
A Framework for Dynamically Adaptive Applications
in a Self-organized Mobile Network Environment∗

Arun Mukhija and Martin Glinz
Institut für Informatik

University of Zurich, CH-8057, Switzerland
{mukhija| glinz}@ifi.unizh.ch

Abstract

Self-organized mobile networks present a challenging
environment for the execution of software applications, due
to their dynamic topologies and consistently changing re-
source conditions. In view of the above, a desirable prop-
erty for software applications to be run over these networks
is their ability to dynamically adapt to changing execution
environments. The Contract-based Adaptive Software Ar-
chitecture (CASA) provides a framework for the develop-
ment of adaptive applications that are able to adapt their
functionality and/or performance dynamically in response
to runtime changes in their execution environments. The
approach of the CASA framework is to decouple applica-
tion code from any assumptions about resource availability,
while enabling the application to execute under varying re-
source conditions. The CASA framework relies on specify-
ing adaptation behavior of applications in application con-
tracts, which enables the dynamic adaptation to be carried
out in an application-transparent manner.

1. Introduction

Self-organized mobile networks (also known as mobile
ad-hoc networks) offer a very flexible way of operation,
wherein mobile nodes are free to join or leave a network
community, or travel within the network, without any prior
warning. This results in varying resource contentions dy-
namically among applications. Consequently, the task of
steady execution of applications over these networks be-
comes even more challenging – as they have to deal not
just with low availability of resources, but also with unreli-
able availability of resources. In such a situation, the appli-

∗ The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Informationand
Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

cations should be able to adapt themselves dynamically in
response to frequent unpredictable changes in their execu-
tion environments.

The problem of unreliable availability of resources is
also experienced in conventional mobile networks, but since
conventional networks rely on a fixed infrastructure, the
problem is not as severe and the solutions not as inade-
quate as for self-organized mobile networks. Consider an
example scenario where the communication between two
mobile nodes of a conventional mobile network (such as
a GSM network) is taking place through a fixed infras-
tructure of routers. If, due to some reasons, the bandwidth
between one of the communicating nodes and its current
base station drops significantly (for example, if the node
moves away from its current base station), the node con-
cerned may switch to another base station with which it
has a better bandwidth connection (like in a handover).
The base stations are usually strategically located through-
out the communication area, and their capacities and num-
bers carefully planned, in order to provide optimal service
to mobile nodes. Compare this to an equivalent scenario in
a self-organized mobile network, where two mobile nodes
are communicating with each other through a route that is
made up of a chain of other mobile nodes acting as routers
for these two nodes. If the bandwidth between one of the
communicating nodes and its predecessor drops (or, for that
matter, if the bandwidth on any of the links comprising the
route drops), there is rarely an option to switch to some
other route in order to avoid the low bandwidth link. This
is because the process of route establishment and mainte-
nance is time-consuming and resource-intensive in a self-
organized mobile network.

Similarly, techniques for traffic load balancing and con-
gestion control, which are widely available for conventional
networks, rarely apply to self-organized mobile networks.
So, ultimately, for conventional mobile networks, there is
generally a tradeoff between investing in the infrastruc-
ture versus getting the quality of service for applications,
whereas for self-organized mobile networks, such a trade-

Proceedings of the 4th International Workshop on Distributed Auto-adaptive and Reconfigurable Systems at the 24th International
Conference on Distributed Computing Systems (ICDCS 2004),Tokyo, Japan, March 2004, pp. 368-374.c©2004 IEEE.



off does not exist, since there is no fixed infrastructure to
invest in.

Nevertheless, the high cost of investing in infrastructure
and certain physical constraints have motivated research to-
wards runtime adaptation of high resource-consuming ap-
plications, such as real-time multimedia systems. Most of
the suggested approaches, as discussed in the related work
section, assume a QoS paradigm which is transparent to ap-
plications. Such approaches attempt to offer middleware-
based solutions, such as modifying the quality of transmit-
ted data or the degree of data compression, adjustments to
resource schedules, modifications of replication factors etc.,
in order to meet QoS requirements of applications. How-
ever, these approaches fail in environments where we have
a very high variation in the availability of resources. This
is frequently the case in self-organized mobile network en-
vironments. In such situations, the applications themselves
must be reconfigured dynamically in response to changing
resource availability.

