
Feature Unweaving: Refactoring Software Requirements Specifications
into Software Product Lines

Reinhard Stoiber∗, Samuel Fricker∗†, Michael Jehle∗ and Martin Glinz∗
∗University of Zurich, Switzerland

†FUCHS-INFORMATIK AG, Switzerland
Email: {stoiber, fricker, glinz}@ifi.uzh.ch, mjehle@access.uzh.ch

Abstract—The design of the variability of a software product
line is crucial to its success and evolution. Meaningful variable
features need to be elicited, analyzed, documented and vali-
dated when an existing software or reference system evolves
into a software product line. These variable features are the
main discriminators between individual products and they need
to reflect the needs of a large variety of stakeholders adequately.

In this paper we present a novel approach, called feature
unweaving, that supports the identification and extraction of
variable features from a given graphical software requirements
model. We have extended our aspect-oriented software product
line modeling tool [9] [10] such that it supports feature
unweaving: it takes a set of model elements that a domain
requirements engineer considers to constitute a variable feature
and automatically refactors the model into a semantically
equivalent one in which the model elements belonging to this
feature are grouped into an aspect. This allows the identifica-
tion and modeling of variable features in an incremental style.
It also substantially reduces both the intellectual and clerical
effort required for constructing the variable parts of a software
product line requirements model.

I. INTRODUCTION

Building a software product line with its full scope from
scratch is considerably more expensive than extracting a
product line from already existing products or building one
with a smaller scope and evolving it incrementally [7].
Recent work has introduced tool support for improving the
evolution of an existing portfolio of products into a soft-
ware product line by mining the requirements specifications
of existing valid product configurations and automatically
creating a feature model that represents the common and
variable features [12] [13]. If multiple consistent product
specifications do not yet exist, however, such a method can
not be applied.

In this paper we introduce feature unweaving, a novel
approach for tool-supported, semi-automatic extraction of
requirements that constitute a variable feature from a single
product or reference requirements model (one that contains
all requirements of existing engineering artifacts). Feature
unweaving supports domain requirements engineers in in-
crementally evolving the given product or reference model
into a software product line model. Variable features often
affect several modules and facets of a system. Aspects allow
an explicit specification of such (heterogeneously) scattered
concerns. After a domain requirements engineer has identi-
fied a selection of model elements that she considers con-

stituting a variable feature, she can call feature unweaving
to perform an automated refactoring. Feature unweaving [4]
performs four steps automatically: (i) it creates a feature
aspect and builds all the necessary internal aspect structure,
(ii) it removes all selected elements from the requirements
model, (iii) it inserts them into their respective aspect, and
(iv) it builds all the necessary weaving semantics. The
resulting refactored model is semantically equivalent to the
original model. This equivalence can easily be verified by
executing a weaving operation of the newly unwoven aspect
and comparing the resulting model with the original one.
Mistaken or not ideal feature extractions can be undone,
too, by simply weaving and removing them again.

The work presented here builds on two core assump-
tions: First, all facets of a requirements specification are
represented in a single, integrated and coherent graphical
model, e.g. one written in ADORA [3]. This eliminates
information scattering of the impact of variable features
over multiple diagrams. View generation is used to leverage
its scalability [8] [11]. Second, every variable feature is
modularized with one dedicated base aspect. Mandatory
features are not modularized and remain part of the core
model (the commonality) [11] [9]. If a feature manifests
heterogeneously in several modules of a system, then nested
sub-aspects are created to provide the necessary internal
aspect structure [4].

Feature unweaving supports domain requirements engi-
neers when reasoning about meaningful variable features
and specifying the product line variability space. While an
engineer still needs to provide the selection of elements she
considers a variable feature, the feature unweaving function
automates most of the remaining clerical and intellectual
effort for feature extraction and aspect-oriented modeling.

II. FEATURE UNWEAVING: AN EXAMPLE

Fig. 1 shows a high-level reference requirements model
of a real-world industrial product line exemplar of industrial
automation devices, modeled in the ADORA language. For a
detailed description of the exemplar, its background and the
ADORA notation please refer to [9]. This model includes all
major requirements of the product line, but no information
about the variability, yet.

A domain requirements engineer, who aims at evolving
this reference specification into a product line specification,

2010 18th IEEE International Requirements Engineering Conference

1090-705X/10 $26.00 © 2010 IEEE

DOI 10.1109/RE.2010.59

403

Automation Device

manage device
and subscriptions

Event
Logger

0:n
Field

Engineer

event

manage
subscriptions

towards server

2

manage
subscriptions
from clients

3

write
settings

start-up
field device

Settings
Server

Web
Server

transmit
device
status

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

configure

1

Std B
Server

Communication Server
Communication Client

Std B
Client

Persistency
File

System

Std A
Server Std A

Client

configure
system topology
1

Ring
Buffer

No Per-
sistency

Std C
Server Std C

Client
System Topo-
logy and State

Manager

Figure 1. A reference requirements model of a real-world industrial
automation devices product line, modeled in ADORA.

