
Visualizing Product Line Domain Variability by Aspect-Oriented Modeling

Reinhard Stoiber, Silvio Meier and Martin Glinz

Department of Informatics, University of Zurich, Switzerland

{ stoiber | smeier | glinz } @ ifi.uzh.ch

Abstract

Modeling variability is a core problem in software

product line engineering. The relationship between

variability and commonality in a software product line

bears strong similarities to the relationship between

crosscutting concerns and core concerns in aspect-

oriented modeling. So modeling variability with as-

pect-oriented techniques is an obvious idea which has

been exploited before to some extent.

In this paper, we propose a new approach to model-

ing and visualizing variability by a combination of

aspect-oriented variability modeling with table-based

modeling of configuration possibilities and constraints.

As a modeling language, we use a slightly extended

version of the ADORA language.

Our main contributions are a visual, integrated

model comprising both the commonality and the vari-

ability of the product line and a novel mechanism for

synthesizing products from this model based on the

aspect weaving capabilities of ADORA.

1. Introduction

Software product line engineering has gained a

broad interest in academia as well as in industry over

the past decade. A software product line [3] is a family

of software applications in a common application do-

main, sharing a set of common features. The given

variety of different applications is specified by the

product line variability. When developing such appli-

cation families, software product line engineering in-

creases the overall product quality and customer satis-

faction and at the same time decreases cost and time

for development [17].

Although not all product line engineering ap-

proaches explicitly address a product line requirements

document, it is advantageous to have one [5]. Such a

document expresses the variability by specifying varia-

tion points and product specific variants that can be

bound to the variation points [18].

However, current modeling languages such as UML

[15] do not support modeling of variability. So the

modeler has two alternatives which are both unsatisfac-

tory: Either the commonalities and all variants are rep-

resented in a single model. This means that variants

must be identified manually without support for mod-

eling constraints on variants or dependencies between

them, which leads to inaccurate and erroneous models.

Or the modeler creates a separate model for each prod-

uct variant. This means the common requirements must

be replicated in every product variant, creating redun-

dancy and, as a consequence, inefficiency and potential

inconsistency.

In this paper we propose a new software variability

modeling approach, building on our experience in

modeling aspects in requirements and architecture

models. By modeling variability with modularized

crosscutting concerns, i.e. aspects, by employing a

decision model to manage the variability concerns, and

by augmenting our aspectual join relationship seman-

tics to accord with the decision model, we solve the

accuracy, efficiency and consistency problems. By

modeling all variabilities and commonalities in one

common, integrated domain model, we also achieve

better understandable and maintainable product line

requirements models. Moreover, profiting from our

achievement in weaving aspect-oriented models [11],

we can support automatic product derivation, when

building and negotiating single products.

The remainder of the paper is organized as follows:

in Section 2 we describe existing conventional variabil-

ity modeling techniques. In Section 3 we briefly intro-

duce aspect-orientation and other work on aspects and

variability. Section 4 describes our approach and gives

an example. Section 5 concludes the paper with a dis-

cussion and planned future work.

2. Conventional Variability Modeling

Research and practice in product line requirements

engineering brought up many approaches and tech-

niques in the last decade. Probably the most widely

used technique is feature-oriented domain analysis

(FODA) [8]. Using features to represent high-level,

customer-relevant characteristics of the product line is

an intuitive approach and facilitates the communication

of common and variable requirements. FODA typically

supports common, optional and alternative features to

introduce variability. In the past, it has been widely

used in product line practice and also as a basis in re-

search. Feature trees can be enriched in different ways,

for example, by adding rationale and constraints to

assure valid feature configurations [1]. However, even

though the method is successful, feature models can

still accomplish only a part of the requirements engi-

neering. They are well suited for customer negotiation,

thus facilitating the first requirements tasks, but they

are not sufficient to build entire requirements models.

In requirements engineering, UML [15] is often re-

garded as the de-facto modeling language for conven-

tional systems. UML supports many modeling nota-

tions for different views on the requirements and archi-

tecture level. Gomaa et al. [7] developed an UML-

based research prototype providing a tool framework

for software product line engineering and product deri-

vation. They model use cases, collaborations, classes,

statecharts, features and multiple product line views.

