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Abstract

Today, object-oriented requirements specifications typi-
cally combine a scenario (or use case) model and a class
model for expressing functional requirements. With any
such combination, the problem of consistency between
these two models arises.

In this paper, we present a lightweight approach to
consistency between a scenario model and a class model.
We assume semi-formal, loosely coupled models that are
complementary: scenarios model the external system
behavior; the class model specifies the internal, state-de-
pendent functionality that cannot be expressed easily in a
scenario (but is required to specify external behavior
properly). We achieve consistency by minimizing overlap
between the two models and by systematically cross-refer-
encing corresponding information. We give a set of rules
that can be used both for developing a consistent specifi-
cation and for checking the consistency of a completed
specification. Some rules can be checked automatically,
the others are rules for manual inspection.
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1 Introduction

The initial approaches to object-oriented requirements
specification were all centered around a class or object
model, for example those of Booch [3], Coad and Yourdon
[6] and Rumbaugh [25]. A short time later, scenarios and
use cases emerged as an important means of requirements
specification [5], [9], [16], [19]. Today, most approaches
use a combination of structure, behavior and interaction
models for (functional) requirements specification. Typi-
cally, structure and behavior are represented in class mod-
els that consist of a combination of class diagrams and
statecharts, whereas interaction is modeled with use cases /
scenarios [10], [26]. Only the Rational Unified Process
[22] tries to model functional requirements with a use case
model alone.

As soon as more than one model is used, the problem of
inter-model consistency arises: how can we ensure that
information in these models is neither contradictory nor
partially incomplete? (A partial incompleteness is a situa-
tion where information given in one model requires corre-
sponding information in another model which, however, is
missing from that model.)

Nearly all requirements modeling techniques that use
more than one model have no systematic approach to
combining the models consistently. The consistency prob-
lem is simply ignored (and thus left to the requirements
engineers and to the users who have to validate a require-
ments specification).

In this paper, we investigate the consistency problem
between a scenario model (or use case model) and a class
model. (Principally, we prefer object models to class mod-
els, because class models have some serious drawbacks, in
particular where decomposability is concerned [13], [20].
However, in order to make our approach directly applica-
ble in today’s practice, we use class models here.)

Our main contribution is a concept for making a sce-
nario model and a class model consistent. We use a light-
weight approach for loosely coupled, UML-style models.
We do not consider the problem of intra-model consis-
tency here. That means, we assume that proper methods
for establishing internal consistency for both the scenario
model and the class model are in place. Our approach is
lightweight in the sense that we use semi-formal models
where consistency cannot be established formally. Instead,
we systematically identify information that corresponds or
is redundant in the two models, thus making manual in-
spection for consistency simple and straightforward. Some
syntactic issues can even be checked automatically.

We are aware of only two other approaches to a sys-
tematic combination of scenarios / use cases and class
models. Kösters, Pagel and Winter [21] couple use cases
and class models by deriving the class model from the use
cases and by annotating a graphic use case specification
with the names of the classes that implement the use case.
This is a design-oriented view where one proceeds from
the use case model to a class model and from the class
model to implementation. Buhr [4] regards scenarios as
causal paths winding through a hierarchical object model.
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Responsibility points bind segments of a path to elements
of the object model. Object model and scenario paths are
visualized together in so-called use case maps. Buhr’s
approach is design-oriented, too. Furthermore, the path
through the object model is all we know about a scenario;
there is no standalone specification of scenarios. Thus, the
user-oriented separation of concern, which is one of the
strengths of a scenario-based specification, is lost.

While we regard scenarios and a class model as com-
plementary models that together form a requirements
specification, neither of the approaches mentioned above
does. Kösters, Pagel and Winter focus on the transition
from scenarios to a class model. Buhr uses scenarios for
visualizing the dynamics of the object model.

Other work on detecting inconsistency in requirements
specifications typically deals with analyses based on a
formal specification, for example [15].

Another track of related work deals with managing in-
consistency in requirements specifications, which means
living with inconsistency. These approaches typically
require a formal specification too, and focus on managing
intra-model inconsistencies that arise among different
stakeholder viewpoints or within a single viewpoint [8],
[17], [23].

The work by Grundy, Hosking and Mugridge [14] ad-
dresses inter-model consistency, which is more closely
related to our problem. However, their approach differs
fundamentally from ours. They focus on software devel-
opment environment tools, managing inconsistencies in
multiple views that are derived from a common repository.
Artifacts in the repository are formally represented by a
special kind of graph, thus allowing automatic inconsis-
tency detection and management.

