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Attempto Controlled English (ACE) allows domain specialists to interactively formulate requirements
specifications in domain concepts. ACE can be accurately and efficiently processed by a computer, but is
expressive enough to allow natural usage. The Attempto system translates specification texts in ACE
into discourse representation structures and optionally into Prolog. Translated specification texts are
incrementally added to a knowledge base. This knowledge base can be queried in ACE for verification,
and it can be executed for simulation, prototyping and validation of the specification.

1 Motivation
Somewhere between ridiculous pedantry and erroneous formulation there presumably exists a
reasonably precise way of specifying a problem in English [Dodd 90].
Creating reliable software is hard. One of the worst obstacles to build a good software
product grows out of shortcomings in writing a complete, consistent and
unambiguous requirements specification. Managers and domain specialists often find
it extraordinarily difficult to formulate specifications since at the beginning of the
requirements engineering process the knowledge is usually informal, incomplete and
opaque, and many – possibly conflicting – personal views of the system exists. Nobody
knows what exactly the program should do until there exists a first version to run.
Requirements specifications are mostly written in natural language because they need
to be understood by all participants. This involves a risk since the expressive power of
unrestricted natural language can tempt people to write ambiguous or even
incomprehensible statements. Apart from natural language people use arbitrary
graphics, or semi-formal representations like structured analysis or entity-relationship
diagrams that often have no formal semantics, or a poorly defined one, thus making
formal reasoning impossible [Pohl 93].
Even when the software development team gets an acceptable requirements
specification there can be problems because different people may understand the same
document differently. To avoid disparate interpretations of a document, people have
suggested to use formal methods [Hall 90]. However, formal languages are not easily
understood by untrained users. Moreover, it is far from trivial to derive a formal
specification from informal requirements since this derivation process cannot be
formalised and cannot be formally validated [Hoare 87]. In the end, natural language
comes back in through the back door when the formal specification must be
accompanied by a natural language description that paraphrases 'what the specification
means in real-world terms and why the specification says what is does' [Hall 90]. It seems that
introducing formal methods into the predominantly creative process of software
development runs into immense difficulties.
But there is a way out. The specification language Attempto Controlled English (ACE)
combines the familiarity of natural language with the rigor of formal languages. ACE
enforces writing standards that restrict the grammar and the vocabulary, thus leading
to documents containing more predictable and less ambiguous language. ACE helps
people to find an agreement about the correct interpretation of a requirement
specification. When domain specialists and software developers are guided to use the
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same word for the same concept in a consistent way then misunderstandings can be
reduced. ACE can be accurately and efficiently processed by a computer and is designed
so that a text can be represented unambiguously in first-order predicate logic. The
translated document can be verified for completeness and consistency by querying it in
ACE, and by executing it. Thus validation and prototyping in concepts close to the
application domain become possible and the results can be understood by all parties
concerned.
Controlled or simplified English is not a new idea. It has been used for quite some
time for technical documentation [Wojcik et al. 90, Adriaens & Schreurs 92, AECMA
95], and recently both for knowledge-based machine translation in the KANT system
[Mitamura & Nyberg 95] and as data base query language [Androutsopoulos 95].
Additionally, a general computer processable controlled language has been suggested
that could be used for various purposes ranging from structured documentation over
access to information to the control of devices [Pulman & Rayner 94]. However, very
few researchers have tried to employ controlled natural language for requirements
specifications since this leads to further syntactic and semantic constraints for the
language, especially if one requires the specifications to be executable [Ishihara et al. 92,
Macias & Pulman 92, Pulman 94, Fuchs & Schwitter 95].
Habitability of a controlled subset of natural language seems to be achievable,
particularly when the system gives feedback to domain specialists of the analysed
sentences in a paraphrased form using the same controlled language [Capindale &
Crawford 89]. Of course, before domain specialists can use controlled languages, they
must be trained – in this respect ACE is not different from other methods.

