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Abstract.

 

 In this paper, we present the A

 

DORA

 

 approach to object-oriented mod-
eling of software (A

 

DORA

 

 stands for Analysis and Description of Requirements
and Architecture). The main features of A

 

DORA

 

 that distinguish it from other
approaches like UML are the 

 

use of abstract objects

 

 (instead of classes) as the
basis of the model, a 

 

systematic hierarchical decomposition

 

 of the modeled sys-
tem and the 

 

integration

 

 of all aspects of the system 

 

in one coherent model

 

. The
paper introduces the concepts of A

 

DORA

 

 and the rationale behind them, gives an
overview of the language, and reports the results of a validation experiment for
the A

 

DORA

 

 language.

 

1 Introduction

 

When we started our work on object-oriented specification some years ago, we were
motivated by the severe weaknesses of the then existing methods, e.g. [3][5][15]. In
the meantime, the advent of UML [16] (and to a minor extent, OML [6]) has radically
changed the landscape of object-oriented specification languages. However, also with
UML and OML, several major problems remain.

There is still no true integration of the aspects of data, functionality, behavior and
user interaction. Neither do we have a systematic hierarchical decomposition of mod-
els (for example, UML packages are a simple container construct with nearly no
semantics). Models of system context and of user-oriented external behavior are weak
and badly integrated with the class/object model [9].

So there is still enough motivation not to join simply the UML mainstream and to
pursue alternatives instead. We are developing an object-oriented modeling method for
software that we call A

 

DORA

 

 (Analysis and Description of Requirements and Architec-
ture) [1][13]. A

 

DORA

 

 is intended to be used primarily for requirements specification
and also for logical-level architectural design. Currently, A

 

DORA

 

 has no language ele-
ments for expressing physical design models (distribution, deployment) and imple-
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mentation models. However, as A

 

DORA

 

 models are object-oriented, we can implement
a smooth transition from an A

 

DORA

 

 architecture model to detailed design and code
written in an object-oriented programming language.

In this paper, we present the A

 

DORA

 

 language. We discuss the general concepts and
give an overview of the language. The main contributions of the A

 

DORA

 

 language are

• a concept for systematic hierarchical decomposition of models which is particularly
useful when modeling distributed systems, 

• the integration of different aspects into one coherent model, 

• the ability to visualize a model in its context, 

• language elements for tailoring the formality of A

 

DORA

 

 models. 

Throughout this paper, we will use a distributed heating control system as an exam-
ple. The goal of this system is to provide a comfortable control for the heating system
of a building with several rooms. An operator can control the complete system, setting
default temperatures for the rooms. Additionally, for every room individual tempera-
ture control can be enabled by the operator. Users then can set the desired temperature
using a control panel in the room. The system shall be distributed into one master mod-
ule serving the operator and many room modules.

However, A

 

DORA

 

 is not only applicable for the specification of industrial control
systems. For the validation of the usefulness of the language, we have modeled a dis-
tributed information system with A

 

DORA

 

 (see section 4).
The rest of the paper is organized as follows. In section 2 we discuss the basic con-

cepts of A

 

DORA

 

 and their rationale. In section 3 we give an overview of the language.
In section 4 we present the results of a first validation of the A

 

DORA

 

 language. Finally,
we compare the concepts of A

 

DORA

 

 with those of UML and conclude with a discus-
sion of results, state of work and future directions.

 

2 Key Concepts and Rationale of the A

 

DORA

 

 Approach

 

In this section, we briefly describe the five principles that A

 

DORA

 

 is based on and give
our rationale for choosing them.

 

2.1 Abstract Objects instead of Classes

 

When we started the A

 

DORA

 

 project, all existing object-oriented modeling methods
used class diagrams as their model cornerstone. However, class models are inappropri-
ate when more than one object of the same class and/or collaboration between objects
have to be modeled [9][12]. Both situations frequently occur in practice. For an exam-
ple, see the buttons in Fig. 1. Moreover, class models are difficult to decompose. As
soon as different objects of a class belong to different parts of a system (which often is
the case), hierarchical decomposition does no longer work for class models [12].
Wirfs-Brock [19] tries to overcome the problems of class modeling by using classes in
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different 

 

roles

 

. However, decomposition remains a problem: what does it mean to
decompose a role?

