
Presented at the 12th International Conference on Software and Systems Engineering and their Applications
ICSSEA'99. Proceedings: CNAM, Paris, France.

A Scenario-Based Approach to Validating
and Testing Software Systems Using

Statecharts

Johannes RyserÊÊÊÊÊÊÊÊÊÊÊÊÊÊMartin Glinz
Department of Computer Science

University of Zurich
Winterthurerstrasse 190

CH-8057 Zurich, Switzerland
+41-(0)1-63 54572 / +41-(0)1-63 54570

Fax: +41-(0)1-63 56809
ryser@ifi.unizh.ch / glinz@ifi.unizh.ch

ABSTRACT
Scenarios (Use cases) are used to describe the functionality and behavior of a (software) sys-
tem in a user-centered perspective. As scenarios form a kind of abstract level test cases for the
system under development, the idea to use them to derive test cases for system test is quite
intriguing. Yet in practice scenarios from the analysis phase are seldom used to create concrete
system test cases. In this paper we present a procedure to create scenarios in the analysis
phase and use those scenarios in system test to systematically determine test cases. This is
done by formalization of scenarios into statecharts, annotation of statecharts with helpful
information for test case creation/generation and by path traversal in the statecharts to deter-
mine concrete test cases.

KEYWORDS
Scenario, use case, testing, scenario-based testing, statechart annotation

2

1 INTRODUCTION
Validation and verification are generally recognized as two vital activities in developing a (software) system.
Testing plays an important role in validating and verifying systems. Yet nowadays testing is often done in an ad
hoc manner, and test cases are quite often developed in an unstructured, non-systematic way.
A proposed (and valuable) approach to solve the problem lies in automating testing and Ð often a prerequisite to
automation Ð in specialized test languages and formal specifications. But up to date, only very limited tool
support exists, and formal specifications/special test languages are expensive to apply. It is not possible to
automate the whole testing process and achieve acceptable test coverage in given time for projects relying on
natural language specifications [11, 15].
In this paper we propose the use of scenarios, not solely for requirements elicitation and specification, but spe-
cifically for system testing. We do so by capturing natural language scenarios, converting them into formal
scenarios using statecharts, and deriving test cases from statecharts in a systematic manner. The presented
method is easy to apply, integrates nicely with existing software development methods and does not impose an
inappropriate overhead. Systematic test case development is supported and testing is taken up early in the devel-
opment process. Furthermore, we utilize synergies between the phases of system analysis & specification and
system test by reuse of scenarios.

The rest of the paper is organized as follows: Section 2 serves as an introductory chapter to present the main
concepts of scenarios and define some of the terms used in this article. Our approach Ð the SCENT-Method Ð is
shortly delineated. In section 3 we present the basic concepts and principles of the SCENT-Method, and describe
the procedures of scenario creation, formalization and test case generation in more detail. Finally in section 4 we
present some conclusions.

2 OVERVIEW OF THE SCENT-METHOD
In this section we shortly introduce some key concepts of scenarios and then present an overview of the SCENT-
Approach.

2.1 Scenarios
The notion of scenarios is central to our approach: Scenarios are any form of description or capture of user-
system interaction sequences.
We define the terms scenario, use case and actor as follows:

Scenario - An ordered set of interactions between partners, usually between a system and a set of actors
external to the system. May comprise a concrete sequence of interaction steps (instance scenario)
or a set of possible interaction steps (type scenario).

Use case [8] - A sequence of interactions between an actor (or actors) and a system triggered by a specific actor,
which produces a result for an actor. A type scenario in our terminology.

