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ABSTRACT
Statecharts have evolved into a widely used instrument for speci-
fying system behavior and interaction. Several variants of state-
charts have been developed, for example, Harel's original state-
charts, UML state machines or derived concepts such as the state
machines in RSML.

In this paper I investigate how a statechart variant for require-
ments models should look if we want it to be as simple as possi-
ble, easy to understand and well suited for expressing require-
ments models.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Languages; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs—Specifica-
tion techniques

General Terms
Languages, Theory

Keywords
Statecharts, statechart semantics, requirements engineering

1. INTRODUCTION
Statecharts [4] are a widespread and successful means for specify-
ing system behavior and user-system interaction. Since their
original inception by David Harel in 1987, several variants of
statecharts have been introduced and there have also been several
attempts to underpin the intuitive meaning of statecharts with
precise semantics. Harel himself has published different versions
of statechart semantics, for example [4] and [5]. UML [8] has
adopted statecharts and has given them semantics that differ from

Harel's in several points. However, the definition of state
machines and their behavior in the OMG definition of UML is
vague and incomplete in several points. In a recent paper, von der
Beeck [12] has formalized UML statecharts. Leveson and Heim-
dahl [7] have used a variant of statecharts when creating the
requirements language RSML. Glinz [1] has demonstrated the use
of statecharts for specifying and integrating scenarios and has also
defined the semantics of the statecharts that he uses in his
approach. Von der Beeck [11] has done a comprehensive com-
parison of the statechart variants existing in 1994.

In this paper I examine the distinguishing features of these
approaches and discuss which of them are needed and useful
when using statecharts for requirements specification. Of course,
we cannot model all kinds of requirements using statecharts.
Naturally, statechart models will concentrate on requirements
concerning dynamic system behavior and interaction. If we have
other models which model aspects such as data and functionality,
we expect that the statechart models and the other aspect models
fit together in a smooth and well-defined way.

The goal is to arrive at statechart concepts and semantics that are
small, intuitive, easy to understand and suitable for specifying
requirements for system behavior and user-system-interaction.

More concretely, the goals are as follows:

(1) Ease of understanding
• Make it as simple as possible
• Avoid counter-intuitive behavior
• Avoid global coupling, enable modularity and local under-

standing.

(2) Suitability for Requirements Engineering
• Typical behavioral and interaction requirements must be

expressible with reasonable effort
• Statechart models and models of data and functionality

must smoothly fit together
• State and state transition explosion must be avoided.

2. EXAMINING THE ESSENTIAL FEA-
TURES OF EXISTING STATECHART
VARIANTS

In this section I present and assess the concepts and semantics of
all those features of the existing statechart variants that are rele-
vant for requirements models.
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Hierarchical states and orthogonal states. These are the core
features of statecharts that master the state and state transition
explosion problem and make state machines usable in practical
settings. So no statechart variant can do without.

Single event assumption. Most statechart semantics employ the
so-called single event assumption, meaning that not more than one
external event may happen at any given point in time. This is a
quite reasonable assumption because “a point in time” is an
abstract concept anyway. If we observe concurrent events in real-
ity, we never know whether they really happened concurrently,
because the smallest observable time interval is finite and greater
than zero. So we can always arbitrarily serialize concurrent events
without losing or distorting essential information. On the other
hand, the single event assumption simplifies the definition of
statechart semantics – so this is a quite useful feature.

Broadcasting events. Classic statecharts are based on event
broadcasting. While this is simple and convenient for small mod-
els, it can turn into a nightmare for large ones, because it results in
global coupling of all components. UML is quite unspecific in this
issue: the way events are transported from their source to the
event queues of the state machines where they should take effect
is undefined. Within a state machine, a dispatched event is broad-
cast. RSML [7] uses a component model where broadcasting
happens only within components, while components communicate
through channels. In the UML-RT proposal [10], we also find a
two-level scheme of event propagation: within a capsule, events
are broadcast, whereas event propagation from one capsule to
another is asynchronous and requires explicit connections.

