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Abstract

Simulation is a common means for validating require-
ments models. Simulating formal models is state-of-the-art.
However, requirements models usually are not formal for
two reasons. Firstly, a formal model cannot be generated
in one step. Requirements are vague in the beginning and
are refined stepwise towards a more formal representation.
Secondly, requirements are changing, thus leading to a con-
tinuously evolving model. Hence, a requirements model will
be complete and formal only at the end of the modeling pro-
cess, if at all. If we want to use simulation as a means of
continuous validation during the process of requirements
evolution, the simulation technique employed must be ca-
pable of dealing with semi-formal, incomplete models.
In this paper, we present an approach how we can han-

dle partial models during simulation and use simulation to
support evolution of these models. Our approach transfers
the ideas of drivers, stubs, and regression from testing to the
simulation of requirements models. It also uses the simula-
tion results for evolving an incomplete model in a systematic
way towards a more formal and complete one.

1. Introduction

Validating requirements and removing detected errors
as early as possible is quite important both for improv-
ing quality and reducing cost in software development. A
requirements specification process consists of eliciting re-
quirements from stakeholders, documenting them in an ad-
equate way and then validating them by the stakeholders.
This is normally not a linear process, but an evolutionary
one, due to two reasons. Firstly, a requirements model usu-
ally is not created in a single step for size and complexity
reasons. Secondly, requirements are changing as stakehold-
ers bring up new requirements, change priorities, etc.
In order to detect ambiguous, missing and inconsistent

requirements more easily, requirements should be written
in a formal or at least semi-formal language. However,
stakeholders usually do not understand formal notations at

all and also need help for understanding semi-formal ones.
Prototyping and simulation are two possible ways out of
this dilemma. Prototyping is expensive, in particular if re-
quirements change, because prototype development has to
be done in addition to the requirements modeling effort,
and a prototype must continuously be adapted if the re-
quirements evolve. Demonstrating the expected behavior
of a system by simulating a model of its requirements is
much cheaper than prototyping, in particular when the re-
quirements evolve. This is due to the fact that a simulation
executes directly on the requirements model and therefore
always reflects the latest changes. However, validating a
requirements specification completely with simulation re-
quires a complete, formal specification.
In practice, semi-formal models of requirements are pre-

ferred over formal ones, due to their better cost/benefit ra-
tio. From a cost/benefit standpoint, it would be optimal to
have requirements models with a varying degree of formal-
ity, where parts with a high risk of failure can be specified
formally, while others are specified semi-formally or infor-
mally. Some parts may even not be specified at all, because
there is a common understanding between the customers
and the developers about these parts1.
However, we still have the need for validating such mod-

els and for validating them early in the process. One would
benefit most if errors could be found just when a require-
ment has been written. As simulation is a powerful means
for finding errors, it would be extremely useful if a model
fragment could be simulated as soon as it has been writ-
ten and if the specification process could be accompanied
by a continuous validation and re-validation of model frag-
ments. Thus, an interesting research question arises: is it
possible to extend the concept of simulating requirements
models2 from complete and formal models to partial and
semi-formal ones?

1For example, when buying a car, the customer does not need to spec-
ify in the contract that the car must be equipped with an engine and four
wheels with rubber tires.

2In this context, simulation means the execution of a system model.
The language in which the model is described must rely on a defined exe-
cution semantics. Based on the semantics, a simulator tool can execute the
model, either by direct interpretation or by code generation.
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In the field of testing, we know that we can test soft-
ware which is not yet complete by using test drivers and
test stubs. In testing, we also have the well-known concept
of regression testing for dealing with evolving software.
In this paper, we present a concept for simulating par-

tial, semi-formal requirements models which allows model-
based validation of requirements at any stage of an evolu-
tionary process. Our concept is based on carrying over the
ideas of drivers, stubs, and regression from testing to the
simulation of requirements models.
The remaining paper is organized as follows. In Sect. 2,

we describe the language features required for our simula-
tion concept. In Sect. 3, we outline an iterative modeling
process in which validation by simulation, model evolution
and revalidation is embedded. The technique of simulat-
ing partial models is described in Sect. 4. In Sect. 5, we
show how to benefit from simulation runs to evolve a par-
tial model towards a more complete and more formal one.
Related work is discussed in Sect. 6. Our contributions are
summarized and an outlook is given in Sect. 7.