We therefore decided to use abstract, prototypical objects as the core of an A

 

DORA

 

model (Fig. 1). An equivalent to classes (which we call types) is only used to model
common characteristics of objects: types define the properties of the objects and can be
organized in subtype hierarchies. In order to make models more precise, we distin-
guish between 

 

objects

 

 (representing a single instance) and 

 

object sets

 

 that represent a
set of instances. Modeling of collaboration and of hierarchical decomposition (see
below) becomes easy and straightforward with abstract objects.

In the meantime, others have also discovered the benefits of modeling with abstract
objects. UML, for example, uses abstract objects for modeling collaboration in
collaboration diagrams and in sequence diagrams. However, without a notion of
abstraction and decomposition, only local views can be modeled. Moreover, class dia-
grams still form the core of a UML specification.

 

2.2 Hierarchical Decomposition

 

Every large specification must be decomposed in some way in order to make it man-
ageable and comprehensible. A good decomposition (one that follows the basic soft-
ware engineering principles of information hiding and separation of concerns)
decomposes a system recursively into parts such that

• every part is logically coherent, shares information with other parts only through
narrow interfaces and can be understood in detail without detailed knowledge of
other parts,

• every composite gives an abstract overview of its parts and their interrelationships.

The current object-oriented modeling methods typically approach the decomposi-
tion problem in two ways: (a) by modeling systems as collections of models where
each model represents a different aspect or gives a partial view of the system, and (b)
by providing a container construct in the language that allows the modeler to partition
a model into chunks of related information (e.g. packages in UML). However, both
ways do not satisfy the criteria of a good decomposition. Aspect and view decomposi-
tions are coherent only as far as the particular aspect or view is concerned. The infor-

Fig. 1. An ADORA object model (left) vs. a conventional class model (top right)

Top right: Conventional class model of the
control panels

Left: ADORA model of a distributed heating
control system. MasterModule and Room-
Module are partially visualized (indicated
by dots after name); showing the control
panels only. Display and Button are types.

HeatingControlSystem

MasterModule...

BoilerControlPanel

BoilerDisplay: Display

Keypad... On: Button

Off: Button

RoomModule...

RoomTempControlPanel

RoomDisplay: Display

Off: Button

On: Button

Plus: Button

Minus: Button

Enter: Button

BoilerControl
Panel

RoomTemp
ControlPanel

Keypad Button Display

(1,n)
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mation required for comprehending some part of a system in detail is 

 

not

 

 coherently
provided. Container constructs such as UML packages have semantics that are too
weak for serving as composites in the sense that the composite is an abstract overview
of its parts and their interrelationships. This is particularly true for multi-level decom-
positions. Only the ROOM method [18] can decompose a system in a systematic way.
However, as ROOM is also based on classes, the components are not classes, but class
references. This asymmetry makes it impossible to define multi-level decompositions
in a straightforward, easily understandable way. 

In A

 

DORA

 

, the decomposition mechanism was deliberately chosen such that good
decompositions in the sense of the definition given above become possible. We recur-
sively decompose objects into objects (or elements that may be part of an object, like
states). So we have the full power of object modeling on all levels of the hierarchy and
only vary the degree of abstractness: objects on lower levels of the decomposition
model small parts of a system in detail, whereas objects on higher levels model large
parts or the whole system on an abstract level. 

 

2.3 Integrated Model

 

With existing modeling languages, one creates models that consist of a set of more or
less loosely coupled diagrams of different types. UML is the most prominent example
of this style. This seems to be a good way to achieve separation of concerns. However,
while making separation easy, loosely coupled collections of models make the equally
important issues of integration and abstraction of concerns quite difficult.

In contrast to the approach of UML and others, an A

 

DORA

 

 model integrates all mod-
eling aspects (structure, data, behavior, user interaction...) in one coherent model. This
allows us to develop a strong notion of consistency and provides the necessary basis
for developing powerful consistency checking mechanisms in tools. Moreover, an inte-
grated model makes model construction more systematic, reduces redundancy and
simplifies completeness checking.