Actor - A role played by a user or an external system interacting with the system to be specified

2.2 The SCENT-Approach
Motivated by the need for testing methods that are apt for practice and that are integrated with existing develop-
ment methods, we propose a scenario-based approach to support systematic test case development. We aim at
improving and economizing test case development:
• by (re)using and utilizing artifacts from earlier phases of the development process, specifically of the analy-

sis phase, in testing again, thus taking profit of synergies between the closely related phases of system
analysis and test,

• by integrating the development of test cases in early phases of the development process; that is, by inter-
weaving testing activities with the activities of the early analysis and design phases of the software engineer-
ing process,

• and by defining a method how to develop test cases systematically.
We call our approach the SCENT-Method Ð A Method for SCEN ario-Based Validation and T est of Software.

The key ideas in our approach are:
1. Use scenarios not only to elicit and document requirements, to describe the functionality and specify the

behavior of a system, but also to validate the system under development while it is being developed,
2. Uncover ambiguities, contradictions, omissions, impreciseness and vagueness in natural language descrip-

tions (as scenarios in SCENT are at first) by formalizing narrative scenarios with statecharts [5],
3. Annotate the statecharts Ð where needed and helpful Ð with pre- and post-conditions, data ranges and data

values, and performance requirements, to supply all the information needed for testing and to make the

3

statecharts suitable for the derivation of actual, concrete test cases,
4. Systematically derive test cases for system test by traversing paths in the statecharts, choosing a testing

strategy as appropriate and documenting the test cases.
These key concepts need to be supported by and integrated with the development method used to develop the
application or the system, respectively. Most object-oriented methods support use cases and statecharts or a
comparable state-transition formalism. Thus, the integration of the proposed method in any one of those meth-
odologies is quite simple and straightforward.

3 BASIC PRINCIPLES OF THE SCENT-METHOD
The idea of using scenarios/use cases in testing is not new: Jacobson writes in his book and articles that use
cases are well suited to be used as test cases for integration testing, but does not define a procedure [8, 9]. Others
have taken up, formalized and extended the notion of using scenarios to test a system (e.g. [6] using regular
grammars and deterministic finite-state machines, or [2] defining scenario lifecycle diagrams). Yet despite the
ubiquity of scenario approaches, a practical method supporting testers in developing test cases from scenarios has
not emerged yet.
The method presented here comprises three main parts: Scenario creation, scenario formalization and test case
derivation. All three are described in more detail in the following sections.

3.1 Scenario Creation
Most scenario processes used today are lacking a step procedure for the creation and use of scenarios. For this
reason we define a procedure to elicit requirements and document them in scenarios (see Table 1). We use a
scenario description template to document and format narrative scenarios. Thus we enforce adherence to a com-
mon layout and structure.

Table 1 : The scenario creation procedure

Step Description

1 Find all actors (roles played by persons/external systems) interacting with the system

2 Find all (relevant system external) events

3 Determine inputs, results and output of the system

4 Determine system boundaries

5 Create coarse overview scenarios (instance or type scenarios on business process or task level)

6 Prioritize scenarios according to importance, assure that the scenarios cover system functionality

7 Create a step-by-step description of events and actions for each scenario (task level)

8 Create an overview diagram and a dependency chart (see section 3.3)

9 Have users review and comment on the scenarios and diagrams

10 Extend scenarios by refining the scenario description, break down tasks to single working steps

11 Model alternative flows of actions, specify exceptions and how to react to exceptions

12 Factor out abstract scenarios (sequences of interactions appearing in more than one scenario)

13 Include non-functional (performance) requirements and qualities in scenarios

14 Revise the overview diagram and dependency chart

15 Have users check and validate the scenarios (Formal reviews)

Actors, in- and outputs and events (as determined in steps 1-3) are uniquely named. A glossary of terms includ-
ing a description of all actors, in- and outputs and all events is created.
The coarse scenarios created in step 5 are short natural language descriptions of the interaction and do not feature
a step-by-step description yet. In step 6, instance scenarios are transformed into type scenarios and scenarios are
prioritized, thus allowing for release planning.
Validation activities are interspersed throughout the development process (see step 9 and 15).
A full description of the scenario creation method can be found in [12].

