
An Improved Fisheye Zoom Algorithm for Visualizing and Editing
Hierarchical Models

Tobias Reinhard, Silvio Meier, Martin Glinz
Department of Informatics, University of Zurich, Switzerland

reinhard, smeier, glinz @ifi.uzh.ch

Abstract

Hierarchical decomposition is an important means for
organizing and understanding large requirements and de-
sign models. Fisheye zoom visualization is an attractive
means for viewing, navigating and editing such hierarchi-
cal models, because local detail and its surrounding global
context can be displayed in a single view. However, existing
fisheye view approaches have deficiencies in terms of layout
stability when model nodes are zoomed-in and zoomed-out.
Furthermore, most of them do not support model editing
(moving, adding and deleting nodes) well.

In this paper, we present an improved fisheye zoom algo-
rithm which supports viewing and manipulating hierarchi-
cal models. Our algorithm solves the problem of having a
user-editable layout which is nevertheless stable under mul-
tiple zooming operations. Furthermore, it supports multiple
focal points, and runs in real-time.

1. Introduction

Fisheye view visualization is a technique for visualizing
large, complex information structures [1, 3, 8]. In particular,
fisheye view techniques have been developed for visualizing
the structure of a software system in software maintenance
and re-engineering [11] and for viewing, navigating and
editing graphical requirements and design models [2, 10].

Fisheye views magnify the objects in a focal point while
reducing the size of objects farther away, thus achieving
views that show local detail and global context together in
a single view. It is also possible to support multiple focal
points. Fisheye views are particularly attractive for visualiz-
ing hierarchical structures, because the classic visualization
techniques (scaling, scrolling and explosive zooming) either
provide only a global view (scaling) or show only a part of
the structure, without its surrounding context (scrolling and
explosive zooming). Schaffer et al. [9] conducted an exper-

iment to compare fisheye visualization with traditional full-
zoom techniques to view hierarchically clustered networks.
The results suggested that the context provided by the fish-
eye view significantly improved a user’s performance.

The heart of any fisheye-view visualization technique is
its zoom algorithm. By zooming-in and zooming-out, a user
can control the level of detail of each node. Fig. 1a) shows
an abstract view of a hierarchical model: only the three top-
level nodes are visible. The ellipsis after a node name is an
indicator that this node has an inner structure which is hid-
den in the current view. By successively zooming-in nodes
B and E, we get a view (Fig. 1b)) which shows the details
of the model in a focal point (node E) together with the
global structure of the model. Conversely, by zooming-out
nodes in an expanded model we get a more abstract view.

(a)

(b)

A...

B...

C...

A...

E1

E2

E P...

Q...

B

C...

Figure 1. Fisheye zooming



From our experience with the fisheye zoom algorithm
which we developed for visualizing ADORA models [4] and
from the literature on fisheye views, we have derived a set of
properties that a fisheye zoom algorithm should have. How-
ever, none of the existing algorithms, including the one that
we have been using in our ADORA tool until now [2], satis-
fies all these properties.

In this paper, we

• present the properties that a fisheye zoom algorithm
for viewing, navigating and editing hierarchical mod-
els should have;

• discuss existing fisheye zoom algorithms;

• and, as the main contribution of this paper, present
an improved fisheye zoom algorithm that has all the
desired properties.

In particular, our algorithm solves the problem of hav-
ing a user-editable layout which is nevertheless stable under
zooming (i.e., reproduces the initial layout when a sequence
of zoom-in and zoom-out operations is undone by another
sequence of zoom-out and zoom-in operations).

2. Desired Properties of a Fisheye Zoom
Algorithm

When a node is zoomed-in or zoomed-out, the layout of
the current view must be adapted accordingly by resizing
and moving nodes. From the literature on fisheye visualiza-
tion and from our experience with the ADORA tool [4], we
have derived six properties that a fisheye zoom algorithm
should have if we want to use it for visualizing and editing
hierarchical, graphical models of requirements or design.

1. After a zoom operation, there should be no over-
lap between neighboring nodes, because overlapping
nodes negatively influence the readability of a model
and make it difficult to see hierarchical relationships
(where nodes are contained in other nodes).

