
SPADES - A SPECIFICATION AND DESIGN SYSTEM AND ITS GRAPHICAL INTERFACE

J. Ludewig, M. Glinz, H. Huser, G. Matheis, H. Matheis, M.F. Schmidt

Brown Boveri Research Center
CH - 5405 Bade1 (Switzerland)

ABSTRACT

SPADES is a specification system consisting of a
method, a language, and a set of tools. These com-
ponents are based on a set of concepts, which
forms its abstract kernel.
SPADES supports the specification of software sy-
stems, in particular of real time software. The
system to be developed is modelled using the Enti-
ty-Relationship-concept. While this seems to be
the best way for storing specifications in a com-
puter, it does not automatically lead to representa-
tions equally comfortable for humans. This is why
SPADES, which has been available for some time,
has recently been extended by a graphical inter-
face. This paper gives a brief survey of the sy-
stem, in particular of its new component.

INTRODUCTION

SPADES, which stands for Specification And DEsign
System, is only the last strp in a chain of efforts
for providing a useful specification system. PCSLl
was a modified version of the well known PSL/PSA*,
which contributed much more to the evolution of
specification systems than any other system.
Though very similar in syntax to PSL, PCSL differs
in some concepts for specifying real time software;
these concepts were partially new, and partially
taken from SREM3 and other systems. A radically
new implementation of PCSL allowed for a modern,
block oriented syntax of the language, and some
new features for the tool. The result was named
ESPRES04. While PSL/PSA was implemented in
FORTRAN and supported FORTRAN-style spec-
ifications, PASCAL took over both positions in
ESPRESO. The most recent improvement was
achieved by reimplementing ESPRESO under the
new name SPADES in MODULA-2. SPADES is cur-
rently being used at Brown Boveri in a pilot pro-
ject. With the feedback from its users, SPADES is
continuously being improved and expanded at
Brown Boveri Research Center.

Compared to PSL/PSA, SPADES is still a very small
system, limited to a certain application area and a
specific operating system (VAX/VMS>. SPADES-T,
its tool, is far less powerful than PSA is. Still,
SPADES has a number of advantages for us:

CH2139-4/85/0000/0083 0 IEEE 1985

- Since it is fairly small and implemented in a high
level language, SPADES can be modified and ad-
apted to the user’s needs with comparative ease.

- SPADES was build in a real inside-out manner;
therefore, its concepts have not been added for
marketing reasons, but formed the building
block of the development. While we will some-
times argue about details of the implementation,
we have had no reason to change the concepts
so far.

- Unlike other specification languages, SPADES-L
was rigorously defined by an Attribute-Gram-
mar. As long as there did not exist any proper
material for the user5, this definition was
sometimes mistaken for a manual, which it is
certainly not. But, as a reference for work on
the system, this grammar turned out to be ex-
tremely useful.

- Working on a Software Engineering Environ-
men@, we benefit again and again from our
experience with SPADES. Some of the concepts,
which were no more than ideas when we made
SPADES, are now fully understood, and are be-
ing implemented.

COMPONENTS OF SPADES

Some specification systems are referred to as me-
thods, or languages, or tools. We think that none
of these is very useful without the others; all must
be taken into account. A set of concepts forming
the abstract kernel should guarantee that method,
language, and tool go well together, and not only
syntactically. This logical structure is represented
by the “system-triangle” (fig. I).

In

.

SPADES, the components are named:

SPADES-M: the method for developing specifica-
tions

SPADES-L: the standard language for entering
specifications

SPADES-T: the set of tools for working on spe-
cifications

The following chapters describe concepts, method,
language, and tools in this order. This seems to
be the most logical ordering, and also corresponds

83

to the formation of SPADES. However, as the
dotted lines in the system triangle indicate, all
four depend on each other. That is why it is not
always possible to avoid repetitions and forward
references.

Figure 1: The system triangle

CONCEPTS

The Entity Relationship Concept

Like many other systems, SPADES is based on a
modified Entity-Relationship-concept7, i.e. reality
is conceptualized by objects (entities) and links
(relationships). Objects and links are the nodes of
a bipartite graph, which, as a whole, models the
target system and, possibly, parts of its environ-
ment.

