
Runtime Adaptation of Applications through
Dynamic Recomposition of Components?

Arun Mukhija and Martin Glinz

Institut für Informatik
University of Zurich, CH-8057, Switzerland

{mukhija | glinz}@ifi.unizh.ch

Abstract. Software applications executing in highly dynamic environ-
ments are faced with the challenge of frequent and usually unpredictable
changes in their execution environment. In order to cope with this chal-
lenge effectively, the applications need to adapt to these changes dy-
namically. CASA (Contract-based Adaptive Software Architecture) pro-
vides a framework for enabling dynamic adaptation of applications, in
response to changes in their execution environment. One of the principle
adaptation mechanisms employed in the CASA framework is dynamic
recomposition of application components. In this paper, we discuss im-
plementation issues related to the approach for dynamic recomposition
of application components in CASA.

1 Introduction

A major challenge for software applications executing in highly dynamic envi-
ronments (such as those in pervasive and ubiquitous computing scenarios) is the
consistently changing execution environment of these applications. The changes
in execution environment can be in the form of (i) changes in contextual informa-
tion (user’s location, identity of nearby objects or persons etc.), or (ii) changes
in resource availability (bandwidth, battery power, connectivity etc.).

Contextual information refers to (purely) the information about the context
of an application that may influence the service provided by the application
(such as locational information, temporal information, atmospherical informa-
tion etc.), in contrast to resources that form the physical infrastructure available
to the application for providing this service (such as communication resources,
data resources, computing resources etc.). A change in contextual information
may present an opportunity for an application to adapt its behavior, in order to
provide a more relevant service with respect to the changed contextual informa-
tion. Similarly, a change in resource availability may require an application to
change its resource consumption accordingly, necessitating an adaptation of the
application’s behavior.
? The work presented in this paper was supported (in part) by the National Center

of Competence in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation.

Proceedings of the 18th International Conference on Architecture of Computing
Systems (ARCS 2005), Innsbruck, Austria, March 2005, pp. 124-138. c©2005
Springer.

The existing approaches for dynamic adaptation of applications have focused
mainly on runtime changes in resource availability. Most of these approaches
try to adapt the lower-level services used by applications at the middleware
level, and thereby influence the resource consumption due to these applications.
Examples of adaptation of the lower-level services include modifying the quality
or compression level of the data being transmitted over a communication channel
in response to a change in the available bandwidth, changing the caching policy
in response to a change in the available memory etc.

However, we argue that a dynamic change in application code should be
provided as a means of application adaptation, in addition to the adaptation of
the lower-level services at the middleware level, in order to effectively deal with
the changes in execution environment.

This is because: (1) In response to a change in contextual information, a corre-
sponding change in the functionality of an application is usually required, which
typically requires a change in the application code. For example, if the contextual
information related to a Tourist Guide application changes from shopping mall
to open-air cinema, the application needs to provide relevant information about
the weather conditions and show-timings, in place of the information about the
availability of the items in the user’s shopping list in the shopping mall. This
kind of change in functionality requires a change in application code. (2) Even
if small variations in resource availability can be handled by adapting the lower-
level services, for large variations a change in application code is usually required.
For example, consider a Disaster Control application transmitting the live video
stream of an erupting volcano from a mobile node to a coordination center. For
a small drop in the available bandwidth, an adaptive middleware may try to
reduce the quality of the video transmitted, in order to save bandwidth. But for
a significant drop in the bandwidth, it may be more apt for the application to
send a textual description of the volcano (along with frequent images, if possi-
ble), rather than reducing the quality of the video beyond a threshold level. This
kind of adaptation again requires a change in application code.

A runtime change in application code can be most primitively achieved by
hardwiring the adaptation mechanism within an application (e.g. using program-
ming constructs like if-else or switch-case etc.). However, this is a very tedious
and limited solution to the problem. It makes the process of application de-
velopment more complex, because the adaptation code is intertwined with the
application code. Moreover, with this approach the adaptation policy cannot be
changed during runtime, because of the hardwiring of the adaptation mechanism,
posing a limitation to its usefulness for dynamic environments.