Using an integrated model does of course not mean that everything is drawn in one
single diagram. Doing so would drown the user in a flood of information. We achieve
separation of concerns in two ways: (1) We 

 

decompose

 

 the model 

 

hierarchically

 

, thus
allowing the user to select the focus and the level of abstraction. (2) We use a 

 

view con-
cept

 

 that is based on 

 

aspects

 

, not on various diagram types. The 

 

base view

 

 consists of
the objects and their hierarchical structure only. The base view 

 

is combined

 

 

 

with

 

 one or
more 

 

aspect views

 

, depending on what the user wishes to see. These two concepts –
hierarchy and combination of views – constitute the 

 

essence

 

 of organizing an A

 

DORA

 

model.
So the complete model is basically an abstract one – it is almost never drawn in a

diagram. The concrete diagrams typically illustrate certain aspects of certain parts of a
model in their hierarchical context. However, as every concrete diagram is a view of an
integrated model of the complete system, we can build strong consistency and com-
pleteness rules into the language and build powerful tools for checking and maintain-
ing them. Readability of diagrams is achieved by selecting the right level of
abstraction, by restricting the number of aspects being viewed together, and by split-
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ting complex diagrams into an abstract overview diagram and some part diagrams. For
example, if Fig. 2 is perceived to be too complex, it can be split into an overview dia-
gram (Fig. 8) and two part diagrams, one for 

 

MasterModule

 

 and one for 

 

RoomModule

 

.

 

2.4 Adaptable Degree of Formality

 

An industrial-scale modeling language should allow its users to adapt the degree of
formalism in a specification to the difficulty and the risk of the problem in hand.
Therefore, they need a language with a broad spectrum of formality in its constructs,
ranging from natural language to completely formal elements.

In A

 

DORA

 

, we satisfy this requirement by giving the modeler a choice between
informal, textual specifications and formal specifications (or a mixture of both). For
example, an object may be specified with an informal text only. Alternatively, it can be
formally decomposed into components. These in turn can be specified formally or
informally. As another example, state transitions can be specified in a formal notation
or informally with text or with a combination of both.

The syntax of the A

 

DORA

 

 language provides a consistent framework for the use of
constructs with different degrees of formality. 

 

2.5 Contextual Visualization

 

Current modeling languages either lack capabilities for system decomposition or they
visualize decompositions in an explosive zoom style: the composites and their parts are
drawn as separate diagrams. Thus, a diagram gives no information about the context
that the presented model elements are embedded in. In A

 

DORA

 

, we use a fisheye view
concept for visualizing a component in its surrounding hierarchical context. This sim-
plifies browsing through a set of diagrams and improves comprehensibility [1].

 

3 An Overview of the A

 

DORA

 

 Language

 

An A

 

DORA

 

 model consists of a basic hierarchical object structure (the base view, as we
call it) and a set of aspect views that are combined with the base view. In this section
we describe these views and their interaction.

 

3.1 Basic Hierarchical Object Structure

 

The object hierarchy forms the basic structure of an A

 

DORA

 

 model. 

 

Objects and object sets.

 

 As already mentioned above, we distinguish between objects
and object sets. An 

 

A

 

DORA

 

 object

 

 is an abstract representation of a single instance in
the system being modeled. For example, in our heating control system, there is a single
boiler control panel, so we model this entity as an object. Abstract means that the
object is a placeholder for a concrete object instance. While every object instance must
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have an object identifier and concrete values for its attributes, an A

 

DORA

 

 object has
neither of these. An 

 

A

 

DORA

 

 object set

 

 is an abstract representation of a set of object
instances. The number of instances allowed can be constrained with a cardinality. For
example, in an order processing system we would model suppliers, parts, orders, etc.
as object sets. In the heating control system, we have a control panel in every room and
we control at least one room. Thus we model this panel as an object set with cardinal-
ity (1,n); see Fig. 2.

 

Structure of an A

 

DORA

 

 object.

 

 An object or object set has a twofold inner structure: it
consists of a set of properties and (optionally) a set of parts.

The 

 

properties

 

 are attributes (both public and private ones), directed relationships to
other objects/object sets, operations and so called standardized properties. The latter
are user-definable structures for stating goals, constraints, configuration information,
notes, etc.; see below.

The 

 

parts

 

 can be objects, object sets, states and scenarios. Every part again can con-
sist of parts: objects and object sets can be decomposed recursively as defined above,
states can be refined into statecharts, scenarios into scenariocharts (as we call them, see
below). Thus, we get a hierarchical whole-part structure that allows modeling a hierar-
chical decomposition of a system. The decomposition is strict: an element neither can
contain itself nor can it be a part of more than one composite. We stick to a strict
decomposition due to its inherent simplicity and elegance. Commonalities between
objects in different positions of a decomposition hierarchy can be modeled by assign-
ing them the same type (see the paragraph on types below and Fig. 1).

 

Fig. 2. 

 

An A

 

DORA

 

 view of the heating control system: base view combined with structural view 
and context view

 

Graphic representation.