The rest of this paper is organized as follows. Chapter
two starts with a short introduction to scenarios for re-
quirements specification. Then we demonstrate when and
why a purely external specification with scenarios is insuf-
ficient and must be augmented with a model of structure
and state, typically expressed with a class model. This
combination of different models leads to consistency
problems that are characterized in Section 2.3. In Chapter
three we present our lightweight approach to solving (or at
least alleviating) the consistency problem. Chapter four
presents an extensive example. In Chapter five we discuss
rules for checking the consistency of models. We conclude
with a discussion of achievements, open problems and
future directions.

2 Modeling functional requirements with
scenarios and class models

2.1 Scenarios

As the term “scenario” is used with several different
meanings, we start with a definition.

DEFINITION. A scenario is an ordered set of interac-
tions between partners, usually between a system and a set

of actors external to the system. It may comprise a con-
crete sequence of interaction steps (instance scenario) or a
set of possible interaction steps (type scenario).

Jacobson [19] coined the term use case for type sce-
narios and later introduced it into UML. Hence, this term
is widely used today. In Jacobson’s terminology, scenarios
are always on the instance level.

Throughout this paper, we will use the term scenario.
Where the distinction between type and instance level
matters, we speak of type scenarios and instance scenarios
respectively.

Scenarios have received considerable attention in re-
quirements engineering for the following reasons.
• They describe the externally visible behavior of a sys-

tem only, thus avoiding solution bias and premature de-
sign.

• They describe how users will work with a system,
hence they are much easier to validate with users than
for example class models or dataflow diagrams are.

• They can be used both for elicitation and description of
requirements.

• They inherit the comfort and ease of natural language
specifications, but avoid many of the problems of a
purely narrative specification.
Typically, scenarios are used for the specification of

functional requirements only. Some non-functional attrib-
utes (for example, performance requirements) can be in-
cluded in scenarios. However, this is seldom done in
practice. Other attributes (portability, for example) princi-
pally cannot be expressed with scenarios.

2.2 Why scenarios are not enough

A functional requirements specification can be regarded
as a structured set of responses that are required as reac-
tions to given stimuli. A principal means of capturing and
representing this structure is to determine groups of stimuli
and responses such that every group represents a system
transaction or a system function from a user’s perspective.
A scenario is an excellent means of describing such a
group of interactions. The particular strength of scenarios
lies in the fact that they provide a decomposition of a sys-
tem into functions from a user’s perspective and that each
such function can be treated separately – a classical appli-
cation of the principle of separation of concern.

However, specifying the order of stimuli and responses
for every single scenario does not capture the complete
structure of stimuli and responses that make up a func-
tional specification.

In addition to the internal structure of every scenario,
we must be able to model the following:
• inter-scenario relationships,
• responses that depend on system state, i.e. on previous

stimuli and their responses,
• an initial state (or an initial sequence of stimuli that

produce this state).
Inter-scenario relationships can be included in scenario

models by modeling them explicitly (e.g. Jacobson’s
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“uses” and “extends” relationships [19] or by expressing
them with preconditions both for complete scenarios and
for particular parts of a scenario.

Theoretically, state-dependent responses and the initial
state of a system could be included in a scenario model,
too. We would need to state pre- and postconditions for all
state-dependent scenarios and use state variables in these
conditions. Static relationships between state variables
would have to be modeled by creating links between these
variables in some postcondition. However, such a specifi-
cation would become extremely clumsy for all systems
with more than a few state variables. As every system that
needs a database belongs to this category, this approach
provides no practical solution for the specification of state-
dependent requirements. As far as we know, nobody has
ever tried to integrate state-dependent behavior speci-
fications in this way in a scenario model. The Rational
Unified Process [22], which tries to model functional re-
quirements with scenarios only, says nothing about speci-
fying state-dependent behavior and static structure. Con-
sequently, this information will either be omitted in prac-
tice (thus leaving the specification considerably incom-
plete), or the business object model from the business
modeling workflow will be used.

As a consequence, nearly all practical approaches that
make use of scenarios combine the scenarios with a class
or an object model. The scenarios capture functional re-
quirements by specifying the behavior of a system as ob-
served from a user’s perspective. The class or object
model, on the other hand, models both the static state
space and the operations that modify it. (One could argue
that models of a system’s states should not be part of the
requirements, because states are part of the system and
thus should be regarded as design artifacts [18], [22]. This
would be true if we modeled all the state variables re-
quired for the implementation of a system. However, if we
only model those states that exist in reality as a part of a
system’s environment, but must be remembered and
maintained by the system in order to perform its required
tasks, we can regard these states as a genuine part of the
requirements.

