
Simulation-Driven Creation, Validation and Evolution of

Behavioral Requirements Models

Martin Glinz Christian Seybold
1
 Silvio Meier

Institut für Informatik

Universität Zürich

Binzmühlestrasse 14

CH-8050 Zurich, Switzerland

{glinz | smeier}@ifi.unizh.ch

cseybold@gmx.ch

Abstract: Requirements models for large systems cannot be developed in a single

step; they evolve in a sequence of iterations. We have developed a simulation-

driven process that supports iterative, evolutionary modeling of behavioral

requirements. We start with modeling type scenarios (i.e. use cases) and simulate

these interactively. The simulation runs yield exemplary system behavior, which is

documented in message sequence charts (MSCs). The modeler can then generalize

this recorded partial behavior into statecharts. The resulting model is simulated

again for validating that the modeled behavior matches the previously recorded

behavior. The validated model is then used in the next incremental step for elicit-

ing new, yet unspecified behavior by simulating new scenarios.

1 Introduction

Requirements models under development are typically incomplete and not completely

formalized. In an iterative development process, modeling proceeds by progressively

making models more complete and more formal. This process of model evolution stops

when the model has reached the desired degree of formality and completeness (depend-

ing on risk, time and budget). In order to support such a process, three requirements must

be met: we need (i) a modeling language that provides features for modeling intentional

partial incompleteness and a variable degree of formality, (ii) a technique for early and

frequent model validation, and (iii) guidance for systematically eliciting and evolving

models towards more formality and more completeness.

The ADORA language [GBJ02] that has been developed in our research group satisfies

the first requirement.

For early model validation, simulation would be a quite appropriate technique both for

modelers and stakeholders: they can play with the model’s dynamics by entering stimuli

1 Christian Seybold is now with Zühlke Engineering (Switzerland)

Proceedings Dagstuhl-Workshop Modellbasierte Entwicklung eingebetteter Systeme (MBEES 2007).
Informatik-Bericht 2007-01, TU Braunschweig, Germany. 103-112.

and receiving system reactions. However, simulation, as well as other automated tech-

niques (e.g. model checking) cannot be applied as long as we do not have complete and

formal models. Therefore, we have developed an interactive simulation technique that

allows to simulate incomplete and semi-formal models by inquiring missing information

interactively from the expert who runs the simulation. The information provided by the

expert is recorded so that regression simulation becomes possible [SMG05]. This tech-

nique satisfies the second requirement.

Our simulation technique also enables an iterative, outside-in development process for

behavioral requirements models that starts with some external behavior specified by

type-level user-system interaction scenarios (aka use cases) and progressively elicits and

defines system behavior with simulations that are driven by playing through the

scenarios [SMG04], [SMG06], which addresses the third requirement.

In this paper we summarize our approach, which is documented in [Se06], [SMG04],

[SMG05] and [SMG06], and give an example.

2 Our approach

2.1 Simulation
2
 of semi-formal models

We use ADORA [GBJ02] as a modeling language. Models in ADORA are composed of

hierarchically structured abstract objects. Each object represents a state and may be

further decomposed by other objects and by embedded statecharts. All objects and states

together form one joint, hierarchical statechart. However, our approach is not restricted

to ADORA. Alternatively one could use a sufficiently formalized UML profile. The ad-

vantage of ADORA is that it already has the features we need, whereas with UML, one

first had to define and formalize a suitable subset.

The simulation engine of the ADORA tool simulates models specified in ADORA regard-

less of their degree of formality and completeness. In all situations where the simulator

can’t interpret the model because information is missing or the given information is not

formal enough, the simulation engine lets the modeler interactively specify the desired

behavior. That means, the simulation engine executes the specified system behavior, i.e.

on occurring events it performs transitions between states and executes specified actions.