Recent approaches for dynamic weaving and unweaving of aspects, influenc-
ing the crosscutting functionality of an application such as security or persis-
tence management, are a step in the right direction (the term aspect used in
the sense of the aspect-oriented programming [6]). But, as the name indicates,
these approaches are restricted to adapting the crosscutting functionality of an
application. Whereas in practice, an adaptation of the core functionality of an

application may be required as well, like in the examples of Tourist Guide and
Disaster Control applications above.

Modern software applications are composed of components, where each com-
ponent implements a subtask of the application (we will use the term component
to refer to application component in this paper). In a component-based appli-
cation development, the components encapsulate their implementation details,
interact with each other only through their well-defined interfaces (using method
calls), and generally follow the principle of separation of concerns. This makes
it possible and convenient to alter the application code dynamically by recom-
posing the components at runtime.

CASA (Contract-based Adaptive Software Architecture) [1, 10] provides a
framework for enabling dynamic adaptation of applications executing in dy-
namic environments. The CASA Runtime System monitors the changes in the
execution environment of applications, and in case of significant changes carries
out dynamic adaptation of applications. The adaptation policy of every appli-
cation is defined in a so-called application contract. In order to meet adaptation
needs of a broad and diverse set of applications, CASA supports the following
adaptation mechanisms: dynamic change in lower-level services, dynamic weav-
ing and unweaving of aspects, dynamic change in application attributes, and
dynamic recomposition of components. The adaptation concerns are separated
from the application, thereby reducing the complexity involved in developing
adaptive applications. In this paper, we discuss implementation issues related to
the approach for dynamic recomposition of components in CASA.

The rest of the paper is organized as follows. In Section 2, we give a brief
overview of the CASA framework. In Section 3, we identify the key requirements
for dynamic recomposition of components. In Section 4, we discuss implementa-
tion issues related to dynamic recomposition of components in CASA. In Section
5, we give an overview of related work. And in Section 6, we conclude the paper
and indicate future direction of our work.

2 Overview of the CASA framework

Figure 1 shows the conceptual working of the CASA framework. Every comput-
ing node hosting adaptive applications is required to run an instance of the CASA
Runtime System (CRS). The CRS is responsible for monitoring the changes in
execution environment on behalf of these applications, and to adapt these ap-
plications as and when necessitated by a change in execution environment. The
adaptation policy of every application is defined in a so-called application con-
tract.

A three-step adaptation process is illustrated in Figure 1. Every time the
CRS detects a change in the execution environment (step 1), it evaluates the ap-
plication contracts of the running applications with respect to the changed state
of the execution environment (step 2). If the CRS discovers a need for adapting
certain applications, it carries out the adaptation of the affected applications, in

accordance with the adaptation policies specified in the respective application
contracts (step 3).

Application adaptation can be realized using one or more of the following
adaptation mechanisms supported by CASA, depending on the adaptation needs
of a specific application:

– Dynamic change in lower-level services: For a dynamic change in lower-level
services used by applications, CASA can be integrated with any adaptive
middleware for this purpose that supports external regulation of its adapta-
tion strategy. Several reflection-based adaptive middleware fit in this cate-
gory, such as Odyssey [11], QuO [15] etc.

– Dynamic weaving and unweaving of aspects: For dynamic weaving and un-
weaving of aspects, CASA relies on a flexible and efficient system for this
purpose called PROSE [13].

– Dynamic change in application attributes: For a dynamic change in applica-
tion attributes, the application needs to provide appropriate callback meth-
ods that can be called by the CRS at runtime.

– Dynamic recomposition of components: For dynamic recomposition of com-
ponents, CASA follows an indigenous approach described in Section 4.

a change in
execution environment
warranting adaptation

CASA Runtime System (CRS)

Execution Environment

1

consult
adaptation

policy

2

Applications (1...n)

dynamic change in
components / aspects /

attributes

dynamic change in
lower-level services

Adaptive Middleware

3

Application Contracts
(1...n)

3

Fig. 1. Working of CASA

<app-contract name="App1">
 <context id="1">
 <params .../>
 <config id="1">
 <resources .../>
 <components>
 <binding handle="HC1" boundto="CdefA1"/>
 <binding handle="HC2" boundto="CdefG2"/>
 .
 .
 </components>
 <aspects .../>
 <callback .../>
 <llservices .../>
 </config>
 .
 .
 .
 </context>
 .
 .
 .
</app-contract>

Fig. 2. Application contract

An excerpt of an application contract is shown in Figure 2. The application
contract is external to the application, and is specified using an XML-based
language. This enables easy modification, extension, and customization of the
adaptation policy at runtime. Moreover, it facilitates separating the adaptation
concerns from the application.

