
Simulation-based Validation and Defect Localization for
Evolving, Semi-Formal Requirements Models

Christian Seybold, Martin Glinz, Silvio Meier

Department of Informatics, University of Zurich, Switzerland
{seybold | glinz | smeier }@ifi.unizh.ch

Abstract

When requirements models are developed in an iterative
and evolutionary way, requirements validation becomes a
major problem. In order to detect and fix problems early,
the specification should be validated as early as possible,
and should also be revalidated after each evolutionary step.

In this paper, we show how the ideas of continuous inte-
gration and automatic regression testing in the field of cod-
ing can be adapted for simulation-based, automatic revali-
dation of requirements models after each incremental step.
While the basic idea is fairly obvious, we are confronted
with a major obstacle: requirements models under devel-
opment are incomplete and semi-formal most of the time,
while classic simulation approaches require complete, for-
mal models. We present how we can simulate incomplete,
semi-formal models by interactively recording missing be-
havior or functionality.

However, regression simulations must run automatically
and do not permit interactivity. We therefore have devel-
oped a technique where the simulation engine automatically
resorts to the interactively recorded behavior in those cases
where it does not get enough information from the model
during a regression simulation run.

Finally, we demonstrate how the information gained
from model evolution and regression simulation can be ex-
ploited for locating defects in the model.

1 Introduction

Validating requirements and removing detected errors as
early as possible is quite important both for improving qual-
ity and reducing cost in software development. In tradi-
tional linear processes, the complete requirements specifi-
cation was written in a single phase and the specification
was validated at the end of this phase. Typically, the valida-
tion was done with manual techniques such as reviews.

However, with today’s iterative and evolutionary pro-
cesses, such a simple validation process is no longer appro-

priate. In order to identify problems and faults early, valida-
tion should be performed early and frequently, i.e. at least
after each iteration step. On the other hand, manual valida-
tion is expensive and time-consuming. Hence, it cannot be
performed so frequently. The problem is aggravated when
we specify requirements by formal or semi-formal models
and develop these models in an interactive and evolution-
ary style. Such models typically evolve in a sequence of
small, but frequently occurring incremental modifications.
As every small modification of a requirements model can
unintentionally destroy required properties that held in the
model prior to the modification, a model should be revali-
dated after each incremental step. However, this is not fea-
sible without automation.

In this paper, we present an approach that validates re-
quirements models by simulating them. Revalidation af-
ter incremental modeling steps is done by regression sim-
ulation, i.e. automatically re-executing previously recorded
simulation runs. While this idea is fairly obvious, we have
to deal with a major obstacle: requirements models under
development are incomplete and semi-formal most of the
time, while classic simulation approaches require complete,
formal models.

The main contribution of this paper is extending the con-
cept of simulation from formal models to semi-formal ones.
We interactively specify missing behavior or functionality
in a simulation case, but nevertheless allow regression sim-
ulations to run automatically. The latter is achieved by let-
ting the simulation engine automatically resort to the inter-
actively recorded behavior in those cases where it does not
get enough information from the model during a regression
simulation run.

As an additional benefit, simulation execution traces as
well as evolution information can be used for visualizing
failed regression runs and for localizing defects in a model.
The features described in this paper have been implemented
in the ADORA [7] modeling and simulation tool.

The remainder of the paper is organized as follows: In
Section 2.1, we describe some prerequisites about simula-
tion, the modeling language we use and the specification

1
To appear in: Proceedings of the 12th Asia-Pacific Software Engineering Conference, Taipei, Taiwan, December 2005.

Simulation Case Particular Simulation Run

System
Border

Figure 1. An example simulation run visualized as a sequence diagram for the model in Fig. 2.

process we assume. In Section 3, we show how a simu-
lation can be performed interactively on an informally and
incompletely specified model. In Section 4, we present how
a regression simulation can be used to revalidate also in-
complete specified models. In Section 5, we demonstrate
how the results of failing regression simulation runs can be
analyzed in order to locate the problems that caused the fail-
ures. Related work is described in Section 6. The paper
concludes with a summary of the main results and some re-
marks about future work.

