
A Natural Language Front-End to

Model Generation

NORBERT E. FUCHS, UTA SCHWERTEL, Department of Computer

Science, University of Zurich, Winterthurer Str. 190, 8057 Zurich,

Switzerland. E-mail: ffuchs,uschwertg@i�.unizh.ch

SUNNA TORGE1, Department of Computer Science, University of

Munich, Oettingenstr. 67, 80538 Munich, Germany. E-mail:

torge@informatik.uni-muenchen.de

Abstract

Currently, formal methods are not widely employed since many domain specialists are not familiar or
comfortable with formal notations and formal tools. To address this problem we developed Attempto
Controlled English (ACE), a subset of English that allows domain specialists to express problems in
the language of their application domain, that can be unambiguously translated into �rst-order logic,
and thus can replace �rst-order logic as a formal notation. In this paper we describe how ACE can
be used as a front-end to EP Tableaux, a model generation method complete for unsatis�ability and
for �nite satis�ability. We speci�ed in ACE a database example that was previously expressed in the
EP Tableaux language PRQ, automatically translated the ACE speci�cation into PRQ, and with
the help of EP Tableaux reproduced the previously found results. As a further test, we formulated
Schubert's Steamroller in ACE, translated the ACE version into PRQ and successfully proved the
Steamroller's conclusions with EP Tableaux.

Keywords: formal methods, automated reasoning, controlled natural language, Attempto Controlled

English, model generation, EP Tableaux, database schema design, Schubert's Steamroller

1 Introduction

Though formal methods promise improved quality of software and partial automation
of the software development process they are not readily accepted by domain special-
ists. This applies particularly to formal speci�cations that are at the very basis of
any formal software development. The reasons are twofold | formal speci�cations
are hard to understand and di�cult to relate to the concepts of the application do-
main. Hall [8] expressed this quite succinctly when he wrote that formal speci�cations
need to be accompanied by a paraphrase in natural language that \explains what the
speci�cation means in real-world terms and why the speci�cation says what it does".
We are directly addressing both problems | incomprehensibility of formal speci�-

cation languages and semantic distance between application domain and speci�cation
language | by replacing obviously formal speci�cations by speci�cations in Attempto
Controlled English (ACE), a subset of English that seems informal but is in fact formal
and that can be deterministically translated into logic languages [6]. ACE allows do-
main specialists to express speci�cations precisely and in the terms of the application

1Now with Sony International (Europe) GmbH, European Research & Development, Fellbach, Germany

1J. of Language and Computation, Vol. 0 No. 0, pp. 1{12 0000 c Oxford University Press

2 A Natural Language Front-End to Model Generation

domain. Thus ACE reduces the semantic distance between the domain specialists'
mental model of the application domain and the formal speci�cation, and almost com-
pletely eliminates the incomprehensibility problem. In brief, an ACE speci�cation is
formal and at the same time \explains what the speci�cation means in real-world
terms and why the speci�cation says what it does".
There is a further incentive in employing ACE: formal tools like model generators

and theorem provers become available even to domain specialist who are not familiar
with the formal notations that these tools normally require.
To prove our point we show that (a subset of) Attempto Controlled English can

replace logic as front-end to EP Tableaux [3, 13], a model generation method to verify
the �nite satis�ability of �nite sets of range restricted formulae. The combination of
EP Tableaux with an ACE front-end allows domain specialists to express, verify
and validate �rst-order speci�cations in the familiar natural language terms of their
application domain.
Apart from other application areas (see section 2), model generation and theorem

proving are playing an increasingly important role in computational linguistics, par-
ticularly in semantic analysis [10]. First-order inference turns out to be a powerful and
practical tool for problems like disambiguation, treatment of presupposition, pronoun
resolution etc. [1, 9].
Though in the sequel we will address some of these linguistic problems, we hasten

to emphasize that the work reported here has di�erent goals: we are not using model
generation to analyze ACE, but use ACE as a natural-language front-end to a model
generator.
The rest of the paper is organized as follows. Section 2 introduces the model