As soon as an event appears that cannot be handled, the simulation is interrupted to

allow the user to handle this event interactively: whether it shall be received at all, by

which object and which actions shall be performed on this event. Afterwards, the simu-

lation continues as usual. Fig. 1 shows a screenshot of the ADORA tool during an inter-

active simulation session. The simulation engine is currently executing the Input Value

scenario in a partial model of a calculator. As the model does not specify whether the

Add or the Subtract scenario shall be executed next, the simulation engine lets the mod-

2 When we talk about simulation, we mean an event-driven, discrete simulation. We do not consider real-time

or continuous simulations.

eler interactively select an alternative. More details on our interactive simulation engine

can be found in [SMG05] and [Se06].

Figure 1: A screenshot of the ADORA tool during an interactive simulation session

The events driving the simulation are generated by playing through the scenarios of the

model. Scenarios in ADORA describe the communication protocol between the modeled

system and the actors in the context of the system, i.e. the behavior as it is seen by the

external actors. Note that scenarios in ADORA are type scenarios, i.e. use cases in UML

terminology. In ADORA, scenarios are modeled with so-called scenariocharts, a notation

that is derived from Jackson's JSP diagrams [Ja75] and is capable of modeling scenario

decomposition in terms of sequence, alternative, iteration and parallelism of sub-scenar-

ios [Gl95], [GBJ02]; see Fig. 2.

For each modeled actor, the user simulating the model may create an instance, thereby

launching the traversal of the connected scenariochart. The simulation stops at leaf nodes

allowing the user simulating the model to enter stimuli or receive system reactions. The

graphical interface to enter stimuli is automatically built from the transform expressions

specified at the leaf nodes of the scenariocharts.

As every small modification of a requirements model can unintentionally destroy re-

quired properties that held in the model prior to the modification, a model should be

revalidated after each incremental step. In our approach, revalidation is done by regres-

sion simulation, i.e. automatically re-executing previously recorded simulation runs.

While the principal idea is fairly obvious, some major problems have to be solved to

make regression simulation work in our context. In particular, regression simulations

have to run automatically regardless of the amount of interactivity that was required to

generate the original simulation runs. We achieve this by letting the model drive the

regression simulation, but automatically resort to the interactively recorded behavior in

those cases where the simulation engine does not get enough information from the model

during a regression simulation run.

Sequence

Alternative

Parallelism

1 2

Every oval represents
a scenario.
B and C are scenarios
that execute in parallel.
B is a sequence of D
followed by E. This
sequence is iterated.
C is either F or G.
In order to make the
notation layout-
independent, numbers
indicate the sequence
order and dots mark
the parent scenario.

A

ActorName

Root scenario

[value > 0] [value <= 0]

Guard

Association for stimuli injection
/ System interface

*

Iteration

[valueIsSet]

Iteration
predicate

transform output
cached display()

transform input
setValue()

Stimulus transformation expression

Actor

CB

D E F G

Figure 2: A scenariochart and its interpretation

For every completed simulation run, the ADORA tool can automatically generate a Mes-

sage Sequence Chart [MSC96]. These MSCs can be used for analyzing simulations (in

particular, when a regression simulation fails [SMG05]) and for driving the incremental

modeling process (see next sub-section).

2.2 Iterative development of behavior models

Models of system behavior can be created in two ways: (a) the modeler begins with

chunks of exemplary behavior which are then synthesized and generalized, (b) she or he

creates a generalized model of behavior (i.e. a type level model that covers all potential

cases) from the beginning and validates it by examining how the model behaves when

playing through specific, exemplary cases.

Exemplary behavior is cognitively easier to develop and also better suited for discussing

models with stakeholders for validation purposes. So it is a good starting point for sys-

tem modeling. However, as exemplary behavior just gives an outline of certain situa-

tions, we eventually need type-level behavior models. On the other hand, creating type-

level models from scratch is difficult and requires considerable effort and expertise.