2. Prerequisites

For the approach presented in this paper, we need a mod-
eling language with specific features. In particular, the lan-
guage must support hierarchical decomposition and provide
constructs for modeling incomplete information. The mod-
eling language ADORA [3], together with a recent exten-
sion [13], provides these required features. As we demon-
strate our concepts with ADORA in this paper, we give a
brief introduction to the key features of the language in this
section, using a distributed heating control system as an ex-
ample.
However, our approachwould also work with other mod-

eling languages providing the decomposition and partial-
ity features that we need. For example, a properly defined
UML 2.0 profile [9] would yield such a modeling language.
Fig. 1 shows a typical ADORA model. In contrast to

UML, which basically is a loosely coupled collection of
different modeling languages, ADORA uses an integrated
model which unifies structural, behavioral, contextual, and
user interaction aspects in a single modeling framework.
Another major difference between ADORA and other

object-orientedmodeling languages is that ADORA uses ab-
stract objects instead of classes as the basic modeling ele-
ments, thus allowing hierarchical decomposition of models
in a straightforward way with simple and clear semantics.
Decomposition, in turn, yields abstraction and the possibil-
ity to visualize components in their context, thus making
models both easier to understand and change, i.e. evolve.
Hierarchical structure is modeled by nesting abstract ob-

jects or object sets. The hierarchy is a whole-part-hierarchy;
the part-of relationships being implicitly given by the hier-
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Figure 1. Heating Control System in ADORA

archical nesting of objects. Associationsmodel information
flow. Hence, associations may model directed structural re-
lationships between components as well as sending events
from one component to another. States and state transitions
are integrated into the object hierarchy at all places where
behavior has to be modeled. Objects are regarded to be a
special sort of high-level states. We are using a simplified
version of statechart semantics [2]. Events are broadcasted
only within the boundary of an object. From an originating
object to a destination object, events have to be sent explic-
itly over associations. User interaction is modeled by type
scenarios (equivalent to use cases in UML). As interaction
is frequently local, the scenarios are embedded in the object
hierarchy at the position where they apply. Scenarios can
also be decomposed, using an extended form of Jackson di-
agrams [6] as notation.
ADORA does not require drawing all model elements in a

single diagram. In order to keep diagrams readable, ADORA
provides aspect views (showing only a particular aspect, e.g.
system behavior) and hierarchical views (omitting the de-
tails of lower level components).
The ADORA language allows both semi-formal and for-

mal modeling. Semi-formal means that some elements of
a model do not have formal semantics. A typical example
is a state transition (a formal concept) where the trigger-
ing condition is given in natural language. Furthermore,
ADORA supports partial models, i.e. models containing
parts that are intentionally incomplete: some parts have not
been modeled yet or will not be modeled at all. The differ-
ence to unintentional incompleteness is that the incomplete
elements are marked as such. Partial modeling is particu-
larly useful in an evolutionary requirements modeling pro-
cess, where we want to evolve a model in a controlled way
through a series of iterations.
In ADORA we have two constructs for describing par-

tial models: the first one is the so-called is-partial property
which indicates that a component is incomplete (indicated



by three dots following the name). This is especially use-
ful if a system part will still evolve or is incomplete at this
time. The second construct is the so-called abstract asso-
ciation which is represented as a bold line (e.g. the asso-
ciation from BoilerControl to Settings in Fig. 1). Abstract
associations can be used if the modeler knows that there is
some communication between components, but at the time
of modeling it is not clear how the concrete communication
will look.
Note that ADORA supports not only partial models, but

also partial views, using the same notation for both. Partial
views are diagrams that do not show all elements that exist
in a model (for example, consider a high-level, abstract view
of a system), while in a partial model, the model itself is
incomplete.