2 Characteristics of ACE
ACE is a computer processable subset of English for writing requirements
specifications. Using ACE does not presuppose expertise in formal methods or
computational linguistics. With ACE we offer domain specialists an application-
specific language that breaks the bottleneck between informal and formal specification
methods. By making true statements about the domain of discourse, domain
specialists can express their concepts in ACE in a direct and natural way using the
objects of the language as abstract entities. Specifications written in ACE are textual
views of formal specifications in logic. They give the impression of being informal
though the language is in fact formal and machine executable.

 Formal
Specification

Textual View

Attempto Controlled English

ACE is sufficiently expressive to write specifications of high quality and high
readability and understandability. This is essential because the development of a
specification is a cyclic activity. The specification will be written, read, interpreted,
criticised, and rewritten, again and again until a satisfactory result is produced
[Sommerville 92].
The language ACE is embedded in the specification system Attempto that accepts
specification texts and translates them into discourse representation structures, and
optionally into Prolog. Parsing in Attempto is deterministic and resembles parsing a
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programming language. The parser of the current Attempto system generates a syntax
tree as syntactic representation, and concurrently a discourse representation structure
(DRS) as semantic representation. A DRS is a structured form of first-order predicate
logic which contains discourse referents representing the objects of the discourse, and
conditions for these discourse referents. Each sentence is translated in the context of
the preceding sentences, yielding an extension of the current DRS into which the
present interpretation step is incorporated. At the present time there is no support for
general reasoning in Attempto's knowledge base to resolve any ambiguity. It may,
however, be necessary to add such a support as the language evolves, e.g. if a type
hierarchy is introduced.
To inform the user about the results of the analysis, the parser generates a paraphrase
in ACE – displaying all substitutions and interpretations made – that explains how
Attempto interpreted the input text. It is up to the user to accept the interpretation, or
to rephrase the input to achieve another interpretation. Additionally the user can
query the knowledge base in ACE. Questions are translated into query DRSs and
answered by deduction.
ACE provides a set of principles and recommendations to constrain the vocabulary
and the grammar for a specification text. There are two goals behind this strategy. The
first goal is to reduce the amount of lexical, structural and semantic ambiguity prior to
language analysis so that the meaning of the specification text can finally be
represented unambiguously. The second goal is to encourage a clear and visual writing
style for the communication between the domain specialist and the software
developer.

3 The Language ACE
The above design decisions have led to specific constraints for the language ACE
where general linguistic theories have little direct help to offer – at best some broad
guidelines.

3.1 Vocabulary
Lexical coverage is critical for robust text analysis. Though the vocabulary of ACE
contains entries of the function word class, e.g. determiners, prepositions, pronouns
and conjunctions, the entries for domain specific subsets of the content word class, e.g.
nouns, verbs, adjectives and adverbs have to be added as needed for the specification
text. Unlike function words, members of the content word class change over time as
words are borrowed or new words and phrases are coined to express new technical
concepts. Certain adverbs that are used for structural disambiguation, e.g. each and
together, are already predefined.
To take these facts into account, Attempto's lexical editor allows domain specialists to
incrementally and interactively modify and extend the lexicon for content words
while the system parses the specification text. The expert interface to the lexicon
represents lexical entries as complete feature structures and allows experts to freely
modify any lexical entry. The interface for non-experts employs annotated templates
that help users with minimal linguistic knowledge to enter information. If, for
example, a non-expert adds a noun to the lexicon information about number, gender
and type – countable noun or mass noun – is sufficient. Besides, the user is free to
associate one or more synonyms or abbreviations with the entry.
Attempto shifts the responsibility to check for lexical ambiguity onto the users; they
decide how to use a word in a specification text – and bear the consequences.
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3.1.1 Nouns
In ACE we distinguish three subclasses of nouns: common nouns, proper nouns and
personal pronouns. Common nouns are one-word nouns or compounds formed from
a sequence of words. Attempto does not attempt to derive the meaning of a compound
noun from the meanings of its components. Therefore, the user must enter
compounds into the lexicon where they are completely lexicalised.
All common nouns fall into one of two subclasses: they occur as countable nouns or as
mass nouns. If a noun is countable it can be used with an indefinite article or with
numbers in front of it. Thus countable nouns distinguish singular from plural forms
and can be used in questions like How many?. Mass nouns use neither indefinite
articles nor numbers. Moreover, they do not have plural forms. It is important to
notice that the majority of nouns can be used with either kind of interpretation.

