
Dependency Charts as a Means to Model
Inter-Scenario Dependencies

Depicting and Managing Dependencies between Scenarios

Johannes Ryser Martin Glinz

Institut f�r Informatik
Universit�t Z�rich

Winterthurerstrasse 190
CH-8057 Z�rich, Switzerland

[ryser, glinz]@ifi.unizh.ch

Abstract: Scenarios/use cases have gained wide-spread use over the last couple of
years. In software engineering they are mainly used to capture requirements and
specify a system. Many software engineering approaches, most notably the UML
(Unified Modeling Language [RJB99]), use some notion of scenario to support re-
quirements elicitation and to provide a means for improved communication be-
tween software engineers, customers and users, and for enhanced user integration
in the software development process.
Yet prominent and renowned approaches like the UML lack a concept for model-
ing dependencies and relations between scenarios and offer only little support for
the description and management of scenarios and of inter-scenario relationships.
However, dependencies between scenarios are common, in fact dependencies be-
tween scenarios occur in any software development project of reasonable size. The
existence of dependencies among scenarios needs to be perceived, acknowledged
and accepted, they have to be captured and modeled to fully specify and better un-
derstand the system, and their impact on system modeling, on design, implementa-
tion and on testing needs to be recognized.
In this paper we argue that dependencies among scenarios play too important a role
in the software development process to omit them from system models and not to
consciously consider them in analysis, design and testing. Therefore, we introduce
a new kind of chart and a notation to model dependencies among scenarios. We
discuss briefly the reasons why a new kind of chart is needed. An example of a de-
pendency chart is presented.

1 Introduction

Scenarios are Ð in the context of requirements and software engineering Ð sequences of
interactions between users and a system. As such, they are mainly used in the analysis
phase of software development to elicit, capture and document requirements. However,
scenarios are helpful in many other activities as well: manuals need to be written in a
user-centered view Ð scenarios take this view by default and thus are well-suited as a ba-
sis for user manuals Ð, requirements, design and implementation need to be validated by
users (again a user-centered view of the system is needed), and, as test cases need to be

developed, scenarios come in handy again, as they are abstract-level test cases and may
well be (re-)used for the development of test cases.

For these (and other) reasons scenarios have gained wide-spread use in the RE/SE com-
munity. However, current scenario approaches do not exploit many of the potential bene-
fits of scenarios. Partially this is true because scenarios are defined informally only and
current approaches do not capture and depict dependencies among scenarios. Some dis-
tinct proponents of scenario-based approaches have rooted in favor of not depicting de-
pendencies between scenarios [Ja95, JC95]. The rationale behind this is to keep use case
models simple ("Thus, actors and use cases are the only occurrences, phenomena, or
objects in a use-case model Ð no more, no less" [Ja95]). Timing, data, resource and
causal dependencies are not to be included in the use-case model. Other dependencies as
for example structural dependencies (use case aggregation) are not encouraged because
they "support functional decomposition, which would lead easily to a functional rather
than object-oriented structure" [JC95]. Thus, in standard modeling languages dependen-
cies among scenarios are hardly ever considered and modeled.

However, scenarios are partial descriptions of system behavior, and as such, they are of-
ten applicable to restricted situations only. In most applications, the ordering of scenarios
is at least partially not arbitrary and copious dependencies between scenarios exist. In
our opinion, dependencies between scenarios carry important information about a system
and hence have to be modeled, more especially as relations between and dependencies
among scenarios are common and need to be considered if scenarios are to be used to
their full potential. Therefore we introduce a notation and diagram to capture and repre-
sent these dependencies.

The rest of this paper is structured as follows. In section 2 we introduce the main con-
cepts, the modeling constructs and appertaining notation. A short example illustrates the
notation. In section 3 we take a look at related work. Section 4 concludes the paper with
a brief discussion of the pros and contras of a new notation and a final argument for the
need of a dependency model.

2 Dependency Charts

In the context of this paper, scenarios are defined as descriptions of (possible, future) se-
quences of interactions between partners, usually between a user and an (existing or
imagined) system. Scenarios may be concrete sequences of interaction steps (instance
scenario) or they may comprise a set of possible interaction steps (type scenario). The
term type scenario is equivalent to use case in JacobsonÕs terminology [Ja92, RJB99].