3. A Process for Validating and Evolving Par-
tial Models

In this section, we sketch an incremental process for cre-
ating and evolving requirements models which uses sim-
ulation as a means both for validating and evolving re-
quirements. The process proceeds through a sequence of
increments, each increment consisting of four major steps
(Fig. 2). We assume that the process is enacted by require-
ments engineers who are professionals in elicitation, analy-
sis, modeling, and validation of requirements.
The requirements model can either evolve through a se-

ries of requirements-only increments until the requirements
specification is considered complete (and will then be used
for designing and implementing a system), or the require-
ments can co-evolve with the design and implementation of
the system. In the latter case, each requirements increment
is followed by a design and implementation step before pro-
ceeding to the next requirements increment. We now de-
scribe the four steps of an increment of the process in more
detail.
Step 1: Elicit. Elicit requirements using conventional

techniques such as stakeholder interviews.
Step 2: Model. Construct a model of the elicited re-

quirements. Try to identify the key sub-problems in the
problem to be specified and model components reflecting
this problem structure. Details are filled in where the elici-
tation step provides enough information. As the process is
incremental, some parts of the model will deliberately re-
main incomplete and therefore are marked as such. In addi-
tion to this structural model, build a scenario model which
describes the interaction between external actors and the
system. Of course, there is a feedback-loop between the
steps 1 and 2: building the model helps identify missing,
ambiguous and contradictory requirements.
Step 3: Validate. Simulate those parts of the model that

have been added in the current increment. The simulation
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Figure 2. Possible process for evolving the re-
quirements and the architecture of a system

works by executing the scenario models. As the model is
incomplete, specific simulation techniques based on stub
and driver simulation (see Sect. 4) are applied. The results
are used for validating the requirements elicited in the cur-
rent increment and for correcting the detected errors in the
model. Furthermore, the simulation runs are recorded in
form of sequence charts. These charts serve two purposes.
Firstly, they are used in later increments for regression sim-
ulations. Secondly, they provide systematic guidance for
evolving the model in the next increment (see Sect. 5).
Step 4: Re-validate. Run simulations for all recorded

sequence charts to ensure that previously modeled parts
were not affected by the current increment. This is done
by comparing the recorded outputs with the actual outputs.
If they all match, the re-validation passes and step 4 is fin-
ished. A mismatch either indicates an error in the current in-
crement (which has to be corrected) or an intended change
in the modeled behavior. In the latter case, the sequence
chart must be re-recorded (see Sect. 4.1). After resolv-
ing the mismatch, step 4 has to be repeated until the re-
validation passes.

4. Partial Simulation

In this section, we present our simulation technique for
partial models with the purpose of validation. It is based on
the well-known concept of test drivers and stubs [1] or mock
objects [7] and today’s standard simulation techniques for
formal models. Test drivers and stubs are used in the con-
text of software testing to drive unit and integration tests and
substitute calls to incomplete components with stubs that
have some default behavior. We adapt these terms to sim-
ulation units, driver simulation, and stub simulation. Test
and simulation drivers have in common that they are uti-
lized for the validation of parts of a model (instead of the
complete model); both test and simulation stubs substitute
yet unmodeled behavior. The difference is that simulation
driver or stubs have not to be coded. Instead, they are played
and recorded by interaction with the modeler. This recorded



information is also used for evolving the model towards a
more complete and formal one (see Sect. 5) and for re-
validation of the model after changes.

4.1. Driver Simulation

Driver simulation is used for simulating a formally spec-
ified part of a model.
The simulation driver triggers the simulation unit (see

below) with events and receives events from the simulation
unit. If the modeler validates the model, she or he drives
the simulation interactively by inputs that are recorded.
Recorded values can be taken to re-run the simulation au-
tomatically for re-validation of a changed model. As we
suppose the model to evolve continuously, this so-called re-
gression simulation is especially important.
The simulation unit (SU) is the candidate to be validated.