3.1.2 Verbs
Verbs are the central words in ACE denoting states and events. Verbs can only be used
actively, in the simple present tense, and in their third person singular and plural
forms. In this way, users can only express statements that are always true and refer to
events or states which are true in the present period of time, or possibly true when
used in conditional sentences. The active form of verbs also forces users to make
causal agents explicit.
Furthermore, with this restriction we achieve that the domain specialist organises the
specification as step-by-step instructions – establishing the correct chronological order
of events – and we exclude thereby needless complexity of temporal references. This is
a gain, if we remember that tense in English is often only loosely related to time
[Kamp & Reyle 93].
Some English verbs are constructed with the help of a particle, e.g. turn on. Particles
usually overlap with prepositions leading to ambiguous readings for the same
sentence. A strategy to remedy this ambiguous reading is to choose a one-word verb,
e.g. start instead of turn on [Mitamura & Nyberg 95].
Modal verbs are banished from ACE because they can be used to express a vague degree
of certainty about facts. The scale of vagueness extends from greatest uncertainty
(might) to the greatest certainty (must). Modal verbs in a specification text are an
indicator that the writer does not have a clear understanding of the state of affairs.

3.1.3 Adjectives
Adjectives have the function of complements (predicative use) or modifiers in noun
phrase (attributive use). Semantically, adjectives denote properties. In ACE the only
case of degree modification allowed is comparison, and this can be expressed either
inflectionally, or analytically by means of the degree adverb more and most. Regular
comparative and superlative forms are generated automatically by the lexical editor
while irregular forms must be entered by the user.
The only participal forms that are accepted in ACE are de-participal adjectives in
attributive and predicative position.
Modal adjectives have no business in ACE specifications. Adjectives like possible,
probable, certain, sure and necessary modify a state of affair across a large dimension of
modalities rather than adding some concrete information.

3.1.4 Numbers and Technical Symbols
Numbers with or without units must be entered in a fixed format. Natural numbers
up to ten can be spelled out.
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3.2 Grammar

3.2.1 ACE Specifications
The basic construct of an ACE specification is the declarative sentence. Strictly speaking
our use of the term declarative sentence comes from speech act theory and has two
aspects: a propositional content and an illocutionary force. A declarative sentence tells
us how the world looks like if the sentence is true (proposition) and claims that the
world looks like that (illocution). This is exactly what is meant by a specification.
Declarative sentences can be combined by constructors to powerful composite
sentences, while certain forms of anaphora and ellipsis leave the language concise and
natural. Furthermore, we place interrogative sentences at the user's disposal for
verifying the translated specification text.
We suggest the following basic model of ACE as a language for requirements
specifications that is expressive enough to allow natural usage and can be accurately
and efficiently processed by a computer.
Specification texts consist of
• declarative sentences subject + finite verb (+ complement or object)
• composite sentences built from simpler sentences with the help of constructors that

mark coordination (and , or, either-or), subordination (if-then, who/which/that) ,
negation (not), and negated coordination (neither-nor)

Sentences can contain
• subject and object modifying relative sentences
• anaphoric references, e.g. personal pronouns
• coordination between equal constituents, e.g. and, or
• ellipsis as reduction of coordination
• negated noun phrases, no X
• synonyms and abbreviations
Interrogative sentences comprise
• yes/no questions
• wh-questions
Similar constructs have been proposed for the computer-processable natural language of
Pulman and collaborators [Macias & Pulman 92, Pulman 94].
Here is a small excerpt of the ACE specification of a simple automated teller machine
called SimpleMat.

The customer enters a card and a numeric personal code.
If it is not valid then SM rejects the card.