generation method EP Tableaux that in section 3 is used to solve a data base problem
expressed in �rst-order logic. Section 4 contains a brief introduction into Attempto
Controlled English (ACE), and also describes the subset of ACE to be used as front-
end for EP Tableaux. In section 5 we reformulate in ACE the data base example
from section 3 and show its automatic translation into �rst-order logic and the input
language PRQ to EP Tableaux. While our procedure of section 5 could be considered
as putting the cart before the horse, in section 6 we proceed in a more natural way
reformulating the ambiguous full natural language version of Schubert's Steamroller
in ACE, translating ACE into PRQ and proving the conclusions of the Steamroller
with EP Tableaux. In section 7 we summarize the main results and point to some
open issues.2

2 The Model Generation Method EP Tableaux

In several application areas | e.g. diagnosis, planning, database schema design and
data base view updates | problem solving can be reduced to the systematic search for
models of �rst-order logic speci�cations (see [3]). These applications have in common
that the models being sought for have to be �nite.
As an example we consider database schema design. Several database issues can be

formalized seeing databases as models of �nite sets of �rst-order formulae that express
either static integrity constraints, views, updates, or dynamic integrity constraints [4].
With this formalization, the question whether static integrity constraints are cor-

2A preliminary version of this paper appeared as ASE'99 short paper.

A Natural Language Front-End to Model Generation 3

rectly designed in the sense that there exist databases enforcing them can be formal-
ized as a satis�ability problem. Here the question is whether the integrity constraints
are satis�able, i.e. whether they have a model at all. Since databases correspond to
�nite models, the models sought for have to be �nite and the satis�ability notion of
concern is �nite satis�ability.
In [3, 13] a deduction method called Extended Positive Tableaux method (short

EP Tableaux method) is proposed for verifying the �nite satis�ability of �nite sets of
range restricted formulae by generating models. The method performs a systematic
search for models of the considered formulae in the fashion introduced by the tableaux
methods [14]. It proceeds by decomposing the considered formulae till only literals
remain. Branches in the expanded EP tableau that do not contain the formula ?
(which evaluates to false in every interpretation) represent a model of the given set
of formulae.
The input language for the EP Tableaux method is a fragment of the language of

�rst-order logic called PRQ that has been shown to have the same expressive power
as full �rst-order logic [3]. The language PRQ requires range-restricted quanti�ca-
tion. Among other things it is required that the scope of a universal quanti�er is
an implication and the scope of an existential quanti�er is a conjunction. In both
cases nesting of quanti�ers is allowed. Negation will be handled as implication, i.e.
instead of :� the formula �! ? is written. The interpretations considered are term
interpretations which | except for their domains (they may be �nite, even if the un-
derlying language consists of in�nitely many constants) | are de�ned like Herbrand
interpretations [5].
The EP tableaux expansion rules are:3

9 rule:

9xE(x)

E[c1=x] j : : : j E[ck=x] j E[cnew=x]

where fc1 : : : ckg is the set of all
constants occurring in the node and
cnew is a constant distinct from
c1; : : : ; ck.

Extended PUHR rule:

8�x(R(�x) ! F)
F [�c=�x]

where R[�c=�x] is satis�ed by the in-
terpretation speci�ed by the branch.

^ rule:

E1 ^ E2

E1

E2

_ rule:

E1 _ E2

E1
j E2

The part above the horizontal line of each expansion rule describes the formula �
to which the rule is applied. Below the horizontal line are the additional formulae
to be added to the child nodes. Alternatives corresponding to di�erent children are
separated by a vertical bar.
Instead of the exact de�nition of EP tableaux we give an example. For details

concerning the de�nition, see [3].

3If �c is a tuple of constants and �x a tuple of variables, then F [�c=�x] denotes the formula F where every free

occurrence of a member of x is replaced by the corresponding member of c.