2 Prerequisites

2.1 Simulation of requirements models

Simulation of formal requirements models is a well-
known technique for validating requirements [8, 12, 10].
The purpose of a simulation is to validate the reactions of
the modeled system to given stimuli, which are entered into
the simulation by the modeler via the model interface.

In order to do simulations systematically, we define sim-
ulation cases. Every execution of a simulation case yields a
simulation run. A simulation case can be regarded as an in-
stance scenario of the communication protocol between an
actor and the system. When a simulation case is executed,
one determines whether the scenario behaves as intended
and yields the desired results. In order to achieve a compre-
hensive validation, the intended behavior of a model must
be sufficiently covered by simulation cases.

A simulation case consists of a set of input stimuli and
system reactions. It is constructed by an interactive simula-
tion run when a required functionality of the specified sys-
tem is validated. Usually, a modeler would do this together
with a stakeholder.

A simulation run can be represented as a sequence di-
agram, see Fig. 1. The actor lifeline in this diagram rep-
resents the external actor. The messages sent and the re-
actions received by the actor represent the scenario of re-
quired system behavior given by the simulation case. The
other lifelines and the messages they exchange represent the
execution trace of the simulation run through the model.

A requirements specification may be complete and for-
mal at the end of a specification process, if at all. Most
of the time, however, it will be both semi-formal and in-
complete with respect to the modeler’s intentions. Semi-
formality is meant not as absence of semantics, but as con-
structive integration of informality and incompleteness in a
formal modeling framework. This allows a systematic re-
finement and evolution of an initially informal and rather
incomplete specification model.

A simulation engine for requirements models should
support semi-formality, so that validation by simulation be-
comes applicable also for models that are not yet completely
formalized. For that purpose, the simulation engine must
provide suitable interaction mechanisms for resolving unin-
terpretable statements during a simulation run with the help
of the modeler.

* 1

o
o

User

Use
Calculator

Perform
Operation

Check
Result

Input
Value

Subtract

Add

Screen
Keyboard

result display
Updated Calculated

subtracted

added
idle

Engine

| send display(value) over showResult

receive valueChanged() |

Calculator

show
Result

perform
Operation

2

receive add(i : integer) over perform
Operation | value = value + i;
send valueChanged();

receive subtract(i : integer) over
performOperation | value = value - i;
send valueChanged();

System Border

Figure 2. The corresponding simple calcula-
tor model to Fig. 1.

2.2 The modeling language

In order to be simulatable, a requirements model must
be constructive. In our approach, we are using the model-
ing language ADORA [7] based on a hierarchy of objects
which encapsulate operations, data, states, and scenarios.
Operations and data model the functionality of the system.
States represent explicit states in which the system reacts
to some expected stimuli and ignores others. Scenarios1

model the required sequence of interaction between a par-
ticular actor and the system. Both states and scenarios can
be decomposed hierarchically. In contrast to UML, ADORA
integrates all these aspects into a single, coherent logical
model. The ADORA tool provides mechanisms for visual-
izing multiple aspects together in a single diagram (Fig. 2)
or creating single aspect views of a model. ADORA also
provides constructs for expressing intentional incomplete-
ness and, hence, supports a variable, but controlled degree
of formality and completeness in a model. This is needed if
we want to develop and maintain a requirements model in
an incremental and evolutionary style (see Section 2.3).

1These are type scenarios, i.e. use cases in UML terminology

Fig. 2 shows a simple ADORA model, which we will use
as running example in this paper. The object Calculator in-
teracts with an external actor User. Calculator is decom-
posed into the objects Engine, Keyboard, and Screen. Its
interaction with User is specified in the type scenario Use
Calculator. Use Calculator is an iteration of Perform Oper-
ation, which in turn consists of a sequence of Input Value
and Check Result. Input Value has two alternative sub-
scenarios: Add and Subtract. The object Engine performs
the calculation. It consists of two concurrently running stat-
echarts. The first one is responsible for the event reception
and the calculation itself. The second one sends a message
to the Display with the new result according to the observer
pattern.