According to definition, scenarios are partial descriptions of system behavior. Further-
more, as has been mentioned before, they often are applicable in restricted situations
only. Consequently, scenarios are often not independent of other scenarios. The order
and the timing of scenario execution often is not arbitrary. As an example consider the
well-known ATM (automated teller machine) system. A scenario description of this
system might comprise the scenarios "Withdraw Cash" and "Inquire Balance". Obvi-
ously, each one of these scenarios is but capturing a small part of the systemÕs behavior
(thus being partial), and the mentioned scenarios may only be executed in the restricted
situation of a customer owing a valid card and knowing the correct PIN. So in order to

get a full picture of the whole system, the scenarios either need to be integrated or de-
pendencies between scenarios have to be modeled.

Furthermore, in large systems the scenario model is growing very complex. A structur-
ing mechanism is needed for abstraction and decomposition of complex models into
pieces that can be handled more easily.

Current scenario approaches offer but very limited support for abstraction or decompo-
sition, and hardly any support for depicting dependencies. Yet it is important to know the
dependencies between scenarios for specifying, designing, implementing and testing the
system. Therefore, a language to describe dependencies between scenarios is needed.

These deficiencies in current approaches motivate us to introduce a new diagram type
which we call dependency chart. Dependency charts serve some distinct and diverse
purposes. On the one hand, dependency charts are used to help the developer gain a clear
understanding of the systemÕs high-level dependencies and connections between sce-
narios, thus supporting the development of more accurate and meaningful models of the
system. On the other hand, dependency charts facilitate for a hierarchical decomposition
of the scenario model and thus serve as a means to handle complexity. And thirdly, de-
pendency charts may be used to better support testing activities by allowing for reuse of
scenarios in testing. In the following sections the concepts and notation used in depend-
ency charts are introduced and a short example is given to illustrate the notation and use
of dependency charts.

2.1 The Concepts

Scenarios are dependent on other scenarios in many ways: one scenario needs to be pre-
ceded by another one, a scenario might not be run in parallel with another scenario, data
needed by scenario A is prepared by scenario B in a producer-consumer-relation, sce-
nario A calls scenario B in its normal flow or to handle an alternative or exception, and
so onÉ

Dependencies between scenarios fall into one of the following categories: abstraction,
temporal or causal dependencies. Abstraction dependencies are introduced into the
model by hierarchical decomposition of model elements, by aggregation, generalization
and refinement structures. Scenarios arranged in hierarchies, scenarios to cover variants
(e.g. the same scenario with various slight differences is true for a system depending on
hardware configuration), scenarios composed of sub-scenarios and the like, all of them
establish abstraction dependencies.

Temporal dependencies establish a sequence dependency between scenarios, e.g. a sce-
nario needs to be preceded or followed by another scenario. Temporal dependencies map
to strict sequences (see Figure 2) or to real-time dependencies in dependency charts.

If scenario B may only be executed under certain conditions and scenario A establishes
these conditions, then the two are related by a causal dependency. Causal dependencies
usually establish a loose sequence (Figure 2): scenario B may be executed any time the
conditions hold. Data and resource dependencies are special cases of causal dependen-
cies. An example of a data dependency would be that specific data items need to be cre-
ated in scenario A before scenario B can be executed. An example of a resource depend-
ency is that an electronic connection needs to be established before scenario B can be
performed.

Most temporal and causal dependencies may be captured by execution order. With re-
spect to their execution order, scenarios may be related one to another in four ways: one
scenario follows the other one (sequence), either one or the other scenario is executed
(alternative), a scenario is executed multiple times (iteration) and a scenario runs concur-
rently with another one (concurrency). Data and resource dependencies need to indicate
what data items and resources are concerned. Abstraction relations may be shown in an
abstraction hierarchy.

So we need a model or a notation, respectively, that allows to represent:
• sequences, alternatives, iteration and concurrency,

• general or generic dependencies as for example data and resource dependencies,

• time dependencies that are not captured in sequencing,

• a structuring mechanism like hierarchical decomposition.
Further concepts may be integrated as desired (e.g. frequency of execution of a given
scenario as compared to other scenarios to be shown in the model, etc.).

We want to depict dependencies between scenarios in a graph: the nodes shall represent
the scenarios, the edges shall represent the dependencies. Sequence, alternative, iteration
and parallelism shall be represented in an expressive way. Dependencies of the different
types (temporal, causal, abstraction) shall be represented. The notation shall be intuitive.

