3.1 Kinds of integration

There is a lot of work dealing with integration and
synthesis of models, e.g. [2], [8], [9], [13]. In order to
characterize my approach, I give a short classification of
the kinds of integration that are typically being used.

a. Stakeholder viewpoint integration. A given prob-
lem is modeled from the viewpoints of different
stakeholders. The integration problem is to build a single
model from these viewpoint models [9].

b. Instance model integration. A set of models cov-
ers various instances of a given problem. The integrated
model abstracts the instances into a type model. Typical
representatives of this kind of integration are state ma-
chine synthesis approaches where a set of instance sce-
narios, each one describing a single behavioral thread, is
integrated into a state machine model which represents all
possible behaviors [8], [13].

c. Intra-aspect model integration. Some aspect of a
system is modeled by a set of non-overlapping partial
models. These models are integrated into a single model
of the given aspect. The integration approach in [2], where
a set of different, but related type scenarios (i.e. use cases)
is integrated into a common model, is a typical example of
this kind of integration.

d. Cross-aspect model integration. Different aspects
of a system are modeled separately. The integration prob-
lem is to bring these aspect models together. This is the
principal integration problem when modeling with UML.
Another example for this kind of integration is the
lightweight integration of use cases and class models
presented in [3].

In the approach described in this paper, only aspectual
model integration (cases c. and d. above) is considered.

Instance model integration (case b.) is no issue here,
because all partial behavior models are statechart models,
i.e. they already represent classes of behavior, not in-
stances. Stakeholder viewpoint integration is also not
treated. It is assumed here that viewpoint integration takes
place when creating the statecharts that model the behav-
ior of the system components.

3.2 Dealing with inconsistency

A major problem of any integration approach is deal-
ing with inconsistencies between the models that are to be
integrated.

We distinguish inconsistencies in syntax, naming, in-
formation flow and semantics.

Syntactic inconsistencies occur when the same concept
is represented with different syntax in two constituent
models. As an example, assume a model where there are
two outgoing flows f and g, while in another model, we
have an incoming compound flow consisting of f and g.

Naming inconsistencies occur when the same concept
is given different names in two constituent models. The
principal means for avoiding naming inconsistencies is
using and maintaining a glossary.

Information flow inconsistencies occur when a com-
ponent B requires information from another component A
which is not produced by A. Another, milder form of
information flow inconsistency occurs when a component
produces an information which is not needed anywhere
else.

Semantic inconsistencies occur when two constituent
models have a different understanding of the underlying
problem. For example, consider a seat reservation system
and let the model of the external behavior have a waiting
list option for the case where no seats are available. On
the other hand, assume that in the model of internal be-
havior, there is no concept of maintaining a waiting list. In
such a situation, we have a semantic inconsistency.

In the approach described in this paper, models with
semantic inconsistencies cannot be integrated as they are.
In order to make integration possible, semantic inconsis-
tencies must be resolved by modifying the statecharts
involved. Nevertheless, the approach also has benefits
with respect to semantic inconsistencies: it helps detecting
them systematically.

3.3 The integration process

As already mentioned, statechart integration as de-
scribed in this paper is a manual, method-guided process.
Hence, the person doing the integration needs knowledge
about the system to be modeled or easy access to the per-
sons having this knowledge. The process consists of two

major activities: syntactic integration and detection and
resolution of inconsistencies.

Note that inconsistencies are resolved during integra-
tion; the approach does not aim at tolerating inconsisten-
cies [1], [10].

a. Syntactic integration. Syntactic integration is done
according to the method given in [2]. We construct a
statechart hierarchy having the constituent statecharts as
its leafs. Statecharts being independent of each other be-
come refinements of parallel states in this hierarchy.
Statecharts with a sequential dependency become refine-
ments of two sequential states, those which mutually ex-
clude each other become refinements of alternative states,
etc.

Example. Figure 4 shows the high-level statechart
which integrates the previously developed element state-
charts. Vending and Timeout are independent, so they be-
come parallel statecharts. Both Vending and Timeout have a
sequential dependency on Maintenance (and vice versa).
Hence, state transitions from Maintenance to Online and
vice versa are introduced. Supervise and Logging are inde-
pendent of the Maintenance/Online cluster, hence we do a
parallel composition here.