The simulation of an ADORA model is driven by execut-
ing the type scenarios that specify the interaction between
the actors and the system. An executing scenario generates
events that may trigger state transitions and/or invokes op-
erations on objects. These transitions and operations in turn
change the internal state of the system and eventually pro-
duce results that are passed back to actors.

Example: Assume that we have elicited the require-
ments for a Calculator as modeled in Fig. 2. For validating
this model, we instantiate the Use Calculator type scenario
with a set of instance scenarios that cover the functionality
of the model and execute them together with the customer.
Fig. 1 shows the execution trace of the scenario that first
adds 48 and then subtracts 6. If the customer agrees that
this simulation run exhibits the expected functionality and
behavior, the execution trace is stored as a simulation case.
Additionally, we can also define and execute negative in-
stance scenarios that represent sequences of unintended or
forbidden input events.

The selection of instance scenarios is a problem which is
analogous to the selection of test cases in black-box testing.
Hence, the same techniques are applicable.

Our approach is not confined to ADORA. Alternatively
one could use a sufficiently formalized subset of UML. We
use ADORA here, because it already has the features we
need, whereas with UML, we first had to define and formal-
ize a suitable subset.

2.3 Iterative requirements engineering process

As already discussed in the introduction, simulation is
a potential means for automatic revalidation of models in
an iterative requirements engineering process. Fig. 3 shows
such a process and illustrates how simulation and revalida-
tion interact with the tasks of elicitation and modeling.

This process supports an evolutionary style of eliciting,
documenting and validating requirements as well as an evo-
lutionary software development process (where we have a
sequence of iterations with each iteration consisting of spec-

Elicitation
(1)

Modeling
(2)

Requirements Model Increment

considered
complete?

No:
Model next increment

Yes:
Requirements Model
finished ready for
Architectural Design

Simulation
(3)

Revalidation
(4)

Validation
Problem?

Revalidation
Error?

Yes: Discuss
with stakeholder

No

Yes: Correct
erroneous model

No

Figure 3. Iterative process modeling requirements increments.

ification, design, implementation, and deployment) [13].
In order to keep track of the evolving artifacts, model

versions, simulation cases and simulation runs must be put
under configuration control. In our approach, we are using
cvs [3] for configuration management.

3 Simulating Semi-formal Models interac-
tively

An interactive simulation run is triggered by the injec-
tion of stimuli via the modeled system interface. Actors are
connected to scenarios trees that specify the communication
protocol with the system, see Fig. 2.

The current approaches to model simulation assume a
formal, fully executable model. However, with an incre-
mental, evolutionary style of model development, this as-
sumption is no longer valid: when a requirements specifica-
tion model is developed this way, it will typically be semi-
formal most of the time.

3.1 Incomplete Semi-Formal Simulation

In this section, we extend our simulation approach to in-
complete and semi-formally specified models. Incomplete-
ness means that required behavior and/or functionality is
missing. Semi-formality means informal parts are embed-
ded in the model structure in a human understandable way;
but they are not machine interpretable.

As an example, assume that we want to extend our cal-
culator (see Fig. 2) such that it also can multiply and divide.
Fig. 4 shows the result of an incremental modeling step,
where we have extended the Use Calculator scenario by two
additional alternatives Multiply and Divide. The model of

the calculator engine has been adapted partially: multiply is
specified informally, divide is not specified.

Now, let’s run a simulation case that contains a multi-
plication and a division. A conventional simulation engine
would fail on the multiplication and would ignore the divide
event. The latter would lead to unexpected behavior and to
a difficult task to locate and correct the problem if we had a
real-world size model.