Automation Device

manage device
and subscriptions

Event
Logger

0:n
Field

Engineer

event
manage

subscriptions
towards server

2

manage
subscriptions
from clients

3

write
settings

start-up
field device

Settings
Server

Web
Server

transmit
device
status

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

configure

1

Std B
Server

Communication Server Communication Client

Std B
Client

Persistency
File

System

Ring
Buffer

No Per-
sistency

Std C
Server

Std C
Client

Supervisory Unit

configure
system topology

System Topo-
logy and State

Manager
before

Communication Standard A

Std A
Server

Std A
Client

Figure 2. A semantically equivalent, partially refactored software product
line requirements model where two variable features are unwoven.

will start her variability analysis with identifying the core
variable features. She may recognize that an Automation
Device can either implement a supervisory unit or an intel-
ligent field device, but not both at the same time. Therefore,
these two properties constitute variable features and all
related requirements shall be unwoven. In Fig. 1, the model
elements that constitute a supervisory unit have already
been selected by the domain engineer: the sub-scenario
configure system topology, its scenario connection, and the
component System Topology and State Manager. She then
calls the feature unweaving function to extract them as a
first refactoring.

Fig. 2 shows a partially refactored specification in which
two variable features have been unwoven. One of them is
the Supervisory Unit feature mentioned above – in this case
a single base aspect was sufficient to extract all selected
model elements. Further, Fig. 2 also shows a second un-
woven variable feature - the Communication Standard A.
The requirements constituting this variable feature were dis-
tributed over different modules of the specification, therefore
dedicated nested sub-aspects had to be created for every
target module [4]. Again, one base aspect modularizes the
variable feature as a whole, which is crucial to maintain an
easily comprehensible basic structure of the product line.

This process of unweaving variable features continues
until all variability is identified. If changes in variability
design are required, a variable feature can be woven and re-
unwoven with an adapted selection of elements, or be edited
manually. ADORA further adds a boolean decision item
for every variable feature and allows defining constraints
to restrict the allowable configurations of variable features
[9]. Valid products can then be derived on this basis, using

constraint propagation and selective aspect weaving [10].

III. RELATED WORK

Existing approaches to product line modeling build on
a dedicated variability model, typically a feature model
[5] [2], and mappings between variable features and their
corresponding engineering artifacts. For requirements en-
gineering, these include [2] [1] [13] [14]. The need to
define mappings for specifying variable features introduces
a significant engineering overhead when systematic software
product line engineering gets introduced: codified configu-
ration knowledge as in [1] or detailed actions and pointcut
expressions as in [14] need to be defined manually by engi-
neers. Our approach neither requires a dedicated variability
model (e.g., a feature model) nor any additional mappings
between variable features and requirements. Instead, variable
requirements are directly modularized with aspects in the
graphic requirements model, using feature unweaving. In
contrast to existing work on aspect model unweaving [6],
where aspects are considered given and unweaving essen-
tially reverts a previous weaving, feature unweaving supports
the creation of aspects in the first place.

IV. CONCLUSION

The paper has presented a novel approach, called feature
unweaving, that supports a domain requirements engineer
in refactoring a product or reference model into a soft-
ware product line model based on aspect-oriented modeling.
Future research will address graphical layout adaptions, a
complete formalization of the unweaving semantics and a
validation of the approach in real organizational settings.

REFERENCES

[1] R. Bonifácio and P. Borba. Modeling scenario variability as cross-
cutting mechanisms. In Proc. of AOSD ’09, pp 125-136, 2009.

[2] K. Czarnecki et.al. Fmp and fmp2rsm: Eclipse plug-ins for modeling
features using model templates. In Proc. OOPSLA Companion, 2005.

[3] M. Glinz, S. Berner, and S. Joos. Object-oriented modeling with
ADORA. Inf. Syst., 27(6): pp 425-444, 2002.

[4] M. Jehle. Feature unweaving: semi-automated aspect extraction in
product line requirements engg. Master thesis, Univ. Zurich, 2010.

[5] K. C. Kang, et.al. Feature-oriented domain analysis (FODA) feasi-
bility study. Technical report, CMU/SEI-90-TR-021, Nov 1990.

[6] J. Klein, et.al. Aspect model unweaving. In Proc. of MoDELS ’09,
pp 514-530, 2009.

[7] C. W. Krueger. Easing the transition to software mass customization.
In Proc. of PFE ’01, pp 282-293, 2002.

[8] T. Reinhard, et.al. Tool support for the navigation in graphical
models. In Proc. of ICSE ’08, pp 823-826, 2008.

[9] R. Stoiber and M. Glinz. Modeling and managing tacit product line
requirements knowledge. In Proc. of MaRK’09, pp 60-64, 2009.

[10] R. Stoiber and M. Glinz. Supporting stepwise, incremental product
derivation in product line requirements engineering. In Proc. of
VaMoS’10, pp 77-84, 2010.

[11] R. Stoiber, T. Reinhard, and M. Glinz. Visualization support for
software product line modeling. In Proc. ViSPLE’08, 313-322, 2008.

[12] B. Wang, et.al. A use case based approach to feature models’
construction. Proc. of RE’09, pp 121-130, 2009.

[13] N. Weston, R. Chitchyan, and A. Rashid. A framework for construct-
ing semantically composable feature models from natural language
requirements. In Proc. of SPLC ’09., pp 211-220, 2009.

[14] S. Zschaler, et.al. Vml* - a family of languages for variability
management in software product lines. In SLE’09, pp 82-102, 2009.

404