4 A Natural Language Front-End to Model Generation

Here is the EP tableau for S = fp(a); 8x(p(x) ! r(x) _ 9yq(x; y)); r(a) ! ?g,
where the rightmost and the middle branch represent models of S.

p(a)
8x (p(x) ! r(x) _ 9y q(x; y))

r(a) _ 9y q(a; y)

i i i i i
i i VVVVVV

r(a) 9y q(a; y)
h h h h h h HH

? q(a; a) q(a; cnew)

A branch of an EP tableau is closed if it contains ?. Otherwise, it is open. An
EP tableau is open if at least one of its branches is open; otherwise, it is closed.

Furthermore, the notion of a fair EP tableau is needed which means that in every
open branch every possible application of an expansion rule to a formula in the branch
takes place after �nitely many expansion steps.
The EP Tableaux method has the following properties [3]: soundness for unsat-

is�ability (if there exists a closed EP tableau for S, then S is unsatis�able) and
soundness for satis�ability (if a fair EP tableau for S has an open branch, the open
branch speci�es a model of S); an immediate consequence of the latter is completeness

for unsatis�ability (if S is unsatis�able, then every fair EP tableau for S is closed).
Finally, the method also enjoys completeness for �nite satis�ability : if I is a �nite
minimal4 model of S, then every fair EP tableau for S has a �nite open branch B
such that, up to a renaming of constants, the branch B represents I. This property
of EP Tableaux is essential with regard to the applications mentioned in section 2.
Thus the EP Tableaux method is not only complete for either unsatis�ability or �nite
satis�ability, but for both of them.
The EP Tableaux method is implemented in Prolog with a depth-�rst strategy as

well as with a controlled breadth-�rst strategy (see [2]). Note, that while the latter
implementation ensures completeness for �nite satis�ability, the �rst one does not.

3 A Database Example in Logic

In section 2 we described how to formalize the question whether a set of static in-
tegrity constraints is well-designed or not as a �nite satis�ability problem. To detect
ill-designed constraints we argued to use a model generation method that is com-
plete for unsatis�ability and �nite satis�ability. Since the EP Tableaux method has
these properties it is appropriate to assist in the design of �nitely satis�able integrity
constraints. In [2] an interactive prototype (SIC) is presented whose reasoning compo-
nent is an implementation of the EP Tableaux method with a controlled breadth-�rst
strategy in Prolog.
In this section a database example from [2] | slightly modi�ed | is stated to

demonstrate the use of the EP Tableaux method during the design of integrity con-
straints. The following formulae are database integrity constraints, formalized in �rst
order logic.

4A term model of S is minimal if no proper subset of the ground atoms it satis�es speci�es a term model of S.

A Natural Language Front-End to Model Generation 5

(1) 8A (department(A) ! (employee(A)! ?))
8A (employee(A)! (department(A) ! ?))

(2) 8A 8B ((manager(A) ^ department(B) ^ of(A;B)) !
(employee(A) ^member(A) ^ of(A;B)))

(3) 8A 8B ((member(A) ^ department(B) ^ of(A;B)) !
8C ((manager(C) ^ of(C;B)) ! work for(A;C)))

(4) 8A (employee(A)! 9B (department(B) ^member(A) ^ of(A;B)))

(5) 8A (department(A) !
9B (employee(B) ^manager(B) ^ have(A;B) ^ of(B;A)))

(6) 8A (employee(A)! (work for(A;A) ! ?))

These integrity constraints are ill-de�ned in the sense that they are satis�able, but
only by meaningless models like the empty model. In fact, application of the EP
Tableaux method yields the empty model. But if e.g. the formula

(7) employee(anne)

is added, the set of formulae is unsatis�able, because for every department a manager
is required who in turn is an employee. Since every employee works for the manager
and nobody works for her/himself, there is a contradiction, which will be detected
by applying the EP Tableaux method. This means that as soon as any employee is
inserted into the database the integrity constraints are violated, or | in other words
| there is no database of employees that will enforce the given integrity constraints.
To use one of the Prolog implementations of the EP Tableaux method the input

formulae must conform to the following format:
Every formula is represented as axiom(). Implications are handled as universally

quanti�ed formulae without quanti�ed variables. If there are no or more than one uni-
versally quanti�ed variables, the variables will be represented in a list. E.g. Formula
(1) is represented as

axiom(all(A,department(A) => all([],employee(A) => false))).