Therefore, we have developed a simulation technique
that enables us to detect and handle informally specified or
incomplete behavior during a simulation run. If an event is
received and there are informally specified transitions out-
going from one of the active states of an object, the simula-
tion is temporarily stopped and an informal transition dia-
log box (Fig. 5) is displayed. One of the transitions could be
suitable to handle the event. By choosing the multiplication
transition, a corresponding formal description to receive the
multiply event is added to the informal description. Next
time in this situation, the event can be handled automati-
cally. If none of the informal transitions match, a new tran-
sition can be specified. This is similar to the reception of an
unhandled event.

When an unhandled event is detected, the simulation is
temporarily stopped to let the user react to this event. A
dialog box (Fig. 6 left) presents the user-relevant informa-
tion about the unhandled event: name, origin and parameter
values. S/he may either ignore the message (i.e. let the sim-
ulator ignore the event) or accept it. Local variables may be
defined to store the given parameter values enabling their
further processing. As an unhandled event may indicate an
incompleteness, the simulator suggests making the inten-
tional incompleteness explicit by marking the correspond-
ing component as partial (this is a feature provided by our
modeling language ADORA).

The next dialog box (Fig. 6 right) allows the user to spec-

User

 Use
Calculator

* Perform
Operation

2 Check
Result

Screen . . .
o

Multiply

o
Divide

1 Input
Value

o
Subtract

o
Add

Keyboard

multiplied

display
Updated

result
Calculated

subtracted

added
idle

Engine . . . receive add(i : integer) over perform
Operation | value = value + i;
send valueChanged();

receive subtract(i : integer) over
performOperation | value = value - i;
send valueChanged();

if a multiply event is
 received, perform the

 multiplication

| send display(value) over showResult

receive valueChanged() |

update
 the

 display

Counter

showResult

perform
Operation

Figure 4. Incomplete and informally speci-
fied extended model. New parts are drawn in
black.

ify several actions to be performed on this event, i.e. at-
tribute manipulations or sending further events. In our ex-
ample, the user enters the required behavior for a division.
The simulation then continues as usual until another unhan-
dled event is detected or the simulation is finished.

One might argue that this kind of simulation technique
requires too much user interactivity. However, a validation
anyway is interactive for the input of stimuli, alternative de-
cisions and the observation of outputs. The additionally re-
quired interactivity just depends on the degree of complete-
ness in the model.

The model remains unchanged after such an interactive
simulation run concerning unhandled messages. The newly
recorded behavior can only be found in the recorded se-
quence chart (Fig. 7). There, it is not apparent whether the
behavior was simulated or interactively played. We will see
later that we have to store some meta-information to be able
to run useful regression simulations.

4 Regression simulation

Regression simulation adapts the conceptual ideas from
regression testing. Instead of testing implementations with
the purpose of verification, requirements models are simu-
lated with the purpose of their revalidation. Instead of test

Figure 5. Event assigned to an informal tran-
sition.

Figure 6. Reception and reaction dialog on
an unhandled event.

cases, simulation cases manifest previously validated sys-
tem behavior in a formalized form.

While the idea of regression simulation is rather obvi-
ous, it has not been described or used before in the con-
text of continuously validating evolving requirements mod-
els. Furthermore, our extension of regression simulation to
semi-formal models (see Section 3) is novel and non-trivial.

As we are using regression simulation to determine
whether a requirements model meets the intentions of the
stakeholders, regression simulation basically is a validation
technique. On the other hand, regression simulation verifies
that the functionality and behavior of a requirements model
has not been changed unintentionally during a model evo-
lution step.

4.1 Storing cases under version control

Models are intended to evolve as part of the process; the
configuration management system tracks all modifications.
The simulation cases are not intended to evolve, but should
remain stable, because their purpose is to validate a certain
functionality. Only if the systems interface is intentionally

User Keyboard Engine Screen

Add(i = 21(integer))

multiply(i = 2(integer))

Divide(i = 7(integer))

add(param = 21(integer))

multiply(param = 2(integer))

divide(param = 7(integer))

valueChanged()
display(param = 21(integer))

valueChanged()
display(param = 42(integer))

valueChanged()
display(param = 6(integer))

CheckResult(i = 21(integer))

CheckResult(i = 42(integer))

CheckResult(i = 6(integer))

Figure 7. Simulation run for model in Fig. 4.

changed, the existing simulation cases may not run correctly
any more and therefore need adaption. That means, each
model version belongs to a set of versioned simulation cases
that validate that particular version.