The scenario creation procedure is not a linear process as it might appear from Table 1. The steps are highly
intertwined and activities are performed in parallel and iteratively.

4

During the process of scenario creation and refinement the developer notes relevant information for testing; these
remarks may be abstract test cases, reminders what not to forget and what specifically to test for, and so on.
These notes are used during testing to enhance the test cases that are derived from statecharts by path traversal.
Non-functional requirements and qualities are documented in natural language or with other appropriate means
(formulas, timing constraints, pictures, graphics, screenshots, sketches, ...).

What about the cost of the approach? Scenario definition has to be done in any approach employing scenarios.
No additional expense is imposed by the step procedure defined in the SCENT-Method. The level of detail in
scenarios may be limited or extended to any desired depth, but restricting the details bounds the use of the sce-
narios for system design and for test case generation. On the other hand, there are some advantages to scenario
specifications: scenario creation helps to get the user involved in the specification process and increases the do-
main and system understanding of the developers, thus enabling more accurate system modeling as well as better
design and implementation. Scenarios facilitate better understanding and communication between developers and
users/customers.

3.2 Scenario Formalization and Annotation
Validation of narrative scenarios by users is accompanied by verification steps by the developer. Verification is
supported in the SCENT-Method by formalization: By converting natural language scenarios into statecharts,
many omissions, ambiguities and inconsistencies can be found.

3.2.1 The Formalization Step
The formalization step is the transformation of structured natural language scenarios into a statechart representa-
tion. Contrary to other approaches ([3], [14]) we do not restrict and formalize natural language to capture re-
quirements. Instead we rely on the developer to synthesize statecharts, supporting him/her with heuristics.
The heuristics are:
- Create a statechart for each natural language scenario. The normal flow, all exceptional flows and all alterna-

tives of a given scenario are captured in one statechart.
- Statecharts are developed and refined along with the scenarios, thus providing for continual validation. As

coarse overview scenarios are refined to reflect interactions on task level, new states are introduced in the
statecharts, states are expanded to comprise substates, and parallelism may be caught in parallel states, as
appropriate.

 - A single step in a narrative scenario usually translates into a state or a transition in a statechart. As the steps
are mapped to either states or transitions, missing states and transitions will emerge and need to be added.

 - Model the normal flow first. Integrate the alternative flows later on. Check if alternatives are missing.
- Represent abstract scenarios as hierarchical statecharts.
- Check the statecharts for internal completeness and consistency. Are all the necessary states specified? Are

all the states in a statechart connected? Are states and events named expressively and consistently, following
some scheme?

- Check the event list created for scenario elicitation to see if all relevant events are handled.
- Cross-check statecharts. Do states, transitions and events appearing in more than one scenario have the same

names?
Creation of narrative scenarios and of statecharts is an iterative process. Statecharts have to be validated with
users either by inspection or review, or by paraphrasing sequences of actions in the statecharts in a narrational
style. All (important) paths are traversed; the developer guides the customer through the flows. This validation
activity works hand in hand with the phase of test case derivation: The paths traversed with the customer to
validate the statecharts are test cases that need to be tested in system test.
Representing scenarios with statecharts requires some work to be done that otherwise wouldnÕt. But the extra
work put in scenario formalization pays back in many ways:
1. As mentioned before, the transformation of structured-text scenarios into a semiformal statechart representa-

tion helps in verifying and validating narrative scenarios. Omissions, inconsistencies and ambiguities are
found. The specification is thus improved.

2. Developers gain a deeper understanding of the domain and the system to be built because they have to un-
derstand the details to formalize the scenarios.

3. The statecharts created in the transformation may well be used and reused in design and implementation.
4. The formalized scenarios are (re)used in testing. Test case preparation and expenses are moved from the

testing phase late in the development process to earlier activities, thus alleviating the problem of testing
poorly done under time pressure. By using a systematical way to develop test cases, test coverage is im-
proved.

The cost of developing the statecharts is justified by the benefits of an improved specification and enhanced
testing.