The Contract-based Adaptive Software Architec-
ture (CASA) framework aims at facilitating this dynamic
reconfiguration of applications:

• Every application offers alternative component con-
figurations, differing in their resource requirements
and, probably, also in their functionality and/or perfor-
mance.

• Every application defines its own adaptation policy in
an application-independent format, the so-called appli-
cation contract.

• CASA provides a runtime environment that dynami-
cally adapts the application by reconfiguring its con-
stituent components in response to changes in the exe-
cution environment, and in accordance with the adap-
tation policy specified in the application contract.

• The adaptation mechanism is decoupled from the ap-
plication itself, thereby enabling the dynamic adap-
tation to be carried out in an application-transparent
manner.

Thus, an application developed according to the CASA
framework does not assume any particular resource avail-
ability conditions, while at the same time the application
offers alternative functionalities and performance levels to
deal with different resource conditions that may arise dur-
ing the execution life of the application.

In this paper, we give a brief overview of the CASA
framework, and then concentrate on details of service nego-
tiations among applications, dynamic adaptation and con-
tract specifications. In a previous paper [5], we described
the constituent entities of the CASA framework and hence
we will not discuss these in detail here.

The rest of the paper is organized as follows. Section 2
gives an overview of the CASA framework, and then dis-
cusses details of service negotiations among applications

and dynamic adaptation. Section 3 describes a hypotheti-
cal example that we will follow to explain concepts in the
remaining sections. Section 4 provides details of contract
specifications. Section 5 gives details of the service agree-
ment protocol. Section 6 gives an overview of related work.
Finally, Section 7 presents some concluding remarks and
discusses the future direction of our work.

2. The CASA framework

A self-organized mobile network consists of autonomous
mobile nodes with dynamically changing topologies. The
mobile nodes are usually owned by independent users, and
each node may host any number of applications depending
on their utility and user’s discretion. An “application”, in
this paper, refers to a set of components residing on a sin-
gle network node that are working together for a specific
task. Remote applications residing on different autonomous
nodes of a network may collaborate with each other at run-
time for a mission, thereby forming a “distributed software
system”.

The overall CASA framework is as shown in Figure 1.
In this section, we first briefly describe the constituent enti-
ties of the CASA framework, and then illustrate the overall
working through a typical interaction between remote ap-
plications. For a more detailed description of individual en-
tities of the CASA framework, please refer to [5].

Application

Network Node

Service
Negotiator
<SN>

Contract-based
Adaptation
System <CAS>

Application Contract

Contract Enforcement System <CES>

Resource Manager <RM>

Resources

Figure 1. The CASA framework.

An application is composed of components. A “compo-
nent configuration” (referred to asconfig in this paper) is
a set of software components qualified to do the task re-
quired of the application. Differentconfigs, capable of doing
the same task, but with distinct resource requirements and,
probably, different functionality and/or performance levels,
are referred to as “alternativeconfigs”. Any two alternative



configs may vary in just a few (minimum one) components,
while many other components remain the same across both
configs. CASA requires each adaptive application to offer
multiple alternativeconfigs. At runtime, depending on the
current availability of resources, the appropriateconfig is
selected and activated by the CASA runtime system. Thus,
the application adaptation, in response to changes in the
computing environment, is achieved by executing the most
appropriateconfigof the application for the changed envi-
ronment. The adaptation behavior of an application is de-
scribed in the application contract, which is expressed in
the so-called Contract Specification Language (CSL).

The application contract is divided into zones, which are
distinguished by the level of service provided by, or ex-
pected by, an application in a given zone (details of contract
specifications are given in Section 4). Each zone lists details
of alternativeconfigs of the application – with the same level
of service, but differing in resource requirements. Details of
aconfiginclude the components constituting theconfigand
its resource requirements. The zones, as well as the alterna-
tive configs within a zone, are ordered with respect to their
user-perceived preference. The ordering can be changed dy-
namically to reflect a change in the user’s preference.

Each application contains a Service Negotiator (SN)
component that is responsible for negotiating the level of
service to be provided to, or expected from, its peer appli-
cations, using the Service Agreement Protocol (SAP). The
SN contains a mapping module that maps the proposed ser-
vice parameters to the appropriate zone in the application
contract. The mapped zone is, obviously, the one that con-
tains alternativeconfigs, which are able to satisfy the above
service parameters.