Conjunctions are represented by commata and disjunctions by semicolons. E.g. For-
mula (4) becomes

axiom(all(A,department(A) =>

exists(B,(department(B),member(A),of(B,A))))).

Clearly, this syntax is not very accessible to domain specialist unfamiliar with
formal notations. In section 5, the same example will be formulated more directly
and more naturally in Attempto Controlled English.

4 Overview of Attempto Controlled English

Attempto Controlled English (ACE) is a controlled natural language speci�cally con-
structed to write speci�cations [6, 11]. ACE allows users to express speci�cations pre-
cisely and in the terms of the application domain. ACE speci�cations are computer-
processable and can be unambiguously translated into a logic language. Though ACE
may seem informal, it is a formal language with the semantics of the underlying logic

6 A Natural Language Front-End to Model Generation

language. This also means that ACE has to be learned like other formal languages.
Though initially developed as a speci�cation language, ACE has since been used for
other purposes, e.g. as input language of a program synthesizer. Here we introduce
ACE as a front-end to EP Tableaux.
What exactly does it mean that ACE is a controlled natural language?
ACE is a subset of standard English, i.e. every ACE sentence is correct English

though not every English sentence is allowed in ACE. ACE uses a domain-speci�c
vocabulary, i.e. prede�ned function words like determiners, prepositions and con-
junctions, and user-de�ned content words like nouns, verbs, and adjectives. Users
can extend and modify the lexicon via a simple interface requiring little more than
basic grammar knowledge. ACE employs a restricted grammar in the form of a small
set of construction and interpretation rules. Construction rules de�ne the form of
ACE sentences and state restrictions intended to remove imprecision and to restrain
ambiguities. Interpretation rules control the semantic analysis of grammatically cor-
rect ACE sentences and resolve remaining ambiguities.
The most important construction rules are:

� ACE speci�cations are sequences of anaphorically interrelated simple and com-
posite sentences.

� Simple sentences have the form subject + verb + complements + adjuncts, where
complements (noun phrases, prepositional phrases) are required for transitive and
ditransitive verbs, and adjuncts (adverbs, prepositional phrases) are optional.

Here is a simple sentence paraphrasing a part of a formula of the data base example
from section 4:

A manager of a department is an employee.

� Composite sentences are built from other sentences through coordination (and,
or), subordination by if : : : then : : : , subordination by relative sentences (who,
which, that), verb phrase negation (does not, is not), noun phrase negation (no),
or quanti�cation (a, there is a, every, for every).

Here are two composite sentences paraphrasing two formulae of the data base
example:

Every department has an employee who is the manager of a department.
Every manager of a department is an employee and a member of the department.

The second sentence shows that verb phrase coordination can be simpli�ed by
leaving out the repeated verb.

� ACE sentences can be interrelated by anaphora, i.e. personal pronouns or de�nite
noun phrases.

Here is an example showing both possibilities:

A manager of a department is an employee. He leads the department.

The personal pronoun he of the second sentence is an anaphoric reference to
the noun phrase a manager of the �rst sentence. Similarly, the department is
an anaphoric reference to a department.

� Verbs are only used in the simple present tense, the active voice, the indicative
mood, and the third person.

� Modal verbs (can, must etc.), intensional verbs (hope, know etc.), and modal ad-
verbs (possibly, probably etc.) are not allowed.

A Natural Language Front-End to Model Generation 7

The following are essential interpretation rules:

� Verbs denote events or states, and the textual order of verbs determines the default
temporal order of the associated events and states.

� Prepositional phrases in adjunct position always modify the verb, while relative
sentences modify the immediately preceding noun phrase.

� The textual occurrence of a quanti�er opens its scope that extends to the end of
the sentence; thus any following quanti�er is within the scope of the preceding
ones.

