
Information Systems 27 (2002) 425–444

.

Object-oriented modeling with Adora

Martin Glinza,*, Stefan Bernerb, Stefan Joosc

a Institut f .ur Informatik, Universit .at Z .urich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
bFJA, Zollikerstrasse 183, CH-8008 Zurich, Switzerland

cRobert Bosch GmbH, Postfach 30 02 20, D-70469 Stuttgart, Germany

Abstract

In this paper, we present the Adora approach to object-oriented modeling of software (Adora stands for analysis

and description of requirements and architecture). The main features of Adora that distinguish it from other

approaches like UML are the use of abstract objects (instead of classes) as the basis of the model, a systematic

hierarchical decomposition of the modeled system and the integration of all aspects of the system in one coherent model.

The paper introduces the concepts of Adora and the rationale behind them, gives an overview of the language, sketches

a novel concept for visualizing the model hierarchy with a tool and reports the results of a validation experiment for the

Adora language. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Object-oriented modeling; Specification; Requirements engineering; Adora; Object; Scenario; Scenario integration

1. Introduction

Modeling requirements and architectural de-
sign has a long tradition, rooted in simple block
diagrams back in the early days of computing.
Between 1970 and 1980, the first systematic
modeling techniques appeared, for example the
entity-relationship approach [1] and structured
analysis [2]. The entity-relationship approach had
a tremendous influence. In particular, it led to
the so-called object-oriented analysis and design
methods around 1990, for example OOA/OOD
[3], OMT [4] or OOAD [5]. However, these
approaches had severe deficiencies that were
mainly due to two problems: no systematic

decomposition of models and the inability to
model dynamic and behavioral aspects of a
system. Both problems are inherited from the
entity-relationship approach, which also has no
decomposition and—by its nature—does not
model dynamic and behavioral aspects. On the
other hand, structured analysis, which had the
features lacking in the OO-approaches, had
other, equivalently severe deficiencies, in parti-
cular the paradigm mismatch between analysis
and design, missing locality of data definitions,
only partial information hiding and no types [6].
Jacobson [7] tried to overcome some defects of
the object-oriented approaches by introducing
the notion of use cases. OML [8] was another
attempt to create a better object modeling
language. The beginning of our own work on
object-oriented specification [6,9] was also moti-
vated by the weaknesses of structured analysis

*Corresponding author.

E-mail address: glinz@ifi.unizh.ch (M. Glinz).

URL: http://www.ifi.unizh.ch/Bglinz.

0306-4379/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 2) 0 0 0 1 5 - 7

and the problems of the early object modeling
approaches.
UML [10] was created with the goals of unifying

the best features of different existing languages and
of creating an industry standard. In achieving the
last of these goals, UML was stunningly successful.
However, this success was no reason for us to stop
our work or redirect it towards UML, because also
with UML (and to a minor extent, with OML),
several critical problems remain. There is still no
true integration of the aspects of data, function-
ality, behavior and user interaction. Neither do we
have a systematic hierarchical decomposition of
models (for example, UML packages are a simple
container construct with nearly no semantics).
Models of system context and of user-oriented
external behavior are weak and badly integrated
with the class/object model [11]. Thus, UML is
definitely not the ultimate answer to the problem of
creating a good language for modeling require-
ments and architecture.
We are developing an object-oriented modeling

method for software that aims at overcoming some
of the major problems mentioned above. We call
our approach Adora which is an acronym
standing for Analysis and Description Of Require-
ments and Architecture [12,13]. Adora is intended
to be used primarily for requirements specification
and also for logical-level architectural design.
Currently, it has no language elements for expres-
sing physical design models (distribution, deploy-
ment) and implementation models.
However, as Adora models are object-oriented,

we can implement a smooth transition from an
Adora architecture model to detailed design and
code written in an object-oriented programming
language.
The main reason why we pursue a new approach

and do not integrate our ideas into UML is
because basic concepts of Adora are essentially
different from those of UML (see Section 7).
In this paper, we present the Adora approach,

focusing on the general concepts and on the
language.
The main contributions of Adora are:

* a method that creates an integrated model that is
based on abstract objects, not on classes, and

that uses hierarchical decomposition as its main
means of structuring a system,

* a tool concept that visualizes models in context

according to their logical structure,
* support for a flexible, incremental modeling

process that, in particular, allows tailoring the

formality of Adora models to the problem at
hand.

Throughout this paper, we will use a distributed
heating control system as an example. The goal of
this system is to provide a comfortable control for
the heating system of a building with several
rooms. An operator can control the complete
system, setting default temperatures for the rooms.
Additionally, for every room, individual tempera-
ture control can be enabled by the operator. Users
then can set the desired temperature using a
control panel in the room. The system shall be
distributed, consisting of one master module
serving the operator and many room modules.
However, Adora is not only applicable for the

specification of industrial control systems. It can
as well be used for the specification of information
systems, in particular distributed ones. For exam-
ple, in an experimental validation of the Adora

language (see Section 6), we have modeled a
distributed ticket information and vending system.
The rest of the paper is organized as follows. In

Sections 2–4 we present the main features of
Adora, starting with the key concepts and then
presenting the language and the visualization
concept of the tool. Section 5 sketches how Adora

fits into software processes. In Section 6 we present
the results of a first validation of the Adora

language. Finally, we compare the concepts of
Adora with those of UML and conclude with a
discussion of results, state of work and future
directions.

2. Key concepts and rationale of the ADORA

approach

Adora is based on five principal ideas:

* working with abstract objects (instead of
classes),

M. Glinz et al. / Information Systems 27 (2002) 425–444426

* structuring the system being modeled with
hierarchical decomposition,

* using an integrated model (instead of collec-
tions of models),

* allowing users to express different parts of a
specification with a varying degree of formality
(adapted to the importance and risk of the
parts),

* visualizing models in context by presenting
details of a model always with an abstraction
of its surrounding context.

In this section, we briefly describe these five
principles and give our rationale for choosing
them.

2.1. Abstract objects instead of classes

When we started the Adora project, all existing
object-oriented modeling methods used class dia-
grams as the cornerstone of their model. However,
class models are inappropriate when more than
one object of the same class and/or collaboration
between objects has to be modeled [11,14]. Both
situations frequently occur in practice. For an
example, see the buttons in Fig. 1. Moreover, class
models are difficult to decompose. As soon as
different objects of a class belong to different parts
of a system (which often is the case), hierarchical
decomposition no longer works for class models
[14]. Wirfs-Brock [15] tries to overcome the
problems of class modeling by using classes in

different roles. However, decomposition remains a
problem: what does it mean to decompose a role?
We therefore decided to use abstract, proto-

typical objects as the core of an Adora model
(Fig. 1). An equivalent to classes (which we call
types) is only used to model common character-
istics of objects: types define the properties of the
objects and can be organized in subtype hierar-
chies. In order to make models more precise, we
distinguish between objects (representing a single
instance) and object sets that represent a set of
instances. Modeling of collaboration and of
hierarchical decomposition (see below) becomes
easy and straightforward with abstract objects.
In the meantime, others have also discovered the

benefits of modeling with abstract objects. UML,
for example, uses abstract objects for modeling
collaboration in collaboration diagrams and in
sequence diagrams.1 However, without a notion of
abstraction and decomposition, only local views
can be modeled. Moreover, class diagrams still
form the core of a UML specification.

2.2. Hierarchical decomposition

Every large specification must be decomposed in
some way in order to make it manageable and

Top right: Conventional class model of the
control panels

Left: ADORA model of a distributed heating
control system. MasterModule and Room-
Module are partially visualized (indicated
by dots after name); showing the control
panels only. Display and Button are types.

HeatingControlSystem

MasterModule...