The set of all objects is subdivided into predefined
classes, the kinds (e.g. “MODULE” or “BUFFER”);
likewise, evennk belongs to one of the given
relations (e.g. “COMPRISES” or “CONSUMES
FROM”).

Most relations require two objects to be linked;
each of these so called components of the link
plays a specific role. In the comprise-relation, for
instance, one component models “the whole”, the
other one “the part”; since we cannot store 1 to n
relations, each subpart needs a special link (see
fig. 2).

There are also (pseudo-)relations with only one
component, called predicates, and some with three
components, one of which is often optional.

Every object is uniquely identified by a user-de-
fined name, while links are not. Instead, a link is
distinguished from another link only by the combi-
nation of its relation and its components, together
with its role (e.g. link of relation “comprises” with
ABC as the whole and UV as the part in fig. 2).

uv XY

Figure 2: Named objects, links, and roles

An Overview of Kinds and Relations

The kinds of objects in SPADES include

-

MODULES for describing the static structure of
systems,

actors (PROCEDURES and BLOCKS) which may
be executed,

parameters (INPAR, OUTPAR, TRANSPAR) re-
lated to procedures,

media (VARIABLES, BUFFERS, TRIGGERS, and
RESOURCES) which are used for communication
between active components,

TYPES for defining the structures of variables,
buffers, and parameters,

INTERVALS for specifying dynamic properties
Ii ke delays, frequencies etc. ,

CONSTANTS for representing system para-
meters,

INFORMAL OBJECTS for documentation only.

Relations are provided for describing

- hierarchies and other structures (e.g. nesting
of modules, composite types)

- communication between actors and media,

- coordination and timing between actors, media,
and intervals,

- execution schedules for actors,

- restrictions about the access to actors and
media,

- general references to arbitrary objects.

Other Concepts

SPADES is based on the concept of a smooth transi-
tion from a vague idea to a fairly well structured
description of the target system. The latter may
also be regarded as a high level design; we no
longer believe in a strict separation of WHAT and
HOWsJQ.

84

In order to allow for such a smooth transition, con-
structs offered to the user range from informal
texts (kind “INFORMAL”) to very specific objects,
whose kinds im ply well defined properties (see
the paragraph on SPADES-L below).

Certainly an important concept is our intention to
make SPADES a simple specification system (but
not primitive), in the same way that PASCAL is a
simple programming language.

THE METHOD SPADES-M

There should be one and only one specification,
which leads to it being stored in a database. This
specification should remain in a consistent state at
any time; therefore, users must not modify the con-
tent of the database directly, but only through
well controlled mechanisms. When an analyst is work-
ing on the database, he or she should never be in
doubt whether the specification (or a part thereof)
is currently in the analyst’s, or in the database
management’s custody.

SPADES is based on the idea that all information
relevant to the target system should be collected
as early as possible. In an early state, however,
very little information is formalized, therefore, in-
formal texts play an important role. The user is
then solicited to formalize the (already stored)
knowledge. Together with the customer or any
other person who represents the requirements, the
specifier should check the stored specification after
every major extension or change. This should be
done even when it is far from complete, in order
to avoid a costly trip on the wrong track.

These methodological goals are reflected in the de-
sign of SPADES-L, the language, and SPADES-T,
the tool. For instance, an object ABC which has
not yet been defined explicitely may nevertheless
be referenced from other objects; SPADES-T will
evaluate the context in order to reduce the range
of possible kinds associated with ABC. When ABC
is actually defined later on, or mentioned again in
some other context, SPADES-T will “know” whether
the occurences are still consistent.

THE LANGUAGE SPADES-L

Many properties of SPADES-L are determined from
its purpose, and from the concepts stated above.

At first glance, SPADES-L resembles PASCAL, or
rather ALGOLGO, because word-symbols start, and
may end, with a quote, distinguishing them from
user-chosen identifiers.

Every object may be described by an arbitrary
number of informal texts. Some objects are never
used for any other purpose; these are objects of
kind INFORMAL. Like objects of some other kinds,
informal objects may be given a hierarchical (i.e.
tree) structure.