It should be noted here that we view scenarios and class
model as being  complementary to one another. Scenarios
model the externally observable, dynamic behavior of a
system, whereas the class model1 specifies the internal
structure and behavior , viz the data and operations that are
required for determining the external behavior for state-
dependent systems. This contrasts with other, more design-
oriented views that regard the class model to be the
implementation of the scenarios. The Rational Unified
Process is a prominent example of the latter view.

2.3 The consistency problem

As soon as we augment a scenario model with a class
model, the consistency problem arises: How can we ensure

                                                                        
1 including state models for the objects of the classes

that the information in the scenario model is consistent
with the information given in the class model?

We do not require formal models for scenarios and
classes, so we cannot define consistency in formal terms.
Our notion of consistency between models is that infor-
mation given in the scenario model should match informa-
tion given in the class model in every case where the two
models interact or share information. Hence, we define
inter-model consistency as follows.

DEFINITION. A scenario model and a class model are
considered to be consistent if
(1) There are no contradictions between information in the

scenario model and information in the class model
(both where information is shared and where the mod-
els interact)

(2) In both models, there is no partial incompleteness with
regard to the other model.

A partial incompleteness is a situation where informa-
tion being present in one model requires corresponding
information in the other model which, however, is missing
from that model.

When viewing scenarios and class model as being com-
plementary to one another, the following four situations
require interaction between the scenario model and the
class model and, hence, must be considered when devel-
oping an approach to inter-model consistency.
• Stimuli in a scenario that are not immediately required

to produce a response will typically produce a state
change which requires a corresponding operation or
state transition in the class model.

• A response in a scenario that needs more data than the
stimuli of this scenario provide requires stored data.
This data, together with suitable access operations,
must be represented in the class model.

• Every operation in the class model which is not refer-
enced by another operation in the class model is typi-
cally used by a scenario in order to process a stimulus
or to produce a response.

• Scenarios and a class model sometimes overlap. In
particular, the scenario modeler is frequently tempted to
include operations and data in a scenario that can also
be found in the class model.
Gaps in a specification (situations where some infor-

mation is completely missing because every model as-
sumes that this information is contained in one of the other
models) are considered to be a completeness issue, not a
consistency one. However, when analyzing a specification
for consistency, we frequently detect gaps, too. So gap
detection can be regarded as a positive side effect of con-
sistency checking (see Chapter 4 for an example).

2.4 Model collections vs. integrated models

A model that employs more than one modeling tech-
nique can be realized either as a collection of different
models or as an integrated model with different views.
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In a model collection, every model in the collection is
treated (created, maintained, used) separately. This makes
life easy for language and tool designers (of course) and
(apparently) also for the user. However, the ease comes at
the expense of model quality, because inter-model con-
sistency is hard to achieve for model collections:
• Models do not fit perfectly. There are typically con-

ceptual overlaps between models on the one hand and
gaps on the other hand.

• Inter-model consistency rules are often weak or not
defined at all.

• Even where rules exist, they are frequently not sup-
ported by the available tools.
Thus, when a user wants to have inter-model consis-

tency, working with model collections can be quite cum-
bersome.

An integrated model provides a single conceptual
framework in which all model information is stored. Par-
ticular aspects (a scenario, an object structure, etc.) are
generated from this framework by producing views. Thus,
working with an integrated model is comfortable for the
user. Through the view mechanism, she or he can still
work on an isolated aspect, e.g. on a scenario model. By
definition, there is no conceptual overlap in the model
(views may overlap, but they are generated from a single
common basis). Consistency rules are an integral, built-in
part of the model.

Examples. Nearly all object-oriented modeling ap-
proaches are model collections; UML being the most
prominent representative. Modern Structured Analysis
[27] is another classic example. Information Engineering
[24] is a variant of Structured Analysis which is based on
the idea of an integrated model. In the field of object-ori-
ented requirements specification we are developing a lan-
guage and a tool called ADORA. ADORA is built upon the
idea of an integrated model, using a hierarchical object
structure as its basis [1], [13].

3 A systematic approach to consistency
3.1 Basic considerations

The achievable degree of consistency strongly depends
on the degree of precision and formality that the scenario
and class models have. For example, a scenario written in
natural language cannot be formally made consistent with
a class definition that also has informally defined attributes
and operations. On the other hand, if we have formal
models of both scenarios and class models, we can, to a
large extent, formally interlink the models by formalizing
consistency rules and building them into the metamodel.