2. To maintain the understandability of a model, it is vi-
tal that the adjusted layout after a zoom operation re-
sembles the original layout as far as possible. This
is important because the modeler builds a cognitive
map which consists of the positioning, the size and
other user-defined visual properties of the model. Ac-
cording to Misue et al. [5], three properties should
be maintained in an adjusted layout to preserve the
user’s mental map: orthogonal ordering, proximity
relations and topology. The orthogonal ordering be-
tween nodes is preserved if the horizontal and vertical

ordering of points is preserved. The proximity rela-
tions (or clusters) are maintained if nodes that were
close in the original layout are still close in the ad-
justed layout. The topology is preserved if the ad-
justed layout is a homomorphism1 of the original lay-
out.

3. In order to maintain a user’s cognitive map of a
model, it is important to preserve the stability of the
model: If a sequence of zoom operations is followed
by a sequence of inverse operations, the result should
be the original layout. A hard lesson that we learned
from using our ADORA tool is that, when a sequence
of zoom operations is reversed, it does not suffice to
produce a layout similar to the original one in terms
of orthogonal ordering, proximity and topology. For
example, zooming-in nodes B and E in Fig. 1a) re-
sults in the layout of Fig. 1b). After zooming-out
node B (or node E and then B), the resulting lay-
out should be identical to that of Fig. 1a). The stabil-
ity preservation should furthermore be commutative,
i.e., the order in which a sequence of zoom operations
is performed should not have an influence on the final
layout.

4. A visualization technique for graphic requirements
and design models must support manual modifica-
tions of the model: a user may re-arrange the layout
of a model or s/he may change the model by adding or
deleting model elements. Hence, the zoom algorithm
must permit editing operations (add, remove, move
and resize nodes) and preserve the modified layout
as far as possible in subsequent zoom operations.
Furthermore, the zoom algorithm should support au-
tomatic layout expansion when an inserted node is
larger than the empty area at the insertion point as
well as automatic layout contraction when a node is
deleted.

5. Zooming is part of an interactive viewing, navigating
and editing process. Hence, the zoom algorithm has
to run in real-time (i.e., the zooming operations have
to be performed with no remarkable delay).

6. It should be possible to view multiple areas of the
model in detail simultaneously. The zoom algorithm
should therefore support multiple focal points.

3. Existing Approaches

In this section, we briefly characterize the existing fish-
eye view visualization techniques.

1The links in a layout divide the plane into a set of regions. The dual graph [5] of this layout has these regions as nodes and an edge between two nodes
that share a common boundary in the layout. Two layouts have the same topology if they have the same dual graph.



In 1986, Furnas implemented the concept of a Fish-
eye Lens [3] to provide a balance between local detail and
global context in computer graphics. Furnas proposed a se-
mantic zoom which shows or hides a point in a structure
depending on its “Degree of Interest” (DOI). The DOI is
a function of the “a priori importance” of the point and its
distance from the current focal point. Furnas created sys-
tems for viewing and filtering structured programs, biolog-
ical taxonomies and calendars. The original formulation by
Furnas has no explicit control over the attributes that de-
fine the graphical layout and can therefore not be evaluated
against the properties given in section 2.

Sarkar and Brown [8] brought layout considerations into
the fisheye formalism by applying a wide-angle lens to a 2D
layout. Their “Graphical Fisheye Views” produce a graph-
ically distorted view of a layout by expanding the focal
region and correspondingly contracting the other regions.
Their fisheye views include planar and polar transforma-
tions of connected graphs and use Euclidean distance to cal-
culate the degree of interest. All nodes within the network
are shown, unless a particular node’s “visual worth” falls
below a threshold and is removed from the view. Graphical
fisheye techniques are, however, non-trivial to implement
and often have side effects that cause too much distortion
(for example, text labels are very hard to read if they are
geometrically distorted). Additionally, the layout cannot be
adjusted by the user while parts of the model are magnified
because the “fisheye view” is just a projection of the under-
lying constant “normal view”.

Noik [6] provides an overview of existing layout ap-
proaches to visualize local detail and global context and
proposes a classification schema for these techniques.