Each network node runs an instance of the CASA run-
time system, which consists of the Contract-based Adap-
tation System (CAS), the Contract Enforcement System
(CES) and the Resource Manager (RM). As the name sug-
gests, the RM is responsible for managing resources which
involves monitoring the availability of resources, and re-
serving resources for various applications. Resources in-
clude the local resources (such as memory, processing ca-
pacity and battery power) and the distributed resources
(such as communication bandwidth). The RM keeps the
CES updated about the current resource status, and makes
resource reservations according to the resource allocation
decisions of the CES. For the reservation of distributed re-
sources, the RMs of different nodes coordinate with each
other using a resource coordination protocol. The CES is a
central entity responsible for allocating resources to allcon-
tending applications. The CES has global knowledge of cur-
rent resource availability, applications requirements, priori-
ties and adaptation possibilities. Using this knowledge, the
CES makes fair and justified resource allocation decisions,
and strives to maximize the overall utilization of system re-

sources. In the event of a mismatch between resources re-
quested by an application and those that can be allocated to
it, the currentconfigof an application may need to be re-
placed by a more appropriateconfigfor the current resource
conditions, according to the adaptation rules contained in
the application contract. The CAS carries out dynamic re-
placement ofconfigs in a seamless manner, as and when in-
structed by the CES. The CAS takes care of state transfer
from the oldconfigto the newconfig, and maintains the in-
tegrity of the existing transactions.

2.1. A typical interaction session between CASA
applications

Figure 2 illustrates a typical interaction session between
two remote applications: App-A (residing on node A) and
App-B (residing on node B). Using this example, we de-
scribe how service negotiations and dynamic adaptation
work in CASA.

App-A 1

Node A

Service
Negotiator
<SN>

Contract-based
Adaptation
System <CAS>

Application Contract

Contract Enforcement System <CES>

Resource Manager <RM>

Resources

2

72 3

3

7

7

4 6Service Negotiations

App-B

Node B

Service
Negotiator
<SN>

Contract-based
Adaptation
System <CAS>

Application Contract

Contract Enforcement System <CES>

Resource Manager <RM>

Resources

5

65

6

6

Figure 2. Interaction between applications
residing on remote nodes.

Service negotiations:It is assumed that at least one of the
applications (say, App-A here) has discovered the other ap-
plication (here, App-B) through some service discovery sys-
tem or any other means, and has decided to interact with it.
Figure 3 depicts a simplified message sequence diagram for
service negotiations between App-A and App-B. The de-
tails of service negotiations are explained in the sequence
of steps that follows. Circled numbers in Figure 2 corre-
spond to the sequence numbers in the following descrip-
tion.



CES of App-A CES of App-BSN of App-A SN of App-B

Zone request

Zone approval

Zone request

Zone approval

Service proposal

Service accept

Figure 3. Service negotiations.

1. App-A decides on the service parameters for its inter-
action with App-B.

2. The mapping module of App-A maps the above ser-
vice parameters to the corresponding zone in the ap-
plication contract of App-A. The SN of App-A sub-
mits a request for this zone to the CES of node A.

3. The CES decides whether to accept or reject the re-
quest of the SN – taking into account the relative pri-
ority of App-A and the current resource availability.

If the requested zone number can be accepted –
which means there are enough resources to accommo-
date at least one of theconfigs in the requested zone
– the CES confirms this to the SN. Otherwise, the
CES searches for an appropriateconfigthat can be ac-
commodated given the existing resource constraints in
other zones of the application contract (scanning the
application contract from top to bottom, as this is the
ordering ofconfigs w.r.t. their user-perceived prefer-
ence), and communicates the new zone number to the
SN. If the CES is unable to find anyconfigin the ap-
plication contract that could execute in the current re-
source conditions, it communicates to the SN that the
application cannot execute in the current situation.

4. If the zone number was successfully agreed between
the SN and the CES, then the SN sends a “service pro-
posal”, with service parameters corresponding to the
agreed zone number, to its counterpart in App-B (syn-
tax of “service proposal” is described in Section 5).

5. The mapping module of App-B maps the service pa-
rameters contained in the “service proposal” to the cor-
responding zone in the application contract of App-B.
The SN of App-B then submits a request for this zone
to the CES of node B.