2.2 The Notation

In dependency charts, scenarios are shown as rectangles with rounded corners and cir-
cular connectors attached to both small sides of the rectangle. The connector circles rep-
resent the entry and the exit point(s) respectively. Scenarios without any connecting lines
(dependency lines) to other scenarios may be executed as many times as desired and in
free order, even in parallel with other scenarios if appropriate.

a.
Scenario uvw

b.

Scenario xyz

Scenario uvw

Figure 1: Scenario representation in dependency charts: a. a single scenario and b. a group of in-
dependent scenarios

The (horizontal) position of scenarios indicates the relation of the scenarios one to an-
other. If scenarios may be executed without any restriction on sequence, that is, if they
are not required to be in a specific order, then scenarios are drawn in parallel, all the
rectangles aligned to the left (Figure 1b). If scenarios are to be executed in a specific or-
der (sequence), they have to be arranged accordingly (see the paragraphs below and Fig-
ure 2). The length of the scenario representation does not carry any meaning, in particu-
lar it is not indicating duration of execution of the scenarios. If entry or exit points are
connected by dependency lines that run perpendicular to the scenarios it indicates sim-
ultaneousness, that is, the two scenarios start or end at the same time (Figure 10). Verti-
cal spacing and positioning of scenarios does not carry any meaning.

A sequence of scenarios is shown in dependency charts by attaching the scenario repre-
sentations one to another (Figure 2), either directly by connecting exit and entry points,
or by dependency lines from exit to entry point, thus indicating that the first scenario has
to be finished before the second scenario starts execution.

We distinguish between strict and loose sequences. In strict sequences the second sce-
nario must follow the first and the first must be followed by the second. Loose sequences
are used to express the fact that if the second scenario is to be executed it must be pre-
ceded by the first. Strict sequences usually represent temporal dependencies, loose se-
quences in turn are used for causal dependencies. In dependency charts strict sequences
are shown by connecting scenarios by their circular connectors, loose sequences are rep-
resented by connecting two scenarios with a dependency line.

Strict Sequence

Scenario uvw Scenario xyz

Loose Sequence

Scenario xyz

Scenario uvw

Figure 2: Scenario sequences in dependency charts

An example of a strict sequence is given in the situation of applying for a card for access
to a system (e.g. a library card, a bank card to use at an ATM, and so on). The apply-for-
card scenario has to be followed by an issue-card scenario in the normal flow of actions.
An example of a loose sequence is the scenario of doing statistics on data collected in
another scenario: the do-statistics scenario depends on the data-collecting scenario to be
executed first, the data-collection scenario however is fully independent from the statis-
tics scenario (it does not have to be followed by the statistics scenario).

Scenario xyz

Scenario uvwt

f

Balance < 0

Annotated with condition

Scenario xyz

Scenario uvw

User chooses...

X

Y

Alternative

Scenario xyz

Scenario uvw
Scenario rst

Multiple Alternatives (Cases)

Scenario xyz

Scenario uvw

Scenario rst

Scenario opq

Scenario lmn

Figure 3: Representation of alternatives in dependency charts

Alternatives are often implicitly specified in dependency charts (usually by scenario
name), as any unrestricted scenario may be executed alternatively to other unrestricted
scenarios. If alternatives have to be shown explicitly, they are shown by a scenario split-
ting into two (or more) scenarios. The fork is graphically shown by a perpendicular con-
necting line from the scenario exit point of the scenario preceding the alternative to the
entry points of the scenarios that are executed in dependence of the alternative taken.
Alternatives may be annotated with condition(s) or names of the alternatives that can be
taken. This is not mandatory, however. Often alternatives are quite obvious in naming of
scenarios. Thus, conditions are only specified in dependency charts if needed.

Scenario xyz

Scenario uvw
Scenario rst

Annotated with condition/loop count

Scenario uvw Scenario uvw

1..15 while balance > 0

Iteration

Scenario uvw

Scenario lmn Scenario opq

Figure 4: Iterations in dependency charts

Iterations are depicted in dependency charts by backward sloping arrows connecting the
appropriate scenario connectors. An iteration may encompass as many scenarios as de-
sired as long as the scenarios are all in the same sequence. An iteration condition may be
attached to the arrow-line: Using the well known {0, 1, *} notation to denote multiplic-
ity, an absolute number of iterations may be specified. Other iteration conditions can be
expressed using logical expressions and arithmetic (e.g. Ôwhile balance > 0Õ, or Ôuntil
number of participants >12Õ).