� The antecedent of anaphoric reference is always the most recent suitable noun
phrase that agrees in number and gender.

The construction and interpretation rules are realized as a uni�cation-based phrase
structure grammar that is used by the chart-parser of the Attempto system. The
parser deterministically translates ACE texts into discourse representation structures,
into the standard form of FOL, and optionally into clausal form. Furthermore, a
paraphrase is generated that shows how the Attempto system interprets the ACE
input. For further details of the Attempto system see [6].
It is important to note that the interpretation of verbs as events and states results

in logic representations that use function symbols. Since the language PRQ of EP
Tableaux does not allow function symbols, we use as a front-end to EP Tableaux
a subset of ACE without events and states. This subset can be translated into a
function-free subset of FOL and subsequently into PRQ.
The translation of the sentences

The manager of a department is an employee. He leads the department.

in the ACE subset yields the discourse representation structure

[A,B]

manager(A)

department(B)

of(A,B)

employee(A)

lead(A,B)

and the equivalent FOL formula

exists(A,manager(A) & exists(B,department(B) & of(A,B) &

employee(A) & lead(A,B)))

In the sequel, ACE stands for the subset of ACE in which verbs are not interpreted
as events or states.

5 The Database Example in ACE

To demonstrate ACE as a natural language front-end to the EP Tableaux method we
express the database example from section 3 in ACE. We give the ACE formulation
of each constraint together with its automatic translation into FOL and PRQ for-
mulae. The transformation from FOL to PRQ syntax requires just a few systematic
transformations addressed in section 3.

8 A Natural Language Front-End to Model Generation

Constraint (1) states that departments and employees are di�erent entities. In ACE
this is expressed using the quanti�er no which is logically treated like every : : : not.

(1) ACE: No department is an employee. No employee is a department.
FOL: all(A,department(A) => -employee(A))

all(A,employee(A) => -department(A))

PRQ: axiom(all(A,department(A) => all([],employee(A) => false))).

axiom(all(A,employee(A) => all([],department(A) => false))).

In constraint (2) the de�nite noun phrase the department is used as an anaphor which
refers back to the previously occurring noun phrase a department. Logically, this
means that the two noun phrases relate to the same variable.

(2) ACE: Every manager of a department is an employee
and a member of the department.

FOL: all(A,all(B,manager(A) & department(B) & of(A,B)

=> (employee(A) & member(A) & of(A,B))))

PRQ: axiom(all([A,B],(manager(A),department(B),of(A,B))

=> (employee(A),member(A),of(A,B)))).

Constraint (3) contains the full verb work for both argument positions of which are
universally quanti�ed.

(3) ACE: Every member of a department works for every manager of the department.
FOL: all(A,all(B,member(A) & department(B) & of(A,B)

=> all(C,manager(C) & of(C,B) => work for(A,C))))

PRQ: axiom(all([A,B],(member(A),department(B),of(A,B))

=> all(C,(manager(C),of(C,B)) => work for(A,C)))).

Sentence (4) is analogous to sentence (1) without conjunction.

(4) ACE: Every employee is a member of a department.
FOL: all(A,employee(A) =>

exists(B,department(B) & member(A) & of(A,B)))

PRQ: axiom(all(A,employee(A) =>

exists(B,(department(B),member(A),of(A,B))))).

Sentence (5) contains a relative sentence that further modi�es the immediately preced-
ing noun employee. The conditions derived from the relative sentence are conjunctively
added to the formula employee(B).

(5) ACE: Every department has an employee who is a manager of the department.
FOL: all(A,department(A) => exists(B,employee(B) &

manager(B) & of(B,A) & have(A,B)))

PRQ: axiom(all(A,department(A) => exists(B,(employee(B),

manager(B),of(B,A),have(A,B))))).

The last constraint expresses that nobody works for herself/himself. As ACE does
not yet handle reexive pronouns the constraint is stated as:

(6) ACE: No employee X works for X.
FOL: all(A,employee(A) => -work for(A,A))

PRQ: axiom(all(A,employee(A) => all([],work for(A,A) => false))).