BoilerControlPanel

BoilerDisplay: Display

Keypad... On: Button

Off: Button

RoomModule...

RoomTempControlPanelTempControlPanelT

RoomDisplay: Display

Off: Button

On: Button

Plus: Button

Minus: Button

Enter: Button

BoilerControl
Panel

RoomTempTempT
ControlPanel

Keypad Button Display

(1,n)

Fig. 1. An Adora object model (left) vs. a conventional class model (top right).

1There is no consistent notion of abstract objects in UML. In

collaboration diagrams Classifier Role is used to represent

abstract objects whereas in sequence diagrams Object is used

for the same purpose. The UML reference manual increases the

confusion by stating that collaborations use objects ([10] pp. 29,

196 and 530).

M. Glinz et al. / Information Systems 27 (2002) 425–444 427

comprehensible. A good decomposition (one that
follows the basic software engineering principles of
information hiding and separation of concerns)
decomposes a system recursively into parts such
that

* every part is logically coherent, shares informa-
tion with other parts only through narrow
interfaces and can be understood in detail
without detailed knowledge of other parts,

* every composite gives an abstract overview of
its parts and their interrelationships.

The current object-oriented modeling methods
typically approach the decomposition problem in
two ways: (a) by modeling systems as collections of
models where each model represents a different
aspect or gives a partial view of the system, and (b)
by providing a container construct in the language
that allows the modeler to partition a model into
chunks of related information (e.g. packages in
UML). However, neither way satisfies the criteria
of a good decomposition. Aspect and view
decompositions are coherent only as far as the
particular aspect or view is concerned. The
information required for comprehending some
part of a system in detail is not coherently
provided. Container constructs such as UML
packages have semantics that are too weak for
serving as composites in the sense that the
composite is an abstract overview of its parts
and their interrelationships. This is particularly
true for multi-level decompositions. Only the
ROOM method [16] can decompose a system in
a systematic way. However, as ROOM is also
based on classes, the components are not classes,
but class references. This asymmetry makes it
impossible to define multi-level decompositions in
a straightforward, easily understandable way.
In Adora, the decomposition mechanism was

deliberately chosen so that good decompositions in
the sense of the definition given above become
possible. We recursively decompose objects into
objects (or elements that may be part of an object,
like states). So we have the full power of object
modeling on all levels of the hierarchy and only
vary the degree of abstractness: objects on lower
levels of the decomposition model small parts of a
system in detail, whereas objects on higher levels

model large parts or the whole system on an
abstract level.

2.3. Integrated model

With existing modeling languages, one creates
models that consist of a set of more or less loosely
coupled diagrams of different types. UML is the
most prominent example of this style. This seems
to be a good way to achieve separation of
concerns. However, while making separation easy,
loosely coupled collections of models make the
equally important issues of integration and ab-
straction of concerns quite difficult.
In contrast to the approach of UML and others,

an Adora model integrates all modeling aspects
(structure, data, behavior, user interaction, etc.) in
one coherent model. This allows us to develop a
strong notion of consistency and provides the
necessary basis for developing powerful consis-
tency checking mechanisms in tools. Moreover, an
integrated model makes model construction more
systematic, reduces redundancy and simplifies
completeness checking.
Using an integrated model does of course not

mean that everything is shown in one single
diagram. Doing so would drown the user in a
flood of information. We achieve separation of
concerns in two ways. (1) We decompose the
model hierarchically, thus allowing the user to
select the focus and the level of abstraction. (2) We
use a view concept that is based on aspects, not on
various diagram types. The base view consists of
the objects and their hierarchical structure only.
The base view is combined with one or more
aspect views, depending on what the user wishes to
see. These two concepts—hierarchy and combina-
tion of views—constitute the essence of organizing
an Adora model.
So the complete model is basically an abstract

one—it is almost never drawn in a diagram. The
concrete diagrams typically illustrate certain as-
pects of certain parts of a model in their
hierarchical context. However, since every con-
crete diagram is a view of an integrated model of
the complete system, we can build strong consis-
tency and completeness rules into the language
and build powerful tools for checking and

M. Glinz et al. / Information Systems 27 (2002) 425–444428

maintaining them. Readability of diagrams is
achieved by selecting the right level of abstraction,
by restricting the number of aspects being viewed
together, and by splitting complex diagrams into
an abstract overview diagram and a number of
part diagrams. For example, if Fig. 2 is perceived
to be too complex, it can be split into an overview
diagram (Fig. 9) and two part diagrams, one for
MasterModule and one for RoomModule.

2.4. Adaptable degree of formality

An industrial-scale modeling language should
allow its users to adapt the degree of formalism in
a specification to the difficulty and the risk of the
problem at hand. Therefore, they need a language
with a broad spectrum of formality in its
constructs, ranging from natural language to
completely formal elements.
In Adora, we satisfy this requirement by giving

the modeler a choice between informal, textual
specifications and formal specifications (or a
mixture of both). For example, an object may be
specified with an informal text only. Alternatively,
it can be formally decomposed into components.
These in turn can be specified formally or
informally. As another example, state transitions
can be specified in a formal notation or informally
with text or with a combination of both.

The syntax of the Adora language provides a
consistent framework for the use of constructs
with different degrees of formality.

2.5. Contextual visualization

Current modeling languages either lack capabil-
ities for system decomposition or they visualize
decompositions in an explosive zoom style: the
composites and their parts are drawn as separate
diagrams. Hence, a diagram gives no information
about the context that the presented model
elements are embedded in. In Adora, we use a
fisheye view concept for visualizing a component
in its surrounding hierarchical context, thereby
simplifying browsing through a set of diagrams
and improving comprehensibility [12,17]. This
technique allows the construction of tools that
support the abstraction mechanisms of the lan-
guage directly by corresponding visualization
mechanisms in the tool.

3. An overview of the ADORA language

An Adora model consists of a basic hierarch-
ical object structure (the base view, as we call it)
and a set of aspect views that are combined with

HeatingControlSystem

MasterModule

BoilerOperator

object object set scenario
association relationship

state abstract relationship

HeatingOn LocalControl
Disabled

communicate

display

RoomTemp
Sensor: external

RoomModule

RoomControl

RadiatorValve

setRoomTemp

LocalControl
Enabled

User

setDefault

setRoom

Control

Local
Control
Off

Local
Control
On

Controller

element of the
environment

controlBoiler
(1,1)

controlValve
(1,3)

readTemp
 (1,1)

(1,n)

setLocal

Settings

note RoomControl uses
local control parameters
if local control is enabled
and on. Else, default
values (set by Master-
Module) are used.

ManageLocalRoom
Temperature...

RoomTempControl
Panel...

communicate setState

BoilerControl
Panel...

BoilerControl...

OperateHeating
System...

HeatingOff

Fig. 2. An Adora view of the heating system: base view combined with structural view and context view.

M. Glinz et al. / Information Systems 27 (2002) 425–444 429

the base view. In this section, we describe these
views and their interaction.

3.1. Basic hierarchical object structure

The object hierarchy forms the basic structure of
an Adora model.

Objects and object sets. As already mentioned
above, we distinguish between objects and object
sets. An ADORA object is an abstract representation
of a single instance in the system being modeled.
For example, in our heating control system, there
is a single boiler control panel, so we model this
entity as an object. Abstract means that the object
is a placeholder for a concrete object instance.
While every object instance must have an object
identifier and concrete values for its attributes, an
Adora object has neither of these. An ADORA

object set is an abstract representation of a set of
object instances. The number of instances allowed
can be constrained with a cardinality. For
example, in an order processing system we would
model suppliers, parts, orders, etc. as object sets.
In the heating control system, we have a control
panel in every room and we control at least one
room. Thus, we model this panel as an object set
with cardinality (1,n), see Fig. 2.