Foldout
(Abstract Scenarios)

Scenario xyz

Abstract Scen. Real-time Dependencies Scen. a

Scen. c

Scen. b

Figure 5: Abstract scenario re- Figure 6: Real-time Figure 7: Structuring construct in
presented by a foldout dependencies dependency charts

Real-time dependencies are indicated by the alarm clock symbol (Figure 6). Abstract
scenarios (meaning scenario-building blocks that consist of a sequence of actions that are
used in more than one scenario, and for this reason are factored out) may be Ð but do not
have to be Ð depicted as foldouts (Figure 5).

To structure the dependency model we use a hierarchical structure. Scenarios which be-
long together according to some criterion may be packaged in a box (Figure 7). The
chunks that belong together are identified by the dependencies between them. As is the
case in modularizing a program, the goal is to keep coupling between packages low and
to have cohesive packages. Business processes might define a first set of packages. On
the next level down, workflow and dependency structures between scenarios often define
the packages in a natural way. If further decomposition is needed, concurrent and re-
peating blocks in the scenario dependency structure lend themselves for dividing the
model into hierarchically decomposed logical parts (for an example see Figure 12, where
decomposition blocks are determined by repeating blocks: in the scenario flow, the sce-
narios that are concerned with the registration and deletion of users and books enclose
the scenarios of lending and returning books. The repeating blocks are marked by itera-
tion arrows on the decomposition blocks).

Scenario xyz

Scenario uvw

Data/Resource
Dependencies

Data item/named resource

Scenario xyz

Scenario uvw

Type of and/or descrip-
tion of dependency

Scenario xyz

Scenario uvw

General Dependency

Figure 8: General dependencies

Annotated dependency lines are used to depict any other dependency (general dependen-
cies, data/resource dependencies). Dependency lines should be named or annotated with
needed information where appropriate. A dependency line normally is an undirected line
and does not specify which scenario is dependent on which other. However, this infor-
mation often is implicitly given by naming of scenarios. Furthermore, dependency lines
may be directed to indicate the dependent scenario. In this case a dashed arrow line is

used to represent the dependency. The scenario at the tail of the arrow depends on the
scenario at the arrowhead (Figure 8). If scenarios are mutually dependent this fact may
be emphasized by using a double-headed arrow.

Concurrency

Scenario xyzScenario xyz

Single scenario that must
not be run in parallel

Single scenario that must
be run in parallel

Scenario xyzScenario xyz

Enforced

Scenario xyz

Scenario uvw

Prohibited

Scenario xyz

Scenario uvw
Accidental

Scenario xyz

Scenario uvw

Figure 9: Concurrent scenarios

Concurrency is shown in dependency charts by use of parallel lines (Figure 9). As has
been pointed out before, unrestricted scenarios may run concurrently. Therefore, acci-
dental concurrency does not have to be shown explicitly. If concurrency has to be en-
forced or prevented, the scenarios are connected by "have to be executed in parallel" (=)
and "no parallelism" () marks, respectively.

Thus, unbound scenarios (which is the normal case) may, but donÕt have to, be executed
in parallel (concurrency being an accidental feature), scenarios marked with must not
be run in parallel and scenarios marked with = must be executed in parallel (Figure 9).

Scenario B has to start after
scenario A started

Scenario B

Scenario A

Have to end at the same time

Scenario xyz

Scenario uvw

Have to start at the same time

Scenario xyz

Scenario uvw

Figure 10: Special cases of concurrency

Many different shades of concurrency of scenarios can Ð if necessary and desired Ð be
made explicit in dependency charts: Scenarios that have to start at the same time are
connected by dashed dependency-lines connecting the entry nodes of the scenarios, the
connecting line being rectangular to the baselines of the scenarios. Likewise, scenarios
that have to stop at the same time are marked by a dashed dependency line from the exit-
point of one scenario to the exit-points of the other scenarios (Figure 10). If scenario A
always has to start before scenario B and the two will run concurrently, they are con-
nected by a slanted dependency line from the entry-point of scenario A to the entry-point
of scenario B.