In order to simplify the error localization, see Section 5,
the model and simulation cases should not be modified at
the same time. Either the model is changed, then the sim-
ulation cases remain stable. Or the simulation cases are
adapted, then the changes of the model are restricted to
modifications at the interface.

The re-execution of a simulation case is successful (i.e.
does not reveal a problem) if the sequence of messages be-
tween the actors and the system components is identical to
the strict sequence, whereas the system-internal trace may
be different.

4.2 Running the regression

Rerunning a simulation case is performed by replacing
the user interface with a replay engine that takes the nec-
essary inputs from the stored simulation case and compares
the produced outputs with the stored ones. The current sim-
ulation run is stored again as a sequence diagram and com-
pared to its last successful run, the so-called reference trace.

To benefit from regression simulation, one cannot rely on
manual executions of the simulation cases. This is a time-
consuming and error-prone work. The only reliable solution
is to establish a framework which continuously reruns the
automated simulation cases after each modification.

In the field of coding, continuous integration [6] frame-
works are well established, see [1] for example. We adapted
this iterative feedback cycle for our purpose to revalidate
requirements models. Our process of continuous integra-
tion with regression simulation is illustrated in Fig. 8. We
adapted the Cruisecontrol framework [1] to visualize the re-
sults of our regression runs. An example is given in Fig. 9.

(2) Simulation cases are
run automatically on build

server

Build has finished

Changes in
repository are

detected

(3) Results and build
artifacts are published on a

webserver

Modeler is
informed on
new results

(1) Modeler changes model
and commits modifications

to the repository

Figure 8. Continuous Integration Cycle.

Erroneous
simulation run (in red)

Passed
simulation runs (in green)

Failed
simulation run (in yellow)

Models under
re-validation

Figure 9. Regression Simulation Results pub-
lished on a webpage by Cruisecontrol.

4.3 Possible outcomes of a regression run

Table 1 shows the possible results of executed simulation
cases. The results are classified into three degrees of sever-
ity: Passed, Failure, and Error. The difference between fail-
ure and error is that in a failure run, certain controlled prop-
erties under proof fail, whereas unexpected incidents result
in errors.

Below, we present a detailed explanation of the possible
incidents and their causes:

Non-conforming outputs values. In this case, one or
more output values received from the system do not match
the values that have been recorded. This reveals a problem
either in the system, if the behavior was changed acciden-
tally, or in the simulation case, if the behavior of the system

Table 1. Possible incidents in a regression
simulation

Incident Result
No incident executing simulation case Passed

Non-conforming output values Failure
Assertions in model violated Failure

System reaction timeout Error
Error binding simulation case to model Error

was intended to change, but the simulation case was not
adapted yet.

Assertions in model violated. Assertion may be spec-
ified for example as contracts for interfaces to assure their
proper use. During a simulation run, these assertions are
checked.

Reaction timeout. Executing parallel tasks may lead to
deadlocks or the simulation may end in a endless loop. In
both cases, no messages are received from the system any
more. If no reaction is observed, it must be assumed the
simulation got stuck. It will be terminated after some given
timeout period.

Error binding simulation case to model. For every
simulation run, the recorded simulation case must be bound
to the model. This happens by matching the element names
occurring in the simulation case to the corresponding model
elements (e.g. the name of an actor, message, ...). If no
matching element can be found in the model, the binding
fails and the simulation run cannot be executed. This prob-
lem could be caused by a changed system interface.

4.4 Incomplete Regression Simulation

Next, we investigate how a regression simulation can be
established on such interactively recorded simulation cases.
On the one hand, we have to avoid interactivity for au-
tomatic execution. On the other hand, the interactively
recorded behavior is not yet available in the model and
therefore, a usual execution (ignoring unhandled messages)
would lead to a deviating behavior.