Structure of an ADORA object. An object or object
set has a two-fold inner structure: it consists of a
set of properties and (optionally) a set of parts.
The properties are attributes (both public and

private ones), directed relationships to other
objects/object sets, operations and so-called stan-
dardized properties. The latter are user-definable
structures for stating goals, constraints, configura-
tion information, notes, etc., see below.
The parts can be objects, object sets, states and

scenarios. Every part again can consist of parts:
objects and object sets can be decomposed
recursively as defined above, states can be refined
into statecharts, scenarios into scenariocharts (as
we call them, see below). Thus, we get a
hierarchical whole-part structure that allows the
modeling of a hierarchical decomposition of a
system. The decomposition is strict: an element
can neither contain itself nor can it be a part of
more than one composite. We stick to a strict
decomposition due to its inherent simplicity and

elegance. Commonalities between objects in dif-
ferent positions of a decomposition hierarchy can
be modeled by assigning them the same type (see
the paragraph on types below and Fig. 1).

Graphic representation. In order to exploit the
power of hierarchical decomposition, we allow the
modelers to represent an Adora model on any
level of abstraction, from a very high-level view of
the complete system down to very detailed views of
its parts. We achieve this property by representing
Adora objects, object sets, scenarios and states by
nested boxes (see Figs 1 and 2). The modeler can
freely choose between drawing few diagrams with
deep nesting and more diagrams with little nesting.
In order to distinguish expanded and non-
expanded elements in a diagram, we append three
dots to the name of every element having parts
that are not or only partially drawn on that
diagram.

Types. Frequently, different objects have the
same inner structure, but are embedded in
different parts of a system. In the heating system
for example, the boiler control panel and the room
control panels both might have a display with the
same properties. In these situations, it would be
cumbersome to define the properties individually
for every object. Instead, Adora offers a type
construct. An Adora type defines:

* the attributes and operations of all objects/
object sets of this type,

* a structural interface, that means, information
required from or provided to the environment
of any object/object set of this type. This facility
can be used to express contracts.

A type defines neither the relationships to other
objects/object sets nor the embedding of the
objects of that type. Types can be organized in a
subtype hierarchy.
An object can have a type name appended to its

name (for example, RoomDisplay: Display in
Fig. 1). In this case, the object is of that type and
the type is separately defined in textual form.
Otherwise, there is no other object of the same
type in the model and the type information is
included in the definition of the object. Fig. 6
shows an example of such an object definition.

M. Glinz et al. / Information Systems 27 (2002) 425–444430

Standardized properties. In order to adapt
Adora in a flexible yet controlled way to the
needs of different projects, application domains or
persons, we provide the so-called standardized
properties. An Adora standardized property is a
typed construct consisting of a header and a body.
Fig. 3 shows the type definitions for the properties
goal, created and note and the application of
these properties in the specification of the object
HeatingControlSystem. As the name and struc-
ture of the properties are user-definable, we get the
required flexibility. On the other hand, typing
ensures that a tool nevertheless can check the
properties, and support searching, hyperlinking
and cross-referencing.

3.2. The structural view

The structural view combines the base view with
information about relationships between objects.
Relationships in Adora express more than classic
associations do: they model all kinds of informa-
tion flow between objects.

Associations. Whenever an object A accesses a
public attribute of another object B or invokes an
operation of B (and B is not a part of A or vice-
versa) we model a directed association relationship
from A to B. The association has a name and may
have a cardinality. In contrast to UML and other
object or entity-relationship modeling languages,
Adora associations are always directed binary
relationships. Modeling with directed associations
has several advantages: it helps decouple objects,
supports information hiding and enables modeling
of contracts between objects. For example, in a
phone directory system one may want to associate

persons with phone numbers, but—for privacy
reasons—not vice-versa. Bi-directional relation-
ships can be modeled by two directed ones with
corresponding names. Associations are graphically
represented by thin lines between the associated
objects. An arrowhead preceding the name of
the association indicates the direction (cf. Figs. 2
and 4).

Abstract relationships. Relationships in Adora

must reflect the hierarchical structure of the model.
That means, a relationship between two objects
implies relationships on all hierarchical levels lying
above these objects. Otherwise, the model would
become inconsistent concerning information flow
between objects.
We call these implied higher-level relationships

abstract relationships. Fig. 4 illustrates the concept
of abstract relationships by examples: let objects A

and B linked by an association relationship. If A is
contained in another object X and B in an object
Y, then the relationship A-B implies abstract
relationships X-Y, A-Y and X-B. Whenever
we draw a diagram that hides A, B or both, the
next higher abstract relationship must be drawn.
Abstract relationships are drawn as thick lines.
They can, but need not have names and cardinal-
ities.2 In the case of partially expanded objects, we
sometimes have to draw both a relationship and a
corresponding higher-level abstract relationship.
In this case, we indicate the correspondence by a
dashed hairline (Fig. 4).

Modeling information flow. Besides associations,
information flow between two objects A and B

may also stem from A sending an event to B or

Fig. 3. Definition and use of standardized properties.

blabla (1,n)

oops (1,1)

blabla (1,n)

X

X...

Y

Y

X...

X... Y...Y...Y

highbla
A

C
B

BA

Y...Y...Y
A

Fig. 4. Four static views of the same model on different levels

of abstraction.

2Cardinalities for abstract relationships can easily lead to

inconsistencies. The cardinality of an abstract relationship r

must not be more restrictive than the least restrictive cardinality

of the relationships that r is derived from.

M. Glinz et al. / Information Systems 27 (2002) 425–444 431

from A referencing names defined within B. The
latter typically happens when a scenario interacts
with data objects in the model. These two kinds of
information flow are also modeled with abstract
relationships.
Thus, the structural view models the hierarchical

structure and all relationships caused by referen-
cing, accessing or transmitting information.

Direction of abstract relationships. An abstract
relationship has a direction, if and only if all its
underlying lower level relationships have the same
direction. So if, for example, we have two high-
level subsystems S1 and S2 that are solely
connected by a directed abstract relationship from
S1 to S2, then we know that S2 is independent of S1

and that S1 is built upon S2.
In the view shown in Fig. 2, we have some

examples of Adora relationships. All relation-
ships from BoilerControl to other objects
are abstract ones because their origins within
BoilerControl are hidden in this view. The
relationships readTemp from Controller to
RoomTempSensor and controlValve from Con-

troller to RadiatorValve are associations.
Hence, they are drawn with thin lines. If we had
chosen a view that hides the contents of Room-
Control, we had drawn two abstract relationships
from RoomControl to RoomTempSensor and to
RadiatorValve, respectively.

3.3. The behavioral view

The behavioral view combines the base view
with a model of dynamic system behavior.
In most existing modeling languages (both

general-purpose such as UML and behavior-
specific such as Statemate [18]), the behavior
model and the class or activity model are modeled
and kept separately. In languages supporting
hierarchical structure, the behavioral hierarchy
and the hierarchy of activities or classes are also
modeled separately [19]. In Adora we take a
different approach, integrating the object and the
behavior model.

Combining objects and states. Adora combines
the object hierarchy with a statechart-based state
machine hierarchy in a single hierarchical struc-
ture [9,20]. Every object represents an abstract
state that can be refined by the objects and/or
the states that an object contains. This is
completely analogous to the refinement hierarchy
in statecharts [21] and can be given analogous
semantics for state transitions. We distinguish
pure states (represented graphically by rounded
rectangles) and objects with state (see Fig. 5).
Pure states are either elementary or are refined
by a pure statechart. Objects with state addi-
tionally have properties and/or parts other than
states.

RoomModule

(1,n)

HeatingOn

HeatingOff

LocalControl
Disabled

RoomTempControl
Panel...