The application contract is divided into <context> elements, where each
<context> element represents a state of contextual information of interest to
the application (the parameters characterizing this state are specified within

<params> element). Each <context> element in turn contains a list of alterna-
tive configurations of the application, suited to the particular state of contextual
information. These configurations are listed in a special ordering that reflects
their user-perceived preference. Each <config> element, representing a configu-
ration, specifies the resource requirements of the configuration, the components
and aspects constituting the configuration, the callback methods to be called
for the configuration, and the lower-level services corresponding to the configu-
ration. The detailed specification of an application contract is not described in
this paper as it is not relevant to our discussion of the approach for dynamic re-
composition of components, except the specification of <components> element
which is discussed partially in Section 4.

Depending on the current state of the execution environment (contextual
information and resources), the appropriate configuration from the application
contract is selected and activated by the CRS. More details on the CASA frame-
work can be found in [1, 10].

3 Requirements for dynamic recomposition of
components

A component composition, or just composition, is a collection of components
qualified to do the required application task under a specific state of the execu-
tion environment.

A primary and obvious requirement for application adaptation through dy-
namic recomposition of components is:
Requirement 0: An adaptive application needs to provide a number of alternative
compositions for different states of the execution environment.

We can now define dynamic recomposition of components as changing be-
tween alternative compositions of an application at runtime.

Any two alternative compositions may vary in just a few components, while
many other components remain the same across both compositions. When chang-
ing from one alternative composition to another, there may be some new com-
ponents to be added and some old components to be removed.

Dynamic replacement of components is a special case of a dynamic removal
of a component A followed by a dynamic addition of a component A′, such that
A′ is able to serve all those components that could be served by A, in an alike
manner as A itself.

If a component A can be dynamically replaced by a component A′, then
both A and A′ must subscribe to the same component contract (the term con-
tract used in the sense of the Design by Contract approach [9]). That is, the
following two requirements need to be satisfied by A and A′ (in CASA, dynamic
replacements are bidirectional, i.e. if A can be dynamically replaced by A′, then
it automatically implies that A′ can also be dynamically replaced by A):
Requirement 1: Both A and A′ must conform to the same interface, i.e. the
method signatures of the publicly-accessible methods of A and A′ must be the
same.

Requirement 2: The pre and post conditions of the publicly-accessible methods
of A and A′, which must be satisfied for the interaction of these methods with
their clients, must be the same. The pre and post conditions may also include
certain non-functional assertions or constraints.

Next, we state a requirement for mapping the state of A to the state of A′.
For this purpose, we define the persistent state of a component as the state that
needs to remain persistent in between its executions.
Requirement 3: A valid persistent state of A when mapped to A′, using an
appropriate state mapping function, must become a valid persistent state of A′.

The following two requirements pertain to the dynamic removal and dynamic
addition of components.
Requirement 4: If a component A is removed during dynamic recomposition, then
it must be replaced dynamically by a component A′ or else all the components
depending on A must also be removed along with A.
Requirement 5: If a component A′ is added during dynamic recomposition, then
the components on which A′ depends either must already be present or they
must be added along with A′.

Requirements 4 and 5 are related to ensuring the completeness of alternative
compositions.

Both completeness and correctness of every alternative composition, in terms
of its ability to do the required application task under its corresponding state of
the execution environment, need to be ensured by the application developer at
the time of composing the alternative compositions.

The following two requirements are related to ensuring the consistency of the
application.
Requirement 6: If a component A is replaced dynamically by a component A′,
then A′ must be able to continue the execution from where A left.
Requirement 7: The integrity of the interactions among components must not
be compromised due to dynamic recomposition.

Requirements 6 and 7 above help to protect the application from being in an
inconsistent state as a result of the dynamic recomposition.