The SHriMP layout adjustment approach by Storey and
Müller [11] tries to evenly distribute the distortion through-
out the entire layout by uniformly scaling nodes outside the
focal point(s). Nodes uniformly give up screen space to al-
low a node of interest to grow. The node that grows first
pushes its sibling nodes outward by a translation vector.
The node and its siblings are then scaled around the cen-
ter of the screen so that they fit inside the available space.
Different translation vectors to preserve different properties
(orthogonality or proximity relationships) can be applied.
The SHriMP approach guarantees overlapping free layouts
if a node is zoomed-in; however, it cannot guarantee this
property if the first zoom operation is a zoom-out (see sec-
tion 4.3) or if multiple focal points are magnified in arbi-
trary order. The translation vectors can additionally be used
to adjust a layout after an editing operation.

The “Continuous Zoom” by Bartram et al. [1] distributes
a fixed amount of space (the display size) among nodes. The
Continuous Zoom is inherently global, so that zooming-in a
node (opening a cluster as this is called in [1]) changes the

size of all nodes in the structure. The sibling nodes become
smaller if a node’s size is increased. The Continuous Zoom
algorithm has two inputs: the “normal geometry” (the ini-
tial layout which is constant) and a scale factor for each
leaf node. The amount of space requested by each node
is summed up and a fixed space budget (the display size)
is distributed according to the size of each request. The
“zoomed geometry” (i.e., the current view on the model) is
always derived from the normal geometry. The Continuous
Zoom guarantees an overlapping free layout, preserves the
orthogonal ordering and proximity relations, runs in real-
time and allows multiple focal points. However, its global
scaling changes the layout significantly (by changing the
size of all nodes in the model) each time the size of just one
node changes. Additionally, the algorithm does not permit
editing operations while nodes are zoomed because the nor-
mal geometry is constant and the zoomed geometries are
just projections of it.

In the ADORA project, we have developed a fisheye view
technique for visualizing and manipulating ADORA mod-
els [2, 10]. The basic idea is similar to the one used in
the SHriMP approach [11]. In contrast to SHriMP, our ap-
proach does not globally scale all nodes in the model after
the sibling nodes were moved by the translation vector. The
overall size of the model can therefore shrink or grow.

4. The Improved Zoom Algorithm

Our algorithm is based on the Continuous Zoom ap-
proach by Bartram et al. [1]: it works on an interval struc-
ture and employs the concept of scaling interval sizes. How-
ever, our approach does not assume a fixed basic layout,
does not globally scale the whole model and uses different
scaling functions. The improved zoom algorithm has all six
properties described in Section 2, thus overcoming the lim-
itations of the Continuous Zoom.

The purpose of the zoom algorithm is to produce a new
layout if the size of a node changes because its inner struc-
ture is hidden or shown. It therefore takes an existing layout
(the positions and sizes of a set of non-overlapping nodes)
as well as a new size for an existing node η as input and
calculates a new layout. The size of η is updated to the new
size and the positions of the siblings2 are adjusted to the
new size of η in the new layout.

The zoomed-in or zoomed-out node η (or one of its sib-
lings) pushes the boundaries of its parent outward or pulls
them inward, respectively. The parent in turn pushes or
pulls its siblings, which is done recursively until the root
node is reached. Thus, the zoom algorithm is applied recur-
sively on all the direct or indirect parents of η.

We assume a layout with rectangular representations of
the nodes. However, this is no limitation as the boundaries

2Nodes which have the same parent in the hierarchy are called siblings.



of nodes with arbitrary shape can be represented by a rect-
angle. The zoom algorithm has to be applied multiple times
if multiple nodes are zoomed-in or zoomed-out.

4.1. Data Structure

The algorithm works on an interval structure which is
constructed by projecting the node boundaries on the X- and
Y-axes. The spaces between the grid lines created by the
projections are called intervals. Each node in the hierarchy
which can be further decomposed has an interval structure
of its own (in which the children’s projections to the axes
form the interval structure). Fig. 2 shows the projection of
the three nodes A, B and C on the axes of the coordinate
system. Y1 to Y7 are the vertical intervals, whereas X1 to
X7 are the horizontal intervals. By len(δ) we denote the
length of a specific interval δ. The length of a horizontal
interval is the difference between its right and left bound-
ary, while the length of a vertical interval is the difference
between its bottom and top boundary.