They use the feature model as a unifying view to sup-

port feature-based product derivation. Their approach

supports automatic consistency checking between the

different views and models. In summary, they combine

many separate notations to model the requirements and

realize the variability management with feature models

as a unifying view.

Pohl et al. [17] use a similar, UML-based approach.

They propose orthogonal variability modeling, provid-

ing a general variability model comprising the do-

main’s variation points and variants. For requirements

modeling they use notations like text, features, use case

models, data flow diagrams, class diagrams or state

machine diagrams. All these models include the com-

monality and variability. Separately, they develop an

orthogonal variability model of the domain and link the

variation points and variants between the orthogonal

model and the concrete correspondents in the require-

ments engineering artifacts. In this way, they can use

traditional requirements engineering also for product

lines, but nevertheless identify and trace variability and

commonality in requirements. Compared to [7], Pohl et

al. employ explicit orthogonal variability models for

variability management, instead of feature modeling.

Both approaches use multiple separate notations to

describe the requirements.

Another related approach is Schmid et al. [19]. They

present a customizable approach for variability man-

agement that can be applied to company-specific mod-

eling notations. Central to this method is the decision

model, in which the entire domain variability is docu-

mented. Schmid et al. present cookbook-like proce-

dures to enhance specific modeling notations with a set

of variability selection types. These types include op-

tionality, set optionality, alternative, set alternative and

value reference selection. This makes the approach

customizable and applicable to every software life-

cycle phase. The weakness of this approach, however,

is that it will hardly be possible to use existing tool

support since they a priori build on specific, non-

standard notations. This approach has been success-

fully applied in large-scale product lines in the Euro-

pean industry [4].

Software architecture is another major field in vari-

ability modeling. There exist many architecture de-

scription languages (ADLs) in different application

areas [10]. In the field of software product lines, two

prominent representatives are xADL 2.0 [21] and Ko-

ala [16]. ADLs naturally focus on architecture, so they

cannot replace traditional requirements engineering.

However, xADL 2.0 for example possesses quite ad-

vanced variability management techniques, which can

also be interesting for requirements.

3. Aspect-Oriented Modeling

3.1. Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD)

deals with so-called crosscutting concerns in software

systems. These cannot be separated from other con-

cerns by conventional modularization means for soft-

ware artifacts. A crosscutting concern impacts other

software artifacts and the impacted artifacts cannot

control the way they are impacted, as argued in [11].

This leads to effects such as scattering and tangling of

the crosscutting concerns over other non-crosscutting

ones. AOSD aims at introducing ways to modularize

crosscutting concerns and denoting their relationship to

other concerns in the software process [2]. An early

separation and modularization of cross-cutting con-

cerns further improves the product quality and reduces

the adjustment, maintenance and evolution cost. Apart

from these advantages, the use of aspect-oriented tech-

niques to visualize requirements models may help to

better understand the models [11] [12].

3.2. Aspect-Orientation and Variability

There is various work emphasizing the com-

monalities between AOSD and software product line

engineering, e.g. [9] [20] [14] [13]. Software variabil-

ity impacts a software system in a similar way as

crosscutting concerns do, while commonalities behave

like non-crosscutting concerns. In this way we have a

correspondence between commonality and core con-

cerns on the one hand and between aspects (represent-

ing crosscutting concerns) and variability on the other

hand. Both aspects and variability are orthogonal con-

cepts which are independent of the core system (core

concerns / commonality) and can freely be combined

with it.

Furthermore, software variability may impact com-

monalities as well as other software variabilities. In the

same way, crosscutting concerns (aspects) may impact

non-crosscutting ones as well as other crosscutting

concerns. Therefore, aspect-oriented techniques can

also be used for modeling the variable and the common

concerns in a software product line separately. For

example, Loughran et al. [9] use aspect-oriented tech-

niques together with natural language and concern

identification for the derivation of suitable feature-

oriented models for implementation. Siy et al. [20]