4 Implementation of dynamic recomposition of
components in CASA

In this section, we discuss the implementation issues related to dynamic re-
composition of components for the applications developed using object-oriented
programming languages. In particular, we consider Java as a target language,
because of its widespread use and popularity. However, we will try to keep our
discussion as language-neutral as possible, so that the results are applicable for
a wide range of object-oriented programming languages.

A dynamic recomposition implies adding / removing / replacing components
dynamically. Dynamic replacement of components is of particular interest here,
as it is more critical than simple addition or removal of components which is rela-

tively straightforward to carry out. Hence we will focus on dynamic replacement
of components in the following.

In principle, there are two possible strategies for dynamic replacement: Lazy
replacement and Eager replacement. Below we briefly discuss the two.
Lazy replacement: In this strategy, once the decision for dynamic recomposition is
taken, an already running component is allowed to complete its current execution
before being replaced.
Eager replacement: In contrast to the lazy replacement strategy, here the ex-
ecution of a running component is suspended once the decision for dynamic
recomposition is taken, and the execution resumes again from the point where
it was suspended, after the component is replaced.

Figure 3 illustrates lazy replacement (Figure 3a) and eager replacement (Fig-
ure 3b). In Figure 3, the horizontal axis represents the time line, and the vertical
dashed line represents the time T when the decision for dynamic recomposition
is taken. In this example, the components A, B, C and D are to be replaced by
the components A′, B′, C ′ and D′ respectively as a result of dynamic recompo-
sition (dark bars denote the execution of old components, and light bars denote
the execution of new components). Only the components A and C are under
execution at time T . In Figure 3a (representing lazy replacement) A and C are
allowed to complete their execution before being replaced by A′ and C ′ respec-
tively. Whereas in Figure 3b (representing eager replacement), the execution of
A and C is suspended at time T , they are replaced by A′ and C ′ respectively,
and the execution resumes again with A′ and C ′.

A
B

D
C

T

A'
B'

D'
C'

Fig. 3a. Lazy replacement strategy

A
B

D
C

T

A'
B'

D'
C'

Fig. 3b. Eager replacement strategy

Since the eager replacement strategy is able to give a faster response to a
change in execution environment than the lazy one, we decide in favor of eager
replacement for CASA. However, as discussed later, it may not always be possible
to use eager replacement, and thus sometimes lazy replacement may be the only
option.

4.1 Dynamic replacement process

In terms of object-oriented programming, a component is essentially an instance
of a class (with a restriction that, unlike normal class instances, components
cannot have any externally-visible state). Thus, from an implementation point

of view, replacing a component involves replacing the corresponding class defi-
nition of the instance. We will use the terms “component” and “class instance”
interchangeably throughout the rest of this paper.

We now define an adaptable class as the one whose instances are dynami-
cally replaceable (i.e. can replace, or be replaced by, instances of other classes
dynamically). Additionally, we define a set of alternative classes as a collection
of adaptable classes whose instances can dynamically replace each other. That
is, all the adaptable classes that are members of the same set of alternative
classes, and by implication the instances of these adaptable classes, conform to
the requirements 1-3 identified in Section 3.

To ease our implementation process, we impose the following additional con-
ditions:
(i) An instance A of a class C can be dynamically replaced by an instance A′ of
a class C ′ only if C and C ′ are members of the same set of alternative classes.
(ii) Any given composition may contain instances of only one of the adaptable
classes from any given set of alternative classes. That is, no two instances in a
given composition may be of different classes from the same set of alternative
classes.

We use a variant of the Bridge pattern [2] for hiding the complexities of
dynamic replacement from the application code. In particular, every set of al-
ternative classes is associated with a unique Handle class. The Handle class
conforms to the same interface as the adaptable classes in its associated set.

The Handle class acts as an abstraction that can be bound to any of the
adaptable class implementations from its associated set of alternative classes
at runtime (the terms abstraction and implementation used in the sense of the
Bridge pattern [2]).

We know that (i) any given composition may contain instances of only one of
the adaptable classes from any given set of alternative classes, and (ii) every set
of alternative classes has a unique Handle class associated to it. Therefore, we
can conclude that: for any given composition there is a unique adaptable class
bound to any given Handle class.