A

B

C

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

X
1
X
2

X
3

X
4

X
5

X
6

X
7

Figure 2. Interval structure

We distinguish between node intervals that are projec-
tions of nodes (or part of nodes) and gap intervals which
are projections of the gaps between the nodes. Y2, Y4, Y5

and Y6 are the vertical node intervals in Fig. 2, while Y1, Y3

and Y7 are the vertical gap intervals. We denote the set of
horizontal node intervals of a specific node η by projx(η)
and the set of vertical node intervals of a specific node η by
projy(η). In Fig. 2 we have: projy(A) = {Y4, Y5, Y6} and
projx(A) = {X3, X4}. The horizontal and vertical node
intervals of a node η form together the node intervals of η:
proj(η) = projx(η) ∪ projy(η).

Intervals can not overlap by definition, even though mul-
tiple nodes can be projected to the same node interval.
Nodes A and B in Fig. 2 have, for example, both interval
X3 as horizontal node interval (i.e., X3 ∈ projx(A)∧X3 ∈
projx(B)).

The order of the vertical and horizontal intervals is al-
ways preserved if a zoom operation is applied to the in-
terval structure even though the lengths of the intervals
may change. This property is important to guarantee an
overlapping-free layout after a zoom operation.

4.2. Zooming-In

The zoom algorithm has to increase the lengths of some
of the intervals if node η is zoomed-in because η needs more
space to show its internals. The intervals are adjusted by
first calculating two independent scale factors, which are
then applied to the vertical and horizontal node intervals of
η. Adjusting the lengths of the node intervals of η reposi-
tions the siblings of η. The new size of η can be a constant
value or it can be calculated with respect to the space that is
needed by η’s children. The two independent scale factors
sx(η, η′) and sy(η, η′) are calculated as follows:

sx(η, η′) =
width(η′)
width(η)

(1)

sy(η, η′) =
height(η′)
height(η)

(2)

width(η) and height(η) denote the width and height of
the boundaries of the node η. The node before zooming-in
is represented by η, whereas η′ is the node after zooming-
in. The factors sx and sy are greater than one because the
node is enlarged during a zoom-in. These zoom factors are
then applied to the node intervals of η, i.e., the following
predicate is satisfied

∀δ ∈ projx(η) : len(δ′) = len(δ) ∗ sx(η, η′) (3)

∀δ ∈ projy(η) : len(δ′) = len(δ) ∗ sy(η, η′) (4)

δ′ represents the interval δ after the zooming step. Fig. 3
gives an example: Fig. 3a) shows the initial situation with
a zoomed-out node A. In a subsequent step, node A is
zoomed-in, which is illustrated in Fig. 3b).

For zooming node A, the scale factors sx and sy are cal-
culated as follows: the boundaries of node A in Fig. 3a) de-
fine the initial size and the boundaries of node A′ in Fig. 3b)
the new size. The lengths of the node intervals of A are then
adjusted by these scale factors (the vertical intervals Y6 and
Y7 by sy and the horizontal intervals X3 and X4 by sx).
The lengths of the remaining horizontal and vertical inter-
vals, i.e., those that are not in projx(A) or projy(A), are
not changed.



A...

B
C

D

Y
1

Y
2

Y
3

Y
4

Y
5

Y
7

Y
6

Y
8

Y
9

X
1

X
2

X
3

X
4
X
5
X
6

X
7

X
8

X
9

A‘

D‘

C‘
B‘

Y
1

Y
2

Y
3

Y
4

Y
5

Y‘
7

Y‘
6

Y‘
8

Y‘
9

X
1

X
2

X‘
3

X‘
4
X‘

5 X‘6 X‘
7

X‘
8

X‘
9

(a)

(b)

Figure 3. Zooming-in node A

Fig. 3b) shows the situation after node A has been
zoomed-in. The lengths of the vertical intervals Y6 and Y7

and the horizontal intervals X3 and X4 increased while the
lengths (but not necessarily the boundaries) of the other ver-
tical and horizontal intervals remained constant.