present an approach for an aspect-oriented description

of product line requirements by handling system re-

quirements, exception handling requirements (alternate

flows) and non-functional requirements as aspects in

their framework. Their approach is based on textual

requirements specification and is strongly dependent

on the use of requirement tags for aspects to locate

where to weave in. The work by Mezini and Oster-

mann [13] further sheds light on the applicability of

AOP beyond the traditional examples of logging, de-

bugging, authorization control, and the like. They

combine feature-oriented and aspect-oriented ap-

proaches with the result of gaining less code scattering

of singular features by using traditional aspects also for

variability. Consequently, they improve feature-

oriented techniques by aspect-orientation. In [14],

Nyssen et al. elaborate how the use of aspects helps

with the realization of domain variability in feature

models. Their result is that aspects complicate the

readability and comprehension of architectures and that

they won’t recommend it for product lines. However,

they didn’t employ any means for visualization of the

implicit communication links between aspects and

common components.

4. Modeling Variability with Aspects

In this section, we introduce our approach, using a

simple security system as an example. This system

consists of sub-components for an alarm system, a

monitoring system and a door opening system. The

first two are not specified in more detail. The third, the

electronic door opening system, consists of two differ-

ent options: a fingerprint reader and a keypad plug-in.

At least one of these two has to be chosen and also

both can be included in a valid system. The keypad

plug-in further offers two alternative variants of key-

pads: a hardware keypad and a touchscreen keypad.

The keypad plug-in is in any case needed when select-

ing one keypad variant. This example represents a sim-

ple, partially described product line domain. The men-

tioned components can be understood as product fea-

tures, describing customer-relevant functionality of the

system.

As a modeling language, we use ADORA [6] with the

aspect modeling extensions described in [11] [12]. Re-

call that conventional modeling languages such as

UML have severe difficulties with handling and main-

taining variability, as described in Section 1.

4.1. Modeling a Product Line Domain

When modeling the system, see Figure 1, we begin

by modeling the commonality. We generate an abstract

object for the electronic security system and embed the

sub-components Alarm System, Monitoring System and

Door Opening in it. For the first two components, we

have hidden the details, indicated by the ellipsis after

the name. The door opening system contains a use case

Open the Door as a commonality and this use case is

performed by an external actor whom we call House
Owner.

Now we model the variability. For the door opening,

there exist two options, a keypad and a fingerprint

reader. The latter is either a hardware or a touchscreen

keypad. Every variant is modeled as an ADORA aspect

container (a rectangle with two cut-off edges) in Figure

1. Next, we model the details of the variants. In ADORA

we describe the behavior and the user-interaction of a

component with statecharts and so-called scenario-

charts, respectively [6]. Rectangles with rounded edges

denote states, ovals denote (type-level) scenarios,

which constitute use cases or use case steps in UML

terminology.

Modeling of variability semantics is also illustrated

in Figure 1: The door opening by keypad and by fin-

gerprint reader are two separate options, where the user

Figure 1. The electronic security system domain model with variability modeled by aspects and additional

annotations, in the ADORA language.

Table 1. The decision model for the security system; an orthogonal representation of the domain variability.

Name Relevance Description Range Multiplicity Constraints Binding Time

Fingerprint_Reader Is there a fingerprint

scanner?

true, false 1 Fingerprint_Reader = false ->

Keypad_Plug-In = true

Installation

Keypad_Plug-In Is there a Keypad for a

numeral code?

true, false 1 Keypad_Plug-In = false ->

Fingerprint_Reader = true

Installation

Keypad_Hardware Keypad_Plug-In

== true

Is it a Hardware Keypad? true, false 1 Keypad_ Touchscreen = true ->

Keypad_HW = false

Installation

Keypad_Touchscreen Keypad_Plug-In

== true

Is it a Touchscreen Key-

pad?

true, false 1 Keypad_ HW = true ->

Keypad_ Touchscreen = false

Installation

has to choose one; we model the two identifying vari-

ant scenarios with an “O”, saying that at least one has

to be chosen and also both are possible (logical or).

Further, for the two alternatives of realizing the key-

pad, we model the identifying scenarios with an “X”,

to indicate that only one of those two is possible (logi-

cal exclusive-or).