6. This step is similar to Step 3. The CES of node B de-
cides whether to accept or reject the requested zone
number – taking into account the relative priority of
App-B and the current resource availability.

If there are enough resources to accommodate at
least one of theconfigs in the requested zone, the CES
initializes App-B. That is, the CES reserves resources
for the chosenconfig, instructs the corresponding CAS
to activate the chosenconfig, and communicates the
acceptance of request to the SN of App-B. The SN of
App-B then sends a “service accept” message to the
SN of App-A (syntax of “service accept” is described
in Section 5).

Otherwise, if the requested zone number cannot be
accepted, then the CES looks for an appropriatecon-
fig that has resource requirements compatible with the
current resource conditions in other zones of the appli-
cation contract, and communicates the zone number of
thisconfigto the SN. The SN passes on the service pa-
rameters corresponding to this zone number as a new
“service proposal” to the SN of App-A, and the cy-
cle repeats until one of the applications sends a “ser-
vice accept” or a “service reject” message.

If the CES is unable to find anyconfig in the ap-
plication contract that could execute in the current re-
source conditions, then a “service reject” message is
sent back to App-A, implying that the interaction be-
tween the two applications cannot take place currently
(syntax of “service reject” is described in Section 5).

7. Once a “service accept” message is received by an ap-
plication, the corresponding CES is directed to initial-
ize the application.

The above steps constitute service negotiations and ini-
tializations of the two applications, after which the inter-
action between them can begin immediately. Next we dis-
cuss the dynamic adaptation of the applications.

Dynamic adaptation: During the runtime of the above in-
teraction, there are two frequently occurring cases:Scarcity
of resources andAbundanceof resources.Scarcityof re-
sources implies that the total demand for resources exceeds
the total resource availability at one of the nodes. It may oc-
cur because of resource failures, activation of new ap-
plications, increase in demand for certain resources by
existing applications etc. It requires the affected applica-
tions to adapt dynamically, and some applications may
need to sacrifice their functionality or performance or
both. Abundanceof resources implies that the total avail-
ability of resources exceeds the total demand at one of
the nodes. It may occur due to reasons such as the recov-
ery of certain resources that failed earlier, freeing up of
some resources by some applications etc., and it may en-
able currently running applications to improve their
functionality / performance. We discuss these two cases be-
low.

Case 1: Scarcityof resources (say, at node A): The CES of
node A would need to take away some of the resources allo-



cated to some of the applications running on this node, ac-
cording to their relative priorities. Let us assume that one
of the applications that needs to give away some of its re-
sources be App-A, with the result that the currently execut-
ing configof App-A cannot execute any longer.

The CES of node A looks for an alternativeconfigthat
can be accommodated in the current resource conditions,
within the same zone as that of the currentconfig. If the CES
finds one, it simply instructs the corresponding CAS to re-
place the currentconfigwith the newconfig. In this case
there is no need to seek approval from peer applications be-
fore executing the change, as the alternativeconfigs within
the same zone offer the same level of service.

Otherwise, if no matchingconfigis found in the current
zone, then the CES searches for an appropriateconfig in
other zones of the application contract. If the CES finds one
that can be accommodated given the current resource condi-
tions, then it communicates the zone number of thisconfig
to the SN of App-A. Service renegotiations between App-A
and App-B then take place accordingly.

If the CES is unable to find any matchingconfig that
could work in the existing resource conditions, then it im-
plies that App-A cannot execute any longer. The CES com-
municates this to the SN of App-A, which in turn communi-
cates this to the SN of App-B by sending a “service reject”
message.

Case 2: Abundanceof resources: If the CES of the node
concerned had to deny the zone numbers requested by some
applications during initial service negotiations, or it had to
change the active zone numbers of some applications at run-
time (as in Case 1 above), then the CES keeps record of all
such applications along with their last requested/active zone
numbers. And whenever spare resources are available, the
CES tries to allocate the extra resources to these applica-
tions, in the order of their relative priorities, such that their
original zone requests may be satisfied. Service renegotia-
tions before switching to the new zone take place accord-
ingly.

Several smaller steps and finer details, such as provi-
sional reservation of resources during service negotiations,
seeking user’s approval, clean-up operations etc. are not
mentioned in the above description.