In this paper, we pursue a lightweight approach to con-
sistency that is intended to work with existing modeling
techniques, helping to improve the consistency of re-
quirements models written in UML, for example. Hence,
we assume the scenarios and the class model to be loosely
coupled (forming a model collection) and requiring only
few formal elements. As we are working with semi-formal

models, we cannot formally define and assess consistency.
Our main idea is to establish consistency by systematic
manual inspection and to support and simplify this process
by
• minimizing overlaps between the models,
• systematically cross-referencing information between

the models,
• defining a set of model construction and checking rules.

In Section 6.3 we briefly sketch how a stronger ap-
proach, based on an integrated model with formal syntax
and partially formalized semantics could look.

3.2 Minimizing overlaps between the models

Overlap between a scenario and a class definition oc-
curs when data and/or operations are modeled both in a
scenario and in the definition of a class, or when some user
interaction is included in the specification of an operation
or of a state transition in the class model. The first situa-
tion typically occurs when a modeler requires persistent
data for the specification of a required response. Overlaps
of the second kind typically happen when a design-ori-
ented person, who is unaware of the purpose of a scenario
model, develops the class model.

Overlaps introduce redundancy into the specification.
Redundancy always increases the probability of contra-
dictions, in particular when the redundant information is
located in two separate parts of the specification. Mini-
mizing overlap therefore removes potential sources of
consistency problems. However, accidentally overdoing
overlap removal results in specification gaps. Hence, we
formulate the following rules.

RULE 1 (Minimizing overlaps). (a) Do not re-model
any data from the class model in a scenario, in particular,
do not model any persistent data in a scenario. Model ref-
erences to the specification of this data in the class model
instead. (b) Do not model any user interaction in the speci-
fication of operations or state transitions in the class
model. (c) Do not specify the details of an operation in
both a scenario and a class definition. If the operation
manipulates data specified in a class, model the operation
within that class. Otherwise, model it in a scenario.

RULE 2 (Avoiding gaps). When avoiding or removing
overlaps, never simply omit information from a scenario
because you believe that it should be part of the class
model and vice-versa. Instead, make sure that the infor-
mation is present in the other model and include a refer-
ence to this information in your model.

3.3 Systematic cross-referencing

As our approach does not assume formal models for the
scenarios and the class model, we have no formal way of
determining information in the two models that corre-
sponds and, hence, has to be consistent. Therefore, a cor-
nerstone of our lightweight approach is to identify corre-
sponding information explicitly by cross-references.
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We first define the kinds of items that can be referenced
and the format of references (below). Then we introduce
two cross-referencing schemes; a simple scheme in Sec-
tion 3.4 and an elaborate one in Section 3.5. An extensive
example follows in Chapter 4.

Our cross-referencing concept is based on the following
assumptions that are typical for today’s object-oriented
approaches to requirements modeling. The class model
consists of class and state diagrams and of textual class
definitions for every class. The syntax of the class defini-
tions is defined so that we can formally identify names of
classes, attributes, operations, etc. Scenarios are specified
in a scenario or use case model. This model consists of an
overview diagram and a definition of every scenario with
structured text. The two models are loosely coupled, that
means, they are part of a model collection. The UML [26]
is a typical example for this kind of modeling.

A cross-referencing scheme makes little sense if it can-
not be maintained and checked with tools. Hence we must
be able to identify references formally in both kinds of
models.

First, we determine the items that can be referenced.
For the class model, this is straightforward: references to
class names and to names of attributes and operations
defined in classes must be possible. The same is true for
state names in statecharts and for names of events and
actions in state transitions. If a class model provides fur-
ther formal elements, for example attribute domains or
parameters and types for operations, then references to
these elements shall also be possible. In the scenario
model, we must be able to refer to the names of the sce-
narios. If we employ a step-structured textual description
for the contents of a scenario (cf. Figure 1), references to
step numbers should also be possible.

Second, we define the format of references. Within
texts, we use an up-arrow as a tag symbol to identify a
reference. For example, “Depending on ↑OrderProcessing.
Choice the system displays the ‘order entry’ dialog or the
‘browse’ dialog” is a text in a scenario with a reference to
a name Choice (presumably an attribute) in class OrderPro-
cessing. In diagrams, we use directed dashed lines from the
referencing item to the referenced one.