Each text is identified bv the object to which it is
attached, and by a so called text-selector. Since
text-selectors must be unique within one object
only, certain ones may be used for specifying cer-
tain aspects (e.g. every object may have a text
with selector “deadline”). Texts may contain refer-
ences, i.e. identifiers of objects. preceded by an
exclamation mark. Such references are automatical-
ly detected and evaluated by SPADES-T. This con-
struct reflects a very common situation at the be-
ginning of program development, when we know
vaguely about relationships, but cannot yet form-
alize them. For instance, we may attach a text to
module A expressing that details of A depend on
certain properties of module B (reference to B).
When we retrieve the specification of B in order to
modify it, we come across that reference.

Hierarchical structures can be described in two
ways: The natural solution is a likewise hierarchic-
al (nested) description (see the modules in fig.
3). In a specification language, such a description
is not always desirable: when information on a cer-
tain structure emerges only slowly, the analyst
wants to enter it in many small portions. This, al-
together, form a flat, less elegant relational struc-
ture, in which the hierarchical structure is de-
scribed by explicit relationships rather than by a
corresponding syntactical structure. Therefore,
SPADES-L allows for both formats.

'MODULE mixer-control-system: "example for ICSE";
(* For every object, a descriptional text should be

entered. Therefore, SPADES allows for a text
with empty selector. *)

'COMPRISES
'MODULE control (* short section, header only *)

'AND
'MODULE mixer: (* section-header with colon *)
'COMPRISES (* begin of section-body *)

'MODULE mixer-working (* a nested section *)
'AND

'MODULE mixer-supervising
'END mixer (* section-tail *)

'AND
'MODULE liquid-supply:
'COMPRISES

'BLOCK weigh-A:
'STARTED-BY start-button;
'TERMINATED-BY HOD-button;
'CONSUMES scales-riading;
'UPDATES liquid-item-counter;
'WRITES VA-signal 'WHERE "opened or closed";
'TEXT yet-to-come "dynamic behaviour";
'END weigh-A

'AND
‘BLOCK weigh-B

'AND
'BUFFER scales-reading

'END liquid-supply
'END mixer-control-system.

Figure 3: A small sample specification

85

An object is defined by a section. A section starts
with the section-header, and ends with the section-
tail. The section-body in between may define
arbitrary number of texts, and of links to other
objects (including their definitions). Since SPA-
DES-L is non-procedural, the order of statements
is not relevant (and is actually ignored by SPA-
DES-T).

For easy implementation of SPADES-T, the language
was given an LL(l)-syntax (which does not matter
in most constructs, but makes the language rather
clumsy at a few points).

Unlike all other specification languages of its kind,
SPADES-L is formally defined by an Attribute-
Grammar. As a side benefit, this grammar also
covers the effects of entering information to the
database, which is the most complicated operation
of SPADES-T.

Another interesting part of the definition of SPA-
DES-L is the mapping from SPADES-constructs in a
programming language. This mapping provides a
default- definition of what is expressed by a speci-
fication. (This allows the user to specify devia-
tions from the standard.) When, for instance, an
object of kind “TRIGGER” is defined, it has a cer-
tain dynamic behaviour (including coordination of
competing accesses), if not stated otherwise.

The mapping could possibly be implemented, but
that is not its primary purpose; we rather want to
show that semi-formal languages can be defined as
precisely as formal ones (except for an operational
semantics which is excluded by definition).

The example in fig. 3 shows the style of SPADES-L.
Note the distinction between texts (‘I . . . ‘I) and
comments ((* . . . *)). Texts are stored in the
database, comments are not.

An

THE TOOL SPADES-T

SPADES-T is actually not just a tool, but a set of
tools. Besides the user interface, which is de-
scribed below, its components can be classified as
follows: there are tools for modifying the specifica-
tion currently stored (conversion and deconversion
for entering and retrieving information), and tools
for analyzing it (the report-programs); all these
are controlled by an interactive program, the so
called SPADES-Monitor (see fig. 4).