Vending Timeout

Online

 Supervise

 Ticket vending machine

Maintenance

reset;
log event

go online

 go offline

 Logging

Figure 4. The composite statechart representing the
integrated behavior (both external and internal) of

the system

b. Detection and resolution of inconsistencies. In or-
der to detect and resolve inconsistencies, all state transi-
tions are inspected, one by one.

We start with the statecharts modeling behavior of
‘tools’ and ‘automata’ components. Recall that for all
state transitions of these statecharts, the triggered actions
are responses (to an external actor or device) or internal
actions that cause a change in the state of the system3.
Now every such transition is inspected by answering two
questions: (1) Which actions must be taken by the system

3 For the sake of simplicity, we regard events that are produced by a

state transition also to be (primitive) actions.

to produce the required response? (2) Which actions must
be taken by the system to change its state properly?

Next, the statecharts modeling the behavior of ‘materi-
als’ components are inspected. Here, the question for
every transition is: (3) Is the triggering event produced
where it should in the statecharts of the ‘tools’ and/or
‘automata’ components?

Answering question (1). Let ti be the transition cur-
rently under inspection. For every action A that must be
performed by the system to produce a response, identify
the component of the system which performs this action
and produces the proper response. There are three cases to
consider: (a) the action is local, i.e. the component con-
taining ti also performs the action, (b) there exists another
component X performing the requested action, and (c)
there is no such action. In case (a) there is nothing to inte-
grate concerning action A. In case (c) we have a semantic
inconsistency which must be resolved by modifying the
inconsistent statecharts (see 3.2 above). In case (b), iden-
tify the state transition tx in the statechart of component X
that triggers action A. Check whether this statechart is
currently in a state where transition t x is enabled. If not,
we again have a semantic inconsistency. If yes, check
whether the triggering event of tx is produced by ti. If this
is true, action A is integrated properly. If not, check
whether there is a syntactic or naming inconsistency. If
yes, resolve the inconsistency by restructuring or renam-
ing. Otherwise we have an information flow inconsis-
tency: The required action and its triggering internal tran-
sition tx exist, but ti does not produce an event that triggers
it. This inconsistency is resolved by adding the missing
event to the list of events produced by ti.

Answering question (2). The process is more or less
the same as for answering question (1). The difference is
that we do not check for responses, but for proper state
changes, i.e. the state changes must be so that scenarios
being executed later behave as expected.

Answering question (3). Recall that we now inspect
the transitions of the statecharts modeling the behavior of
‘materials’ components. Let C be the component and ti the
transition currently under inspection. Look at the re-
quirements for C. Identify all transitions t1,...,tn in other
statecharts which must trigger ti in order to satisfy the
requirements for C. In case of perfect match (t1,...,tn all
produce an event that triggers ti), we are done. Otherwise,
look for syntax and naming inconsistencies and resolve
them. The remaining cases are information flow incon-
sistencies: an event triggering ti should be produced by
another transition tj, but it is not. This inconsistency is
resolved by adding the missing event.

Example. In our example, the integration process de-
tects and resolves the following inconsistencies. When
inspecting the transition from state delivery to state ready in

component Vending (Fig. 2), we find that a logging action
must be performed. We easily identify the Logging com-
ponent as being responsible for that action. In this compo-
nent, there is an action log transaction. However, in the
Vending statechart, the action is named log sale. Thus, we
have a naming inconsistency which is resolved by re-
naming the event in the Vending statechart (Figure 5).

When inspecting the Logging component, we find a re-
quirement that aborted transactions are events which must
be logged (see Section 2.3). We have an action log event,
but it is not triggered in every transition where it should
be: in the Vending statechart, we find two transitions where
a transaction is aborted, but no logging takes place.
Hence, we have an information flow inconsistency: log
event must be added to these transitions (Figure 5).

cancel OR timeout

insert coin AND
coin ≥ amount

take coin;
clear display;
print ticket;
return change

cancel OR timeout
clear display ;

give money back;
clear display ;

take ticket and change
OR timeout

select ticket
register selection;
display amount

re-select ticket
register selection;
display amount

insert coin AND
coin < amount

take coin;
display new
amount insert coin AND

coin ≥ amount
take coin;
clear display;
print ticket;
return change

ready

selection

payment

delivery

insert coin AND
coin < amount

take coin;
display new
amount

Vending

log event

log event

log transaction

Figure 5. Additions and corrections to the Vending
statechart for resolving inconsistencies detected

during integration (modified elements in boldface)

4. Conclusions

In this paper I have sketched an idea how to systemati-
cally combine specifications of external and internal sys-
tem behavior on the basis of statechart models.