A small example is given below to illustrate the representation of scenarios and their re-
lations and dependencies in a dependency chart (Figure 11). A further discussion of de-
pendency charts and more especially of the relationship to other modeling languages
may be found in [RG00].

2.3 An Example

As an example illustrating the creation and use of dependency charts, we choose the
well-known library example. In a library, the user can apply for a library card to be al-
lowed to borrow books and search for books. In the example, there are two actors: the
library user (borrower of books) and the librarian. There are five scenarios in the exam-
ple in which the library user is the actor: (01)Apply for library card, (02)Query catalog,
(03)Borrow books, (04)Return books and (05)Apply for deletion from user catalog. The
scenarios for the actor ÔlibrarianÕ are: (11)Register user, (12)Delete user, (13)Update
user data, (14)Catalog book, (15)Remove book, (16)Maintain library catalog, (17)Query
user data and status, (18)Query book status, and (19)Call overdue books. In a real sys-
tem, there certainly would be some more scenarios (and thus most probably some more
dependenciesÉ), but in the paper, to keep the example short, we limit the system to the
scenarios listed above.

(02)Query
 catalog

(03)Borrow
 books

(01)Apply for
 library card

(04)Return
 books

(05)Apply for
 deletion

(11)Register
 user

(12)Delete
 user

(13)Update
 user data

(14)Catalog
 books

(15)Remove
 book

(16)Maintain lib-
 rary catalog

(17)Query user
 status/data

(18)Query book
 status

(19)Call books
 overdue

refused

user.bookcount < 5

Figure 11: An example dependency chart

Some of the sequence dependencies are quite obvious (as readers are familiar with the
domain and know the situation in and the context of a library very well): first a potential
library user has to apply for a card, then the librarian has to register the new user, before
the library may be used as many times as desired by the Ð now regular Ð user. The li-
brary user queries the catalog and borrows books up to the limit of four books per user at
a time. Books have to be cataloged, before they can be borrowed. Finally, the borrowed
books have to be returned in time (else an overdue note will be sent by the librarian) be-
fore they can be borrowed by another user.

The librarian on the other hand maintains the library catalog. She may query a userÕs
status and update a userÕs data, once the user is registered. If a request for deletion from
the user catalog is sent, the librarian will delete the user, after having called back all the
borrowed books from this user. Furthermore, she will catalog new books and remove
stolen, old and torn ones. A book first has to be cataloged before its status can be queried
or before it can be removed.

In dependency charts we do not enforce a strict hierarchical structure. If desired, hierar-
chically-structured model elements may overlap as illustrated in Figure 11. We allow
these overlapping elements to support aspect-oriented modeling in an integrated model.
Thus, the fact that a scenario is dependent on multiple entities or actors can be modeled
explicitly in dependency charts.

In the example (Figure 11) the scenario of a book being borrowed depends on the book
being catalogued and a borrower being registered (so that she may borrow the book).
This is expressed by including the ÔBorrow booksÕ scenario in both, in the repeating
block of the book and in the repeating block of the user life cycle.

3 Related Work

Dependency charts have some properties that closely relate to other graphical models or
modeling languages. The abstraction mechanism is quite similar to hierarchical decom-
position in structured analysis. Concurrency, synchronization and non-determinism are
similar to Petri-nets. However, contrary to Petri-nets, dependency charts depict mainly
the statics and less the dynamics of relations between scenarios. Sequences, alternatives
and iterations are part of all notations that are used to model control-, data- or work-
flow. Thus, dependency charts are much like flow-charts representing the structure of
control flow between scenarios. They do include some further information, though, that
is missing in true flow-charts (e.g. time dependencies, data and resource dependencies,
parallelism, É). The problem of loss of structure that is a concern in flow-charts is of
equal import in dependency charts as well: any connection in-between scenarios is pos-
sible, even if the depicted flow does not make any sense in reality. Developers need to be
aware of this and model carefully.

In most popular modeling languages, notably in the UML also, there is no predefined
way of how scenarios are to be represented and modeled. The only diagram specific to
scenario modeling is the use case diagram [RJB99, Ja92] depicting the associations be-
tween actors and use cases. The details of scenarios may be modeled using natural lan-
guage descriptions, interaction diagrams, activity charts, statecharts or some other form
of representation. Mostly it will be natural language descriptions. An integrated scenario
model does not exist and is not intended.