An obvious solution would be generating type-level models automatically from a collec-

tion of exemplary, instance-level models (e.g. synthesizing statecharts from MSCs

[WS00], [KGSB99]) However, these approaches have drawbacks. Firstly, the generated

statecharts are typically hard to read for humans and, hence, difficult to validate. Sec-

ondly, when we interpret MSCs existentially
3
, there is typically more than one statechart

that describes the behavior specified by a given set of MSCs. So there is no unambigu-

ous mapping from MSCs to statecharts (unless one introduces a special syntax and se-

mantics for MSCs, as done in [KGSB99].

unspecified abstract object

behavior partially specified

behavior completely specified

part of exemplary simulation

part of behavioral generalization

Legend:

1. Model after a simulation run 2. .. after behavioral generalization

3. ... after simulation run 4. ... after simulation run

5. ... after behavioral generalization

behavior almost completely specified

actor scenario

Figure 3: Incrementally building a behavior model

Therefore we decided to pursue a manual, tool-guided approach which combines explo-

ration of exemplary behavior with systematic (but manual) construction of statecharts.

Starting from scenarios describing external behavior as seen by actors, we derive exem-

plary behavior by running simulations on a void or incomplete behavior model and de-

fine the expected behavior interactively. For every such simulation run, the ADORA tool

generates a message sequence chart. These MSCs are used to guide and inform a manual

process of constructing statecharts that exhibit the expected behavior when executed

with the given scenarios. Regression simulation is used to validate the created statecharts

systematically.

3 Existentially means that the specified behavior must be possible, but other behavior may also occur. This is

the usual MSC semantics.

Having specified parts of the desired behavior with statecharts, subsequent simulation

runs become easier: the modeled behavior is integrated into the simulation, thus making

it more precise and requiring less interactivity during simulation runs.

When used this way, the two modeling modes, viz. recording exemplary system behav-

ior by playing through scenarios and modeling system behavior with statecharts, i.e. on a

type level, stimulate each other and drive the model development towards more com-

plete and more formal specifications. Fig. 3 illustrates how an alternating application of

simulation runs and behavioral generalization/synthesis contributes to the evolution of a

system model.

3 Example

We illustrate our approach with an example (taken from [SMG06] and [Se06]). As an

example application, we refer to the specification of a control system for car doors given

in [HP02]. A first version of the model is given in Fig. 4. Some scenarios have been

modeled already whereas the system is yet unspecified except that it has been partitioned

into the components Seat Adjustment, Door Locking and User Management.

In a first step, we decide to focus on the seat positioning via the user management

switches. There are four switches inside the car to recall four different seat positions (for

different drivers). A seat may be adjusted in five different ways: seat height in the front

and back, angle of the back, seat distance to the wheel, and tightness of the casing. While

being seated, seat adjustments must be done in a comfortable way, i.e. the relaxing ad-

justments must happen before constrictions take place (in order not to trap the driver),

and not more than two movements may be done at the same time. However, when un-

locking the car with a radio transmitter (there are two different ones for two drivers), the

seat position shall be adjusted as fast as possible to be ready before the driver enters the

car. The switches inside the car are connected to the door control system via interface

S1, the radio transmitter uses the CAN-bus for communication.

In our example, we start with a simulation of a typical sequence of interactions how the

seat adjustment could take place, executing the CAN Bus Control scenario first (i.e. a

user unlocks the car) and then the User Management Scenario (i.e. a user presses seat

adjustment switches). At that time, there is no behavior specified in the system. All

objects taking part in the simulation (CAN, S1, User Management and Seat Adjustment)

are being played by the modeler. This means that for each incoming event, the modeler

specifies the corresponding actions that should take place. The result of this simulation

run is shown in Fig. 5. As we are currently concentrating on the user management, we

are not interested in the actual seat positioning. That is why we do not continue to handle

the messages in the Seat Adjustment object (marked with a cross in Fig. 5). This may be

the focus of further simulations. Therewith, we have outlined some exemplary behavior

for the involved objects. We could either proceed by recording more simulation runs to

enrich the system with exemplary behavior or we continue with the generalization of the

existing behavior.

Central Locking
Engine

Door Lock SwitchDoor-Open-Sensor

Seat Engines

Seat Position

Seat Adjustment
Switch

CAN_Bus

User Management
Switch

Door Locking . . .

User Management . . .

Seat Adjustment . . .

Door Control System . . .