RoomTemp
Sensor: external

RoomControl LocalControlEnabled

ManageLocal
RoomTemperature...

receive on
over setRoom

"enable" "disable"

Init, Monitoring Modifying

Modifying

Monitoring

Init

Y

Y

ControllerSettings

Reading

Local
Control
Off

Local
Control
On

IN LocalControlEnabled.LocalControlOn

ActualTemp > Settings.CurrentTemp(now)

ActualTemp < Settings.CurrentTemp(now)

ActualTemp > Settings.DefaultTemp(now)

ActualTemp < Settings.DefaultTemp(now)

IN LocalControlEnabled

send open over controlValve

send close over controlValve

180 s IN Modifying

MonitoringModifying

10 s IN Reading

self.ReadSensorValue

ReadingReading

Y

N

Y

•

•

N

•

•

N

Y

•Y

Y

N

Y

•

•

N

•

•

N

Y

•Y

note RoomControl uses local control
parameters if local control is enabled
and on. Else, default values (set by
MasterModule) are used.

note setRoom and controlValve are
relationships (see Fig. 2) that act as
channels for receiving/sending events.

receive off over
setRoom / send shut
over controlValve

State Transition Tables for Controller

Fig. 5. A partial Adora model of the heating control system; base view and behavior view.

M. Glinz et al. / Information Systems 27 (2002) 425–444432

We do not explicitly separate parallel states/
state machines as it is done in statecharts. Instead,
objects and states that are part of the same object
and have no state transitions between each other
are considered to be parallel states. Objects that
are neither the destination of a state transition nor
are designated as initial abstract states are
considered to have no explicitly modeled state.
By embedding the behavior model into the

object decomposition hierarchy, we can easily
model behavior on all levels of abstraction. On a
high level, objects and states may represent
abstract concepts like operational modes (off,
startup, operating, etc.). On the level of elementary
objects, states and transitions model object life
cycles.

Timing and event propagation. Harel’s semantics
of statecharts [21] is based on event broadcasting
and synchronous timing. While this is quite
straightforward for small, simple models, it has
serious drawbacks for complex models. Event
broadcasting breaks the principles of localizing
effects and of information hiding. Hence, modify-
ing and maintaining models becomes hard. Syn-
chronous timing can have counter-intuitive effects
[20] and is inappropriate for modeling problems
that are asynchronous by nature.
Therefore, we use a different approach to timing

and event propagation in Adora, building on our
own previous work [20] and on the work by
Leveson and Heimdahl [22,23]. An event is
broadcast only within the object where the event
originates. In order to make an event available in
another object, it must be explicitly sent by the
generating object and received by the target object.
By default, both broadcasting and sending events
use the quasi-synchronous timing semantics de-
fined in [20], where state transitions take time, but
the time interval is infinitesimally short and no
external event can occur prior to the end of the
interval. This is similar to the usual synchronous
timing semantics, but avoids its problematic and
often counter-intuitive effects.
When explicitly sending an event from one

object to another, we may also specify the
transmission to be asynchronous. In this case, the
event leaves the time envelope of quasi-synchroni-
city and arrives sometimes later at its destination.

Thus, we can model systems that operate synchro-
nously within subsystems but asynchronously
between subsystems, a situation that frequently
occurs in distributed systems.

Notation of state transitions. The triggering
events and triggered actions or events either can
be written in the traditional way as an adornment
of the state transition arrows in the diagrams, or
they can be expressed with transition tables [23].
While the traditional way is easy and straightfor-
ward for small models with simple transition
conditions, it becomes unmanageable when the
triggering event is a complex combination of
conditions and when there are many actions to
be taken. In this situation, the tabular notation is
more or less mandatory in order to keep the model
readable.
Depending on the degree of precision required,

state transition expressions can be formulated
textually, formally, or by a combination of both.
Fig. 5 shows the graphic representation of a

behavior view with some of the variants described
above. When the system is started, then for all
members of the object set RoomModule the initial
state HeatingOff is entered. The transition to the
object HeatingOn is specified formally. It is taken
when the event on is received over the relationship
setRoom (cf. Fig. 2). If this transition is taken, the
state LocalControlDisabled and the object
RoomControl are entered concurrently. Within
RoomControl, the object Controller is entered
and within Controller the parallel states Init

and Reading. This is equivalent to the rules that
we have for statecharts. The state transitions
between LocalControlDisabled and LocalCon-

trolEnabled are specified informally with text
only. The transitions within Controller are
specified in tabular form.

3.4. The functional view

In the functional view we define the properties
of an object or object set (attributes, operations,
etc.) that have not already been defined by the
object’s type. When there is only one object of a
certain type, the complete type information is
embedded in the object definition. The functional

M. Glinz et al. / Information Systems 27 (2002) 425–444 433

view is not combined with other views; it is always
represented separately in textual form.
The language for expressing the functional view

is inspired by existing notations, in particular the
language ASTRAL [24]. We have chosen a pre-/
postcondition style. The syntax supports the
expression of information on any level of form-
ality, ranging from informal text to logic formulae.
Fig. 6 shows a small example. A syncoperation

is assumed to execute quasi-synchronously, i.e. its
execution takes an infinitesimally short time. This
is advantageous when using such an operation in a
state transition. ‘‘Normal’’ operations are assumed
to execute asynchronously and take time. As the
example shows, definitions can vary in their de-
gree of formality. The operations CurrentTemp

and RevertToDefault are specified formally.
DefaultTemp is specified semiformally having a
formal signature but informally described seman-
tics. An informal text points to operations that are
not (yet) defined at all.

3.5. The user view

In the last few years, the importance of
modeling systems from a user’s viewpoint, using
scenarios or use cases, was recognized (for
example, see [25,7,20] and many others). In
Adora, we take the idea of hierarchically struc-
tured scenarios from [20] a step further and
integrate the scenarios into the overall hierarchical
structure of the system.
In our terminology, a scenario is an ordered set

of interactions between partners, usually between
a system and a set of actors external to the system.
It may comprise a concrete sequence of interaction
steps (instance scenario) or a set of possible
interaction steps (type scenario). Hence, a use case
is a type scenario in our terminology.
We consider scenarios and objects to be

complementary in a specification. The scenarios
specify the stimuli that actors send to the system
and the reactions of the system to these stimuli.
However, when these reactions depend on the
history of previous stimuli and reactions, i.e. on
stored information, a precise specification of
reactions with scenarios alone becomes unfeasible.
The objects specify the structure, functions and
behavior that are needed to specify the reactions in
the scenarios properly.
In the base view of an Adora model, scenarios

are represented by ovals. In the user view, we add
to the base view the actors in the system
environment that the scenarios interact with and
all those abstract relationships that model inter-
actions between scenarios and objects. Frequently
the user view is combined with the context view
(see below) which adds those environmental
elements that interact with objects, but not with
scenarios (Fig. 7). For example, the scenario
ManageLocalRoomTemperature, specifying the in-
teraction between the actor User and the system, is
localized within the object LocalControlEnabled.
Internally, the scenario interacts with RoomTemp-

ControlPanel. RadiatorValve is an environmen-
tal object that is controlled from an object inside
HeatingOn. It is part of the context view and
would not be visible in a pure user view.
An individual scenario can be specified textually

or by a statechart [26]. In both cases, AdoraFig. 6. Functional view of the object settings (cf. Fig. 5).