 From a software engineering viewpoint, such a two-level scheme
that uses broadcasting only on the local level is clearly better than
global broadcasting. It reduces coupling; events are visible only in
those components where they take effect. If the source of an event
lies far away from the model component where it produces an
effect, the channels provide the information where the event
comes from.

Synchronous event processing. Classic statecharts employ syn-
chronous event processing. This means that the state machine
immediately reacts to an external event and does all state transi-
tions and processing of events triggered by state transitions instan-
taneously, i.e. in zero time. In particular, all reactions to an exter-
nal event are completed before the next external event can happen
(thus fulfilling the single event assumption, see above). UML
queues events instead of immediately reacting to them. However,
once an event is dequeued, it is processed synchronously.

Synchronous event processing may have nice formal properties,
but it comes with a bunch of semantic problems (see [11]) and
may lead to counter-intuitive behavior. For example, in Figure 1
we would expect that event g leads from states {R, U} to either
{S, V} or {W, V}, depending on how we treat cascading events.
However, in Harel's statechart semantics, event g non-determi-
nistically leads to either {S, V} or {T, V}; the latter clearly being
counter-intuitive.

The quasi-synchronous event processing and timing scheme that I
proposed in [1] gets rid of most of these problems. In this scheme,
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Figure 1. Event processing example

everything takes time, but the time intervals are infinitesimally
short. Basically, it works as follows: when an event e happens, all
transitions being enabled by e and having a source state which is
currently active are taken. The source states of the triggered
transitions are left immediately. A time interval ε0 later, the des-
tination states are entered. Then the actions of the triggered transi-
tions are executed. Within a transition, execution follows the
sequence in which the actions are specified. If more than one
transition is taken concurrently, the order of transitions is non-
deterministic. If an action generates an event, this event is proc-
essed completely before the next action is taken.

Example: consider statechart A in Figure 1. Suppose that all
actions generate events and that A is currently in states {R, U}
When event g happens at time te, quasi-synchronous event proc-
essing works as follows: at te: g happens, R is left, U is left; at
te+ε0: S is entered, V is entered; at t e+ε1: q is produced; at te+ε2: x
is produced; at te+ε3: f is produced, S is left; at te+ε4: W is en-
tered; at te+ε5: z is produced; at te+ε6: y is produced. If the next
external event happens at time te', for any δ with 0 < δ < | te' - te |
holds ε0 < ε 1 < ... < ε6 < δ, that means execution time is
infinitesimally short. Alternatively f, z and y could be produced
prior to q and x: the order in which concurrent transitions are
processed is non-deterministic.

 This is a both powerful and intuitive abstraction for requirements
engineering models: things take time and happen in sequence, but
we can neglect the actual (implementation-dependent) duration.

Kinds of actions. Harel statecharts have a quite simple action
scheme: actions are triggered by state transitions and work syn-
chronously, i.e. in zero time. UML, on the other hand, has intro-
duced an elaborate action scheme, distinguishing entry actions
(triggered and completed prior to entering a state), exit actions
(triggered upon exiting a state and completed before proceeding to
the next state) and do actions (executed while the system is in a
particular state).

For modeling requirements, it suffices to have two kinds of
actions: those that are triggered and completed during a state
transition and those that are executed while the system is in a
particular state. Having these two kinds, we can employ a simple
and powerful action triggering system (see Section 3).
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Figure 2. The inter-level transition problem
a. Statechart with inter-level transitions.

b. Equivalent statechart without inter-level transitions. Statechart
A' is compositional, i.e. it can be viewed as a composition of three

black box components B, C and D'.

Event queues. The UML event queues are an implementation-
oriented concept that can be omitted for requirements models,
thus yielding much simpler event semantics.

History. Both Harel and UML statecharts provide a history
mechanism that allows easily re-entering that substate of a state-
chart which had been the last active one before the statechart was
left.