3. A hypothetical example

Before discussing further details of CASA, let us con-
sider a hypothetical distributed software system called the
Emergency Coordination System (ECS). The ECS coordi-
nates rescue operations in an earthquake affected area, and
is running on a self-organized mobile network since the
fixed infrastructure might be destroyed anyway. The area
affected by the earthquake is divided into sectors which
are identified by their unique sector numbers. Each sec-

tor has a camera, recording the damage in the sector. The
ECS consists of two applications –Monitoring and Sup-
port. The cameras are connected toMonitoring, running on
the node M.Monitoringsends real-time data about the dam-
age toSupport, running on the node S.Supportis respon-
sible for taking appropriate action, such as sending human
rescue teams, debris removal teams, medical personnel, fire
tenders etc., depending on the type and extent of damage in
each sector.Monitoring can send data in the following al-
ternative formats, depending on the resource availability:
– Video stream (high quality / low quality)
– Images at frequent intervals (high quality / low quality)
– Textual description of the damage (detailed / brief)

The above example is relevant to our discussions be-
cause, due to the nature of operation, the resource fluctu-
ations can be very high, and the system is able to run at dif-
ferent functionality / performance levels depending on the
resource availability.

4. Contract specifications

Application contracts are specified using CSL (Contract
Specification Language). CSL is an XML-based specifica-
tion language, developed as part of the CASA framework.
The reason for using CSL is so that application contracts are
specified in a standard and uniform manner, i.e. indepen-
dent of the application implementation language and plat-
form. This uniformity helps to achieve transparency in dy-
namic adaptability of applications. Being XML-based, CSL
can express application contracts in a structured and eas-
ily extensible format. The syntax of application contractsis
as follows.

Theapp-contract tag is a container tag with one re-
quired attribute,name, which contains the name of the cor-
responding application as its value. It contains at least one
zone tag, which is also a container tag. Thezone tag has
just one required attribute,id, containing the identification
number of that zone. Thezone tag contains any number of
config tags (minimum one), specifying alternativeconfigs
for that zone. Eachconfig tag contains two required at-
tributes, namelyid andcomps, containing the identification
number of theconfigand the names of components consti-
tuting thatconfig, respectively. In addition, theconfig tag
has all the relevant resource attributes, such asmem, cpu,
bwh andpow, representing the resource requirements of the
configin terms of memory, processing cycles, communica-
tion bandwidth and battery power, respectively.

Only the adaptable components, i.e. those components
that differ from oneconfigto another, are specified as a part
of aconfig, and not the ones that remain the same across all
configs and provide some common core functionality. Re-
source requirements corresponding to aconfigcan easily be
computed using various analytical and probing techniques



available for this purpose. The requirements may also be
specified at a higher level of abstraction, such as in terms
of throughput and packet size, instead of directly specify-
ing them in terms of resources such as bandwidth etc.

In Figure 4, we present a part of the application contract
for Monitoring in our hypothetical ECS example.

<app-contract name=”Monitoring”>
     <zone id=”1”>
         <config id=”1” comps=”sender(VIDEO-MPEG4-HighRate)” 
                 mem=”m1” cpu=”c1” bwh=”b1” pow=”p1” />
         <config id=”2” comps=”sender(VIDEO-MPEG4-LowRate)” 
                 mem=”m2” cpu=”c2” bwh=”b2” pow=”p2” />
     </zone>
     <zone id=”2”>
         <config id=”1” comps=”sender(VIDEO-MPEG1-HighRate)” 
                 mem=”m3” cpu=”c3” bwh=”b3” pow=”p3” />
         <config id=”2” comps=”sender(VIDEO-MPEG1-LowRate)” 
                 mem=”m4” cpu=”c4” bwh=”b4” pow=”p4” />
     </zone> 
     <zone id=”3”>
         <config id=”1” comps=”sender(IMAGE-COLOR-HighRes)” 
                 mem=”m5” cpu=”c5” bwh=”b5” pow=”p5” />
         <config id=”2” comps=”sender(IMAGE-COLOR-LowRes)” 
                 mem=”m6” cpu=”c6” bwh=”b6” pow=”p6” />
     </zone>
     .
     .
     .
</app-contract>

Figure 4. Application contract.