Since earlier versions of SPADES did not provide
any editing facility, a standard editor must be
used. For extending a specification, the analyst
generates a new SPADES-L-file and then invokes
the conversion program. For modifying an existing
specification, affected parts are deconverted, i.e.
they are transformed into a SPADES-L-representa-
tion and removed from the database. The SPADES-
L-file is modified and converted again. When er-
rors are found during conversion, a so called re-
mainder file is automatically generated. This file
contains those parts of the specification which do
not comply with the context sensitive syntax of
SPADES-L. (Note that the stored specification is
part of the context. >

The conversion-program of SPADES-T is not direct-
ly controlled by the Attribute Grammar of SPADES-
L, but by a slightly simplified table. Only some
crucial parts unlikely to be changed are fully
coded. Still, modifications of the language are very
easy.

As mentioned above, the language definition covers
the effect of conversion to the database. In the
beginning, the database is empty except for some
standard information (definition of truth-values and
time-units). Then, every conversion contributes to
the content of the database. Extensions are ac-
cepted if and only if they are consistent with their

alyst 4..... t Mon,tor
~~~~~~- 

I 

Nams 

Figure 4: Data flow of SPADES-T 
(without graphic interface) 

86 



(left-)context, i.e. with any previously entered 
information, whether this information was entered a 
year before, or was contained in the same file. If 
information is entered twice, it is consistent, pro- 
vided it was consistent the first time; therefore, 
repetition is legal in SPADES-L, and accepted 
(without effect on the database) by the conversion 
program. 
When the specification is modified, the old version 
is kept; the analyst can always reset it to its pre- 
vious state. 

SPADES-T offers several operations for checking 
and evaluating the specification, each of which ge- 
nerates a report. There are currently six reports 
available: 

. content (a read-only equivalent to 
deconversion) 

- hierarchy of modules (prints the tree, or trees) 
and informal objects 

. call structure (shows from where proce- 
dures are called) 

- data flow (reports all data whose 
data flow is not complete, 
e.g. a variable which is 
never read) 

. range check (chE;L;)accesses against 

. completeness (indicates which objects 
have been referenced ,- 
but are not yet expllcltly 
defined) 

SPADES-T is implemented in MODULA-2 on VAX/ 
VMS . Since all OS-dependent functions are well 
separated, implementation on another system should 
be easy (though it has not yet been tried). 

THE USER INTERFACE OF SPADES-T 

Drawbacks of specification systems (like tedious 
work on formal descriptions) are, overall, easily 
outweighed by their long-sighted benefits (less 
errors, easier implementation and maintenance). 
The behaviour of people as individuals working on 
rather short range goals, however, is not much 
influenced by those advantages. They will accept 
and support a tool only if there is an immediate 
profit. At least those who work in industry must 
accept this as a basic fact of life. Therefore, we 
must do our best to make users feel as comfortable 
as possible. The interface of SPADES, i.e. the 
style of communication between user and system, is 
obviously the field where we can win or loose our 
battle. 

For controlling SPADES-T on a VTIOO-terminal, a 
simple but clear interface was implemented: Perma- 
nent (status) information is shown in reverse video 
at top of the screen. Commands are either selected 
from menues (at the right hand side), or entered 

from keyboard in the bottom line. The left centre 
area is used for messages from SPADES-T (see 
fig. 5). When textual information or graphics are 
displayed this window is temporarily extended. 

Figure 5: User interface of SPADES-T 

Most people prefer graphics to text, provided the 
pictures are fairly well structured, and not too 
complex. The Entity Relationship Concept is widely 
used in specification systems because it reflects 
well our graphical understanding. Figure 2 is very 
similar to the drafts we draw when we explain some- 