When specifying dialogs, it sometimes may be attractive to have
such a feature. However, I have never seen requirements models
that crucially needed the history mechanism. On the other hand, it
incurs cost in terms of comprehensibility and simplicity of seman-
tics.

Inter-level entry and exit transitions. In most statechart vari-
ants, a transition may directly enter or exit a nested substate of a
statechart, crossing several nesting layers.

While this is sometimes convenient for the model writer, it is bad
for model readers and maintainers because it breaks the abstrac-
tion that comes with the nesting of statecharts. It is also bad for
constructing large models from components, because it hinders or
even prevents composition of statecharts. There is no urgent need
for inter-level transitions: they always can be replaced by a set of
layer-conforming ones (Figure 2).

State transition trigger conditions. Both Harel and UML state-
charts use events and guard predicates for controlling the trigger-
ing of a transition. Usually, the trigger conditions and the trig-
gered actions are written as annotations of the state transition
arrows (cf. Figures 1 and 2). This notation quickly breaks down
when it comes to complex triggering conditions. RSML intro-
duced AND-OR tables (which are in fact just decision tables) for
representing complex trigger conditions in a clear and comprehen-
sible way1.

For practical models, we need both: when the trigger is a single
event, a decision table is overkill. On the other hand, complex
conditions are easier to comprehend when written separately in
tabular form.

Treating/prioritizing competing state transitions. If an active
state has more than one transition that is being triggered by the
same event, the statechart semantics must decide which transition
to take. The simplest semantics is to take a random decision.
However, this is frequently not adequate. Alternatively, one could
define hierarchy-based rules (inner-level first, for example) or
define transition priorities explicitly.

States and data. All major statechart variants model the overall
state of a system not exclusively with states, but also with vari-
ables. These variables may be written by statechart actions and
their value may be evaluated in state transition conditions. Using
variables is a pragmatic way to reduce the number of required
states. It allows the modeler to express the essence of behavior
and interactions with states while the system memory is modeled
with variables. Using variables is also a straightforward way of
integrating statecharts with other models that are oriented towards
data, functions, or objects. In requirements models, where we
have to express all these aspects, we need variables in most
domains. However, variables must be used with care: undisci-
plined use of variables breaks abstraction and leads to global
coupling of components.

Integrating statecharts with other models. The existing state-
chart variants do not solve the problem of integrating statechart

                                                                        
1 While disjunction of events is obvious, one may wonder how event

conjunction works: with the single event assumption, a conjunction of
events can never be true.
However, in a model where we have variables (see the subsection on
states and data), we frequently want to specify events that happen when
a set of variables takes some given combination of values. This can be
expressed by a conjunctive predicate, for example mode = operational ∧
cruising ∧  speed > 100. At every point in time where such a predicate
becomes true, an event is generated. It is also possible to define the
conjunction of an event happening and a predicate being true as a
trigger.
An AND-OR table is basically a disjunctive collection of such
conjunctive predicates.
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models with other (function-, data-, or object-oriented) models
convincingly.

Harel models behavior and functionality as two separate models
which both have a decomposition hierarchy of their own. The
models communicate by references to variables and by invocation
of operations [5], [6]. The separately modeled behavior hierarchy
allows specification of behavior on all levels from overall global
behavior to detailed local behavior and is strong if we focus on
aspect separation. However, this approach is quite weak when
considering aspect integration.

UML, on the other hand, considers statecharts as auxiliary models
that are embedded in the specification of classifiers in order to
describe their internal behavior. UML thus integrates the models
of a classifier and of its behavior, which makes it easy to model
local behavior. However, as UML has no true composition of
components (where the composite is a higher-level abstraction of
its components, see [2]), it is awkward to specify global behavior
in UML.