5

3.2.2 Statechart Annotation
The main problem in using narrative scenarios and derived statecharts as test cases is that they usually are on a
level of abstraction that does not allow derivation of concrete test data Ð that is of input values and expected
output Ð directly.
For this reason we extend the statechart concept to include information important for testing and test case deriva-
tion. In particular, the additional testing information included in every statechart should comprise the following:
- Preconditions
- Data: Input, Output, Ranges and
- Nonfunctional requirements
The information is captured in annotations.
In Figure 2 the annotation with preconditions, data items and performance requirements is illustrated.

3.2.3 An Example
As an example of the formalization process, we choose a scenario of the familiar automated teller machine
(ATM). Because of space limitations, we only describe the abstract scenario ÒAuthenticationÓ here: A user of the
ATM identifying him/herself to the system. For a short specification of the ATM as well as for a more complete
example turn to either [12] or [13].

The ÒAuthenticationÓ scenario reads:

1. The customer inserts the card

2. The system checks the card’s validity

3. The system displays the “Enter PIN” Dialog

4. The customer enters his PIN

5. The system checks the PIN

6. The system displays the main menu

To keep the description of the ÒAuthenticationÓ scenario short, we model neither alternatives nor exceptions.

PIN
entered

Card
entered

{PIN → [0..9] }6

UC 002: Authentication v0.4

Customer
inserts card C

ar
d

in
se

rt
ed

P
IN

en
te

re
d

Card valid
Display 'Enter

PIN' Dialog

PIN valid
Display main menu

Eject card

Retain Card

Timeout
Display

W
elcome screen

Card can't fully
be inserted

Display.
error message Card can't

be read
Display error msg

Card invalid
Display

error msg

Third
invalid PIN

Invalid PIN
Display retry msg

C
ar

d
ej

ec
te

d
R

es
et

C
ar

d
ta

ke
n

D
is

pl
ay

 m
sg

Precondition: ATM is operational, card is being inserted

4

[<0.05s]

[<2s]

PIN consists of more than 3 The color red to be
and less than 7 numerals used for error messges onlyAnnotations

UC 002: Authentication v0.1

Customer
inserts card

Customer
enters PIN

System
checks PIN

Card valid
Display 'Enter PIN' Dialog

PIN valid
Display main menu

Application
refused

Apply for card

Reload bills

Service ATM

Inquire balance

Issue card

0..3 in five years

Withdraw cash

Figure 1 : A statechart representing the ‘Authentication’
scenario

System checks
validity of card

Customer
enters PIN

System
checks PIN

System checks
the card's validity

Figure 3 : A Dependency Chart for the ATM example Figure 2 : ‘Authentication’-Statechart with
alternative flows and annotations

Based on the natural language scenario a statechart is developed. At first the normal flow of actions as depicted
above is modeled (see Figure 1).
Then the alternative flows are modeled (see Figure 2).
Once a scenario is modeled in a statechart, the statechart is annotated as needed. Preconditions and data are speci-
fied. In the example, valid and invalid PINs are distinguished by state transitions, but no indication as to what
an invalid PIN is, is made. So a data annotation may specify the range and the form of a PIN (see Figure 2).

6

3.3 Test Case Derivation
Test cases in the SCENT-Method are developed in a three-step procedure:
1. Test case derivation from statecharts
2. Test case derivation from dependency charts
3. Additional tests (e.g. testing for specified qualities) as suggested by the notes and remarks written down

during the analysis phase, during scenario creation and scenario refinement (see section 3.1.1).
Additionally, a fourth step might be performed: The statecharts are integrated and additional test cases are de-
rived from the integrated system statechart.
In this paper we describe the first two steps of this procedure only, because of space limitations. A more in-
depth description of the method can be found in [12, 13].