thing. As shown above, we can express the same 
information by a linear representation (SPADES-L), 
but the most natural style is graphics. Therefore, 
graphics is the key to improving acceptance. Even 
though manyscientists will correctly object that 
just another representation of the same information 
is not an improvement, those who want to provide 
a tool which is not only good according to their 
own standards, but also successful, must take this 
point into account. 

Since SPADES is based on the Entity Relationship 
Concept, any specification in SPADES-L can be 
easily represented by a graph. In practice, how- 
ever, it is not that easy. There are three limiting 
factors: 

- User’s mental limitations 
The user in not able to handle large amounts 
of information at one time; this affects both 
the diversity of elements, i.e. the number of 
different icons, and the total volume of in- 
formation. 

- Properties of the hardware 
(screen, CPU, and transmission line) 

These limit size, resolution, and picture ge- 
neration time. 

- Implementation effort 

With the VTIOO, graphics is not really possible. 
Therefore, we chose VT240 and VT241 as hardware 
for our human-computer-interfacelo. These termi- 
nals are compatible with VTIOO, but offer vector 
graphics as well (VT241 in color). A workstation 
with high resolution screen would certainly allow 

87 



for better (and much faster) graphics, but we 
should not develop a tool that cannot be used in 
other departments of our company. Therefore, 
VT240 is a cautious choice. 

Even with an arbitrarily large screen, the analyst 
could not make use of very complex graphs; he or 
she must concentrate on a single point (object), 
from where links to other objects can be traced. 
This leads to our so called star-representation: Up 
to eight objects are arranged around a central ob- 
ject. An object is represented by an icon, which 
represents its kind, and by its name, written into 
the icon. Links are drawn as arcs between objects; 
every relation is represented by a special symbol 
(arrow, dotted line, etc.). Fig. 6, which is based 
on fig. 3, shows a star-representation centered at 
object “weigh-A”. Note that (with the current im- 
plementation) only binary links are shown, the 
third component is discarded if present. 

If there are more than eight objects linked to the 
star-object, seven of them are shown, and the fact 
that more objects are logically present is indicated 
by a message saying that the analyst may scroll. 

-0 wit 
-P pint 

Figure 6: Object weigh-A of fig. 3 in star-repre- 
sentation 

.. ., 
,..ui*lin ‘. CY g-tir 

.__ : 
_..’ 

-0 quit 
9 pint 

Figure 7: Extended star-representation from fig. 6 

With the graphical interface, we will be able to 
allow for interactive editing instead of editing an 
excerpt in SPADES-L. Fig. 7 shows an extension 
of fig. 6, fig. 8 shows the equivalent fragment in 
SPADES-L. 

'BLOCK weigh-A: 
'TAKES-.OF weighing-time; 
'END weigh-A. 

Figure 8: SPADES-L-equivalent to the extension in 
fig. 7 

The star-type graphics shown above is well suited 
for displaying data flow and interaction, but not 
for hierarchical structure, as expressed by the 
COMPRISE-relation. For these, the tree-represent- 
ation was developed. In a tree-type graphics, the 
root is the point of interest. It is displayed at top 
of the page. In the middle level, up to three 
off-springs of the root object are shown; nodes 
displayed in the bottom level are the offsprings of 
the central object (see fig. 9, which is based on 
the specification in fig. 3). 

-------I 
: rixer : 
v -cmtrd 
: -@a : 

J --- ---I 4 
: lipid s--.- ---I 4 --- ---3 

: 
:-WY , ; n1xar : : cmtml I 

(------ 2 *-__ r--- : ------ 1 

1 --- ---a 1 
: mixer I 

--- ---, 

n-ud.ing ; 
: *ixs : 
s -9twwis 
: ing 

, 
I----__ J I- - - - - - _ 

Figure 9: Tree-representation of module mixer- 
control-system 

The principle of scrolling applies to the tree- 
graphics as well; when the first-generation subtree 
is scrolled, the lower line follows automatically. 

Both in the star- and in the tree-graphics, brows- 
ing through the logical structure is achieved by 
selecting a new object of interest, and redrawing 
the picture accordingly. Selection would ideally be 