M. Glinz et al. / Information Systems 27 (2002) 425–444434

requires scenarios to have exactly one starting and
one regular exit point. Other exit points may be
used for exception handling purposes only. Given
this structure, complex scenarios can easily be built
from elementary ones, using the well-known
sequence, alternative, iteration and concurrency
constructors. In [20,26] we have demonstrated
statechart-based integration of scenarios using
these constructors. However, when integrating
many scenarios, the resulting statechart becomes
difficult to read. We therefore use Jackson style
diagrams (with a straightforward extension to
include concurrency) for visualizing scenario
composition. We call these diagrams scenario-
charts (Fig. 8).
Any scenario represented in the base view can

either be elementary (and be modeled with text or

with a statechart) or it can be decomposed with a
scenariochart.
Thus, we have a hierarchical decomposition in

the user view, too. The object hierarchy of the base
view allocates high-level scenarios (like Manage-

LocalRoomTemperature in our heating system) to
that part of the system where they take effect. The
scenario hierarchy decomposes high-level scenar-
ios into more elementary ones. As a large system
has a large number of scenarios (we mean type
scenarios/use cases here, not instance scenarios),
this facility is very important for grouping and
structuring the scenarios.
Note that the Adora user view is a logical view

of user–system interaction only; it does not include
the design of the user interface.

3.6. The context view

The context view shows all actors and objects in
the environment of the modeled system and their
relationships with the system. Depending on the
degree of abstraction selected for the system, we
get a context diagram (Fig. 9) or the external
context for a more detailed view of the system
(Fig. 2). Adora allows modeling of a rich context,
i.e. we can model relationships between actors or
objects in the system environment. This is an
important feature, because for properly situating a
system in its environment we frequently must
know not only about the system-environment
interactions, but also about interactions between
actors in the environment.

Operator RadiatorValveValveV User

HeatingControlSystem

MasterModule

RoomModule...

HeatingOn...

LocalControlEnabled...

(1,n)

communicate setState

communicate

controlBoiler
(1,1)

Boiler

BoilerControl...

control

RoomTempControlTempControlT
Panel...

ManageLocal
RoomTemperature...Temperature...T

OperateHeatingSystem..

BoilerControl
Panel...

Fig. 7. A combined user and context view of the heating

control system.

ManageLocal
RoomTemperature

TurnLocal
ControlOn

Set
Temperature

Inspect
Temperature

TurnLocal
ControlOff

Manage
Temperature

UseLocal
Control

Local
Control

Sequence

Alternative

Iteration

Concurrency

Fig. 8. A scenariochart modeling the structure of the Manage-

LocalRoomTemperature scenario.

HeatingControlSystem

MasterModule...

Boiler

Operator User

RoomModule...

(1,n)

RadiatorValveValveV

Fig. 9. A context diagram of the heating control system (base

view combined with context view and structural view).

M. Glinz et al. / Information Systems 27 (2002) 425–444 435

In addition to external elements that are not a
part of the system being specified, an Adora

model can also contain so-called external objects.
We use these to model preexisting components
that are part of the system, but not part of the
specification (because they already exist). External
objects are treated as black boxes having a name
only. In the notation, such objects are marked with
the keyword external (for example, the object
RoomTempSensor in Fig. 2). In any specification
where COTS components will be part of the
system or where existing components will be
reused, modeling the embedding of these compo-
nents into the system requires external objects.

3.7. Modeling constraints and qualities

Constraints and quality requirements are typi-
cally expressed with text, even in specifications
that employ graphical models for functional
specifications. In traditional specifications and
with UML-style graphic models we have the
problem of interrelating functional and non-
functional specifications and of expressing the
non-functional specifications on the right level of
abstraction.
In Adora, we use two Adora-specific features

to solve this problem. (1) The decomposition
hierarchy in Adora models is used to put every
non-functional requirement into its right place. It
is positioned in the hierarchy according to the
scope of the requirement. (2) The requirements
themselves are expressed as Adora standardized
properties. Every kind of non-functional require-
ment can be expressed by its own property kind,
for example performance constraint, accuracy
constraint, quality, etc.).

3.8. Consistency checking and model verification

Having an integrated model allows us to define
stringent rules for consistency between views, for
example ‘‘When an object A references informa-
tion in another object B in any view and B is not a
part of A or vice-versa, then there must be a
relationship from A to B in the static view.’’ A
language for the formulation of consistency
constraints and a compiler that translates these

constraints into Java has been developed [27]. By
executing this code in the Adora tool, the tool is
enabled to check or enforce these constraints. The
capabilities for formal analysis and verification of
an Adora model depend on the chosen degree of
formality. In the behavior view, for example, a
sufficiently formal specification of state transitions
allows the application of all analyses that are
available for hierarchical state machines.

4. Contextual visualization—the ADORA tool

We have developed a concept for visualizing
hierarchical object models with a tool and are
developing a prototype of this tool.
The Adora tool shall provide capabilities for

editing, storing, visualizing and checking Adora

models. The distinguishing feature of the Adora

tool is the way we visualize the object hierarchy:
we do not simply use explosive zooming, but have
developed a novel concept that is based on fisheye
views. In this paper, we restrict the presentation of
the Adora tool to this important aspect.

4.1. General considerations

A good visualization concept is critical both for
understandability and ease-of-use of graphical
models. A good concept should:

* support orientation in the model by visualizing
as much local detail as needed without losing
the global context of the focused elements,

* minimize the cognitive overhead for navigation,
* increase expressiveness by including the seman-

tics of the model in the visualization,
* foster its understandability by supporting the

abstraction mechanisms of the model.

Current tools operating on hierarchical model
structures normally visualize a single element with
its direct successors in a single view. A few tools
visualize all nodes in one view. Some tools provide
scaling, map windows or overview windows to
manage the complexity of big models, but most
tools provide just explosive zooming. With explo-
sive zooming, the global context gets lost while the

M. Glinz et al. / Information Systems 27 (2002) 425–444436

zoomed node explodes entirely in the existing or a
new window. As a consequence, these tools either
offer views showing global context without local
detail or local detail without global context.
Global context and local detail in one view are
realized in very few tools; full flexibility in scaling
and zooming is not offered at all. Compared with
the essential modeling tasks, the cognitive over-
head increases too much when models become
larger [12].
For the visualization of Adora models we

adapt an alternative concept for viewing graphic
structures that was developed nearly 20 years ago
by Furnas [28]: the so-called fisheye views. Furnas
uses the analogy of a fisheye (which has a very
wide angle lens) for a view concept that shows full
detail in a focal point, while displaying informa-
tion being further away from this focus in
successively less detail. Zooming in fisheye views
basically works by moving the angle and the focus
of the display.
The principal idea behind fisheye view visualiza-

tion is to display local detail and global context
together in a well-balanced way. Local detail is
required for getting all the relevant information
that a user is currently focused on, while global
context is needed for situating the current focus in
the general context of the information being
viewed (which in turn is a prerequisite for quick
and easy orientation and navigation).

4.2. View generation for ADORA models

For Adora, we modified the original fisheye
view concepts in order to make them suitable for
our purposes [12,17]. Firstly, we do not generate
views by geometric projection of a large flat model
(the way that a real fisheye lens would work).
Instead we generate so-called logical fisheye views
that are based on the hierarchical structure of an
Adora model and its inherent abstraction cap-
abilities. Secondly, we allow views with more than
one focus.
Thus, we get a model-driven visualization that

fully exploits the power of a hierarchically
structured model and is able to integrate local

detail and global context in a single view. Such

views ease orientation and navigation in the model
and minimize the cognitive overhead.
As this concept allows less interesting elements

to be visualized on an abstract level together with
the details of elements of special interest, we have
strong capabilities for supporting the inherent
abstraction mechanisms in the object model that is
being visualized and thus foster the expressiveness
and understandability of the model.

4.3. Navigation in ADORA models

We distinguish between two types of navigation,
a physical and a logical one [29]. Physical

navigation is necessary when the view exceeds the
size of the available display. The typical solution is
scaling, scrolling or a combination of both.
Physical navigation is well known, as it is the
normal way of navigation in flat models.
The really interesting kind of navigation in

Adora is logical navigation through the hierarchy.
Logical navigation in a hierarchical structure
means finding the actual position of a local
element in the global context of the hierarchy, or
changing the foci of visualized elements. To handle
this kind of navigation adequately, we zoom in or
out. Zooming-in means that more details of a
deeper hierarchical level are visualized. Zooming-
out means that a more abstract view of the selected
elements is produced.