In the UML-RT proposal [10] as well as in ROOM [9] (where
UML-RT is derived from), there is a hierarchical composition of
components (components are called capsules in UML-RT). How-
ever, UML-RT is in no way simple. It is an UML profile, which is
eventually mapped to ordinary UML concepts. Thus it inherits all
the problems that plague UML: for example, complexity, no
precise semantics, and the difficulty of specifying global behavior.

In our own work [3], we have a simple integration of objects and
behavior. An object decomposition hierarchy serves as the back-
bone of a system model. Objects may be viewed as composite
states and may be refined to pure statecharts on elementary levels.
So our object hierarchy forms a statechart hierarchy at the same
time and allows us to model behavior and interaction at the place
and on the level of abstraction where it is expressed best.

3. RECOMMENDATION FOR A REQUIRE-
MENTS MODELING-ORIENTED
STATECHART VARIANT

Based on the findings from Section 2 and considering the goals
stated in the introduction, I propose the following statechart struc-
ture and semantics for modeling (functional) requirements specifi-
cations.

Basic features: Hierarchical and orthogonal states, single event
assumption. Quite obviously, these constituent features of state-
charts should be present in any serious statechart variant.

State transition syntax: Two notations for state transition trig-
gers, no inter-level transitions, no history . As discussed in Section
2, it makes sense to have two notations for state transitions. For
simple event-action pairs, we keep the original notation of
event/action, which is attached to the arrow that denotes the state
transition. Complex triggering conditions are written in tabular
form with disjunctive columns and conjunctive rows, analogous to
the AND-OR-tables of RSML. This notation also allows the for-
mulation of state transition guards in an easy and straightforward
way.

Inter-level transitions are forbidden because they break abstrac-
tion and make statechart composition hard or impossible.

History is omitted because it does add not enough value for re-
quirements modeling in comparison to the complexity it adds.

Event processing: Two-level distribution, quasi-synchronous
event processing, quasi-synchronous and asynchronous actions,
no event queues, simple prioritization scheme for competing tran-
sitions. On a local level, broadcasting events is simple and power-
ful, which is good. On a global level, it breaks modularity due to
global coupling, which is bad. Therefore we follow the two-level
concept of RSML: Within an object, events are broadcast syn-
chronously. From one object to another, they have to be transmit-
ted explicitly via channels. This transmission is asynchronous.

Quasi-synchronous event processing is intuitive (everything takes
time in reality), but still abstract enough for expressing require-
ments (we do not need to care about actual duration). Further-
more, it avoids most of the semantic problems that come with the
traditional synchronous event processing.

Our concept of action processing is aligned with the concept of
event processing: we distinguish quasi-synchronous actions and
asynchronous actions. A quasi-synchronous action runs to com-
pletion in infinitesimally short time. Any quasi-synchronous
action which is triggered in a state transition hence runs to com-
pletion within the time interval of the transition. When an asyn-
chronous action is triggered, it is just started and then runs asyn-
chronously. The completion of an asynchronous action is sensed
by a completion event. Leaving a state terminates all asynchro-
nous actions that have been triggered upon entering the state and
have not yet completed.

Event queues are normally not needed when modeling require-
ments, so we omit them. In the rare cases where an event queue
must be modeled, it can be modeled explicitly.

The problem of non-determinism when an event triggers two or
more competing transitions is solved with a simple priority
scheme that may be overridden by explicitly set priorities: By
default, the innermost of the competing transitions is taken. If the
competing transitions all are on the same hierarchical level, the
behavior is non-deterministic. Any other scheme can be imposed
by explicitly adding priorities to the transitions.

Integration: Integration of statechart and object hierarchies. In
nearly every requirements model, we need a combination of an
object model with a model of behavior and interaction. Hence we
employ the concept of an object decomposition hierarchy [3],
where every object is regarded to be an abstract state, too. An
object may comprise other objects and/or states. States may be
refined into statecharts.

The syntax of object composition is logically the same as the one
for composing states in statecharts and the semantics of entering
and exiting objects – triggered by events – is the same as for states
in statecharts.