 

 In order to exploit the power of hierarchical decomposition,
we allow the modelers to represent an A

 

DORA

 

 model on any level of abstraction, from
a very high-level view of the complete system down to very detailed views of its parts.

HeatingControlSystem

MasterModule

OperateHeating
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BoilerOperator

object object set scenario
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state abstract relationship
interaction

HeatingOff

HeatingOn LocalControl
Disabled

communicates

display

RoomTemp
Sensor: external

RoomControl

RoomModule

RadiatorValve

setRoomTemp

LocalControlEnabled

User

ManageLocalRoom
Temperature...setDefault

setRoom

Control

note  RoomControl uses
local control parameters if
local control is enabled and
on. Else, default values (set
by MasterModule) are
used.

Local
Control
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Control
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controlBoiler
(1,1)

controlValve
(1,3)

readTemp
 (1,1)

(1,n)

BoilerControl
Panel...

setLocal

BoilerControl...

Settings

RoomTempControl
Panel...
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We achieve this property by representing A

 

DORA

 

 objects, object sets, scenarios and
states by nested boxes (see Fig. 1 and 2). The modeler can freely choose between
drawing few diagrams with deep nesting and more diagrams with little nesting. In
order to distinguish expanded and non-expanded elements in a diagram, we append
three dots to the name of every element having parts that are not or only partially
drawn on that diagram.

 

Types.

 

 Frequently, different objects have the same inner structure, but are embedded in
different parts of a system. In the heating system for example, the boiler control panel
and the room control panels both might have a display with the same properties. In
these situations, it would be cumbersome to define the properties individually for every
object. Instead, A

 

DORA

 

 offers a type construct. An A

 

DORA

 

 type defines

• the attributes and operations of all objects/object sets of this type

• a structural interface, that means, information required from or provided to the envi-
ronment of any object/object set of this type. This facility can be used to express

 

contracts

 

. 

A type defines neither the relationships to other objects/object sets nor the embed-
ding of the objects of that type. Types can be organized in a subtype hierarchy.

An object can have a type name appended to its name (for example, 

 

RoomDisplay:
Display

 

 in Fig. 1). In this case, the object is of that type and the type is separately
defined in textual form. Otherwise, there is no other object of the same type in the
model and the type information is included in the definition of the object.

 

propertydef

 

 goal 

 

numbered

 

 Hyperstring 

 

constraints

 

 unique;

 

propertydef

 

 created Date;

 

propertydef

 

 note Hyperstring;

 

object

 

 HeatingControlSystem...

 

goal

 

 1 "Provide a comfortable control for the heating of a building with several rooms."

 

created

 

 2000-11-04

 

note

 

 "Constraints have yet to be discussed and added."

 

end

 

 HeatingControlSystem.

 

Fig. 3. 

 

Definition and use of standardized properties

 

Standardized properties.

 

 In order to adapt A

 

DORA

 

 in a flexible, yet controlled way to
the needs of different projects, application domains or persons, we provide so called
standardized properties. An ADORA standardized property is a typed construct consist-
ing of a header and a body. Fig. 3 shows the type definitions for the properties goal, cre-
ated and note and the application of these properties in the specification of the object
HeatingControlSystem. As name and structure of the properties are user-definable, we
get the required flexibility. On the other hand, typing ensures that a tool nevertheless
can check the properties and support searching, hyperlinking and cross-referencing.

3.2 The Structural View

The structural view combines the base view with directed relationships between
objects. Whenever an object A references an information in another object B (and B is
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not a part of A or vice-versa) then there must be a relationship from A to B. Referenc-
ing an information means that A

• accesses a public attribute of B, 

• invokes an operation of B, 

• sends an event to B or receives one from B. 

Every relationship has a name and a cardinality (in the direction of the relationship).
Bidirectional relationships are modeled by two names and cardinalities. Relationships
are graphically represented by lines between the linked objects/object sets. An arrow
preceding the name indicates the direction of the relationship (Fig. 2).