4.4. The zooming algorithm

Our fisheye zooming algorithm works on any
given layout, adjusting it incrementally and pre-
serving it as far as possible. So a user may
re-arrange a layout without losing these rearrange-
ments when zooming. The principal idea of the
algorithm for zooming-in is illustrated in Fig. 10.
The details are beyond the scope of this paper;
they can be found in [17]. Assume that Xy is the
object we want to zoom-in. The algorithm works
in four steps.

(1) Determine the size of the expanded object
(dotted shape of X in Fig. 10). This size
depends on the size and layout of the elements

M. Glinz et al. / Information Systems 27 (2002) 425–444 437

that have to be displayed within X in the
zoomed-in view.

(2) Let C be the composite object that directly3

contains X.4 For every object Yj on the
diagram which is contained in C and lies
outside X; compute a shift vector VYj as
follows: draw a virtual line from the center
of X to the center of Yj : The two intersection
points of this line with the original and the
expanded shape of X define the shift vector for
Yj : Then shift Yj geometrically by its shift
vector.

(3) Determine the new size of C (such that it
geometrically surrounds the resized or shifted
objects it contains). Recursively apply steps
(2) and (3) of the algorithm to C:

(4) Draw the contents of X into its expanded
shape.

As long as the shapes of all objects on the
diagram are geometrically convex and the ex-
panded shape of X is geometrically proportional
to the original one, this algorithm always produces
a diagram that looks similar to the original one
and does not have any overlapping shapes.
The convexity constraint is no problem, because

all graphic elements in Adora are geometrically
convex. However, the expanded shape is fre-
quently not proportional to the original one.

Relaxing the proportionality constraint while
keeping the resulting diagram free of overlappings
requires some modifications to the algorithm
sketched above. The details are discussed in [17].

4.5. Example

Figs. 9 and 2 give a brief impression of our
visualization concept. Fig. 9 shows the heating
control system on a very high level of abstraction.
The following steps lead to the view given in
Fig. 2: (1) zooming-in on MasterModule, (2)
zooming-in on RoomModule, (3) zooming in on
HeatingOn, (4) zooming-in on LocalControlEn-

abled, and (5) zooming in on RoomControl.5 A
more detailed example is presented in [12].

5. Using ADORA in the software development

process

Adora is an open approach that does not
require a specific development process. It works
with any process that

* focuses on object-oriented models for require-
ments specification and software architecture,

* emphasizes the creation of a coherent, consistent

model (instead of a loosely coupled set of
diagrams).

Adora supports a broad spectrum of modeling
methods, for example, pure object modeling,
behavior-focused modeling and scenario-focused
modeling.
Equally important, Adora is flexible concern-

ing the formality of models. Depending on the
required precision and unambiguity for modeling
the problem at hand, the formality of an Adora

model can vary from mostly informal, textual
specifications (using the decomposition structure
and standardized properties as the only formal
elements) up to a completely formal specification.
In particular, the object hierarchy provides a

X...

X

Y

Y Y

Y1Y1Y

2Y2Y

1Y1Y

2Y2Y

C

V

V

Y1

2YVYV
2

C

Old position and sizeabc New position and sizeabc

Fig. 10. The Adora zooming algorithm.

3 ‘‘Directly’’ means that there is no object between C and X

in the decomposition hierarchy.
4 If there is no such composite object, step (2) applies to all

objects of the diagram lying outside X.

5 In order to save space, Fig. 2 has been drawn manually.

When constructed with our zooming algorithm, the drawing

would be considerably larger. However, it would be identical

both in topology and content with Fig. 2.

M. Glinz et al. / Information Systems 27 (2002) 425–444438

framework that allows objects specified with
different degrees of formality to coexist in the
same model in a well-structured way.
Adora provides strong support for iterative and

incremental development processes. Such pro-
cesses typically start with a high-level requirements
and architecture specification and identify work
packages for incremental development based on
this high level structure. Work packages are then
developed by specifying their detailed require-
ments, designing their architecture in the frame-
work of the general architecture and implementing
them on this basis.
The hierarchical structure of Adora fits such

processes quite well: the high-level specifications
can be expressed by high-level objects and their
interrelationships. Goals, objectives and general
constraints can be attached to these objects using
Adora’s standardized properties. Then, the struc-
ture of the model can be exploited for determining
the work packages. When developing a work
package, those objects of the high-level model
belonging to the work package are specified in
detail by decomposing and refining them.
Adora also provides strong support for multi-

level systems engineering and business engineering
processes.
A systems engineering process is typically

characterized by a hierarchical series of require-
ments and design steps: after determining the
principal goals (requirements), basic design deci-
sions are taken which impose a structure on the
system. In a recursive procedure, we then deter-
mine the requirements for every component of this
structure, design the components, yielding sub-
components, determine the requirements of the
subcomponents, etc. until we arrive at concrete
hardware and software building blocks.
When using such a process, the documentation

of the requirements and architecture naturally has
a hierarchical structure, which can be expressed
quite easily with Adora.
The Heating Control system is a typical

example, where the basic structure of a single
master module and one room module per room is
a very high-level design decision that shapes the
requirements on the lower levels.

We also find a hierarchical intertwining of
requirements and design decisions in business
engineering and information systems development.
There we typically have three hierarchical levels in
the process: the business level, the system level
(information systems comprising hardware, soft-
ware and people), and the software level.

6. Validation of ADORA

In our opinion, there are two fundamental
qualities that a specification language should have:

* the language must be easy to comprehend (a
specification has more readers than writers),

* the users must like it.

6.1. Goals of the validation

Therefore, we experimentally validated the
Adora language with respect to these two
qualities. We set up an experiment with the
following goals:

* Determine the comprehensibility of an Adora

specification both on its own and in comparison
with an equivalent specification written in
UML—today’s standard modeling language—
from the viewpoint of a reader of the specifica-
tion.

* Determine the acceptance of the fundamental
concepts of Adora (using abstract objects,
hierarchical decomposition, integrated model,
etc.) both on its own and in comparison with
UML from the viewpoint of a reader/writer of
models.

6.2. Setup of the experiment

In order to measure these goals, we conducted
an experiment as follows [30]. We wrote a partial
specification of a distributed ticketing system both
in Adora and in UML. The system consists of
geographically distributed vending stations where
users can buy tickets for events (concerts, musicals,
etc.) that are being offered on several event servers.
Vending stations and event servers shall be

M. Glinz et al. / Information Systems 27 (2002) 425–444 439

connected by an existing network that needs not to
be specified.
Then we prepared a questionnaire consisting of

two parts. In the first part, the ‘‘objective’’ one, we
aimed at measuring the comprehensibility of an
Adora model. We created 30 questions about the
contents of the specification, for example ‘‘Can a
user at a point of sale terminal purchase an
arbitrary number of tickets for an event in a single
transaction?’’ Twenty-five questions were yes/no
questions; the rest were open questions. For every
question, we additionally asked

* whether the person answering was sure or
unsure about her or his answer,

* how difficult it was to answer the question.