Only three types of inter-scenario relationships can be modeled in UML use case dia-
grams: Generalization, ÇIncludeÈ and ÇExtendÈ. Generalization relates general use cases
to special case use cases, providing some means of abstraction. ÇIncludeÈ means that the
behavior of the included use case is part of the including use case as well (which corre-
sponds to a procedure call in programming). ÇExtendÈ means that the extending use case
is inserted into the extended one at a designated extension point if a guarding condition
is true (a mechanism corresponding to macro expansion in assembler programming).

Expressing sequential, parallel or iterative relationships between use cases as well as
time and data dependencies is impossible in UML use case diagrams. Neither is there a
systematic way for decomposing use cases in UML [Gl00b]. Thus most dependencies
between scenarios can either not be represented at all in UML or they have to be ex-
pressed in terms of preconditions and annotations to the detailed scenario descriptions.
However, modeling dependencies with preconditions and annotations makes them diffi-
cult to recognize and to trace.

Clearly, the notation of use case diagrams could be extended to include the necessary
structures to depict general dependencies, but the original intention of the diagram would
be lost in doing so. Therefore, we think it is advisable to use a distinct notation to em-
phasize the difference of the new diagram from existing ones in meaning and use.

Glinz [Gl95, Gl00a] has proposed statecharts and Jackson-style diagrams for expressing
decomposition and structure of scenarios. This is a closely related approach. However, it
is less general than dependency charts are, as it represents sequence, alternative, itera-
tion, concurrency and composition only.

4 Conclusions

In this paper we have introduced a new diagram type for modeling dependencies be-
tween scenarios. We have argued that dependencies among scenarios are common as
scenarios are partial models that apply to restricted situations only. Therefore, it is im-
portant to know, understand, document and manage dependencies to build an accurate
system model. Dependencies need to be known in all system modeling activities, as well
as in testing. For example, we need them for a precise and correct system specification,
for an accurate design and for thorough testing. Moreover, a model of dependencies
between scenarios greatly enhances the understanding of the system to be built. Ques-
tions like "What other requirements, scenarios, É will be affected if this requirement,
scenario, É is changed?" can be answered because dependencies between the different
scenarios are known. Thus, traceability is enhanced, design alternatives can better be
evaluated, and effort and cost estimation can be improved. Maintenance profits greatly if
a dependency model is available. Furthermore, in testing the tester needs to know the
dependencies else he will not be able to develop test suites from a scenario model that
test the relations, connections and dependencies between different use cases.

Finally, the notation presented in this paper features a construct to decompose large
models. These are sorely needed if working with large systems and models, but are
missing in current modeling languages such as UML.

In summary we argue that a distinct model to capture dependencies pays the effort of
creating and maintaining it as it greatly enhances the scenario model.

References

[Gl95] Glinz, M.: An Integrated Formal Method of Scenarios Based on Statecharts. In
(Sch�fer, W.; Botella, P. eds.): Software Engineering Ð ESEC Õ95. Proceedings of the
5th European Software Engineering Conference, Springer, Berlin, 1995; pp. 254-271.

[Gl00a] Glinz, M.: Improving the Quality of Requirements with Scenarios. In: Proceedings of
the Second World Congress on Software Quality, Yokohama, 2000; pp. 55-60.

[Gl00b] Glinz, M.: Problems and Deficiencies of UML as a Requirements Specification Lan-
guage. In: Proceedings of the Tenth International Workshop on Software Specification
and Design, San Diego, 2000; pp. 11-22.

[Ja92] Jacobson, I. ; Christerson, M.; Jonsson, P.; �vergaard, G.: Object Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, Amsterdam, 1992.

[Ja95] Jacobson, I.: Formalizing Use-Case Modeling. Journal of Object-Oriented Program-
ming, vol. 8, # 3, 1995; pp. 10-14.

[JC95] Jacobson, I.; Christerson, M.: A Growing Consensus on Use Cases. Journal of Object-
Oriented Programming, vol. 8, # 1, 1995; pp. 15-19.

[RG00] Ryser, J.; Glinz, M.: SCENT: A Method Employing Scenarios to Systematically Derive
Test Cases for System Test. Berichte des Instituts f�r Informatik, 2000/03, Universit�t
Z�rich, Institut f�r Informatik, Z�rich, 2000.

[RJB99] Rumbaugh, J.; Jacobson, I.; Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading, Mass., 1999.