5. The Service Agreement Protocol (SAP)

Service negotiations among applications constituting a
distributed software system take place using the Service
Agreement Protocol (SAP). Complex service negotiations
involving multiple applications are broken into multiple
simple service negotiations between just two applications.
This helps in accommodating the scalability issue when
dealing with complex distributed software systems involv-
ing multiple nodes and applications.

The SAP consists of three kinds of messages: “service
proposal”, “service accept” and “service reject”, which are
also specified using CSL. The semantics of these messages
are as discussed in Section 2.1. Below we describe the syn-
tax of these messages.

Service proposal:The service proposal has only one ele-
ment calledservice-proposal. It has four required at-
tributes namelyid, name, user andprovider, contain-
ing the unique identification number for this service session,
name of the service, details of the service user and service
provider as their values. In addition, it has several optional
attributes specifying various service parameters for the cor-
responding service. The service parameters are application-
domain-specific and not standard, which means that the se-

mantics of these parameters need only to be understood by
the applications involved.

Below is an example of a service proposal, as sent by
Supportto Monitoring in our hypothetical ECS example:
<service-proposal id=‘‘101’’ name=‘‘damage-info’’

user=‘‘Support(S)’’ provider=‘‘Monitoring(M)’’

sectors=‘‘1,2,3,4,5,6,7,8’’ datatype=‘‘video’’

quality=‘‘high’’ />

In response to the above service proposal,Monitoring
may send an alternative service proposal toSupport, as be-
low:
<service-proposal id=‘‘101’’ name=‘‘damage-info’’

user=‘‘Support(S)’’ provider=‘‘Monitoring(M)’’

sectors=‘‘1,2,4,5,8’’ datatype=‘‘image’’

quality=‘‘low’’ />

For certain kinds of services, the cost of using a service
may be an important service parameter to be specified as a
part of the service proposal. Other common service param-
eters include precision of results, timeliness etc.

Service accept:The syntax of service accept is similar to
that of service proposal. It is sent in response to a service
proposal and contains the same service parameters and val-
ues as the corresponding service proposal. For our ECS ex-
ample, ifSupportaccepts the last service proposal sent by
Monitoring, it may send a service accept message like the
one below:
<service-accept id=‘‘101’’ name=‘‘damage-info’’

user=‘‘Support(S)’’ provider=‘‘Monitoring(M)’’

sectors=‘‘1,2,4,5,8’’ datatype=‘‘image’’

quality=‘‘low’’ />

Service reject: The syntax of service reject is also simi-
lar to that of service proposal, except that it does not con-
tain any service parameters. For our ECS example, at any
time eitherMonitoring or Supportmay send a service re-
ject message like the one below:
<service-reject id=‘‘101’’ name=‘‘damage-info’’

user=‘‘Support(S)’’ provider=‘‘Monitoring(M)’’ />

6. Related work

Several approaches have been suggested for providing
quality of service guarantees for distributed software sys-
tems. Most such approaches have focussed on providing a
middleware platform to take care of quality of service con-
cerns of applications. TAO [9], which is an implementation
of Real-Time CORBA [8], attempts to optimize real-time
method invocations within the ORB, but it does not pro-
vide any means for high level adaptations of applications.
The approach taken by Quality Objects (QuO) [11] extends
CORBA to provide quality of service for CORBA object in-
vocations. However, it does not provide any mechanisms for
dynamically reconfiguring the application itself.



There are a few other approaches that attempt to en-
sure quality of service at the middleware level, such as
the Odyssey architecture [7], Reflective Middleware [2] and
REal-time Software Adaptation System (RESAS) [1]. Such
approaches mostly attempt to carry out adaptations at the
middleware level, like adapting the data format, revising re-
source schedules, modifying replication factors, changing
timeout periods etc., in response to external changes. How-
ever, they do not provide any means for modifying the ap-
plication itself if the above mechanisms fail to work.

Adaptive Resource Allocation (ARA) [10] provides
models and mechanisms to enable adaptive resource al-
location for applications with dynamically changing
resource needs. Similarly, approaches like Globus Archi-
tecture for Reservation and Allocation (GARA) [4] and the
Darwin project [3] strive to provide efficient resource man-
agement techniques in order to satisfy quality of service
requirements of the applications.