In the second part, the ‘‘subjective’’ one, we
tested the acceptance of Adora vs. UML. We
asked 14 questions about the personal opinion of
the person answering concerning distinctive fea-
tures of both Adora and UML, for example
‘‘Does it make sense to use an integrated model
(like Adora) for describing all aspects of a
system’’?
We ran the experiment with fifteen graduate and

Ph.D. students in computer science who were not
members of our research group. The participants
were first given an introduction both to Adora

and to UML. Then we divided the participants
into two groups. The members of group A
answered the objective part of the questionnaire

first for the Adora specification and then for the
UML specification; group B members did it vice-
versa. Finally, both groups answered the subjec-
tive part of the questionnaire. In order to avoid
answers being biased towards Adora, we ensured
the anonymity of the filled questionnaires.
Two participants did not finish the experiment;

another person’s answers could not be scored
because his answers revealed insufficient base
knowledge of object technology. So we finally
had twelve complete sets of answers.

6.3. Results

We present only the key results here; the
complete results are given in [30]. As the differ-
ences between groups A and B are marginal, we
consolidate the results for both groups in the
results given below.
Fig. 11 shows the overall results of the first part

of the questionnaire. For each model, we had a
total of 360 answers (30 questions times 12
participants). For every answer, we determined
whether the answer was objectively right or wrong.
The answers were further subdivided into those
where the person answering was sure about her or
his answer and those where she or he was not. The
subdivision of the columns indicates how difficult
it was to answer the questions in the participants’
opinion. (For example, about 79% of the ques-
tions about the Adora model were answered
correctly and the participants were sure about

0

10

20

30

40

50

60

70

80

right
(sure)

right
(unsure)

wrong
(unsure)

wrong
(sure)

t% %

0

10

20

30

40

505

60

70

80

right
(sure)

right
(unsure)

wrong
(unsure)

wrong
(sure)

easy moderate difficult impossible

ADORA UML

Fig. 11. Comprehensibility of models. Right and wrong answers to the questions in the objective part of the questionnaire for Adora

vs. UML models. The graphics also shows how certain the participants were about their answers and how they rated the difficulty of

answering.

M. Glinz et al. / Information Systems 27 (2002) 425–444440

their answer. For about half of these answers, the
participants judged the answer to be easy to give.)
An analysis of these data reveals two important

results that are statistically significant at a level of
0.5%:

* The percentage of errors when reading a model
was 9.9% for Adora vs. 18.1% for UML. That
means, reading Adora models is less prone to
errors than reading UML models.

* 87.8% of the participants who correctly an-
swered questions about the Adora model were
confident about their answer. For the UML
model, the corresponding figure was 76.1%
only. That means, readers of an Adora model
are more confident about the correctness of
their interpretation of the model than readers of
a UML model.

These results strongly support the comprehen-
sibility hypothesis and also show a clear trend that
an Adora specification is easier to comprehend
than a UML specification.
Table 1 summarizes the results of the subjective

part of the questionnaire. Due to the small number
of answers, we did not attempt a quantitative

statistical analysis here. However, a qualitative
analysis of the results strongly supports our
hypothesis that users like the fundamental con-
cepts of Adora and that they prefer them to those
of UML.
Even if we subtract some potential bias (maybe

some of the participating students did not want to
hurt us), we can conclude from this experiment
that the Adora language is a step into the right
direction.

7. Yet another language? ADORA vs. UML

The goal of the Adora project is not to bless
mankind with another fancy modeling language.
When UML became a standard, we of course
investigated the option of making Adora a
variant of UML. The reason why we did not is
because Adora and UML differ too much in their
basic concepts (Table 2).
Moreover, UML has several major problems

and weaknesses when used as a requirements
specification language [11]. These can be avoided
in Adora because Adora is founded on a
different conceptual basis.

Table 1

Acceptance of distinct features; Adora vs. UML

Statement Strongly

agree (%)

Mostly

agree (%)

Mostly

disagree (%)

Strongly

disagree (%)

The specification gives the reader a precise idea about the system Adora 23 62 8 8

components and relationships UML 8 46 31 15

The structure of the system can be determined easily Adora 54 31 8 8

UML 8 38 23 31

The specification is an appropriate basis for design and Adora 25 75 0 0

implementation UML 0 50 33 17

Using an integrated model (Adora) makes sense 42 25 33 0

Using a set of loosely coupled diagrams (UML) makes sense 8 17 67 8

Hierarchical decomposition eases description of large systems 15 69 15 0

Adora eases focusing on parts without losing context 38 46 15 0

Decomposition in Adora eases finding information 46 38 15 0

Integrating information from different diagrams is easy in UML 15 15 46 23

Specifying objects with their roles and context is adequate 31 54 15 0

Describing classes is sufficient 0 15 62 23

The percentages have been rounded properly, therefore the sums in the rows sometimes yield 99% or 101%.

M. Glinz et al. / Information Systems 27 (2002) 425–444 441

The most fundamental difference is the concept
of an integrated, hierarchically decomposable
model in Adora vs. a flat, mostly non-decom-
posable collection of models in UML. Hierarchical
structures like those shown in Fig. 1 could of
course be drawn with UML package diagrams.
However, as soon as we want to add properties,
relationships or state transitions, the UML pack-
age notation fails, because UML packages are
mere containers and only dependency links are
allowed between packages.
One could argue that the UML extension

mechanisms, in particular stereotypes, could be
used to embed Adora-like concepts in UML.
Principally, this is true, because stereotypes in
UML are powerful enough to define a completely
different modeling language on top of UML [31].
However, such a redefinition of UML through
stereotypes would be an abuse of the stereotype
concept: it would in fact define a new language
which—from a language user’s viewpoint—would
no longer behave like UML. Moreover, redefining
stereotypes are quite difficult to support with tools
and current UML tools do not support them.
A real integration of Adora-like concepts into

UML would require major changes in the UML
metamodel [11]. For example, the language
elements Object and Classifier Role would have
to be replaced by a uniform notion of a decom-

posable abstract object. According to its funda-
mental nature, this new language element would
have to be made part of the UML core. The co-
existence of object and package decompositions
would be a source of problems and would require
additional modifications in the metamodel.
For these reasons we pursue Adora as an

approach of its own, separately from UML. If the
further development and application of Adora

provides strong evidence that certain concepts of
Adora are really better than those of UML (e.g.
with respect to comprehensibility), we will even-
tually feed these results into the evolution process
of UML.

8. Conclusions

8.1. Summary

We have presented Adora, an approach to
object-oriented modeling that is based on object
modeling and hierarchical decomposition, using
an integrated model. The Adora language is
intended to be used for requirements specifications
and high-level, logical views of software architec-
tures.

Table 2

Comparison of basic concepts of Adora vs. UML

Adora UML

Specification is based on a model of abstract objects, types are

supplementary.

Specification is based on a class model, object models are partial

and supplementary.

Specifies all aspects in one integrated model; separation of

concerns achieved by decomposition and views.

Uses different models for each aspect. Separates concerns by

having a loosely coupled collection of models.

Hierarchical decomposition of objects is the principal means for

structuring and comprehending a specification.

Class and object models are flat. Only packages can be

decomposed hierarchically.

Scenarios are tightly integrated into the specification; they can be

structured and decomposed systematically.

Use cases (=type scenarios) are loosely integrated with class and

object models. Structuring capabilities are weak, decomposition

is not possible.

Precise rules for consistency between aspect views. Nearly no consistency rules between aspect models.

Conceptual visualization eases orientation and navigation in the

specification and improves comprehensibility.

UML tools provide traditional scrolling and explosive zooming

only.

M. Glinz et al. / Information Systems 27 (2002) 425–444442

8.2. Code generation

Adora is not a visual programming language.
Therefore, we have not done any work towards
code generation up to now. However, the genera-
tion of prototypes from an Adora model is
possible in principle. Adora has both the struc-
ture and the language elements that are required
for this task.

8.3. State of work

We completed a first definition of the Adora

language in 1999 [13]. In the meantime, we have
evolved some language concepts and have con-
ducted an experimental validation. The Adora

tool is still in the proof-of-concept phase. We
have a prototype demonstrating that the zooming
algorithm, which is the basis of our visualization
concept, works.