It can consist of a single component or a group of them.
Comparable to testing, small units are validated first, then
larger units are composed out of them until the whole sys-
tem forms a single simulation unit. In Fig. 3, an example SU
is composed of components A, B, and C (in gray). Compo-
nentD (in light gray) is implicitly included in this SU as it is
a child component of A, while the parent component X and
Y are not included. Scenarios (ellipses) lie logically outside
the system and therefore are never included.
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Figure 3. Simulation unit consisting of com-
ponents A, B, C, and D

The possible communication channels to components of
a SU form the interface between the SU and the simulation
driver. There are four ways to communicate: (1) Concrete

associations to SU components (ay, az, dz in Fig. 3), (2) ab-
stract associations to SU components or parents of them
(yz), (3) part-of relations between SU components and their
parents (A-X, B-Y, C-X), and (4) scenario-relations between
SU components and contained scenarios (A-S).
The interface is used by the simulation driver to enter

events into and receive events from the SU. The simulator
executes the behavior of the SU by processing the entered
events. Both input and output events are recorded in a mes-
sage sequence chart. The chart contains all events sent be-
tween the components taking part in the simulation. One
chart represents the trace of one simulation run.
Fig. 4 gives an example of such a sequence chart. On the

left side of the dashed line, which represents the interface
of the SU, are the components played by the modeler. The
components on the right side are executed by the simulation.
All event parameters are assigned concrete values. For ex-
ample, the modeler sends msgA(25) from scenario S to the
simulated component A. After processing the internal mes-
sage msgB (it does not leave the SU), Z receives msgC(5)
from D. Another input event msgD results in msgE(42) ar-
riving at Z.

Y A BX Z C D

msgA(25) to A
msgB(null) to D

msgC(5) over dz

msgD("init string") to B

msgE(42) over bz

S

Figure 4. Example trace of a simulation run

A sequence chart which has been recorded in a simula-
tion run is called a simulation case (SC), because, in anal-
ogy to test cases, it specifies input events and expected re-
sults.
The modeler creates new SCs by driving a simulation

for a certain SU. She or he can trigger the events that the
interface of the SU accepts and she or he has to accept all
events from the SU. For each received event, the modeler
has to decidewhether this output is correct according to how
the system should behave. An unexpected output stops the
simulation and lets the modeler correct the model. This SC
must be re-recorded in this case. After having validated all
outputs, the recording of the SC can be stopped.
In regression simulation, the existing SCs are replayed

after modification of the model. In this case, the recorded
inputs drive the simulation. The received outputs are ver-
ified by comparing them to the recorded outputs. The SC
passes if recorded and received outputs are equal. If the
SC fails, this can have two reasons. Either the behavior of



the SU was unintentionally changed, then the problem in
the model must be fixed. Or, the behavior of the SU was
intended to change. Then, the SC has become useless and
must be recorded again so that it reflects the new behavior.

4.2. Stub Simulation

In this section, we extend the driver simulation with sim-
ulation stubs so that also partial components can be included
in a SU. A simulation stub is a partial component included
in a SU. The behavior of these stubs has to be substituted by
the modeler, similar to driver simulation. Requests to these
components are delegated to the modeler who intervenes
and plays the desired behavior.
For example, let’s assume that the component D from

Fig. 3 is not modeled yet, which is a typical situation when
modeling top-down. When a simulation is performed on the
SU A, B, and C, the componentD must be represented by a
simulation stub.
The interface of a simulation stub is defined in the same

way as for a SU (see above). Here, the interface of the stub
D is composed of the concrete associations bd, cd, dz and
the part-of-relationD-A. The modeler has to control the in-
terface of the stub as well as of the SU which is the same as
in Fig. 3.
As soon as an event is sent to a stub, modeler interac-

tion is required. The simulation is paused to let the modeler
generate further events. Then, the simulation continues.
Both input and output events are recorded for two pur-

poses. Firstly, modeler interaction can be replaced with
a previously recorded set of interactions. This allows the
automation of stub simulations as well. Secondly, the
recorded interactions help specify the behavior of the simu-
lation stub and thus evolve partial components to complete
ones. This is described in the following section.

5. Model Evolution

In this section we present two techniques for evolving a
model towards a more formal and complete one which are
based on the process and the simulation approach presented
in the previous two sections.

5.1. Evolution of Partial Components

After the simulation of a component which has incom-
pletely specified sub-components, we might want to evolve
the specification of one of these sub-components into a
complete one. With respect to behavior, this means that we
have to develop a statechart that models the behavior of this
sub-component.