3.4 The simple scheme of cross-referencing

The simple scheme leaves scenarios and class model
mostly as they are. Wherever in a scenario the creation of
a response requires activity in an object of some class, we
include a reference to the appropriate element in the class
model (cf. Figure 4). The class model itself is not modi-
fied. This apparently primitive scheme makes sense for the
following reasons:
• Scenarios are the primary means for users to understand

a requirements specification. The class (or object)
model augments the scenario model by specifying the
state-dependent elements of the responses modeled in
the scenarios. Thus references from the specification of
an interaction in a scenario to the elements of the class

model that are needed to understand this interaction are
(a) helpful and (b) more important than references in
the reverse direction.

• Simple referencing provides only little means for for-
mal consistency checking. However, it provides con-
siderable support for humans inspecting a specification
for consistency.

• The effort required to include these references is very
small in comparison with the benefit gained. In par-
ticular, referencing requires much less effort than
drawing interaction diagrams for the same purpose.

3.5 The elaborate scheme of cross-referencing

In the elaborate scheme we specify the scenarios more
formally, trying to express the scenario actions in terms of
references to operations and state changes in the class
model (cf. Figure 5). In this scheme, we also introduce
references into the class model. We do so by defining
stereotypes [2], [26] for the references. A stereotype «sce-
nario» for classes allows us to include scenarios as boxes in
a class diagram. A stereotype «uses» : list of names for de-
pendency links models a usage reference from a scenario
or class (at the tail of the dependency link arrow) to the
items given in list of names in another class (at the arrow-
head). Usage typically means that an attribute is accessed
or an operation invocated. A stereotype «sends» : list of
names models referencing by sending events or signals.
Finally, stereotypes «creates» and «deletes» may be used to
model creation and deletion references (cf. Figure 6). In
order not to overload the class diagram, we may draw
several diagrams, each one consisting of one scenario
together with all classes referenced by this scenario or by
each other.

The elaborate scheme requires considerably more effort
than the simple one. But it also provides much more pre-
cision and details and allows for more formal consistency
checking. So this scheme is particularly appropriate for
those parts of a specification where the cost of undetected
inconsistencies is high.

4 An example

In this chapter we present an extensive example. As a
context, we use the specification of a department library
system with self-service terminals for borrowing and re-
turning books. The goal and some constraints for the sys-
tem are given below. In this paper, we model the require-
ments for borrowing books only.

Sample Application: The Department Library System
Goal: The system shall support a department library,

where students themselves can take books from the
shelves, read them, borrow or return books, and query the
library catalog. Self-service terminals shall be used for
borrowing and returning books.

Constraints: Users identify themselves with a personal
library card. Every book has a barcode label. Additionally,
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there is an electronic safety device located under that bar-
code label which can be turned on and off by the system.
At the exit of the library, a security gate sounds an alarm
when a user tries to leave the library with a non-checked-
out book. A user may not borrow a book if she has cur-
rently borrowed books that are overdue. A book may not
be borrowed if it is reserved for another user.

Type scenario: Borrow books Version: 1
Actor: User
Precondition: User has personal library card
Started by: User wants to borrow books

Normal flow:
1 User scans her library card

System validates the card, returns the card, displays user
data, displays ‘Select function’ dialog

2 User selects ‘Borrow’ function
System displays ‘Borrow’ dialog

3 User scans label of book to be borrowed
System identifies book, creates an ‘on-loan’ record
(consisting of book, user and current date), unlocks safety
label, displays book data

4 If user presses ‘More books’ key,
System displays ‘Borrow’ dialog. Repeat step 3

5 User presses ‘Finish’ key
System prints loan slip, displays ‘Finished’ message

Alternative flows:
1a Card is invalid: System returns the card, displays ‘Invalid’

message (scenario terminates)
2a User has overdue books: System displays ‘Denied’

message (scenario terminates)
3a Book is reserved for another person: System displays

‘Reserved’ dialog (scenario continues)

Figure 1. The ‘Borrow books’ scenario

Figure 1 shows the ‘Borrow books’ scenario written in
a usual structured-text style which is UML-conformant2.
Figures 2 and 3 present an extract from the class model
that is significant for borrowing books. Figure 2 is the
class diagram. Figure 3 specifies the states in which a
terminal can be.

Whether or not the models specified in Figures 1-3 are
consistent, can only be guessed. Here are some examples.
• Consider step 1 of the Borrow books scenario. There is

no way to determine systematically where in the class
model the functionality of “validates the card” is speci-
fied and who knows/composes the “user data” that is
required in the reply.