The example specification text employs
• composite sentences built from declarative sentences with the help of the

constructors and, if-then and not
• ellipsis
• compound nouns, e.g. personal code
• anaphoric references via the pronoun it and the definite noun phrase the card
• abbreviations (SM standing for the name SimpleMat)

3.2.2 Anaphora and their resolution
In ACE anaphora resolution is a process of syntactic reconstruction and restricted to
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noun phrase anaphora explicitly mentioned in the previous text. In the simplest case,
the anaphor is a personal pronoun and its antecedent is a noun phrase that precedes it.
In order to resolve a pronominal anaphoric reference, Attempto looks back in the
search space to find the most recent antecedent that agrees in gender and number.
Thus, the user must use personal pronouns in a principled way referring always to the
last appropriate antecedent.
Another case of anaphora are definite noun phrases that refer to discourse referents
introduced existentially in the previous context. Here too, Attempto's algorithm for
reference resolution searches backward until the first suitable antecedent is found. If
no antecedent can be found for a definite noun phrase then – following Russell's
classic analysis – a unique reference use is assumed.

3.2.3 Ellipsis
Similar to the resolution of anaphora, ellipsis – used to reduce coordination – is
handled by syntactical reconstruction.
3.2.4 Structural ambiguity
ACE uses several means to fight structural ambiguity. First, the language does not
admit certain ambiguous sentences, or provides unambiguous alternatives. However,
not all ambiguous sentences can be eliminated since this would render the language
very unnatural. Thus, as a second line of defence structurally ambiguous sentences are
parsed deterministically according to a small number of principles associated with
syntactic constructions, e.g. minimal attachment and right association. A paraphrase is
generated that shows exactly how the (structurally ambiguous) sentence was parsed. If
users find that the paraphrase does not coincide with what they intended to say, they
must reformulate the sentence, or decompose the sentence into smaller unambiguous
units, e.g. several sentences or a sentence with a relative sentence.
Consider the sentence

The customer enters a card with a code.

where the prepositional phrase with a code could either modify the verb, or the
rightmost noun phrase. In ACE only the first alternative – a principle called minimal
attachment – is realised for the case of prepositional attachments, as reflected by the
paraphrase

the customer {enters a card with a code}.

Since this is probably not what the user intended to express the sentence must be
reformulated. To express that the code is attached to the card the user writes

The customer enters a card that carries a code.

In ACE relative sentences are always attached to the rightmost noun phrase – a
principle called right association.
Finally, to express that both a card and a code are entered an adequate formulation
would be

The customer enters a card and a code.

Analytical ambiguity arises when the type of a constituent is undecidable. Especially
the use of present and past participle forms of verbs leading sometimes to garden-path-
sentences are troublesome and therefore forbidden in ACE.

3.2.5 Coordination and Subordination
In ACE coordination can occur between complete phrasal constituents of equal
syntactic status, specifically between sentences. The two most important coordinators
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are and and or. Natural language coordination is different from logic coordination
where the connectives are commutative. This becomes visible, when we consider the
composite sentence

The customer enters the card and the customer types a code.

The textual order of the two coordinated sentences is decisive because it carries
implications about how the events are temporally related. Reversing the order of the
sentences leads to another order of events that probably does not correspond to the
intentions of the domain specialist.
Another problem turns up when the coordinator and joins noun phrases. These
coordinated noun phrases enumerate members of a plural set. Plural sentences can
have an inherent ambiguity – they can receive a collective or a distributive reading.

John and Mary enter a card.

Here, it is not clear whether John and Mary enter a card together or separately, leading
to one or two entering events, respectively. In ACE one can force a collective reading
by using the adverb together as keyword.

John and Mary enter a card together.

A distributive reading is achieved by inserting the adverb each.
John and Mary each enter a card.

In natural language we distinguish two readings of the word or, an exclusive and an
inclusive one. In ACE we distinguish the two readings by making them explicit; for an
exclusive interpretation we write either ... or, and for an inclusive interpretation simply
or.

The customer enters either a card or a code or ...

The customer enters a card or a code or ...