The two nodes A and D are both projected to the ver-
tical interval Y7 (i.e., Y7 ∈ projy(A) ∧ Y7 ∈ projy(D))
in Fig. 3a). The length of this interval is scaled by the fac-
tor sy because the height of node A increases. In Fig. 3b),
the area defined by the vertical projection of node D′

(i.e., projy(D′) = {Y ′
7 , Y ′

8}) is no longer congruent with
node D′. The difference between the lengths of the intervals
and the boundaries of node D′ is shown by the shaded area
around node D′ in Fig. 3b). We call this area zoom hole3 of
node D′. Moreover, the width of the zoom hole of node B′

in Fig. 3b) is bigger than the width of node B′ because the

length of the vertical interval X3 increased to X ′
3 due to the

zooming-in of node A.
As shown for nodes B′ and D′ in Fig. 3b), the zoom

hole’s size can be bigger than the size of the node. The
size of the zoom hole and the node may also be equal in
size, as for nodes A′ and C ′. The zoom hole of node
C ′ in Fig. 3b) is congruent with node C ′ because none
of the node intervals of C is also a node interval of A
(i.e., projx(C)∩ projx(A) = ∅ ∧ projy(C)∩ projy(A) =
∅). Thus, each node is actually represented by a zoom hole
in the interval structure.

A node is centered inside its zoom hole if the boundaries
of the zoom hole are bigger than the boundaries of the node
(as for example nodes B′ and D′ in Fig. 3b)). An alternative
would be to maintain the relative position of the node’s cen-
ter inside the interval [1] or to enlarge the node to the size
of the zoom hole. For our approach we chose the centering
of the node.

The zoom algorithm has to recursively adjust the inter-
val structure of all the direct and indirect parent nodes of the
zoomed-in node. This has to be done because their size has
to be increased too if the size of one of its children changes.

4.3. Zooming-Out

Zooming-out is simple when the zoom-out operation im-
mediately follows a zoom-in operation of the same node. In
this case, zooming-out can be accomplished by just revers-
ing the zoom-in algorithm. However, in the general case,
zooming-out is not such easy. The algorithm should not
generate overlapping nodes (Fig. 4) and the layout should
be stable under multiple zooming-in and zooming-out oper-
ations (cf. property 3 in Section 2).

A

B‘

A‘...
C‘

(a)

(b)

B

C

Figure 4. Node overlapping during zoom-out
3We follow here the terminology of [1].



Node overlapping cannot occur when using an interval
structure, as long as the zoom-out algorithm preserves the
order of the intervals. For achieving layout stability, how-
ever, the zoom algorithm by Bartram et al. [1] requires that
the zoomed layout is a projection of a fixed base layout.
This fixed layout prohibits any layout changes by the user.

Subsequently, we present an interval-structure-based
zoom-out algorithm that produces non-overlapping and sta-
ble layouts and permits editing operations.

We first cover the simpler case in which the zooming-out
is done after an initial zooming-in: Zooming-out node A′ in
Fig. 3b) results in the layout shown in Fig. 3a) because the
scale factors which are applied to the node intervals of A′

are the inverse of those that were applied to the node inter-
vals of A during the zooming-in.

However, the stability property does not hold if the
zooming-out operation is the first zoom operation (i.e., it
is not following a zooming-in operation). The zoom algo-
rithm has to be extended to guarantee the stability of the
layout in these situations. Fig. 5a) shows an initial layout.
Node A is zoomed-out in the subsequent step. The zoom
operation results in the new node A′ as shown in Fig. 5b).
The scale factors sx (for the horizontal intervals X2, X3 and
X4) and sy (for the vertical intervals Y4, Y5 and Y6) are now
less than one because the size of node A decreases.

Fig. 5b) shows the layout after node A has been zoomed-
out. The vertical interval Y5 and the horizontal interval X3

cannot be scaled down by the scale factors sy and sx be-
cause the lengths of the intervals would be smaller than the
height of node C and the width of node B respectively. The
zoom algorithm therefore has to maintain a minimal length
for each interval that should be scaled down.

The minimal length lmin of an interval δ can be calcu-
lated as follows. Each zoom hole zi defines for each in-
terval it is projected to a property real length lreal. The
value of lmin for interval δ is the maximal real length of
all zoom holes zi that are projected to δ, i.e., ∃l ∈ N :
∀k ∈ N : 0 < l ≤ m ∧ 0 < k ≤ m ⇒ lreal(zl, δ) ≥
lreal(zk, δ)∧ lmin(δ) = lreal(zl, δ), where m is the number
of zoom holes that are projected to δ.