The other important parts of our proposed variability

modeling approach are the join relationships. These

are annotated by logical terms, including decision vari-

ables, which have to be evaluated to true in order to

weave in the variability represented in the aspect con-

tainers. To manage these decision variables, we intro-

duce a decision model, as proposed in [19]; see Table

1. In the decision model, we describe all decision vari-

ables and their use in detail. Every decision variable is

represented by one row in the table and has an identify-

ing name, a condition for relevance, a verbal descrip-

tion of what it decides, a range of values it can take, a

multiplicity defining how often it can exist, a con-

straint where we define all the conditions that have to

be met when deciding the variable, and a binding time

which defines the latest point in time for the decision

to be taken.1

The constraints play an important role in the deci-

sion model: they precisely represent dependencies be-

tween different variability decisions by using and, or,

exclusive-or operators, mutual exclusion and the like

1 Further, a recommendation column could be added, providing a

default value in situations where a modeler is not sure about how

to decide.

Figure 2. A possible electronic security system application model with resolved variability, in the ADORA

language.

between different decision variables. In Table 1, for

example, we modeled the facts that Fingerprint_Reader

or Keypad_Plug-In (or both) must be selected and that

either Keypad_Hardware or Keypad_Touchscreen

must be selected (if the relevance condition is fulfilled)

by constraints on the decision variables. The con-

straints must always be true when a decision variable is

decided, to provide valid configurations. The relevance

condition additionally qualifies a decision for product

derivation; if it is not true, the decision does not need

to be taken and the constraint does not need to be ful-

filled.

With the product line commonality and variability

model (Figure 1) and the additional decision model for

orthogonal description of the detailed variability rela-

tionships (Table 1), we can describe software product

line domain requirements to a considerable extent.

4.2. Deriving Applications from the Product

Line Domain

We now describe the derivation of an application

from the product line domain, again using our exam-

ple.

As a basis, we use a weaving mechanism for aspects

already provided by ADORA [11]. By reusing and

partly expanding this mechanism, we can achieve an

automatic product derivation for application engineer-

ing. This means that during product derivation, when

negotiating with customers, engineers can take deci-

sions on variability and instantly visualize the result-

ing, partly or fully derived software application model.

To generate a valid software application, we con-

sider the values “true” to be taken for all decisions ex-

cept the touchscreen keypad. By employing an auto-

matic product derivation, the resulting derived applica-

tion looks as shown in Figure 2.

Figure 2 represents an application example where

all domain variability is already resolved. With our

approach, also partial variability selection is possible.

For example, the fingerprint reader and the keypad

plug-in variabilities might already be selected and

woven into the model, while the two keypad sub-

variants might still be displayed as alternative variants,

represented by aspects.

5. Discussion

By building our approach upon the modeling lan-

guage ADORA, we benefit from a full range of already

existing features of the language and tool prototype.

These benefits include partial modeling, zooming into

and out of detailed model descriptions, the possibility

to hide partial views of the model and intelligent model

visualization algorithms for presenting the model in an

appealing form [6]. Furthermore, we can also benefit

from the traditional ADORA aspect modeling capabili-

ties if we have, for example, crosscutting concerns

within a variant.

Our approach is rather heavy-weight compared to

feature-oriented methods. This can be a disadvantage,

especially for customers to understand the models in

the early phases of the product line requirements nego-

tiations. Another potential weakness is the complexity

of the visual models, which is further increased by ex-

panding the language with variability modeling tech-

niques. This may make it harder to understand these

models compared to single system requirements mod-

els. The fact that our notation distinguishes variability

from conventional aspects only by join relationship

annotations may also be a problem in practice – this

needs to be investigated further.

With our aspect-oriented variability modeling ap-

proach we only demonstrated so far how to “connect”

variability with commonality by use cases. There are

also software systems representing only behavior. To

handle such cases we still need to define further lan-

guage semantics. For example, certain situations de-

mand to weave in only partial scenarios and/or behav-

ior, as can be realized with conventional aspects. For

such cases our approach needs to be refined.

For future research we plan to define a complete se-

mantics to basically enable the requirements modeling

language ADORA for product line analysis. To compre-

hensively support software product line domain model-

ing, we will also need to find an appropriate solution to

integrate the decision model within the ADORA tool

prototype and to handle variability constraints within

our models. Validation and verification of the domain

and application models will also be an important issue.

For the implementation of the automatic product deri-

vation we will build on our experience in realizing as-

pect-oriented weaving.