To the best of my knowledge, there is no previous
work on this kind of behavior integration. Existing work
on state machine generation/composition from scenarios
[8], [13] focuses on transforming a requirements model of

external behavior (typically given by message sequence
charts) into state machines, which are typically attached to
classes in an architectural model. Viewpoint integration
[9] is another type of integration which is not considered
here.

SCR [7] uses an integrated behavior model, but in a
very specific context: SCR is based on the idea of con-
tinuously observing a set of external items (monitored
variables) and producing values for another set of external
variables (controlled variables). The interaction between
the environment and the system is standardized: the sys-
tem cyclically goes through the monitored variables and
produces values for all the controlled variables according
to the system behavior model.

The approach described in this paper is not meant as a
final solution, but as a starting point for discussion and
investigation. In particular, the feasibility and usefulness
of this approach have to be validated with real world ex-
amples. The problem of incremental specifications has to
be addressed. The combination of a behavior model as
described in this paper with a model of objects and object
structure should be explored. Some work has already been
done in my research group [3], [4]. Currently, we are also
investigating the impact of such integrated models on
executing behavioral system models.

References
[1] Balzer, R. (1991). Tolerating Inconsistency. Proceedings

13th International Conference on Software Engineering.
158 - 165.

[2] Glinz, M. (1995). An Integrated Formal Model of Scenar-
ios Based on Statecharts. In W. Schäfer and P. Botella
(eds.): Software Engineering – ESEC’95. Berlin: Springer.
254-271.

[3] Glinz, M. (2000). A Lightweight Approach to Consistency
of Scenarios and Class Models. Proceedings 4th IEEE In-
ternational Conference on Requirements Engineering.
Schaumburg, Ill. 49-58.

[4] Glinz, M., S. Berner, S. Joos (2002). Object-oriented mod-
eling with ADORA. Information Systems 27, 6. 425-444.

[5] Glinz, M. (2002). Statecharts for Requirements Specifica-
tion – As Simple as Possible, as Rich as Needed. 1st ICSE
International Workshop on Scenarios and State Machines:
Models, Algorithms and Tools, Orlando.

[6] Harel, D. (1987). Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming 8
(1987). 231-274.

[7] Heitmeyer, C. (2002). Software Cost Reduction. In John J.
Marciniak (ed.): Encyclopedia of Software Engineering,
2nd edition. New York: John Wiley.

[8] Mäkinen, E., T. Systä (2001). MAS – An Interactive Syn-
thesizer to Support Behavioral Modeling in UML. Pro-
ceedings 23th International Conference on Software Engi-
neering. 15-24.

[9] Nuseibeh, B., J. Kramer, A. Finkelstein (1994). A Frame-
work for Expressing the Relationships Between Multiple
Views in Requirements Specification. IEEE Transactions
on Software Engineering 20, 10. 760-773.

[10] Nuseibeh, B., S. Easterbrook, A. Russo (2000). Leveraging
Inconsistency in Software Development. IEEE Computer
33, 4. 24-29.

[11] OMG Unified Modeling Language Specification
http://www.omg.org

[12] OMG (2003). UML 2.0 Superstructure Specification. OMG
Final Adopted Specification, document ptc/03-08-02.
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

[13] Whittle, J., J. Schumann (2000). Generating Statechart
Designs from Scenarios. Proceedings 22th International
Conference on Software Engineering. 314-323.

[14] Züllighoven, H. (1998). Das objektorientierte Konstruk-
tionshandbuch (in German). Heidelberg: dpunkt Verlag
[English version: Object-Oriented Construction Handbook.
Morgan Kaufmann, 2004].