To express conditional events and causality the subordinating constructor if-then is
used.

If the code is valid then SimpleMat accepts the card.

If the code is not valid then SimpleMat rejects the card.

Each condition in an if-then sentence must be written explicitly, i.e. there is no else as in
many computer languages.

3.2.6 Negation
In ACE we use standard forms to write negative statements so that the same syntactic
construction always appears with the same semantic scope of negation.
When a full negative form (does not) occurs after the subject to build a verb negation
the whole verb phrase falls inside the scope of the negative.

The customer does not enter the correct code.

When a sentence contains copulative be, we form the negative by putting not after the
copula denying that an identity or a property hold.

The card is not valid.

The quantifier no is the only negative that can occur in a noun phrase. By default it
negates an existential and has the whole sentence within its scope.

No customer enters a card.

When a disjunction is within the scope of a negative the construction is normally
interpreted inclusively and denies that all disjuncts are true, e.g.
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The customer does not enter a card or a code or ...

is interpreted as if the disjunction stands for a conjunction.
The customer does not enter a card and a code and ...

To avoid this ambiguous situation, in ACE the user can write for the case that all
disjuncts are false

The customer enters neither a card nor a code nor ...

or logically equivalent
The customer does not enter a card and does not enter a code and ...

The customer does not enter either a card or a code or ...

and for the case that some disjuncts are false
The customer does not enter a card or does not enter a code or ...

4 Overview of Attempto
We have developed the Attempto system that translates ACE specifications into
discourse representation structures, and optionally into the logic programming
language Prolog. Here, we briefly describe Attempto's components.
The user enters a specification text in ACE that the Dialog Component forwards to the
parser. Spelling and parsing errors and any remaining ambiguities to be resolved by
the user are reported back by the dialog component. The Parser uses a predefined
grammar and a predefined linguistic lexicon to check sentences for syntactical
correctness, and to generate syntax trees and sets of nested discourse representation
structures as semantic representation of the input text. The Linguistic Lexicon contains a
domain-specific vocabulary, and can be modified by a lexical editor invokable from the
dialog component.

 

Text

Dialog 
Component

Linguistic
Lexicon

Knowledge 
Base
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to Prolog
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Answer
Generator

Inference
Engine

The Discourse Handler analyses and resolves inter-text references and updates the
discourse representation structures generated by the parser. Optionally, the Translator
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translates discourse representation structures into Prolog clauses. The discourse
representation structures and the Prolog clauses are passed to the Knowledge Assimilator
that adds new knowledge to the Knowledge Base.
The user can interrogate the contents of the knowledge base by asking queries in ACE.
Translated queries are conveyed to the Inference Engine which answers them with the
help of the knowledge base. The Answer Generator takes the answers of the inference
engine, reformulates them in ACE, and forwards them to the dialog component.

5 Parsing
The specification text is parsed by a top-down parser using a unification-based phrase
structure grammar. The parser builds a syntax tree as syntactic representation, and
concurrently a discourse representation structure as semantic representation.
In addition, the parser generates a paraphrase – displaying all substitutions and
interpretations made – that explains how Attempto interpreted the user's input. For
the sentences

The customer enters a card and a numeric personal code.
If it is not valid then SM rejects the card.

the paraphrase is
the customer enters a card and [the customer enters] a numeric personal
code.

if [the personal code] is not valid then [simplemat] rejects the [card].

The user can now decide to accept Attempto's interpretation, or to rephrase the input
to achieve another interpretation. For ambiguous input Attempto always suggests one
standard interpretation as default. It is up to the user to reformulate the input to
achieve non-standard interpretations.
Furthermore, the parser informs the user about spelling and parsing errors, and lists
unknown words. The user can add unknown words to the lexicon with the help of the
lexical editor, and immediately resubmit the input to the parser.