Fig. 4. Four static views of the same model on different levels of abstraction

Static relationships must reflect the hierarchical structure of the model. Let objects
A and B be linked by a relationship. If A is contained in another object X and B in an
object Y, then the relationship A → B implies abstract relationships X → Y, A → Y and
X → B. Whenever we draw a diagram that hides A, B or both, the next higher abstract
relationship must be drawn. Abstract relationships are drawn as thick lines. They can,
but need not be named. In case of partially expanded objects, we sometimes have to
draw both a concrete and a corresponding abstract relationship. In this case, we indi-
cate the correspondence by a dashed hairline (Fig. 4). In the view shown in Fig. 2, we
have some examples. All relationships from BoilerControl to other objects are abstract
ones because their origins within BoilerControl are hidden in this view. The relationships
readTemp from Controller to RoomTempSensor and controlValve from Controller to Radiator-
Valve are elementary relationships. Hence they are drawn with thin lines. If we had
chosen a view that hides the contents of RoomControl, we had drawn two abstract rela-
tionships from RoomControl to RoomTempSensor and to RadiatorValve, respectively.

3.3 The Behavioral View

Combining objects and states. For modeling behavior, ADORA combines the object
hierarchy with a statechart-like state machine hierarchy [7][8][12]. Every object repre-
sents an abstract state that can be refined by the objects and/or the states that an object
contains. This is completely analogous to the refinement hierarchy in statecharts [10]
and can be given analogous semantics for state transitions. We distinguish pure states
(represented graphically by rounded rectangles) and objects with state (see Fig. 5).
Pure states are either elementary or are refined by a pure statechart. Objects with state
additionally have properties and/or parts other than states.

blabla (1,n)

oops (1,1)

blabla (1,n)

X

X...

Y

Y

X...

X... Y...

highbla
A

C
B

BA

Y...
A



– 9 –

We do not explicitly separate parallel states/state machines as it is done in state-
charts. Instead, objects and states that are part of the same object and have no state
transitions between each other are considered to be parallel states. Objects that neither
are the destination of a state transition nor are designated as initial abstract states are
considered to have no explicitly modeled state. 

By embedding the behavior model into the object decomposition hierarchy, we can
easily model behavior on all levels of abstraction. On a high level, objects and states
may represent abstract concepts like operational modes (off, startup, operating...). On
the level of elementary objects, states and transitions model object life cycles.
State transitions. Triggering events and triggered actions or events can either be writ-
ten in the traditional way as an adornment of the state transition arrows in the dia-
grams, or they can be expressed with transition tables [14]. For large systems with
complex transition conditions the latter notation is more or less mandatory in order to
keep the model readable. Depending on the degree of required precision, state transi-
tion expressions can be formulated textually, formally, or with a combination of both.

Fig. 5 shows the graphic representation of a behavior view with some of the variants
described above. When the system is started, then for all members of the object set

RoomModule

(1,n)

HeatingOff

HeatingOn
LocalControl
Disabled

RoomTempControl
Panel...

RoomTemp
Sensor: external

RoomControl LocalControlEnabled

ManageLocal
RoomTemperature...

receive on
over setRoom

"enable" "disable"

Init, Monitoring Modifying

Modifying

Monitoring

Init

Y

Y

ControllerSettings

Reading

Local
Control
Off

Local
Control
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IN LocalControlEnabled.LocalControlOn

ActualTemp > Settings.CurrentTemp(now)

ActualTemp < Settings.CurrentTemp(now)

ActualTemp > Settings.DefaultTemp(now)

ActualTemp < Settings.DefaultTemp(now)

IN LocalControlEnabled

send open over controlValve

send close over controlValve

180 s IN Modifying

MonitoringModifying

10 s IN Reading

self.ReadSensorValue

ReadingReading

Y

N

Y

•

•

N

•

•

N

Y

•Y

Y

N

Y

•

•

N

•

•

N

Y

•Y

note  RoomControl uses local control
parameters if local control is enabled
and on. Else, default values (set by
MasterModule) are used.

note  setRoom and controlValve are
relationships (see Fig. 2) that act as
channels for receiving/sending events.

receive off over
setRoom / send shut
over controlValve

State Transition Tables for Controller

Fig. 5. A partial ADORA model of the heating control system; base view and behavior view
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RoomModule the initial state HeatingOff is entered. The transition to the object HeatingOn
is specified formally. It is taken when the event on is received over the relationship set-
Room (cf. Fig. 2). If this transition is taken, the state LocalControlDisabled and the object
RoomControl are entered concurrently. Within RoomControl, the object Controller is
entered and within Controller the parallel states Init and Reading. This is equivalent to the
rules that we have for statecharts. The state transitions between LocalControlDisabled
and LocalControlEnabled are specified informally with a text only. This makes sense in
situations where we do not yet precisely know in which situation an event has to be
triggered by which component. The transitions within Controller are specified in tabular
form, because they are quite complex.
Timing and event propagation. In ADORA we use the quasi-synchronous timing and
event propagation semantics defined in [8]. In contrast to usual statecharts and other
than in [8] we do not broadcast events in ADORA. Instead, events have to be explicitly
sent and received. Thus we avoid global propagation of local events.