The binding between a Handle class and its corresponding adaptable class
for a given composition is represented as a part of the composition specification
in the application contract (refer <binding> element within <components>
element in Figure 2).

In order to provide a layer of transparency between the application code
and the dynamic replacement process, wherever there is a need for creating
an instance of an adaptable class in the application code, an instance of the
corresponding Handle class is created instead. This Handle class instance is
then linked to an instance of the adaptable class that is currently bound to the
Handle class, at runtime (as explained below).

Let a set of alternative classes S consist of the adaptable classes CdefA, CdefB
and CdefC, and the associated Handle class for the set S be HC. At any given
time, HC will be bound to a unique adaptable class from the set S, depending on

the currently active composition. However, this binding may change dynamically
as a result of dynamic recomposition.

In the application code, when a new instance objHC of the Handle class HC
is created, the constructor of objHC invokes the CRS (CASA Runtime System).
The CRS gets the information about the adaptable class currently bound to HC,
say CdefA, from the specification of the currently active composition, and returns
the namespace location of the class CdefA back to the constructor of objHC (the
CRS also registers objHC for future recompositions). The constructor of objHC
then creates an instance of CdefA, say objA, and stores it internally as active
adaptable class instance.

Although a Handle class conforms to the same interface as the classes in its
associated set of alternative classes, it does not provide a real implementation
for any of the methods in this interface. The methods of a Handle class instance
simply forward the method calls invoked on them to the corresponding methods
of the active adaptable class instance, and return the results as received from the
latter. For example, if a method foo() is invoked on objHC, then objHC.foo()
simply invokes the method objA.foo(), and returns the result as received from
objA.foo().

If there is a change in the binding between the Handle class HC and its
corresponding adaptable class, due to dynamic recomposition, then the CRS
passes the namespace location of the newly bound adaptable class, say CdefB,
to all the instances of HC (including objHC). The instances of HC replace the old
adaptable class instances with the instances of CdefB as active adaptable class
instances (the details of this replacement are discussed next). The calls to an
instance of HC will now be forwarded automatically to the new adaptable class
instance in place of the old one. This way, the Handle class instances help to
hide the details of dynamic replacement from the application.

Figure 4 illustrates the above example of dynamic replacement. In Figure 4a
the Handle class instance objHC is linked to the old adaptable class instance
objA, just before the dynamic replacement is carried out. And in Figure 4b,
objHC is linked to the new adaptable class instance, say objB, just after the
dynamic replacement is over. The external components (extObj1, extObj2 and
extObj3) are largely unaffected by this dynamic replacement, as their links to
objHC remain undisturbed by the change.

objA

extObj1

extObj2

extObj3

objHC

Fig. 4a. Before dynamic replacement

objB

extObj1

extObj2

extObj3

objHC

Fig. 4b. After dynamic replacement

Below we discuss the sequence of steps to be carried out by objHC when
replacing objA with objB (as per the eager replacement strategy).

Sequence of steps:

1. Deactivate objA
2. Suspend the execution of objA
3. Create objB
4. Transfer the state of objA to objB
5. Activate objB

If objA is not running at the time of replacement then step 2 is not required.
Below we discuss the implementation of the above-mentioned steps.
Step 1: Deactivate objA: First, on receiving an indication from the the CRS
about dynamic replacement, objHC deactivates the reference to objA. This en-
sures that the calls made to objHC during the dynamic replacement process are
not forwarded to objA, and rather wait within objHC.
Step 2: Suspend the execution of objA: Suspending the execution of objA im-
plies suspending all the calls currently executing on objA. But before actually
suspending a call executing on objA, it needs to be ensured that the execution
of the call has reached a safe point where it can be resumed correctly by objB,
at the end of dynamic replacement. And for this, the safe points need to be
explicitly defined in the body of objA (more discussion on this follows later).