6 Semantic Representation

6.1 Contextual Semantic Translation
The complete specification text is translated into one discourse representation
structure (DRS) which contains discourse referents representing the objects of the
discourse, and conditions for these discourse referents [Kamp & Reyle 93].
Each sentence is translated in the context of the preceding sentences, yielding for the
sentences

The customer enters a card and a numeric personal code.
If it is not valid then SM rejects the card.

the DRS
[A, B, C, D]
customer(A)
card(B)
enter(A, B)
numeric(C)
personal_code(C)
enter(A, C)
named(D, simplemat)
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IF:
  []
  NOT:
    []
    valid(C)
THEN:
  []
  reject(D, B)

A DRS is a semantic representation of the input text, and is considered true if the
input describes reality. Our example DRS is true if there are objects represented by the
discourse referents A,B,C,D so that A is a customer, B is a card, the customer A enters
the card B, etc.
Conditions of a DRS can be simple, e.g. customer(A), or complex, i.e. again a DRS. This
can lead to nested DRSs with sub- and superordination. In our case, the topmost DRS
contains a subordinate IF-THEN DRS which itself contains a subordinate NOT DRS.
Anaphoric references, e.g. the pronoun it of the second sentence referring to the
compound noun personal code of the first sentence, are automatically resolved. The
resolution algorithm picks the closest referent in a superordinate DRS that agrees in
gender and number.

6.2 Translation into Prolog
Optionally, the discourse representation structure is translated into Prolog clauses
which are added as fact/1 to the knowledge base.

fact(customer(0)).
fact(card(1)).
fact(enter(0, 1)).
fact(numeric(2)).
fact(personal_code(2)).
fact(enter(0, 2)).
fact(named(3, simplemat)).
fact((reject(3, 1):- neg(valid(2)))).

In Prolog, the discourse referents A,B,C,D – being existentially quantified variables –
are replaced by Skolem constants 0, 1, 2, 3.

7 Working with the Knowledge Base
Once we have the specification text translated and the translated form stored in the
knowledge base, we can query the knowledge base, or execute it.

[A,B,C,D]

customer(A)
card(B)
enter(A,B)
numeric(C)
personal_code(C)
enter(A,C)
synonym(named(D,simplemat))
IF:
  []
  NOT:
    []
    valid(C)
THEN:
  []
  reject(D,B)

Controlled English Discourse Representation Structure

Translation

Query

Executionuser: john is a customer
user: bank_card is a card

event:john enters the bank_card

Who enters a card?

Answer:
[a customer] enters a card.

The customer enters a card
and a numeric personal code.
If it is not valid
then SM rejects the card.
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7.1 Querying the Knowledge Base
For verification and validation of the specification the knowledge base can be
interrogated by queries in ACE. Let us assume that the user entered previously

The customer enters a card and a numeric personal code.

If it is not valid then SM rejects the card.

Now the user can ask
Does the customer enter a card?

and the Attempto system will respond with
Answer: yes

while the query
Who enters a card?

is answered by the system in a form that shows the substitution
Answer: [a customer] enters a card.

If a query has more than one answer, all answers can be generated and displayed on
demand.

7.2 Executing the Specification
The knowledge base can also be used for simulation or prototyping by executing it. In
our example specification, this means executing the specification of the automated
teller machine. Missing information describing the specific situation and side-effects of
events are either defined before-hand in a definition file, or supplied by the user.
Following is an example of the execution of the specification

The customer enters a card and a personal code.

SimpleMat checks the personal code.

If the personal code is valid then SimpleMat accepts the card.

If the personal code is not valid then SimpleMat rejects the card.

Side-effects of events are simulated by simply printing out a trace of the pertinent
event while situation-specific information is provided by querying the user. The
execution yields the subsequent dialog where the user's input is written in italics

user: john is a customer

user: bank_card is a card

event: john enters the bank_card

user: 1234 is a personal_code

event: john enters 1234

user: s1 is a simplemat

event: s1 checks 1234

user: 1234 is not valid

event: s1 rejects the bank_card
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8 Conclusions and Further Research
The present prototypical implementation of Attempto proves that Attempto
Controlled English (ACE) can be used for the non-trivial specification of an automated
teller machine, and that the complete specification can be translated as coherent text
into a structured form of first-order logic – and optionally into Prolog clauses – that can
be executed.
More work needs to be done, however, to complete the definition of ACE, to parse
ACE specifications efficiently, and to extend the internal syntactic and semantic
representations.