A Natural Language Front-End to Model Generation 9

To express reexivity sentence (6) employs so-called dynamic names (here X). Dy-
namic names in ACE distinguish single instances of the set of objects denoted by the
preceding noun (here employee). Used alone, the dynamic name refers back to the
whole noun phrase in which it was introduced. Dynamic names do not occur literally
in the logical formula but just guarantee correct variable bindings. Though sentences
may sound less natural dynamic names are a powerful and necessary means to express
mathematical or logical problems in ACE. For another example using dynamic names,
see sentence (3) of section 8.
Taking the above PRQ formulae generated from the ACE sentences as input to

the EP Tableaux method we can reproduce the results of the original formulation
in section 3. Constraints (1)-(6) are satis�able but only by the empty model. The
addition of the ACE sentence

(7) Anne is an employee.

renders the set of automatically generated PRQ formulae unsatis�able. This shows
that the di�cult and unfamiliar formal statement of the database example can indeed
be replaced by a more natural formulation without losing precision.

6 Schubert's Steamroller in ACE

As a further test for the productive interplay between ACE and EP Tableaux we chose
Schubert's Steamroller | a well-known problem for automated reasoning systems [12].
The problem is interesting for our approach in that it raises issues on the one hand
of how to express problems unambiguously and on the other hand of which theorem-
proving technique is best applied to prove the desired facts.
Each sentence of the original natural language version of the Steamroller problem

is given below along with its unambiguous reformulation in ACE, its translation into
FOL and into PRQ formulae. Note, that we used the same simpli�cations of the
original version as other authors, e.g. [7]. For example, we simpli�ed A likes to eat B

to A eats B, or we replaced much smaller than by smaller than.

(1) Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them.

ACE: Every wolf is an animal. : : : Wolf1 is a wolf. : : :
FOL: all(A,wolf(A) => animal(A)) : : : wolf(`Wolf1') : : :
PRQ: axiom(all(A,wolf(A) => animal(A))). : : : axiom(wolf(`Wolf1')). : : :

In full natural language bare plurals (e.g. wolves, animals) are ambiguous. They
can have universal, existential or other readings. For example, constructions of the
form P's are Q's (e.g. Wolves are animals.) are typically interpreted as Every P is

a Q, where Q-instances are existentially quanti�ed. The construction P's like Q's,
however, prefers a universal quanti�cation over Q-instances. In ACE the intended
interpretation has to be made explicit; bare plurals are replaced by overtly quanti�ed
singular noun phrases (e.g. Every wolf is an animal.).
ACE does not yet allow to express existential claims directly. Instead, as examples

(1) and (2) show, one has to explicitly introduce at least one object. In example (1)
this is done via the proper noun Wolf1 which is interpreted as a constant `Wolf1'.

10 A Natural Language Front-End to Model Generation

(2) Also, there are some grains, and grains are plants.
ACE: Every grain is a plant. Grain1 is a grain.
FOL: all(A,grain(A) => plant(A)) grain(`Grain1')

PRQ: axiom(all(A,grain(A) => plant(A))). axiom(grain(`Grain1')).

Sentence (2) is analogous to sentence (1).

(3) Every animal either likes to eat all plants or all animals much smaller than itself
that like to eat some plants.
ACE: Every animal A eats every plant or eats every animal D

that is smaller than A and that eats a plant.
FOL: all(A,animal(A) => (all(B,plant(B) => eat(A,B)) $ all(D,all(F,animal(D) &

smaller than(D,A) & plant(F) & eat(D,F) => eat(A,D)))))

PRQ: axiom(all(A,animal(A) => (all(B,plant(B) => eat(A,B));all([D,F],

(animal(D),smaller than(D,A),plant(F),eat(D,F)) => eat(A,D))))).

To get correct variable bindings in sentence (3) we employ the dynamic names A and
D in the ACE formulation (see section 5). Moreover, repeating the relative pronoun
that after the conjunction and ensures that eats a plant modi�es animal D.