After deactivating the reference to objA (step 1), objHC sets a signal for the
suspension of objA. At every safe point, each call executing on objA checks if
a signal for the suspension of objA has been set. If such a signal is set, then
an exception is thrown on this call, to be eventually caught by objHC. The
information about the safe point where the call is suspended is also passed
to objHC along with the exception. After catching the exception, objHC needs
to take necessary actions like reinvoking the call on objB after the completion
of the dynamic replacement process. This time the information about the safe
point where the call was previously suspended is passed as an argument while
reinvoking the call, to enable objB to resume the execution correctly. For this,
the methods of objB should be able to accept an additional argument of the
type SafePoint (during normal forwarding of calls by objHC, the value of this
argument will be null).

This step is over when all the calls executing on objA have returned (either
normally or after being suspended) to objHC.
Step 3: Create objB: After setting the signal for the suspension of objA, objHC
creates an instance of the new adaptable class (passed by the CRS), i.e. objB
(the creation of objB may take place while step 2 is still on, i.e. during the time
all the calls executing on objA return to objHC).
Step 4: Transfer the state of objA to objB: Once all the calls executing on objA
have returned to objHC (at the end of step 2), the state of objA is transferred
to objB at the initiation of objHC.

For transferring the state, i.e. storing the state and loading the state, every
dynamically replaceable component needs to provide appropriate storeState
and loadState methods. This is because state parameters (names and types)
may vary across the old and new components, which means that the semantic
information necessary for state transfer can be provided by the respective com-
ponents only. The storeState method of objA may need to convert its own
component-specific representation of the state into a standard representation
(standard for the corresponding set of alternative classes), which the loadState
method of objB understands and may again convert into its own component-
specific representation.
Step 5: Activate objB: Finally, objHC sets objB as active adaptable class instance
(objA can now be garbage collected).

Now the execution can continue on objB.

Discussion: The description above assumes that the new component requires
the state of the old component to be transferred to it, and also requires the
information about the safe points where the calls were suspended, in order to
continue the execution from where the old component left. However, in practice,
either or both of these requirements can be relaxed, depending on the properties
of the concerned components (on the other hand, it ultimately rests on the
capability of the new component itself to continue the execution correctly, even
if both these requirements are satisfied).

That is, in some cases, there may not be a need for passing the information
about the safe points to the new component, e.g. if the state transferred to the
new component provides enough information to resume the execution correctly.
And in rather extreme cases, there may not be a need for transferring the state
of the old component to the new component, e.g. if the new component is specif-
ically designed to recover from a state loss, though it will most likely result in a
degraded performance.

There can be some components that can be suspended abruptly, e.g. if the
new component provides an entirely different functionality and is going to be-
gin its execution from its initial point of execution (as typically in response to
a change in contextual information). This means that every point of execution
in the old component is in effect a safe point. From the implementation per-
spective, this implies that there is no need for explicitly defining safe points in
such components, and the already executing calls can be simply suspended by
throwing exceptions abruptly in step 2 above.

Queuing the new calls made during the dynamic replacement process within
the Handle class instance, as well as the calls that were suspended and returned
to the Handle class instance, and invoking these calls at the end of dynamic
replacement, help maintain the integrity of the interactions among components.

Next we show that eager replacement may not be viable for some components,
leaving lazy replacement as the only option.

Consider an eager replacement where the state of the old component needs
to be transferred to the new component, and the old component is running

at the time of replacement. One of the necessary conditions for ensuring the
validity of this replacement is that the state transferred gets transformed into a
reachable state of the new component. This will most likely not be possible at any
random point of execution of the old component, but probably at some specific
points. Such points of execution of the old component that ensure that the state
transferred gets transformed into a reachable state of the new component are
referred as valid-change points. If the state transferred at any random point
of execution is ensured to get transformed into a reachable state of the new
component, then it implies that every point of execution of the old component
is a valid-change point.

We know that in the eager replacement strategy the state is transferred at
the safe point where the last of the calls executing on the old component is
suspended. Now to ensure a valid replacement, this safe point has to be a valid-
change point. And since we cannot predict in advance at which safe point the last
call will be suspended, we can say that every safe point has to be a valid-change
point.

However, we argue that there is no guarantee that a valid-change point exists
in an arbitrary component to be replaced (not counting the control points just
before the initial point and just after the last point of execution, as they are not
practically very helpful).