The integration of statecharts into an object hierarchy also helps to
solve the problems of broadcasting and referencing variables. An
event which is received by an object X is broadcast to all elements
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that are contained in X. A neighbor of X receives the event only if
it is explicitly sent to it via a channel.

The object structure also yields a natural scoping structure for
names: names are visible inside out, but not vice-versa. Objects
may export names in order to make them visible outside. Trigger
conditions and actions can only refer to those variables that are
visible for them, thus avoiding global coupling and enforcing
modularity.

Figure 3 gives a rough idea how we can model requirements with
an integrated object/statechart model. RoomControl is a component
of a larger model that describes the requirements of a heating
control system. RoomControl is an object which has two high-level
modes, LocalControlOn and LocalControlOff. It further contains a
data object Settings, a behavioral object Controller and a scenario
ManageLocalRoomTemperature. The latter is an abstract component
(indicated by three dots after its name) which may be refined
elsewhere into a statechart. By embedding this scenario in the
RoomControl object, we express that it belongs to the specification
of RoomControl. RoomControl receives the on and off events asyn-
chronously over the channel setOnOff from another object. Within
RoomControl, events are broadcast. Settings is a data object having
no explicitly modeled state. It contains variables holding the cur-
rent and default temperature settings and the operations Current-
Temp and DefaultTemp that read the values of these variables. Note
that variable and operation definitions are not modeled graphi-
cally. The object Controller is refined into a statechart with two
parallel threads2. The transitions are modeled in tabular form
(Figure 4). Controller also contains a variable ActualTemp. Its value
is evaluated in the transition table that specifies the state transi-
tions from Init to Modifying and from Monitoring to Modifying. Basi-
cally, this table says that if local control is on, the comparison of
ActualTemp  with the value given by CurrentTemp determines
whether the radiator valve will be opened or closed. Otherwise,
Controller uses the default temperature value obtained from Set-
tings. The table also acts as a guard: if ActualTemp is equal to the
desired value obtained from Settings, no column of the table
evaluates to true and no transition is triggered.

RoomControl
Local
Control
Off

Local
Control
On

SetDefaults

ControlValve

on off
GetActualTemp

SetOnOff

UserDialog ManageLocal
RoomTemperature...

Settings

Modifying

Monitoring

Init
Controller

Reading

Figure 3. Example of an integrated object/statechart
hierarchy2, showing the room control requirements for a

heating control system

                                                                        

2 Note that we do not use dashed lines for separating orthogonal state-
charts. States or objects that are not linked by a transition arrow are
considered to be orthogonal.
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Figure 4. Transition tables for the state transitions in the
object Controller of Figure 3

4. CONCLUSIONS
Does this   r  equirements-  o  riented   s  tate  c  hart variant (ROSC)
achieve the goals stated in the introduction?

• ROSC is considerably simpler than the two most important
existing variants, Harel statecharts and UML state machines.

• The quasi-synchronous paradigm is intuitive and avoids
counter-intuitive behavior.

• ROSC supports basic software engineering principles: the
hierarchical object structure with scoping of names and limited
broadcast avoids global coupling and fosters modularity and
local understanding. Forbidding inter-level transitions makes
statecharts compositional and also contributes to modularity.

• From my experience with requirements models I claim that
ROSC is powerful and expressive enough for modeling typical
behavioral and interaction requirements in an easy and conven-
ient way.

• ROSC integrates statecharts into a hierarchical object model. In
this modeling framework, statechart models and models of
interaction, behavior, functionality, and data fit together in a
smooth and well-defined way.

• The possibility of using variables avoids state explosion.

My proposal is not empirically validated – remember this is a
position paper. Motivation and evidence stem from personal expe-
rience and from general software engineering and requirements
engineering principles.

I have concentrated on requirements models only. The applicabil-
ity and usability of the proposed statechart variant for other pur-
poses, in particular for architecture and detailed design remains to
be investigated.
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