*

Loop

CAN Bus
Control

o

Recall
Seatposition 2

o

Recall
Seatposition 1

CAN

S2 . . .

||
Lock
Doors

||
Open
Doors

*

Loop

Control Unit

o

unlock

o

lock

*

Loop

Door Lock
Control

o

Door being
 closed

o

Door
 being

 opened

*

Loop

Door
Opening
Detection

o
Save

Calibration

User Management

*

Loop

o

Calibration 4

o

Calibration 1

o
Calibration 2

o

Calibration 3

S1

Interface_S1

Interface_S1

receives

Interface_S2

Interface_S2

CAN_Bus

CAN_Bus

sends

receives

sends
sends

sends

transform input cached
MGMT_1()

over Interface_S1

transform input cached
MGMT_2()

over Interface_S1

transform input cached
MGMT_3()

over Interface_S1

transform input cached
MGMT_4()

over Interface_S1

transform input cached
MGMT_SET()

over Interface_S1

transform input cached
opened() over Interface_S1

transform input cached
closed() over Interface_S1

transform input cached
unlocked() over Interface_S1

transform input cached
locked() over Interface_S1

transform output cached
ZENTR_MOT1() over Interface_S1

transform output cached
ZENTR_MOT2() over Interface_S1

transform input cached
MPOS_1()

over CAN_Bus

transform input cached
MPOS_2()

over CAN_Bus

Figure 4: Initial model of a car door locking system

CAN_Bus CAN User Management Seat AdjustmentUser Management Switch S1

Recall Seatposition 1()

Recall Seatposition 2()

MPOS_1()

MPOS_2()

fastSeatAdjustment(param = 5.3(float), param = 7.4(float),
param = 2.2(float), param = 3.2(float), param = 9.8(float))

fastSeatAdjustment(param = 3.3(float), param = 7.2(float),
param = 2.1(float), param = 3.5(float), param = 9.8(float))

comfortableSeatAdjustment(param = 5.3(float), param = 7.4(float),
param = 2.2(float), param = 3.2(float), param = 9.8(float))

comfortableSeatAdjustment(param = 5.3(float), param = 7.4(float),
param = 2.2(float), param = 3.2(float), param = 9.8(float))

Calibration 1()

Save Calibration()

Calibration 3()

Calibration 3()

MGMT_1()

MGMT_SET()

MGMT_3()

MGMT_3()

Figure 5: Trace of an exemplary play-through of the user management seat adjustment scenarios

(automatically generated by the ADORA tool)

We have done the latter for the User Management object in Fig. 6. We selected the User

Management lifeline from the MSC in Fig. 5 and created states and state transitions such

that all incoming and outgoing messages are handled. This example also illustrates why

we prefer a manual process: we cannot infer automatically whether the order of mes-

sages in the MSC matters or not. For modeling an adequate statechart, we hence need

additional knowledge (domain knowledge or information elicited from stakeholders). In

our case we found that the order of messages does not matter, leading to the statechart

given in Fig. 6. Up to now, this statechart can exactly handle the recorded sequence

chart, nothing else. However, for all following simulations, the specified behavior does

not need to be played by the user any more. It will be taken from the statechart instead.

Only new behavior must be played by the user.

MGMT_3

Save

MGMT_1

MPOS_2MPOS_1

Idle

User Management . . .

receive MPOS_1() |

receive MPOS_2() |

receive MGMT_1() |

receive MGMT_SET() |

receive MGMT_3() |

| send fastSeatAdjustment(conf1_
hor, conf1_h, conf1_s, conf1_v,
 conf1_w) over schickt_Sitzdaten

| send
 fastSeatAdjustment(conf2_

hor, conf2_h, conf2_s, conf2_
v, conf2_w) over schickt_»

| send comfortable
SeatAdjustment(conf1_

receive MGMT_3() |

| send comfortable
SeatAdjustment(conf3_hor, conf3_
h, conf3_s, conf3_v, conf3_w)

 over schickt_Sitzdaten

Figure 6: Generalized behavior of sequence chart in Fig. 5 in object User Management

This allows the modeler to focus on the specification of new behavior, for example

enrich the behavior of the User Management Object. Simulations and behavioral gener-

alizations can alternately take place, driving the model evolution until the model eventu-

ally exhibits the desired behavior.