3.4 The Functional View

The functional view defines the properties of an object or object set (attributes, opera-
tions...) that have not already been defined by the object’s type. When there is only one
object of a certain type, the complete type information is embedded in the object defi-
nition. The functional view is not combined with other views; it is always represented
separately in textual form.

Joos [13] has defined a formal notation for specifying functions in ADORA, building
upon existing notations. As there is nothing conceptually new with function defini-
tions, we do not go into further detail here.

3.5 The User View

In the last few years, the importance of modeling systems from a user’s viewpoint,
using scenarios or use cases, was recognized (for example, see [4][8][11] and many
others). In ADORA, we take the idea of hierarchically structured scenarios from [8] a
step further and integrate the scenarios into the overall hierarchical structure of the sys-
tem. In our terminology, a scenario is an ordered set of interactions between partners,
usually between a system and a set of actors external to the system. It may comprise a
concrete sequence of interaction steps (instance scenario) or a set of possible interac-
tion steps (type scenario). Hence, a use case is a type scenario in our terminology.

We view scenarios and objects to be complementary in a specification. The scenar-
ios specify the stimuli that actors send to the system and the system’s reactions to these
stimuli. However, when these reactions depend on the history of previous stimuli and
reactions, that means on stored information, a precise specification of reactions with
scenarios alone becomes infeasible. The objects specify the structure, functions and
behavior that are needed to specify the reactions in the scenarios properly.

In the base view of an ADORA model, scenarios are represented with ovals. In the
user view, we combine the base view with grey lines that link the scenario with all
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objects that it interacts with (Fig. 6). For example, the scenario ManageLocalRoomTem-
perature specifying the interaction between the actor User and the system is localized
within the object LocalControlEnabled. Internally, the scenario interacts with RoomTemp-
ControlPanel and with an object in HeatingOn which is hidden in this view.

An individual scenario can be specified textually or with a statechart. In both cases,
ADORA requires scenarios to have one starting and one exit point. Thus, complex sce-
narios can be easily built from elementary ones, using the well-known sequence, alter-
native, iteration and concurrency constructors. In [8] we have demonstrated statechart-
based integration of scenarios using these constructors. However, when integrating
many scenarios, the resulting statechart becomes difficult to read. We therefore use
Jackson-style diagrams (with a straightforward extension to include concurrency) as an
additional means for visualizing scenario composition. We call these diagrams scenari-
ocharts (Fig. 7).

Fig. 6. A user view of the heating control system

Operator Boiler RadiatorValve User

HeatingControlSystem
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RoomModule...

HeatingOn...

LocalControlEnabled..

BoilerControl
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ManageLocal
RoomTemperature...

(1,n)

ManageLocal
RoomTemperature

TurnLocal
ControlOn

Set
Temperature

Inspect
Temperature

TurnLocal
ControlOff

Manage
Temperature

UseLocal
Control

Local
Control

Sequence

Alternative

Iteration

Concurrency

HeatingControlSystem

MasterModule...

Boiler

Operator User

RoomModule...

(1,n)

RadiatorValve

Fig. 8. A context diagram of the heating 
control system 

Fig. 7. A scenariochart modeling the structure of 
the ManageLocalRoomTemperature scenario
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Thus, we have a hierarchical decomposition in the user view, too. The object hierar-
chy of the base view allocates high-level scenarios (like ManageLocalRoomTemperature
in our heating system) to that part of the system where they take effect. The scenario
hierarchy decomposes high-level scenarios into more elementary ones. As a large sys-
tem has a large number of scenarios (we mean type scenarios/use cases here, not
instance scenarios), this facility is very important for grouping and structuring the sce-
narios.

Note that the ADORA user view is a logical view of user-system interaction only; it
does not include the design of the user interface.

3.6 The Context View

The context view shows all actors and objects in the environment of the modeled sys-
tem and their relationships with the system. Depending on the degree of abstraction
selected for the system, we get a context diagram (Fig. 8) or the external context for a
more detailed view of the system (Fig. 2).