3.3.1 Test Case Derivation from Statecharts
After narrative scenarios have been transformed into statecharts, test cases for system test are generated by path
traversal in the statecharts. Any method to traverse all paths in finite state machines according to a given crite-
rion can be used to derive test cases. The method of our choice is simply to cover all links thus reaching a cov-
erage for the state graph comparable to branch coverage C2 in structural testing. A more elaborate coverage could
be chosen as desired (e.g. switch or n-switch coverage [1, 4, 10] or comparable methods that consider more than
one link at a time). Data annotations enable the tester to easily develop domain tests (boundary analysis, excep-
tion testing), performance and timing constraints allow for performance testing. Preconditions specified in the
statecharts define test preparation that has to be done before test cases derived from the statechart can be executed
Ð the testing setup is determined by the preconditions.
Path traversal in statecharts will only generate tests for valid sequences of events. For this reason it is important
to also include sequences in the test that are not admissible. All events that possibly could occur while in a
given state should be tested for.

3.3.2 Test Case Derivation in the Example
To illustrate test case derivation from statecharts, we present in Table 2 some test cases as created by path tra-
versal of the statechart depicted in Figure 2. The first test case follows the normal flow of actions: The card can
be inserted and the card as well as the PIN are valid. The next test case considers the exception of an incorrect
PIN entered. Next an invalid PIN is entered (PIN too short; this test case takes into account the data annotations
specified in the statechart). Finally, a third invalid PIN is entered to provoke another validation failure and trav-
erse the Third invalid PIN link.

Table 2 : Test Cases

Test preparation: ATM operational, card and PIN (1234) have been issued, card is being inserted

ID State Input/User actions/ Conditions Expected output

1.1 Card sensed Card can be read, card valid, valid PIN (1234) entered in time Main menu displayed

1.2 Card sensed Card can be read, card valid, invalid PIN (1245) entered in
time (first try)

Retry message displayed

1.3 Retry msg Invalid PIN (123) entered in time, second try Retry message

1.4 Retry msg Invalid PIN (1234567) entered in time, third try Card retained, user informed

É É É É

3.3.3 Test Case Generation from Dependency Charts
To capture logical and timing dependencies between scenarios, we introduce a new diagram type called depend-
ency charts. In dependency charts, scenarios are shown as rectangles with rounded corners and circular connec-
tors. Scenarios without any connecting lines (dependency lines) may be executed in free order, even in parallel if
appropriate. Scenarios that have to be preceded by a certain scenario, scenarios that have to start/end before/after
an other scenario, sequences of scenarios, alternatives and iterations1 are shown on dependency charts by depend-
ency lines. A small example is given above to illustrate the representation of scenarios and their relations and
dependencies in a dependency chart (Figure 3). A further discussion of dependency charts may be found in [12].
For all the dependencies in a dependency chart, test cases have to be specified. That means, if a scenario has to
be preceded by another scenario, try to execute the scenario with and without executing the preceding scenario
first. Other dependencies are handled likewise, thus deriving test cases to test the dependencies and interrelations
between scenarios.

1 Alternatives and iterations are seldom used on an inter-scenario level: For this reason the example has been
expanded and the scenario ÒApply for Card” has been subdivided to show an alternative and an iteration.

7

4 CONCLUSIONS
In this paper we have presented the SCENT-Method, a scenario-based approach to support the tester of a software
system in systematically developing test cases. This is done by first eliciting and documenting requirements in
natural language scenarios, using a template to structure the scenarios. The narrative scenarios then are formalized
using statecharts as a notation. The statecharts are annotated with information important for testing. Finally, test
cases are derived by path traversal of statecharts. The method presented in this paper is novel with respect to the
synthesis of the aforementioned factors into one single process. We thus supply a method that supports the tester
in systematic test case derivation, that uses artifacts of the early phases of the development process in testing
again and that handily integrates with existing development methods.
The SCENT-Method has been applied in practice to two projects at ABB in Baden/Switzerland. First experi-
ences are quite promising as the main goal of the method, namely to supply test developers with a practical and
systematical way to derive test cases, has been reached. The projects in which the method was applied were
applications to remote monitoring of embedded systems [7].
The use of scenarios was perceived by the developers as helpful and valuable in modeling user interaction with
the system. On the other hand, scenario management was a major problem throughout the development process.
The formalization process also posed some problems, as the mapping of actions in natural language scenarios to
states or transitions is not definite and clear-cut. A narrative scenario transformed into a statechart by one devel-
oper may differ significantly from a statechart developed from the same scenario by another developer.
Test case creation was unproblematic as the chosen link coverage in statecharts is simple, yet powerful.