4 Related Work

To the best of our knowledge, there is only one approach which is closely related to

ours: Harel et al. developed the Play-Engine [HM03] that allows to play and test behav-

ior of an incomplete component interactively via a prototypically built user interface.

Harel focuses on the interface being developed whereas we are focusing the model being

developed. Our main focus lies on adequate support of the requirements engineer in the

modeling process. The model can be executed in any state of completeness to drive the

further development of the model.

The idea of building models from exemplary behavior follows a rather old idea which

was introduced by Shapiro for synthesizing logic programs from examples [Sh83].

Simulation as a means of validating a model is not a replacement for model checking

approaches (e.g. [Ho97]). Simulation is used earlier in the process to validate the model

and drive the further development of the model when it is not yet formal and complete

enough to allow model checking.

5 Conclusions

In this paper, we have summarized and demonstrated our approach to simulation-driven

modeling, validation and evolution of requirements models, using the ADORA language

and tool.

The modeling and simulation capabilities described in this paper have been implemented

in the ADORA prototype tool. This is a standalone system implemented in Java. Cur-

rently, the ADORA tool is being re-implemented as an Eclipse plug-in, which allows us to

re-use a lot of existing model editor features. The re-implementation of the basic tool

functionality has been completed. However, the re-implementation of the simulation

engine has yet to be done. Our future work will concentrate on the incorporation of

aspect modeling into ADORA and on further enhancing the modeling capabilities of both

the language and the tool.

References

[Gl95] M. Glinz. An Integrated Formal Model of Scenarios Based on Statecharts. In W.

Schäfer and P. Botella, editors, Proceedings of the Fifth European Software Engi-

neering Conference. Lecture Notes in Computer Science Vol. 989, Springer, 1995.

254-271.

[GBJ02] M. Glinz, S. Berner, and S. Joos. Object-Oriented Modeling with ADORA. Information

Systems 27(6):425-444, 2002.

[HM03] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using

LSC’s and the Play-Engine. Springer, New York, 2003.

[Ho97] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineer-

ing 23(5):279-295, 1997.

[HP02] F. Houdek and B. Paech. Das Türsteuergerät – eine Beispielspezifikation [The Car

Door Control System – An Example Specification (in German)]. Technical report,

Fraunhofer Institut für Experimentelles Software Engineering, Kaiserslautern, 2002.

[Ja75] M. Jackson. Principles of Program Design. Academic Press, New York, 1975.

[KGSB99] I. Krüger, R. Grosu, P. Scholz, M. Broy. From MSCs to Statecharts. Proceedings of

the IFIP WG10.3/WG10.5 International Workshop on Distributed and Parallel Embed-

ded Systems, Schloss Eringerfeld, Germany, 1999. 61 - 71.

[MSC96] Message sequence charts (MSC). ITU-TS Recommendation Z.120, 1996.
[Se06] C. Seybold. Simulation teilformaler Anforderungsmodelle [Simulation of semi-formal

requirements models (in German)] PhD Thesis, University of Zurich, 2006.

[Sh83] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, 1983.

[SMG04] C. Seybold, S. Meier, and M. Glinz. Evolution of Requirements Models by Simulation.

Proceedings of the 7th International Workshop on Principles of Software Evolution

(IWPSE’04), Kyoto, Japan, 2004. 43-48.

[SMG05] C. Seybold, S. Meier, and M. Glinz. Simulation-Based Validation and Defect Localiza-

tion for Evolving, Semi-Formal Requirements Models. Proceedings of the 12th Asia-

Pacific Software Engineering Conference (APSEC 2005), Taipei, Taiwan, 2005. 408-

417.

[SMG06] C. Seybold, S. Meier, M. Glinz. Scenario-Driven Modeling and Validation of Require-

ments Models. Proceedings of the 5th ICSE International Workshop on Scenarios and

State Machines: Models, Algorithms and Tools (SCESM 2006). Shanghai, China, May

2006. 83-89.

[WS00] J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios. Pro-

ceedings of the 24th International Conference on Software Engineering (ICSE 2000),

Limerick, Ireland, 2000. 314-323.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