The real length for each interval is initially set to the
length of the interval (i.e., lreal(z, δ) = len(δ)). It is set
to the current real length of the interval scaled by sx or sy if
node η is zoomed-in or zoomed-out (z(η) denotes the zoom
hole of node η and δ′ the interval after the zoom operation):

∀δ ∈ projx(η) : lreal(z(η), δ′) = lreal(z(η), δ) ∗ sx (5)

∀δ ∈ projy(η) : lreal(z(η), δ′) = lreal(z(η), δ) ∗ sy (6)

For example, the real length of the zoom hole of node
A′ for the vertical interval Y ′

5 (i.e., lreal(z(A′), Y ′
5)) in the

example of Fig. 5 is obtained by multiplying the scale fac-
tor sy with the length of interval Y5. The real length of the
zoom hole of node C ′ for Y ′

5 (i.e., lreal(z(C ′), Y ′
5)) is the

height of node C ′ (which is the initially set value that wasn’t
changed during the zooming-out). The minimal length of
interval Y ′

5 is the real length of the zoom hole of node C ′

because this length is bigger than that of the zoom hole of
node A′.

Y
1

Y
2

Y
3

Y
4

Y
5

Y
7

Y
6

X
1

X
2

X
3

X
4

X
5

X
6

X
7

Y
1

Y
2

Y
3

Y‘
5

Y‘
7

Y‘
6

X
1
X‘

2
X‘

3
X‘

4
X‘

5
X‘

6
X‘

7

(a)

(b)

A

B

C

B‘

C‘A‘...

Y‘
4

Figure 5. Zooming-out node A

The zoom algorithm has to store the real length for each
interval in the zoom hole because the scaling up that may
be done by a following zooming-in has to be done on this
real length. The resulting node will be bigger than node A if
node A′ in Fig. 5b) is scaled up by multiplying the lengths
of the intervals Y ′

5 and X ′
3 with the scale factors obtained

from A′ and A because Y5 and X3 are not scaled down dur-
ing the zooming-out. This is due to the fact that our zoom
algorithm always works on the existing interval structure
and doesn’t construct a new structure or adjust the structure
to the new size of the nodes.



4.4. Editing Hierarchical Models

The insertion of a new node into a hierarchical graphical
model is a tedious task because existing nodes have to be
moved away to create the space required by the new node.
On the other hand, the removal of existing nodes results in
empty space in the model. A layout technique which au-
tomatically expands or contracts the layout if a node is in-
serted or removed is therefore valuable [10]. Most of the
existing layout and fisheye zoom algorithms (including the
Continuous Zoom) are not well suited for this task because
they either scale the whole model up or down after a zoom
operation or are based on a constant layout (a notable ex-
ception is the “Layout Adjustment Strategy” [5]), which
prevents editing operations.

(a)

(b)

Figure 6. Inserting a node into the interval
structure

A major advantage of our zoom algorithm is that it can
easily be used for automatic layout adaptation when a node
is inserted or deleted. For example, consider the situation
in Fig. 6a), where a new node shall be inserted into the dia-
gram at the position marked by the dashed rectangle. We

first calculate the space the node can maximally occupy
without moving any sibling nodes away which is shown by
the shaded area in Fig. 6a). The node is then inserted with
this reduced size. Finally, the zoom algorithm is used to
increase the size of the node to its initially intended size,
which moves its siblings away as shown in Fig. 6b).

When a node is deleted from a diagram, our zoom-out
algorithm is used to contract the layout: First, the size of
the deleted node η is reduced to the smallest possible size
(width(η′) = 1 and height(η′) = 1, because the scale fac-
tor couldn’t be calculated if the width or height would be
zero) and the zoom algorithm is used to adjust the layout to
the new size of the node (by moving its siblings). The node
is, after this layout adjustment, removed from the interval
structure.

Changing the position or the size of a node, resulting in
a potential overlapping with other nodes, can be handled by
the zoom algorithm by first removing and then reinserting
the node (by the above described process).