(4) Caterpillars and snails are much smaller than birds, which are much smaller
than foxes, which in turn are much smaller than wolves.
ACE: Every caterpillar is smaller than every bird.

Every snail is smaller than every bird.
Every bird is smaller than every fox. Every fox is smaller than every wolf.

FOL: all(A,caterpillar(A) => (all(B,bird(B) => smaller than(A,B)))) : : :

PRQ: axiom(all(A,caterpillar(A) => all(B,bird(B) => smaller than(A,B)))). : : :

In sentences (4) and (5) full natural language P's are smaller than Q's or P's eat

Q's are to be interpreted as universally quantifying over both P -instances and Q-
instances. In ACE this universal quanti�cation is expressed explicitly | and there-
fore unambiguously | by adding the universal quanti�er every. Sentence (5) shows
furthermore that in ACE No P eats a Q is interpreted equivalently to Every P does
not eat a Q.

(5) Wolves do not like to eat foxes or grains, while birds like to eat caterpillars but
not snails.
ACE: No wolf eats a fox. No wolf eats a grain. No bird eats a snail.

Every bird eats every caterpillar.
FOL: all(A,wolf(A) => -(exists(B,fox(B) & eat(A,B)))) : : :

all(A,bird(A) => all(B,caterpillar(B) => eat(A,B)))

PRQ: axiom(all(A,wolf(A) => all([],exists(B,(fox(B),eat(A,B))) => false))). : : :

axiom(all(A,bird(A) => all(B,caterpillar(B) => eat(A,B)))).

As in previous examples, in sentence (6) the conjunction and | a possible source of
ambiguity | is removed. Instead, ACE uses a separate sentence for each conjunct.

(6) Caterpillars and snails like to eat some plants.
ACE: Every caterpillar eats a plant. Every snail eats a plant.
FOL: all(A,caterpillar(A) => exists(B,plant(B) & eat(A,B))) : : :

PRQ: axiom(all(A,caterpillar(A) => exists(B,(plant(B),eat(A,B))))). : : :

A Natural Language Front-End to Model Generation 11

The sentence to be proved in the Steamroller problem is:

(7) Therefore, there is an animal that likes to eat a grain-eating animal.

ACE: An animal eats an animal that eats a grain.
FOL: exists(A,animal(A) & exists(B,animal(B) & exists(C,grain(C) &

eat(B,C) & eat(A,B))))

PRQ: axiom(exists(A,(animal(A),exists(B,(animal(B),exists(C,(grain(C),

eat(B,C),eat(A,B)))))))).

With the help of the EP Tableaux method we can show that the automatically
generated PRQ formulae (1)-(7) are satis�able. Moreover, a model is generated in
which the following two formulae are true:

eat(`Fox1',`Bird1') eat(`Bird1',`Grain1')

In this model a fox eats a bird, and the bird eats a grain, i.e. there is an animal that
eats a grain-eating animal which is required in (7) as a solution to the Steamroller
problem. Furthermore, replacing sentence (7) with its negation (8)

(8) ACE: No animal eats an animal that eats a grain.
FOL: all(A,animal(A) => -(exists(B,animal(B) &

exists(C,grain(C) & eat(B,C) & eat(A,B)))))

PRQ: axiom(all(A,animal(A) => all([],exists(B,(animal(B),

exists(C,(grain(C),eat(B,C),eat(A,B))))) => false))).

the EP Tableaux method proves { as desired { the unsatis�ability of the formulae
(1)-(6) and (8).
By rephrasing the original natural language version of the Steamroller problem un-

ambiguously in ACE and then successfully proving its conclusions with EP Tableaux
we thus challenge Stickel's [12] warning of \the danger of using natural language to
try to convey problem statements unambiguously".