References
[Adriaens & Schreurs 92] G. Adriaens, D. Schreurs, From Cogram to Alcogram: Towards a

Controlled English Grammar Checker, Proceedings COLING 92, pp.
595-601, 1992

[AECMA 95] The European Association of Aerospace Industries (AECMA), AECMA
Simplified English, AECMA Document: PSC-85-16598, A Guide for the
Preparation of Aircraft Maintenance Documentation in the
International Aerospace Maintenance Language, Issue 1, September
1995

[Androutsopoulos 95] I. Androutsopoulos, G. D. Ritchie, P. Thanisch, Natural Language
Interfaces to Databases – An Introduction, Journal of Natural
Language Engineering, vol.1, no.1, Cambridge University Press, 1995

[Capindale & Crawford 89] R. A. Capindale, R. G. Crawford, Using a natural language interface
with casual users, International Journal Man-Machine Studies, 32, pp.
341-362, 1989

[Dodd 90] T. Dodd, Prolog: A Logical Approach, Oxford University Press, 1990
[Fuchs & Schwitter 95] N. E. Fuchs, R. Schwitter, Specifying Logic Programs in Controlled

Natural Language, CLNLP 95, Workshop on Computational Logic for
Natural Language Processing, Edinburgh, 1995

[Hall 90] A. Hall, Seven Myths of Formal Methods, IEEE Software, 9, pp. 11-
19, September 1990

[Hoare 87] C. A. R. Hoare, An overview of some formal methods for program
design, in: C. A. R. Hoare, C. B. Jones, Essays in Computing Science,
Prentice Hall, pp. 371-387, 1987

[Ishihara et al. 92] Y. Ishihara, H. Seki, T. Kasami, A Translation Method from Natural
Language Specifications into Formal Specifications Using Contextual
Dependencies, in: Proceedings of IEEE International Symposium on
Requirements Engineering, 4-6 Jan. 1993, San Diego, IEEE Computer
Society Press, pp. 232 - 239, 1992

[Kamp & Reyle 93] H. Kamp, U. Reyle, From Discourse to Logic, Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and
Discourse Representation Theory, Kluwer Academic Publishers,
Dordrecht, 1993

[Macias & Pulman 92] B. Macias, S. Pulman, Natural Language Processing for Requirements
Specifications, in: F. Redmill, T. Anderson (eds.), Safety-Critical
Systems, Current Issues, Techniques and Standards, Chapman & Hall,
pp. 67-89, 1993

[Mitamura & Nyberg 95] T. Mitamura, E. H. Nyberg, 3rd, Controlled English for Knowledge-
Based MT: Experience with the KANT System, Center for Machine
Translation, Carnegie Mellon University, Pittsburgh, 1995

[Pohl 93] K. Pohl, The Three Dimensions of Requirements Engineering, in: Proc.
5th Int. Conf. of Advanced Information Systems Engineering 1993,
Paris, Springer, Berlin, pp. 275-292, 1993

[Pulman & Rayner 94] S. Pulman, M. Rayner, Computer Processable Controlled Language,
SRI International Cambridge Computer Science Research Centre, 1994



13

[Pulman 94] S. G. Pulman, Natural Language Processing and Requirements
Specification, Presentation at the Prolog Forum, Department of
Computer Science, University of Zurich, February 1994

[Sommerville 92] I. Sommerville, Software Engineering, Fourth Edition, Addison-
Wesley, Wokingham, 1992

[Wojcik et al. 90] R. H. Wojcik, J. E. Hoard, K. C. Holzhauser, The Boeing Simplified
English Checker, Proc. Internatl. Conf. Human Machine Interaction
and Artificial Intelligence in Aeronautics and Space, Centre d'Etude
et de Recherche de Toulouse, pp. 43-57, 1990