Another approach called 2KQ system [6] talks about
functional adaptation in response to QoS changes, and it
shares the same goals as our CASA framework. However,
this too does not provide any mechanisms for dynamically
changing the internal logic of a running application. More-
over, it provides a centralized control over adaptation pol-
icy for the complete distributed system, whereas in CASA
the applications at every discrete node can adapt individu-
ally, according to their own adaptation policies. Since self-
organized mobile networks consist of autonomous nodes
that form ad-hoc networks, independence in deciding an ap-
plication’s own adaptation policy is significant.

7. Concluding discussion and future work

CASA provides a framework for dynamic adaptation of
applications in response to changes in their execution en-
vironments. The runtime adaptation is carried out by the
application-independent entities of the CASA framework,
in accordance with the adaptation policies specified in the
respective application contracts. CSL, which is an XML-
based specification language used to express application
contracts, further enables the dynamic adaptation of appli-
cations to be carried out in a transparent manner.

This facility does not come for free, of course. In or-
der to take advantage of the framework, the application de-
veloper needs to provide alternative component configura-
tions for the application, and generate an application con-
tract specifying the adaptation policy of the application.
Considering the benefits achieved by transparent runtime
adaptation, for applications running in highly dynamic dis-
tributed environments, it is probably a small price to pay.
Moreover, we envisage the development of (automated or
semi-automated) tools for analyzing alternative component
configurations and generating application contracts, which

will help the application developer with his job. The effort
spent in developing alternative component configurations
will, obviously, be amortized in proportion to the amount
of reuse of components comprising these configurations.

The CASA framework was originally developed with
self-organized mobile networks as the target environment,
although it can be used for all environments that are faced
with the challenge of unreliable resource availability.

We have implemented a prototype to demonstrate the
feasibility of the CASA framework, and the results have
been encouraging. In particular, we have been able to carry
out dynamic adaptation of applications successfully in re-
sponse to (artificially simulated) changes in resource avail-
ability. Our next step is to evaluate the performance of the
CASA framework in terms of the overheads it causes.

References

[1] T.E. Bihari and K. Schwan, “Dynamic Adaptation of Real-
Time Software”, ACM Transactions on Computer Systems,
9(2), 1991.

[2] L. Capra, W. Emmerich and C. Mascolo, “Reflective Mid-
dleware Solutions for Context-Aware Applications”,Proc.
of 3rd Intl. Conference on Metalevel Architectures and Sep-
aration of Crosscutting Concerns, 2001.

[3] P. Chandra, A. Fisher, C. Kosak, T.S. Eugene Ng, P. Steen-
kiste, E. Takahashi and H. Zhang, “Darwin: Customizable
Resource Management for Value-Added Network Services”,
Proc. of 6th Intl. Conference on Network Protocols, 1998.

[4] I. Foster, A. Roy and V. Sander, “A Quality of Service Ar-
chitecture that Combines Resource Reservation and Appli-
cation Adaptation”, Proc. of 8th Intl. Workshop on Quality
of Service, 2000.

[5] A. Mukhija and M. Glinz, “CASA – A Contract-based
Adaptive Software Architecture Framework”,Proc. of 3rd
IEEE Workshop on Applications and Services in Wireless
Networks, 2003.

[6] K. Nahrstedt, D. Wichadakul and D. Xu, “Distributed QoS
Compilation and Runtime Instantiation”,Proc. of 8th Intl.
Workshop on Quality of Service, 2000.

[7] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton,
J. Flinn and K.R. Walker, “Agile Application-Aware Adap-
tation for Mobility”, Proc. of 16th ACM Symposium on Op-
erating System Principles, 1997.

[8] Object Management Group,Real-Time CORBA Specifica-
tion, 2002.http://www.omg.org/

[9] I. Pyarali, D.C. Schmidt and R.K. Cytron, “Techniques for
Enhancing Real-Time CORBA Quality of Service”,Pro-
ceedings of the IEEE (Special Issue on Real-Time Systems),
91(7), 2003.

[10] D.I. Rosu, K. Schwan, S. Yalamanchili and R. Jha, “On
Adaptive Resource Allocation for Complex Real-Time Ap-
plications”, Proc. of 18th IEEE Real-Time Systems Sympo-
sium, 1997.

[11] J.A. Zinky, D.E. Bakken and R.E. Schantz, “Architectural
Support for Quality of Service for CORBA Objects”,The-
ory and Practice of Object Systems, 3(1), 1997.