To support our argument, we refer to the results provided by Gupta et. al. [3]
in the context of a runtime change in software version. They define a valid change
as the one in which the state of the old software version gets transformed into
a reachable state of the new software version. They also show that locating the
points of execution where a valid change may be guaranteed is in general unde-
cidable, and approximate techniques based on data-flow analysis and knowledge
of application developer are required. This effectively implies that there may not
exist any point of execution in the old software version that may guarantee a
valid change.

This result can be directly extended to the case of dynamic replacement of
components, to support our argument that there is no guarantee that a valid-
change point exists in an arbitrary component to be replaced.

If a component does not contain any valid-change point, then the possibility
of defining safe points in the component is automatically ruled out. This, in
turn, renders eager replacement unachievable for such components, leaving lazy
replacement as the only option.

With lazy replacement, the component to be replaced is certainly not run-
ning at the time of replacement, and thus the state to be transferred refers to the
persistent state of the component, in contrast to the transient state for a com-
ponent that is running at the time of replacement. From requirement 3 (Section
3), we know that the persistent state of the old component when transferred to
the new component is automatically a reachable state of the new component.

For lazy replacement, the replacement process discussed before can be suit-
ably modified in a straightforward manner. In any case, the implementation of

either of the two strategies is localized within a Handle class instance and the
corresponding dynamically replaceable components.

4.2 Performance evaluation

A prototype, based on the CASA framework, has been implemented in Java,
and the results have been encouraging. We have been able to demonstrate the
dynamic adaptation features of the CASA framework, at a minimal performance
cost. A detailed overview of performance evaluation of the prototype is given in
[4]. Below we present some of the indicative results.

During normal operation of an application, the only performance overheads
are due to using an additional level of indirection when accessing a dynamically
replaceable component through a Handle class instance, and for checking a signal
for component suspension at every safe point within the component code. Both
these overheads were found to be quite insignificant – in the order of a few micro
seconds.

The performance overhead during dynamic replacement of components varied
widely depending on the number of components to be replaced – for the test
results, the values were 2-7 ms for a single component and 25-100 ms for twenty
components, depending on the processor speed (assuming no delay for the calls
executing on the old components to reach their respective safe points).

The overhead for the state transfer between components was found to be
very small (in the order of a few micro seconds), while the size of the state to
be transferred did not have much influence on the results.

The frequency of safe points in a component code has an obvious positive
impact on the swiftness of dynamic replacement. Since the overhead due to each
safe point during normal operation is negligible (a couple of micro seconds),
it is recommended to define safe points quite frequently in every dynamically
replaceable component, if possible.

5 Related work

Over the last few years, some approaches have been proposed for software adap-
tation using dynamic change in application components. Rasche and Polze [14]
present an approach for dynamic reconfiguration of component-based applica-
tions for the Microsoft .NET platform. This approach uses a transaction-based
component model to decide the appropriate timing and order for reconfiguration.
However, dynamic reconfiguration here implies adding new components, remov-
ing old components, changing the connections among components, or changing
the component attributes, while it does not provide means for dynamic replace-
ment of components involving state transfer etc.

The Accord framework [7] enables a dynamic change in application behavior
according to the rules associated with every application component. However,
with this approach, the interactions between application components need to be
defined in terms of rules associated with the corresponding components, in order

for these interactions to be changeable at runtime by changing the corresponding
rules. Since the number of potential interactions between application components
can be quite large, the number of possible rules can be exponential, making
the rule management quite complex and inducing performance overhead due to
execution of all these rules at runtime.

Some more work has been done on runtime software evolution, which has a
close bearing with the software adaptation using dynamic change in application
components. Oreizy et. al. [12] provide a software architecture-based approach
for runtime software evolution, and discuss dynamic recomposition of applica-
tion components at the architecture level. In this approach, the components
interact with each other only through the connectors that mediate all compo-
nent communications. This makes it possible to alter a component composition
by changing the component bindings of the connectors at runtime. The role of
connectors here is similar to the role of Handle components in CASA, though in
CASA only the dynamically replaceable components need to be accessed through
Handle components.