In addition to external elements that are not a part of the system being specified, an
ADORA model can also contain so called external objects. We use these to model
preexisting components that are part of the system, but not part of the specification
(because they already exist). External objects are treated as black boxes having a name
only. In the notation, such objects are marked with the keyword external (for example,
the object RoomTempSensor in Fig. 2). In any specification where COTS components
will be part of the system or where existing components will be reused, modeling the
embedding of these components into the system requires external objects.

3.7 Modeling Constraints and Qualities

Constraints and quality requirements are typically expressed with text, even in specifi-
cations that employ graphical models for functional specifications. In traditional speci-
fications and with UML-style graphic models we have the problem of interrelating
functional and non-functional specifications and of expressing the non-functional
specifications on the right level of abstraction.

In ADORA, we use two ADORA-specific features to solve this problem. (1) The
decomposition hierarchy in ADORA models is used to put every non-functional require-
ment into its right place. It is positioned in the hierarchy according to the scope of the
requirement. The requirements themselves are expressed as ADORA standardized
properties. Every kind of non-functional requirement can be expressed by its own
property kind, for example performance constraint, accuracy constraint, quality...).

3.8 Consistency Checking and Model Verification

Having an integrated model allows us to define stringent rules for consistency between
views, for example “When an object A references information in another object B in
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any view and B is not a part of A or vice-versa, then there must be a relationship from
A to B in the static view.” A language for the formulation of consistency constraints
and a compiler that translates these constraints into Java have been developed [17]. By
executing this code in the ADORA tool, the tool is enabled to check or enforce these
constraints. The capabilities for formal analysis and verification of an ADORA model
depend on the chosen degree of formality. In the behavior view, for example, a suffi-
ciently formal specification of state transitions allows to apply all analyses that are
available for hierarchical state machines.

4 Validation of ADORA 

In our opinion, there are two fundamental qualities that a specification language should
have: the language must be easy to comprehend (a specification has more readers than
writers) and the users must like it. 

Therefore, we experimentally validated the ADORA language with respect to these
two qualities. We conducted an experiment with the following goals.

• Determine the comprehensibility of an ADORA specification both on its own and in
comparison with an equivalent specification written in UML – today’s standard
modeling language – from the viewpoint of a reader of the specification.

• Determine the acceptance of the fundamental concepts of ADORA (using abstract
objects, hierarchical decomposition, integrated model...) both on its own and in
comparison with UML from the viewpoint of a reader/writer of models.

4.1 Setup of the Experiment

In order to measure these goals, we set up the following experiment [2]. We wrote a
partial specification of a distributed ticketing system both in ADORA and in UML. The
system consists of geographically distributed vending stations where users can buy
tickets for events (concerts, musicals...) that are being offered on several event servers.
Vending stations and event servers shall be connected by an existing network that
needs not to be specified.

Then we prepared a questionnaire consisting of two parts. In the first part, the
“objective” one, we aimed at measuring the comprehensibility of an ADORA model.
We created 30 questions about the contents of the specification, for example “Can a
user at a point of sale terminal purchase an arbitrary number of tickets for an event in a
single transaction?” 25 questions were yes/no questions; the rest were open questions.
For every question, we additionally asked, whether the answering person was sure or
unsure about her or his answer and how difficult it was to answer the question.

In the second part, the “subjective” one, we tested the acceptance of ADORA vs.
UML. We asked 14 questions about the personal opinion of the answering person con-
cerning distinctive features of both ADORA and UML, for example “Does it make
sense to use an integrated model (like ADORA) for describing all aspects of a system”?
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We ran the experiment with fifteen graduate and Ph.D. students in Computer Sci-
ence who were not members of our research group. The participants were first given an
introduction both to ADORA and to UML. Then we divided the participants into two
groups. The members of group A answered the objective part of the questionnaire first
for the ADORA specification and then for the UML specification; group B members did
it vice-versa. Finally, both groups answered the subjective part of the questionnaire. In
order to avoid answers being biased towards ADORA, we ensured the anonymity of the
filled questionnaires.

Two participants did not finish the experiment; another person’s answers could not
be scored because his answers revealed insufficient base knowledge of object technol-
ogy. So we finally had twelve complete sets of answers.

4.2 Some Results

Due to space limitations, we only can present some key results here. The complete
results are given in [2]. As the differences between groups A and B are marginal, we
consolidate the results for both groups in the results given below.

Fig. 9. Comprehensibility of models. Right and wrong answers to the questions in the objective 
part of the questionnaire for ADORA vs. UML models. The graphics also shows how certain the 
participants were about their answers and how they rated the difficulty of answering. 