• In step 3 of the Borrow books scenario we do not know
whether “creates an ‘on-loan’ record” is contradictory
to the class model (where there is no such class) or

                                                                        
2 Principally, UML allows any notation for the description of a use case.
However, a notation in the style of Figure 1, following a template that has
been proposed by Cockburn [7] is typically used with UML.

whether this requirement has been modeled in different
ways in the scenario model and in the class model.
Anyway, the description of the ‘on-loan’ record in the
scenario overlaps with the class model as it specifies
persistent data.

• We cannot figure out where in the scenario the terminal
changes from the idle state to the checking-out state.

Name
First Name
Address
CardNumber

BookBarcode
DateBorrowed
DateReserved

Identify
Borrow
Return
Reserve
Inspect
IsOverdue

borrows cataloged by

Inspect
Modify
Register
Validate

User Book

Catalog item

0..*0..1

reserves
0..60..1

TerminalLoan slip

AddBook
Print

1..*

1

Figure 2. Class diagram representing the classes relevant
for borrowing books

idle

checking-out checking-in reserving querying

enable
Borrow

enable
Return

enable
Reserve

enable
Query

Terminal

disableBorrow or disableReturn
or disableReserve or disableQuery 

userIs
Authorized waiting for

selection

Figure 3. Statechart for Terminal objects

Now we modify the scenario and the class model ac-
cording to the rules of our lightweight approach to consis-
tency. We remove the overlap by omitting details of the
Borrow operation from the scenario and we insert simple
references to the class model into the scenario. The class
model remains unchanged when employing the simple
referencing scheme. The result is given in Figure 4.

When reconsidering the three consistency problems
listed above, we find improvements:
• It is now clear that the detailed requirements for card

validation are specified in the operation User.Validate.
However, we still can only guess that “user data” is
provided by this operation.

• The potential contradiction between step 3 of the sce-
nario and the class model has disappeared.

• The points in time where a terminal changes its state are
now clearly visible in the scenario.
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Type scenario: Borrow books Version: 2
Actor: User
Precondition: User has personal library card
Started by: User wants to borrow books

Normal flow:
1 User scans her library card

System validates the card (↑User.Validate), returns the card,
displays user data, enables selection (↑Terminal.
userIsAuthorized), displays ‘Select function’ dialog

2 User selects ‘Borrow’ function
System enables borrowing (↑Terminal.enableBorrow),
displays ‘Borrow’ dialog

3 User scans label of book to be borrowed
System identifies book (↑Book.Identify), records the book as
borrowed (↑Book.Borrow), unlocks safety label, displays
book data

4a User presses ‘More books’ key
System displays ‘Borrow’ dialog. Repeat step 3

4b User presses ‘Finish’ key
System disables borrowing (↑Terminal.disableBorrow), prints
loan slip (↑LoanSlip.Print), displays ‘Finished’ message

Alternative flows
1’ If Card is invalid (determined by ↑User.Validate): System

returns the card, displays ‘Invalid’ message (scenario
terminates)

2’ If User has overdue books (determined by ↑User.Validate):
System displays ‘Denied’ message (scenario terminates)

3’ If Book is reserved for another person (determined by
↑Book.Borrow): System displays ‘Reserved’ dialog (scenario
continues)

Figure 4. The revised ‘Borrow books’ scenario with simple
cross-references

In the next step, we demonstrate the elaborate form of
cross-referencing. In this case, we rewrite the scenario as
presented in Figure 5. The class diagram is extended by
including the scenario and the operation invocation refer-
ences (Figure 6). Operations in the class model have to be
specified more precisely now. Figure 7 shows the opera-
tion ‘Validate’ as an example.

In this model, we can derive the contents of the “user
data” required in step 1 of the scenario. Furthermore, this
model reveals a gap in the specification: when looking at
the class Loan slip in the class model, we find that the sce-
nario Borrow books uses the Print operation of Loan slip, but
nothing else. Thus the contents of the printed loan slip is
unspecified. We can close this gap by creating a new
(empty) loan slip in step 2 of the scenario and using the
Add operation of class Loan slip either in step 3 of the sce-
nario or in operation Borrow of class Book. Figure 6 has to
be updated accordingly in order to reflect the additional
references.