Ideally, we would expect a regression simulation to work
on a simulation case including interactively recorded behav-
ior as follows: 1. Running on an unchanged model, the re-
gression simulation has to produce exactly the same results
as the interactive simulation did. This can be done by look-
ing up the behavior for unhandled messages in the recorded
sequence chart. 2. As soon as the model is extended with
the missing behavior or functionality, we want the regres-
sion simulation to execute as given by the model instead of
looking up the behavior in the sequence chart. 3. Functional
changes to existing model behavior that had been validated
before, lets the regression simulation fail. In this case, we

explicitly do not want to use previously recorded behavior
from the sequence chart as model faults would remain un-
detected. 4. When a component that previously was marked
as partial becomes complete (i.e. the ”is partial” mark is re-
moved), the re-execution of a simulation case must behave
as specified in the model. No lookup in the sequence chart
is allowed.

These requirements show that we have to distinguish in-
teractively played behavior from general one in the record-
ings. We do this by storing some meta-information for each
event: We must record whether an event was received and
the corresponding actions were produced interactively. Fur-
thermore, we must record the effects of an interactively han-
dled event to be able to reproduce them, i.e. the actions that
were performed due to that event. Therefore, we store for
each action its causing event.

With this information in hand, we are able to build a re-
gression simulation that fulfills the above mentioned expec-
tations. The regression simulation executes as usual until
it detects an unhandled event. If the corresponding compo-
nent is not marked as partial, the message is ignored and
the regression simulation continues. Then, the simulation
run will fail when this message is relevant for any observ-
able system reaction.

Otherwise, the recorded behavior for the component is
taken to search for a suitable reaction. A suitable reaction
is one that has been interactively produced upon receiving
an equivalent message and has not been used before. Each
recording may be used at most once. If there is more than
one suitable reaction, the first unused reaction is taken. In
contrast to this, the stored message order is not regarded to
reach more flexibility in reacting to a changed model.

A regression simulation can produce two additional re-
sults:
1. A list of messages that have been recorded interactively,
but were not used in the simulation run. This indicates that
additional behavior was added to the model so that interac-
tively recorded behavior is not required any more.
2. A list of messages that could not be handled because of
the absence of any suitable, interactively recorded message.
This indicates that the model was changed in a way that the
recordings are not sufficient to handle all messages.

Example: Re-executing the simulation run given in
Fig. 7 as regression will lead to a successful result. The
statechart of Engine can handle the Add message as usual.
The multiply message can be handled as the informal tran-
sition was formalized during the interactive simulation run
(cp. Fig. 5). For the Divide message that cannot be han-
dled, the reaction can be taken from the sequence chart,
as Engine is marked as partial. The reactions are sending
valueChanged() to Engine itself and display(6) to Screen.
Hence, all messages are exactly handled as they were
recorded.

5 Locating model defects

If a regression simulation run fails, the modeler should
not only receive a message stating the kind of the fault (as
described in Section 4.3 above). S/he should also be pro-
vided with information about its location in order to help
her or him find and remove the cause(s) of the fault. Both
the erroneous trace and the configuration management pro-
vide information for localizing faults.

There are two facts that help locating the cause for a fail-
ure or error of a particular simulation run. On the one hand,
the cause lies somewhere in the trace of the simulation run.
Otherwise, it would not have been noticed. On the other
hand, the model evolved since the last successful run of
the erroneous simulation case. The evolution manifests in a
number of modified elements including deleted and added
ones. One or more modifications may have caused the fault.

Both the behavioral trace of the simulation run and the
set of modified elements can be used in isolation for the
localization of a fault. In order to narrow the defect space,
we combine the two. As they are orthogonal to each other,
their intersection yields a small set of defect candidates.