8.4. Future plans

The work on Adora goes on. In the years to
come, we plan to develop a real tool prototype,
exploit Adora’s potential for simulating and
animating models and investigate the use of
Adora for partial and incrementally evolving
specifications. Parallel to that, we want to apply
Adora in projects and evolve the language
according to the experience gained.

References

[1] P.P. Chen, The entity-relationship model—toward a

unified view of data, ACM Trans. Database Systems 1

(1976) 9–36.

[2] T. DeMarco, Structured Analysis and System Specifica-

tion, Yourdon Press, New York, 1979.

[3] P. Coad, E. Yourdon, Object-Oriented Analysis, Prentice

Hall, Englewood Cliffs, 1991.

[4] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.

Lorensen, Object-Oriented Modeling and Design, Prentice

Hall, Englewood Cliffs, 1991.

[5] G. Booch, Object-Oriented Analysis and Design with

Applications, 2nd ed, Benjamin/Cummings, Redwood

City, 1994.

[6] M. Glinz, Probleme und Schwachstellen der Strukturierten

Analyse [Problems and weaknesses of structured analysis],

in: M. Timm (Ed.), Requirements Engineering ‘91,

Informatik-Fachberichte, Vol. 273, Springer, Berlin,

1991, pp. 14–39 (in German).

[7] I. Jacobson, M. Christerson, P. Jonsson, G. .Overgaard,

Object-Oriented Software Engineering—A Use Case Dri-

ven Approach, Addison-Wesley, Reading, 1992.

[8] D. Firesmith, B.H. Henderson-Sellers, I. Graham, M.

Page-Jones, Open Modeling Language (OML)—Reference

Manual, SIGS Reference Library Series, Cambridge

University Press, Cambridge, 1998.

[9] M. Glinz, Hierarchische Verhaltensbeschreibung in objek-

torientierten Systemmodellen—eine Grundlage f .ur mo-

dellbasiertes Prototyping [Hierarchical description of

behavior in object-oriented system models—a foundation

for model-based prototyping], in: H. Z .ullighoven et al.,

(Eds.), Requirements Engineering ‘93: Prototyping, Teub-

ner, Stuttgart, 1993, pp. 175–192 (in German).

[10] J. Rumbaugh, I. Jacobson, G. Booch, The Unified

Modeling Language Reference Manual, Addison-Wesley,

Reading, 1999.

[11] M. Glinz, Problems and deficiencies of UML as a

requirements specification language, Proceedings of the

Tenth International Workshop on Software Specification

and Design, San Diego, 2000, pp. 11–22.

[12] S. Berner, S. Joos, M. Glinz, M. Arnold, A visualization

concept for hierarchical object models, Proceedings of the

13th IEEE International Conference on Automated Soft-

ware Engineering (ASE-98), 1998, pp. 225–228.

[13] S. Joos, Adora-L—Eine Modellierungssprache zur Spezi-

fikation von Software-Anforderungen [Adora-L—Amod-

eling language for specifying software requirements (in

German)], Ph. D. Thesis, University of Zurich, 1999.

[14] S. Joos, S. Berner, M. Arnold, M. Glinz, Hierarchische

Zerlegung in objektorientierten Spezifikationsmodellen

[Hierarchical Decomposition in object-oriented specifica-

tion models], Softwaretechnik-Trends 17 (1) (1997) 29–37

(in German).

[15] R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing

Object-Oriented Software, Prentice Hall, Englewood

Cliffs, 1993.

[16] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-

Oriented Modeling, Wiley, New York, 1994.

[17] S. Berner, Modellvisualisierung f .ur die Spezifikations-

sprache Adora [Model visualization for the specification

language Adora (in German)], Ph.D. Thesis, University of

Zurich, 2002.

[18] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,

R. Sherman, A. Shtul-Trauring, M. Trakhtenbrot, STA-

TEMATE: a working environment for the development of

complex reactive systems, IEEE Trans. Software Eng. 16

(1990) 403–414.

[19] D. Harel, E. Gery, Executable object modeling with

statecharts, IEEE Computer 30 (7) (1997) 31–42.

[20] M. Glinz, An integrated formal model of scenarios based

on statecharts, in: W. Sch.afer, P. Botella (Eds.), Software

Engineering—ESEC ‘95, Lecture Notes in Computer

Science, Vol. 989, Springer, Berlin, 1995, pp. 254–271.

M. Glinz et al. / Information Systems 27 (2002) 425–444 443

[21] D. Harel, Statecharts: a visual formalism for com-

plex systems, Sci. Computer Programming 8 (1987)

231–274.

[22] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese,

Requirements specification for process-control systems,

IEEE Trans. Software Eng. 20 (1994) 684–707.

[23] N.G. Leveson, M.P.E. Heimdahl, J.D. Reese, Designing

specification languages for process control systems: lessons

learned and steps to the future, in: O. Nierstrasz, M.

Lemoine (Eds.), Software Engineering—ESEC/FSE’99,

Lecture Notes in Computer Science, Vol. 1687, Springer,

Berlin, 1999, pp. 127–145.

[24] A. Coen-Porisini, C. Ghezzi, R.A. Kemmerer, Specifica-

tion of realtime systems using ASTRAL, IEEE Trans.

Software Eng. 23 (1997) 704–736.

[25] J.M. Carroll (Ed.), Scenario-based Design, Wiley, New

York, 1995.

[26] M. Glinz, Improving the quality of requirements with

scenarios, Proceedings of the Second World Congress on

Software Quality, Yokohama, 2000, pp. 55–60.

[27] N. Schett, Konzeption und Realisierung einer Notation

zur Formulierung von Integrit.atsbedingungen f .ur Adora-

Modelle [A notation for integrity constraints in Adora

models—Concept and implementation], Diploma Thesis,

University of Zurich, 1998 (in German).

[28] G.W. Furnas, Generalized fisheye views, Proceedings of

the ACM CHI 86 Conference on Human Factors in

Computing Systems, Boston, 1986, pp. 16–23.

[29] D. Schaffer, et al., Navigating hierarchically clustered

networks through fisheye and full-zoom methods, ACM

Trans. CHI 3 (1996) 162–188.

[30] S. Berner, N. Schett, Y. Xia, M. Glinz, An experimental

validation of the Adora language, Technical Report

1999.05, University of Zurich, 1999. http://www.ifi.

unizh.ch/groups/req/ftp/papers/Adora validation.pdf.

[31] S. Berner, M. Glinz, S. Joos, A classification of stereotypes

for object-oriented modeling languages, Proceedings of the

Second International Conference on the Unified Modeling

Language, Fort Collins, Springer, Berlin, 1999, pp. 249–

264.

M. Glinz et al. / Information Systems 27 (2002) 425–444444

http://www.ifi.unizh.ch/groups/req/ftp/papers/
http://www.ifi.unizh.ch/groups/req/ftp/papers/
http://_validation.pdf

	Object-oriented modeling with Adora
	Introduction
	Key concepts and rationale of the Adora approach
	Abstract objects instead of classes
	Hierarchical decomposition
	Integrated model
	Adaptable degree of formality
	Contextual visualization

	An overview of the Adora language
	Basic hierarchical object structure
	The structural view
	The behavioral view
	The functional view
	The user view
	The context view
	Modeling constraints and qualities
	Consistency checking and model verification

	Contextual visualization-the Adora tool
	General considerations
	View generation for Adora models
	Navigation in Adora models
	The zooming algorithm
	Example

	Using Adora in the software development process
	Validation of Adora
	Goals of the validation
	Setup of the experiment
	Results

	Yet another language? Adora vs. UML
	Conclusions
	Summary
	Code generation
	State of work
	Future plans

	References