4.5. Filtering Nodes

The described techniques to adjust the layout if a node
is inserted or removed can also be used to hide or show se-
lected nodes of a model [10]. Hiding a node η works the
same way as removing the node (as described in the previ-
ous section), but without actually removing it but setting its
height and width to an invisible size (i.e., width(η′) = 1
and height(η′) = 1).

A node that has been hidden in a previous filtering op-
eration can be shown again by using the zoom algorithm
to reset its size to the size it had when it was visible. The
stability and commutativity of the zoom algorithm is of spe-
cific importance for this filtering of nodes because multiple
filtering operations that are applied after each other can oth-
erwise completely rearrange the layout of the model.

Furthermore, the zooming-in and zooming-out could be
seen as a specific instance of the filtering: zooming-out just
hides all children of the node while zooming-in shows them
again.

5. Discussion

We briefly discuss now our zoom algorithm with respect
to the desired properties presented in section 2:

Our zoom algorithm guarantees an overlapping free lay-
out because the order of the vertical and horizontal intervals
is always maintained.

The orthogonal ordering of the zoom holes in the inter-
val structure is preserved if a node is zoomed-in or zoomed-
out. However, the ordering of the nodes cannot always be
maintained if a zoomed-out node becomes too small or a
zoomed-in node too big. For example, the left boundary



of node B lies in front of the left boundary of node A af-
ter node A has been zoomed out in Fig. 5. Proximity re-
lations are maintained as far as this is possible if the size
of a zoomed-in node increases significantly. The topolog-
ical appearance of the layout is also preserved. However,
we have not yet investigated whether the formal topology
preservation criterion defined by Misue et al. [5] is met.

Our proposed zoom algorithm can guarantee the stability
of the layout regardless of the order of the zoom operations
due to the following properties: (i) the order of the vertical
and horizontal intervals is always maintained, (ii) the real
lengths are stored in the structure and (iii) the scaling of the
node intervals is a commutative operation.

Editing and Filtering operations are supported by our
zoom algorithm as described in sections 4.4 and 4.5 and
our zoom algorithm supports multiple focal points.

A problem that remains is the fact that even with to-
day’s large display screens, fisheye views frequently grow
beyond the size of the screen when many nodes are zoomed
in. Most existing zoom algorithms [1, 11] scale the whole
model up or down to a fixed size after a zoom operation,
so that the view always fits the available screen size. How-
ever, this may result in very small nodes with unreadable
labels. Our algorithm does not scale the adjusted layout af-
ter a zooming operation so that the size of the view grows
or shrinks when nodes are zoomed-in or zoomed-out. When
a view grows beyond the size of the available display area,
scroll bars are provided to navigate the view. Additionally
we offer a separate operation for linear view scaling. So for
large views, the user can decide whether s/he prefers a view
with reasonable node sizes (and readable labels) that needs
scrolling or a scaled view that fits the size of the available
display window.

Our presented zoom algorithm cannot adjust the lay-
out of the model significantly if a node that “lies in the
shadow” of another node is zoomed-out (node A is shad-
owed by node B if projx(A)∩projx(B) 6= ∅ or projy(A)∩
projy(B) 6= ∅). Zooming-out nodes 2 and 3 in Fig. 8 re-
sults in a lot of free space between the two nodes because
they are shadowed by the bigger node 1. However, this is a
trade-off between maintaining the relative position between
nodes 2 and 3 or the relative position between the two nodes
and node 1 that cannot easily be resolved.

5.1. Complexity of the Zoom Algorithm

The runtime complexity of the zoom algorithm linearly
depends on the number of intervals in the interval structure
because the algorithm has to scale the intervals to adjust the
layout. An interval structure with n nodes can have at most
2n + 1 horizontal and 2n + 1 vertical intervals.

Fig. 7a) illustrates the complexity of the algorithm for
one node. There are at most three vertical and three hori-

zontal intervals for a structure with one node (there may be
less intervals if one boundary of the node overlaps with one
boundary of the interval structure). Each additional node
adds at most two vertical and two horizontal intervals. This
is shown in Fig. 7b) for a second node.

1

2

1

(a)

(b)

Figure 7. Number of intervals in the interval
structure

The runtime and space complexity are therefore linear
with respect to the number of nodes. The linear runtime
complexity guarantees that our zoom algorithm can be used
in an interactive environment.