7 Conclusion and Outlook

We have shown that Attempto Controlled English (ACE) can serve as a natural
language front-end to the model-generator EP Tableaux. Domain specialists who
may not be familiar with formal speci�cation methods can formulate speci�cations in
natural language, i.e. in the concepts and the terms of their application domain, and
can then verify and validate the speci�cations with the help of EP Tableaux.
A \backward" reformulation in ACE of a data base example given originally in

�rst-order logic, and the ACE version of Schubert's Steamroller problem originally
formulated in full natural language demonstrate the viability and exibility of our
approach.
Nevertheless, there is room for improvement.
Concerning EP Tableaux, the limitation to function-free subsets of �rst-order logic

should be removed. One way to achieve this is the representation of functions as rela-
tions. This conservative extension has the advantage that the theoretical foundations
of EP Tableaux would not have to be changed. As an incentive, the full version of
ACE could then be used as front-end to EP Tableaux.

12 A Natural Language Front-End to Model Generation

Both ACE and PRQ are untyped languages. Introducing types in both languages
would allow users to express speci�cations in a more natural and more concise way,
thus leading to a further reduction of the semantic distance. In addition, types would
render EP Tableaux more e�cient.
While the ACE front-end of EP Tableaux allows users to conveniently formulate

their input, the output of EP Tableaux | listings of models | is rather terse. It
would certainly help if the output, too, would consist of ACE sentences.
We are working on other extensions of Attempto Controlled English | e.g. plural-

ity, alternative notations, structuring of large speci�cations | that are, however, not
directly relevant to the topic of this paper.

Acknowledgements

We would like to thank Fran�cois Bry for his support, Rolf Schwitter for his contribu-
tions to the development of ACE, and the participants of ICoS-1 for useful discussions.
The work presented is partially funded by the Swiss National Science Foundation
(SNF 20-47151.96).

References

[1] P. Blackburn, M. Kohlhase, and H. de Nivelle. Inference and Computational Semantics. In Third
International Workshop on Computational Semantics (IWCS-3), Tilburg, The Netherlands,
1999.

[2] F. Bry, N. Eisinger, H. Sch�utz, and S. Torge. SIC: Satis�ability checking for integrity constraints.
In Proc. Deductive Databases and Logic Programming, Workshop at the Joint International
Conference and Symposium on Logic Programming, 1998.

[3] F. Bry and S. Torge. A deduction method complete for refutation and �nite satis�ability. In
Proc. 6th European Workshop on Logics in Arti�cial Intelligence, LNAI 1489. Springer-Verlag,
1998.

[4] C. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, 1990.

[5] M. Fitting. First Order Logic and Automated Theorem Proving. Springer, 1990.

[6] N. E. Fuchs, U. Schwertel, and R. Schwitter. Attempto Controlled English | Not Just An-
other Logic Speci�cation Language. In P. Flener, editor, Logic-Based Program Synthesis and
Transformation, 8th International Workshop LOPSTR '98, LNCS 1559. Springer-Verlag, 1999.

[7] R. Givan, D. McAllester, and S. Shalaby. Natural language based inference procedures applied
to Schubert's Steamroller. In Proc. AAAI, 1991.

[8] A. Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11{19, 1990.

[9] K. Konrad. Model generation for natural-language semantic analysis. Technical report, Depart-
ment of Computer Science, Saarland University, 1999. TABLEAUX'99 position paper.

[10] C. Monz and M. de Rijke, editors. Proc. First Workshop on Inference in Computational Se-
mantics (ICoS-1), Institute for Logic, Language and Computation (ILLC), Amsterdam, August
1999.

[11] R. Schwitter. Kontrolliertes Englisch f�ur Anforderungsspezi�kationen. PhD thesis, Department
of Computer Science, University of Zurich, 1998.

[12] M. E. Stickel. Schubert's steamroller problem: Formulations and solutions. Journal of Auto-
mated Reasoning, 2, 1986.

[13] S. Torge. �Uberpr�ufung der Erf�ullbarkeit im Endlichen: Ein Verfahren und seine Anwendung.
PhD thesis, Computer Science, University of Munich, 1998.

[14] G. Wrightson, ed. Special issue on automated reasoning with analytic tableaux { part I, part
II. Journal of Automated Reasoning, 13(2,3), 1994.

Received 30 September 1999