done with a pointing device (a mouse for instance), 
but we have none, so we use the cursor instead. 
The cursor is positioned with keys, moving from 
one object to another with every keystroke. See 
fig. 10 showing the result of moving the point of 
interest in fig. 9 from mixer-control-system to 
liquid-supply. 

88 



-------a 
: lipid I 
1 -JF#Y ; 

Figure 10: Owner-hierarchy of object liquid-supply 

While working with the graphical interface, the 
analyst may access a help-subsystem, which pro- 
vides simple hints on possible commands. 

CURRENT STATE, PROBLEMS, CONCLUSIONS 

Graphical display of specifications and browsing is 
now available, editing is currently being implement- 
ed. Since this implies modifications of the stored 
specification, all checks for maintaining consistency 
must be performed, which is not trivial. In order 
to emphasize particular aspects of specifications 
(for instance their dynamic structure), future ex- 
tensions will allow for subsetting the kinds and re- 
lations to be displayed. 

SPADES is currently being used in a pilot-project, 
i.e. outside the protection of its creators. Despite 
many difficulties in details, it seems to prove its 
value. The hardest problem, however, is accept- 
ance. By providing a graphical interface, we hope 
to improve its quality slightly, but we expect to 
improve its acceptance dramatically. 

It is one thing to write down a list of features 
which seem useful or even necessary, and another 
thing to implement them. Many extensions to 
SPADES are highly desirable, but are not, or not 
yet, realized due to obvious limitations of man- 
power. A list of such extensions, some of which 
have been investigated in some detail, would at 
least include 

. a real multi-user interface (i.e. protection and 
locking mechanisms at the level of single objects 
and relationships) 

. a facility for language extensions, particularly 
for languages dedicated to dialogue and protocol 
specification; 

- a sophisticated version and variant control 
system ; 

. a simulation system for performance analysis (as 
available in SREM3); 

. a transformation system for generating program- 
skeletons from specifications. 

89 

ACKNOWLEDGEMENTS 

ESPRESO, the predecessor of SPADES, was deve- 
loped at Nuclear Research Center in Karlsruhe, 
Federal Republic of Germany. Implementation of the 
graphical interface and proofreading of this paper 
was supported by Mark Garrett from Hatfield Poly- 
technic. Three anonymous referees contributed 
many helpful comments. 

REFERENCES 

[II 

[21 

31 

41 

[51 

if31 

[71 P. P. -S. Chen, The Entitv-Relationship Model - 
toward a unified view of data. ACM Trans- 
actions on Data Base Systems, 1 (19761, 1, 
9-36. 

181 J. Ludewig, Computer aided specification of 
process control software. IEEE COMPUTER, 
May 1982, 12-20. 

[91 W. Swartout, R. Balzer, On the inevitable 
intertwining of specification and implementa- 
tion . Commun. ACM, 25 (1982), 7, 438-440. - 

J. Ludewig, Process control software specific- 
ation in PCSL. in V. Haase (ed.), IFAC/IFIP 

Workshop on Real Time Programming, Perga- 
mon Press, Oxford etc., 1980, pp.103-108. 

D. Teichroew, E.A. Hershey III, PSL/PSA: a 
computer aided technique for structured docu- 
mentation and analysis of information process- 
ing systems. IEEE Transactions on Software 

41-48. Engineering, SE-3 (1977), 

M. Alford, SREM at the age of eigth: the 
distributed computing design system. IEEE 
COMPUTER, April 1985, 36-46. 

J. Ludewig, ESPRESO - a system for process 
control software specification. IEEE Trans- 
actions on Software Engineering, SE-9 (1983), 
427-436. 

J. Ludewig, H. Matheis, M.F. Schmidt, SPA- 
DES-Manual (Language Reference Manual, 
Operator’s Manual, Guide to the practical ap- 
plication of SPADES). Brown Boveri Research 
Center, Internal Report, 1985. 

M. Glinz, H.J. Huser, J. Ludewig, SEED - A 
database svstem for software enaineerina en- 
vironments. ’ in Blaser, Pistor (H&g.): l&en- 
banksysteme fiir Biiro, Technik und Wissen- 
schaft, Informatik-FB 94, Springer, 1985, 
pp.121-126. 

[IO] G. Matheis, Konzeption und Realisierung der 
graphischen Ausgabe von Spezifi kationen . 
Master Thesis, University of Kaiserslautern, 
1985. 