The space complexity is important because some infor-
mations (boundaries of the intervals and the real lengths) of
the structure have to be stored. The interval structures are
constructed only once and then adjusted if a zoom operation
is applied. Therefore, and the complexity of adjusting the
interval structure dominates the complexity of constructing
the structures.

6. Conclusions and Outlook

We have presented a fisheye zoom algorithm for visualiz-
ing and editing graphical hierarchical models. It guarantees
the stability of the adjusted layouts and runs in linear time.
In contrast to other approaches, it guarantees stable layouts
independent of the order of zooming-out and zooming-in
operations and allows model editing.



Our zoom algorithm has been implemented in our
ADORA tool prototype4.

Fig. 8 shows two screenshots of the ADORA tool: in the
upper screenshot all nodes are in a zoomed-in state, whereas

in the screenshot below nodes 1.1.1, 2 and 3 are zoomed-
out. All figures in this paper (except Fig. 4) have been gen-
erated by our tool.

Our proposed zoom algorithm can, in addition to the tra-
4The ADORA prototype can be downloaded from http://www.ifi.uzh.ch/rerg/research/projects/adora/

Figure 8. Screenshots of the ADORA tool



ditional concept of fisheye view visualization, also be used
for the editing of models (moving, inserting and deleting
nodes) and for the filtering of model elements.

We plan to integrate the algorithm with our previous
work on efficient line routing in hierarchical diagrams [7].
The positioning of line labels is a major problem when gen-
erating views of graphical models, because they may easily
overlap with nodes or other labels. Our zoom algorithm
may be used to mitigate this problem by providing the nec-
essary space for the labels while adjusting the layout just as
far as necessary.

We also plan to further investigate the problem of sup-
porting the user in editing models (especially if some nodes
are currently filtered) and the filtering mechanism. Mak-
ing the transitions between the layouts smooth by animating
them may further help to maintain the user’s mental map.

References

[1] L. Bartram, A. Ho, J. Dill, and F. Henigman. The Con-
tinuous Zoom: A Constrained Fisheye Technique for View-
ing and Navigating Large Information Spaces. In UIST ’95:
Proceedings of the 8th Annual ACM Symposium on User In-
terface and Software Technology, pages 207–215, 1995.

[2] S. Berner, S. Joos, M. Glinz, and M. Arnold. A Visualization
Concept for Hierarchical Object Models. In Proceedings of
the 13th IEEE International Conference on Automated Soft-
ware Engineering (ASE-98), pages 225–228, 1998.

[3] G. W. Furnas. Generalized Fisheye Views. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, pages 16–23, 1986.

[4] M. Glinz, S. Berner, and S. Joos. Object-oriented modeling
with ADORA. Information Systems, 27(6):425–444, 2002.

[5] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout Ad-
justment and the Mental Map. Journal of Visual Languages
and Computing, 6(2):183–210, 1995.

[6] E. G. Noik. A Space of Presentation Emphasis Techniques
for Visualizing Graphs. In Proceedings of Graphics Inter-
face ’94, pages 225–234, 1994.

[7] T. Reinhard, C. Seybold, S. Meier, M. Glinz, and N. Merlo-
Schett. Human-Friendly Line Routing for Hierarchical Di-
agrams. In Proceedings of the 21st IEEE International
Conference on Automated Software Engineering (ASE’06),
pages 273–276, 2006.

[8] M. Sarkar and M. H. Brown. Graphical Fisheye Views.
Communications of the ACM, 37(2):73–83, December 1994.

[9] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill,
S. Dubs, and M. Roseman. Navigating Hierarchically
Clustered Networks through Fisheye and Full-Zoom Meth-
ods. ACM Transactions on Computer-Human Interaction,
3(2):162–188, June 1996.

[10] C. Seybold, M. Glinz, S. Meier, and N. Merlo-Schett. An Ef-
fective Layout Adaptation Technique for a Graphical Mod-
eling Tool. In Proceedings of the 25th International Confer-
ence on Software Engineering, pages 826 – 827, 2003.

[11] M.-A. D. Storey and H. A. Müller. Graph Layout Adjust-
ment Strategies. In GD ’95: Proceedings of the Symposium
on Graph Drawing, pages 487–499, 1996.