Dynamic Java classes [8] provide a generic approach to support evolution
of Java programs by changing their classes at runtime. This approach shares
the same goals as our implementation approach. A drawback of this approach,
however, is that it takes a much harder way of modifying the JVM to implement
dynamic replacement of classes. Using a customized JVM may result in reduced
portability, and may eventually restrict the usage of this approach. Similarly, the
approach of dynamic C++ classes [5] allows a version change of a running C++
class. However, with this approach, once the version of a class has been changed,
only the new instances created after the version change belong to the newer
version. The already created instances belonging to the older version are either
allowed to continue till they expire normally or they are destroyed abruptly,
while no attempt is made to replace these instances with ones belonging to the
newer version. Clearly, such an approach is not suitable for our purpose.

6 Conclusion and future work

The CASA framework enables dynamic adaptation of applications in response
to changes in their execution environment. With a view to meet adaptation
needs of a broad and diverse set of applications, the CASA framework supports
dynamic adaptation at various levels of an application – from lower-level services
to application code. In this paper, we discussed the implementation issues related
to the adaptation of an application by recomposing its components dynamically,
as supported in the CASA framework.

An underlying presumption in realizing application adaptation through dy-
namic recomposition of components is that the application provides alternative
component compositions for different states of the execution environment. The
cost of developing these alternative component compositions would be mitigated
by the amount of reuse of the components constituting these compositions. We
have also presumed that the correctness and completeness of alternative compo-

nent compositions is ensured by the application developer at the time of com-
posing these compositions. We envisage that appropriate tools to help ensure
this would be available to the application developer.

In the near future, we intend to identify dynamic adaptation needs of dif-
ferent kinds of applications executing in dynamic environments. Based on this
information, we will verify which of these adaptation needs are met effectively
by our current approach and where modifications or extensions will be required.

References

1. The CASA Project. http://www.ifi.unizh.ch/req/casa/
2. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
3. D. Gupta, P. Jalote and G. Barua. A Formal Framework for On-line Software

Version Change. IEEE Transactions on Software Engineering, 22(2), 1996.
4. A. Gygax. Studying the Effect of Size and Complexity of Components on the Per-

formance of CASA. Internship Report, IFI, University of Zurich, 2004.
http://www.ifi.unizh.ch/req/ftp/papers/casa-perf.pdf

5. G. Hjalmtysson and R. Gray. Dynamic C++ Classes: A lightweight mechanism to
update code in a running program. Proc. of USENIX Annual Technical Conference,
1998.

6. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier
and J. Irwin. Aspect-Oriented Programming. Proc. of 11th European Conference
on Object-Oriented Programming, 1997.

7. H. Liu, M. Parashar and S. Hariri. A Component Based Programming Framework
for Autonomic Applications. Proc. of 1st International Conference on Autonomic
Computing, 2004.

8. S. Malabarba, R. Pandey, J. Gragg, E. Barr and J.F. Barnes. Runtime Support for
Type-Safe Dynamic Java Classes. Proc. of 14th European Conference on Object-
Oriented Programming, 2000.

9. B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10), 1992.
10. A. Mukhija and M. Glinz. A Framework for Dynamically Adaptive Applications

in a Self-organized Mobile Network Environment. Proc. of ICDCS 2004 Workshop
on Distributed Auto-adaptive and Reconfigurable Systems, 2004.

11. B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn and K.R.
Walker. Agile Application-Aware Adaptation for Mobility. Proc. of 16th ACM
Symposium on Operating Systems Principles, 1997.

12. P. Oreizy, N. Medvidovic and R.N. Taylor. Architecture-Based Runtime Software
Evolution. Proc. of 20th International Conference on Software Engineering, 1998.

13. A. Popovici, T. Gross and G. Alonso. Dynamic Weaving for Aspect-Oriented Pro-
gramming. Proc. of 1st International Conference on Aspect-Oriented Software De-
velopment, 2002.

14. A. Rasche and A. Polze. Configuration and Dynamic Reconfiguration of
Component-based Applications with Microsoft .NET. Proc. of 6th IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing, 2003.

15. J.A. Zinky, D.E. Bakken and R.E. Schantz. Architectural Support for Quality of
Service for CORBA Objects. Theory and Practice of Object Systems, 3(1), 1997.