Type scenario: Borrow books Version: 3
Actor: User
Precondition: User has personal library card
Started by: User wants to borrow books

Normal flow:
1 User scans her library card {delivers numberOfCard}

System validates the card {↑User.Validate (in numberOfCard,
out result, out currentUser, out userData); return card;
check step 1’; display userData; ↑Terminal.userIsAuthorized;
display ‘Select function’ dialog}

2 User selects ‘Borrow’ function
System begins check-out session {check step 2’; ↑Terminal.
enableBorrow; display ‘Borrow’ dialog}

3 User scans label of book to be borrowed {delivers label}
System checks-out book {↑Book.Identify (in label, out
theBook); ↑ theBook.Borrow (in currentUser, out bookData, out
status); check step 3’; unlock safety label; display bookData}

4a User presses ‘More books’ key
System iterates {display ‘Borrow’ dialog; go to step 3}

4b User presses ‘Finish’ key
System terminates check-out session {↑Terminal.disable-
Borrow; ↑currentLoanSlip.Print; display ‘Finished’ message;
terminate}

Alternative flows:
1’ Card is invalid {if (result = "invalid card") display ‘Invalid’

message; terminate; endif}
2’ User has overdue books {if (result = "valid user with overdue

books") display ‘Denied’ message; terminate; endif}
3’ Book is reserved for another person {if (status = "reserved")

display ‘Reserved’ dialog; go to step 4; endif}

Figure 5. The rewritten ‘Borrow books’ scenario with elabo-
rate cross-references
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Validate

«uses»
IsOverdue
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Print
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disableBorrow

«scenario»
Borrow Books
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CardNumber

BookBarcode
DateBorrowed
DateReserved
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Borrow
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Reserve
Inspect
IsOverdue

borrows cataloged by

Inspect
Modify
Register
Validate

User Book

Catalog item

0..*0..1

reserves
0..60..1

TerminalLoan slip

AddBook
Print

1..*

1

Figure 6. The class diagram extended with stereotypes
modeling the ‘Borrow books’ scenario and cross-references
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class operation Validate (in numberOfCard: Number, out result:
ValidationResult, out id: User, out userData: String)

in class User
pre Terminal is in state "idle"
post if (exists x in User • x.CardNumber = numberOfCard)

if (for all b in x.borrows • b.IsOverdue = false) 
result = "valid user"; id = x, userData = (x.FirstName, 
x.Name, x.CardNumber) // x.borrows is the set of all 

// books that have been 
// borrowed by user x

else result = "valid user with overdue books"
endif

else result = "invalid card"
endif

end 

Figure 7. Precise specification of operation Validate of class
User

5 Checking consistency

In this chapter, we present a set of rules for checking
the consistency between a scenario model and a class
model. The rules can be used both constructively for
working towards a consistent specification and analytically
for checking that a given specification is consistent.

We have two kinds of rules: (a) rules that can be
checked automatically by a tool, and (b) rules that guide a
person when inspecting a specification.

5.1 Formally checkable rules

Our approach has not been designed with formal verifi-
cation of consistency in mind. Nevertheless, we have some
formally checkable rules. They mainly concern confor-
mance between references and referenced items and com-
pleteness of references. When using the simple referencing
scheme, only Rule 3 applies. With the elaborate referenc-
ing scheme, we additionally have Rules 4 and 5.

RULE 3 (Name consistency). (a) Every operation that
is not referenced within the class model (typically in an-
other operation in order to establish the postcondition for
this operation) should be referenced in a scenario. (b)
Every event in the class model that is triggered in the
course of an interaction should be referenced in the sce-
nario where this interaction is specified.

RULE 4 (Conformance of syntax).  The syntax of any
formal operation invocation or event handling in a sce-
nario must conform to the syntax definition of the opera-
tion or event in the class model.

RULE 5 (Conformance of references). Every refer-
ence from a scenario to an item in the class model must
have a corresponding reference in the extended class
model, namely between the scenario stereotype and the
class that the referenced item belongs to. The reverse must
also be true.

5.2 Rules for inspection

When inspecting a specification that is constructed ac-
cording to our lightweight approach, we have three rules
that guide inspection for inter-model consistency. Rule 1
(see Section 3.2) checks the specification for unnecessary
redundancy. Rules 6 and 7 check the absence of contra-
dictions and of partial incompleteness. Rule 6 is applicable
with the simple referencing scheme, whereas Rule 7 works
only with the elaborate one.

RULE 6 (Correspondence of contents). For every step
of a scenario, assess whether the required response is
completely specifiable locally within the scenario (that
means, the response is neither state-dependent nor requires
a state change). When this is not true, make sure that
(a) for every non-local action a reference to the class

model is in place,
(b) the items referenced in the class model provide the

information, state change or actions that are required
to produce the response.

RULE 7 (Flow of information). For every reference
from a step in a scenario to the class model, check the flow
of information:
(a) Does the reference provide all information from the

scenario that is required in the class model to produce
a response?

(b) Does the information returned by the referenced
items(s) suffice to specify the required response in the
scenario?