Acknowledgments
The work presented in this paper has been supported by the Swiss Commission for Technology and Innovation
of the Swiss Federal Economics Department and by ABB Corporate Research Ltd Baden-Daettwil.

REFERENCES
[1] T. S. Chow: Testing Software Design Modeled by Finite-State Machines; IEEE Transactions on Software

Engineering, vol. 4, n¡ 3, pp. 178-187, 1978
[2] D. C. Firesmith: Modeling the Dynamic Behavior of Systems, Mechanisms and Classes with Scenarios;

Report on Object Analysis and Design, vol. 1, n¡ 2, pp. 32-36,47, 1994
[3] N. E. Fuchs, U. Schwertel, R. Schwitter: Attempto Controlled English - Not Just Another Logic

Specification Language; Logic-Based Program Synthesis and Transformation, Eighth International
Workshop LOPSTR'98, Manchester, UK, 1999

[4] G. Gonenc: A Method for the Design of Fault-detection Experiments; IEEE Transactions on Computers,
vol. C-19, pp. 551-558, 1970

[5] D. Harel: Statecharts: A Visual Formalism for Complex Systems; Science of Computer Programming, vol.
8, pp. 231-274, 1987

[6] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen: Formal Approach to Scenario Analysis;
IEEE Software, vol. 11, n¡ 2, pp. 33-41, 1994

[7] R. Itschner, C. Pommerell, M. Rutishauser: GLASS: Remote Monitoring of Embedded Systems in Power
Engineering; IEEE Internet Computing, vol. 2, n¡ 3, 1998

[8] I. Jacobson, M. Christerson, P. Jonsson, G. �vergaard: Object Oriented Software Engineering: A Use
Case Driven Approach. Amsterdam: Addison-Wesley, 1992

[9] I. Jacobson: Basic Use Case Modeling; Report on Object Analysis and Design, vol. 1, n¡ 2, pp. 15-19,
1994

[10] S. Pimont, J.C. Rault: A Software Reliability Assessment Based on a Structural Behavioral Analysis of
Programs; Proceedings 2nd International Conference on Software Engineering, San Francisco, CA, 1976

[11] J. Ryser, S. Berner, M. Glinz: On the State of the Art in Requirements-based Validation and Test of
Software; University of Zurich, Institut f�r Informatik, Z�rich, Berichte des Instituts f�r Informatik 98.12,
Nov 1998

[12] J. Ryser, M. Glinz: SCENT: A Method Employing Scenarios to Systematically Derive Test Cases for
System Test; to appear as a technical report at University of Zurich, Institut f�r Informatik, Z�rich, 1999
www.ifi.unizh.ch/groups/req/ftp/SCENT/SCENT_Method.pdf

[13] J. Ryser, M. Glinz: A Practical Approach to Validating and Testing Software Systems Using Scenarios;
Quality Week Europe '99, Brussels, 1999

[14] S. Som�, R. Dssouli, J. Vaucher: Toward an Automation of Requirements Engineering using Scenarios;
Journal of Computing and Information, Special issue: ICCI'96, 8th International Conference of
Computing and Information, pp. 1110-1132, 1996

[15] I. Spence, C. Meudec: Generation of Software Tests from Specifications; SQM'94 Second Conference on
Software Quality Management, Edinburgh, Scotland, UK, 1994