Fig. 9 shows the overall results of the first part of the questionnaire. For each model,
we had a total of 360 answers (30 questions times 12 participants). For every answer,
we determined whether the answer was objectively right or wrong. The answers were
further subdivided into those where the answering person was sure about her or his
answer and those where she or he was not. The subdivision of the columns indicates
how difficult it was to answer the questions in the participants’ opinion. (For example,
about 79% of the questions about the ADORA model were answered correctly and the
participants were sure about their answer. For about half of these answers, the partici-
pants judged the answer to be easy to give.)

Despite the fact that the number of participants was fairly small, these results
strongly support the comprehensibility hypothesis and also show a clear trend that an
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ADORA specification is easier to comprehend than an UML specification. Moreover,
we have two important results that are statistically significant at a level of 0.5% [2]:

• The percentage of correctly answered questions is higher for the ADORA model than
for the UML model. That means, reading the ADORA model is less error-prone than
reading the UML model.

• When answering a question correctly, the readers of the ADORA model are more
confident of themselves than the readers of the UML model.

Table 1 summarizes the results of the subjective part of the questionnaire. Again, the
results strongly support our hypothesis that users like the fundamental concepts of
ADORA and that they prefer them to those of UML. 

Table 1. Acceptance of distinct features; ADORA vs. UML

Even if we subtract some potential bias (maybe some of the participating students
did not want to hurt us), we can conclude from this experiment that the ADORA lan-
guage is clearly a step into the right direction.

5 Yet Another Language? ADORA vs. UML

The goal of the ADORA project is not to bless mankind with another fancy modeling
language. When UML became a standard, we of course investigated the option of mak-
ing ADORA a variant of UML. The reason why we didn’t is because ADORA and UML
differ too much in their basic concepts (Table 2). The most fundamental difference is
the concept of an integrated, hierarchically decomposable model in ADORA vs. a flat,
mostly non-decomposable collection of models in UML. Using packages for an
ADORA-like decomposition fails, because UML packages are mere containers. Using
stereotypes for integrating ADORA into UML would be an abuse of this concept, as the
resulting language would no longer behave like UML. A real integration of ADORA-
concepts into UML would require major changes in the UML metamodel [9].

Statement strongly 
agree

mostly 
agree

mostly 
disagree

strongly 
disagree

The specification gives the reader a precise idea about the 
system components and relationships

ADORA

UML
23%

8%
62%
46%

8%
31%

8%
15%

The structure of the system can be determined easily ADORA

UML
54%

8%
31%
38%

8%
23%

8%
31%

The specification is an appropriate basis for design and 
implementation

ADORA

UML
25%

0%
75%
50%

0%
33%

0%
17%

Using an integrated model (ADORA) makes sense
Using a set of loosely coupled diagrams (UML) makes sense

42%
8%

25%
17%

33%
67%

0%
8%

Hierarchical decomposition eases description of large systems
ADORA eases focusing on parts without losing context 
 Decomposition in ADORA eases finding information
Integrating information from different diagrams is easy in UML 

15%
38%
46%
15%

69%
46%
38%
15%

15%
15%
15%
46%

0%
0%
0%

23%
Specifying objects with their roles and context is adequate
Describing classes is sufficient

31%
0%

54%
15%

15%
62%

0%
23%



– 16 –

Table 2. Comparison of basic concepts of ADORA vs. UML

6 Conclusions

Summary. We have presented ADORA, an approach to object-oriented modeling that is
based on object modeling and hierarchical decomposition, using an integrated model.
The ADORA language is intended to be used for requirements specifications and high-
level, logical views of software architectures.
Code generation. ADORA is not a visual programming language. Therefore, we have
not done any work towards code generation up to now. However, in principle the gen-
eration of prototypes from an ADORA model is possible. ADORA has both the structure
and the language elements that are required for this task.
State of work. We have finished a first definition of the ADORA language in 1999 [13].
In the meantime we have evolved some language concepts and have conducted an
experimental validation. The ADORA tool is still in the proof-of-concept phase. We
have a prototype demonstrating that the zooming algorithm, which is the basis of our
visualization concept, works. 
Future plans. The work on ADORA goes on. In the next years, we will develop a real
tool prototype and investigate the use of ADORA for partial and incrementally evolving
specifications. Parallel to that, we want to apply ADORA in projects and evolve the lan-
guage according to the experience gained.
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