6 Conclusions
6.1 Achievements

We have presented a lightweight approach to inter-
model consistency between a scenario model and a class
model that is directly applicable to mainstream object-
oriented specification techniques and improves the quality
of these specifications. The concepts behind this approach
are fairly simple. Nevertheless, we think our approach is a
real improvement compared with the current state of prac-
tice.
• We can systematically identify information in a class

model that corresponds to information in a scenario and
vice-versa.

• We have elementary conformance rules that can be
checked automatically.

• We have rules for inspecting corresponding information
and can systematically detect both contradictions and
information that is missing on either side (partial in-
completeness).

6.2 Validation

Our approach has not yet been tested with real-size in-
dustrial specifications. However, we have done a small
validation experiment [12] with graduate and PhD stu-
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dents. The goal of this experiment was to compare models
with and without cross-references with respect to their
acceptance both for writing consistent specifications and
for consistency checking.

Based on the example given in this paper, we set up
three specifications of the same requirements. Specifica-
tion A consisted of Figures 1, 2 and 3, representing a con-
ventional UML model collection. Specification B em-
ployed the simple scheme of cross-referencing and con-
sisted of Figures 4, 2 and 3. Finally, specification C em-
ployed the elaborate scheme and consisted of Figures 5, 6,
3 and 7.

Twelve students participated in the experiment. They
first received the three specifications and had to answer
some questions about each of them (to make sure that they
thoroughly studied and understood the models). Then they
had to answer questions about their preferences concerning
the three types of specifications. Figures 8 and 9 present
some results. Due to the small number of participants, we
do not calculate statistics. However, the figures show a
very clear preference for specifications using either the
simple or the elaborate cross-referencing scheme.

A  No referencing

B  Simple scheme

C  Elaborate scheme

0 2 4 6 8 10 12

Preference for reading/checking Preference for writing

Figure 8. Validation results: overall preferences of partici-
pants

very good good average fair bad
0

1

2

3

4

5

Elaborate schemeNo referencing Simple scheme

Figure 9. Validation results: suitability for checking consis-
tency

6.3 Towards a stronger variant of consistency

With stronger assumptions about the underlying sce-
nario model and class model, a stronger approach to inter-
model consistency is also possible. Within the framework
of our ADORA project, we have developed some prelimi-
nary ideas for such a concept [11], [13]. The basic idea is
to have an integrated model of interaction, structure, func-
tions and behavior. Such a model can be developed by
taking the concept behind the elaborate referencing
scheme (illustrated in Figure 6) a step further. Instead of
“stereotyped” references we generalize the notion of ob-
jects. We envisage an object model (not a class model)
having three kinds of objects.
• Plain objects model both public and hidden data and the

operations on this data.
• State-enhanced objects are plain objects that addition-

ally have an explicit specification of the states and state
transitions that determine the behavior of the object
during its lifetime.

• Scenario objects model user-system interaction with
scenarios that are semi-formally expressed with a state-
chart-based language.
We view this integrated model extensionally: An object

in the object model is a representative of a single concrete
instance. In order to model a collection of instances, we
use an object set. (In the example of Chapter 4, the sce-
nario Borrow Books would be a scenario object. Book and
Terminal would be object sets, the latter being a state-en-
hanced one.)

The reference links of the elaborate referencing scheme
are replaced by messages that model operation invocation,
event occurrence, attribute referencing, etc. Thus we can
have all aspects of a functional specification within one
single model. Consequently, the syntactic consistency
problems found in a model collection disappear. The se-
mantic consistency problems become easier to handle;
consistency rules can partially be built into the metamodel.
Cross-referencing is no longer necessary.

In order to keep the diagrams that represent the model
to a reasonable size, a hierarchical decomposition of the
model is required. Due to a stringent consistency concept
for the underlying model, partial views of the model can
be generated which are consistent with each other by con-
struction.

6.4 Open problems and future work

Our approach does not deal with inconsistency man-
agement; that means, with the problem of deliberately liv-
ing with inconsistency in a specification. However, we
think that a concept for dealing with inter-model consis-
tency is a prerequisite for any approach to managing in-
consistency in a controlled way.

For the future, we plan to pursue our lightweight ap-
proach by using it in practical applications and to assess its
usefulness when applied by practitioners.
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At the same time, we will continue the development of
an integrated model for specifying functional requirements
in the framework of our ADORA project (cf. last paragraph
of Section 2.4). As far as consistency is concerned, we
plan to explore the middle ground between the lightweight
approach presented in this paper and the formal ap-
proaches of other researchers mentioned in the introduc-
tion.
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