From stub simulation, we already have a set of sequence
charts which describe the intended behavior of the sub-
component. Principally, we could feed this information into
one of the existing algorithms which synthesize state ma-
chines form sequence charts [12]. However, such generated
state machines are hardly readable for humans and, hence,
difficult to extend and adapt manually.
Therefore, we decided to develop a semi-automatic tech-

nique where the modeler draws the statechart manually, but
with guidance by a tool which suggests the modeler how
to proceed. Fig. 5 gives an idea how this technique works.
Given a sequence chart (from stub simulation) and a par-
tially modeled statechart, the tool determines that the first
two events of the sequence chart can be handled by the
existing statechart fragment, while the third event can’t.
Hence, the tool proposes the modeler to insert a transi-
tion into the statechart which handles this event. The mod-
eler decides the location where to insert the transition and
whether it will lead to a new state or to an existing one. So
the resulting layout is determined by the modeler.
This procedure is repeated until the statechart is able

to handle all events from all sequence charts that were
recorded for the component during stub simulation. Such
a manual, tool-guided process not only yields statecharts
which are more readable than automatically generated ones.
It also supports the modeler in finding errors or missing
events in the sequence charts from which the statechart was
derived.
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Figure 5. Semi-automatic generation of a
statechart from a sequence chart

5.2. Evolution of Abstract Associations

As described in Section 2, we use abstract associations
for modeling incompletely specified information flows be-
tween components. When evolving a partial model towards
a more complete one, abstract associations will gradually
evolve into concrete ones.
We support this kind of evolution also with a semi-

automatic, tool-supported technique. The tool compares the



actual need for communication between components due to
event flows between statecharts with the currently modeled
associations (both abstract and concrete ones). From this
comparison, the tool proposes where to replace abstract as-
sociations by concrete ones or adapt concrete associations
to changes in the connected components. More details can
be found in [10].

6. Related Work

There are several approaches that aim at the simulation
of requirements models for validation purposes. Mostly,
they require formal models. We briefly survey those ap-
proaches which are most similar to our one.
Labeled Transition Systems (LTS) [8] are utilized to

prove safety and liveness properties of formal models. Par-
tial LTS [11] help to identify undefined scenarios based
on possible, but unmodeled transitions in a formal LTS by
matching pre- and postconditions.
Whittle [12] provides an algorithm for automatic syn-

thesis of statecharts from sequence charts. The resulting
statecharts are readable thanks to the use of hierarchical
structure. Modifying the statecharts breaks the link to the
sequence charts and therewith prevents model evolution.
The Software Cost Reduction (SCR) method provides a

simulator tool [5] that allows to validate SCR models by de-
tecting the violation of invariants on execution andwatching
the behavior when entering scenarios. The models must be
specified formally in dictionaries and tables.
The most similar approach is probably the Play-Engine

by Harel et al. [4]. They record instance scenarios by
playing-in and perform validation steps by playing-out. Ex-
istential and universal life sequence charts (LSC) are used
as notation. Regression testing is performed by replaying
recorded runs. For playing-in and -out, they require a graph-
ical prototype that must be designed first. There is no focus
on evolution of partial components.

7. Conclusions

In this paper, we presented a concept for simulating par-
tial, semi-formal requirements models which allows model-
based validation of requirements at any stage of an evolu-
tionary process. The approach transfers the ideas of drivers,
stubs, and regression from testing to the simulation of re-
quirements models. It also uses the simulation results for
evolving an incomplete model in a systematic way towards
a more formal and complete one.
Our approach is limited with respect to proving formal

liveness and safety properties. Furthermore, we did not fo-
cus on an animated model in the context of the modeled
application domain yet.

We have already developed a modeling tool in Java that
allows to draw and simulate formal ADORA models. The
extension of this tool to the simulation of partial models is
currently being implemented. We are also working on ex-
tensions of our approach towards the integration of further
semi-formal properties of models.
Next, we are going to integrate the evolution techniques

described in this paper into our tool. This allows us to per-
form real case studies demonstrating the usability of our ap-
proach. We also want to do further research in the field of
semi-formal requirements modeling.
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