6. References

[1] Asikainen, T.: Modelling Methods for Managing Vari-

ability of Configurable Software Product Families. Licentiate
Thesis, Helsinki University of Technology. 2004.

[2] Chitchyan, R., Rashid, A., Sawyer, P., Bakker, J., Alar-

con, M. P., Garcia, A., Tekinerdogan, B., Clarke, S., and

Jackson, A.: Survey of Aspect-Oriented Analysis and De-

sign. In R. Chitchyan, A. Rashid (eds.): AOSD-Europe Pro-
ject Deliverable No. AOSD-Europe-ULANC-9., 2005.

[3] Clements, P., Northrop, L.: Software Product Lines:

Practices and Patterns. Edison Wesley, 2001.

[4] Dhungana, D., Rabiser, R., Grünbacher, P., Lehner, K.,

Federspiel, C.: DOPLER: An Adaptable Tool Suite for

Product Line Engineering. 11th International Software

Product Line Conference (SPLC 2007). Kyoto, Japan. 2007.

[5] Faulk, Stuart R.: "Product-Line Requirements Specifica-

tion (PRS): An Approach and Case Study". Fifth IEEE In-

ternational Symposium on Requirements Engineering

(RE’01). 2001.

[6] Glinz, M., Berner, S., and Joos, S.: Object-Oriented Mod-
eling with ADORA. Information Systems, 27 (6). 2002.

[7] Gomaa, H., Shin, M. E.: Automated Software Product

Line Engineering and Product Derivation. 40
th

 Hawaii Inter-
national Conference on Software Systems. 2007.

[8] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.:

Feature Oriented Domain Analysis Feasibility Study”, SEI
Technical Report CMU/SEI-90-TR21 1990.

[9] Loughran, N., Sampaio, A., Rashid, A.: From Require-

ments Documents to Feature Models for Aspect Oriented

Product Line Implementation. Workshop on MDD in Product
Lines at MODELS 2005. 2005.

[10] Medvidovic, N., Taylor, R. N.: A Classification and

Comparison Framework for Software Architecture Descrip-

tion Languages. In: IEEE Transactions of Software Engi-
neering, Vol. 26, No. 1, January 2000.

[11] Meier, S., Reinhard, T., Stoiber, R., Glinz M.: Modeling

and Evolving Crosscutting Concerns in ADORA. 11th Work-
shop on Early Aspects at ICSE’07. Minneapolis, USA. 2007.

[12] Meier, S., Reinhard, T., Seybold, C., Glinz, M.: Aspect-

Oriented Modeling with Integrated Object Models. Modellie-

rung 2006. Innsbruck, Austria. 2006.

[13] Mezini, M. and Ostermann, K.: Variability management

with feature-oriented programming and aspects. 12th ACM

SIGSOFT International Symposium on Foundations of Soft-

ware Engineering. Newport Beach, USA. 2004.

[14] Nyssen, A., Tyszberowicz, S., and Weiler, T.: Are as-

pects useful for managing variability in software product

lines? A case study. Aspects and Software Product Lines: An

Early Aspects Workshop, at SPLC-Europe’05. 2005.

[15] Object Management Group - UML:
http://www.uml.org/

[16] van Ommering, R., Van der Linden, F., Kramer, J.,

Magee, J.: The Koala Component Model for Consumer Elec-
tronics Software. IEEE Computer, 33(3): 78-85. 2000.

[17] Pohl, K.; Böckle, G.; van der Linden, F.: Software

Product Line Engineering – Foundations, Principles, and
Techniques. Springer, Heidelberg 2005.

[18] SEI/CMU Software Product Lines Homepage:
http://www.sei.cmu.edu/productlines/ 2007.

[19] Schmid, K.; John, I.; "A customizable approach to full

lifecycle variability management", Science of Computer Pro-

gramming, Vol. 53, No. 3, Elsevier, December 2004.

[20] Siy, H., Aryal, P., Winter, V., and Zand, M. 2007. As-

pectual Support for Specifying Requirements in Software

Product Lines. Workshop on Early Aspects at ICSE. Minnea-

polis, USA. 2007.

[21] xADL 2.0 – A Highly Extensible Architecture Descrip-

tion Language for Software and Systems:
http://www.isr.uci.edu/projects/xarchuci/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