5.1 Evolved Model Parts

If a simulation case S fails on a model version B which
passed when executing on the previous version A, we as-
sume that the modifications caused the error. From the con-
figuration management system, we can extract the follow-
ing information:
The two model versions, ModelA and ModelB , the
reference trace Traceref,S which has been recorded
for a successful run of simulation case S, and the
failing trace Traceprod,S,B which has been produced
when running the simulation case S on model version
B. From this information, we can compute two Diffs:
the ModelDiffA,B = ModelA ∩ ModelB and the
TraceDiffS,B = Traceref,S ∩ Traceprod,S,B .

Example: We evolve again our calculator from Fig. 4 by
implementing the divide functionality in the statechart (see
Fig. 10). Unfortunately, we inserted a copy/paste error that
causes our first simulation case from Fig. 1 to fail because
of ’Non-conforming outputs values’.

The model difference between failing and working ver-
sion is ModelDiffA,B = {State:divided, Transition:idle →
divided, Transition:divided → idle}

We can see that the transition description idle → divided
was copied from the subtraction one (idle → subtracted),
however the event name was not changed. This leads to the
non-deterministic behavior in Engine when a subtract event
is received. It either performs the subtraction or the division
operation.

divided

Engine . . .

multiplied
subtracted

added
idle

receive add(i : integer) over perform
Operation | value = value + i;
send valueChanged();

receive subtract(i : integer) over
performOperation | value = value - i;
send valueChanged();

if a multiply event is
 received, perform the

 multiplication
update
 the

 display

receive subtract(i : integer) over
performOperation | value = value / i;

send valueChanged();

Figure 10. Newly inserted elements in Fig. 4
drawn in black, old ones in gray (clipping of
model).

5.2 The Simulation Trace

If the simulation run fails, the noticed failure or error
appears at some location in the trace. As we know from
testing, the defect normally does not occur at the location
where it is caused. The same applies to model simulations.

As a first means for narrowing the defect space, the erro-
neous Traceprod,S,B can be compared to the recorded ref-
erence trace Traceref,S

2:

Traceref,S = { {idle → added → idle → subtracted → idle},
{dU → rC → dU → rC → dU},
{User → Add → CR → Subtract → CR} }

Traceprod,S,B = { {idle → added → idle → divided → idle},
{dU → rC → dU → rC → dU},
{User → Add → CR → Subtract → CR }}

dU = displayUpdated, rC = resultCalculated, CR = CheckResult

For better understandability, we visualize the sequence
traces within the model. This can be done by connecting
the visited model elements according to the Use Case Maps
approach [2]. We have done this in Fig. 11 for our two sim-
ulation traces. The passed trace is drawn solid, the failed
trace is dashed. For each of the three execution threads,
we get separate lines beginning at the start state / scenario.
For long execution traces, this method does not scale as the
model would become overloaded with traces. In the follow-
ing section, we show how to reduce the load to a reasonable
amount of information.

The difference between the two traces formally mani-
fests in the TraceDiffS,B = { {idle → divided / sub-
tracted → idle}, {}, {} }. In the reference trace, state ’sub-
tracted’ was visited, in the current execution, it was state
’divided’.

2We restrict here to the visited states and scenarios. Usually, we would
also consider transitions and parameter values.

* 1

o
o

User

Use
Calculator

Perform
Operation

Check
Result

Input
Value

Subtract

Add

Screen
Keyboard

result display
Updated Calculated

Engine

| send display(value)
 over showResult

receive valueChanged() |

Calculator

show
Result

perform
Operation

2

o
Divide

o
Multiply

divided

multiplied
subtracted

added
idle

receive add(i : integer) over perform
Operation | value = value + i;
send valueChanged();

receive subtract(i : integer) over
performOperation | value = value - i;
send valueChanged();

if a multiply event is
 received, perform the

 multiplication
update
 the

 display

receive subtract(i : integer) over
performOperation | value = value / i;

send valueChanged();

Figure 11. Passed (solid) and erroneous
(dashed) traces mapped into the model.

5.3 Combination of Trace and Evolved Model

The combination of the execution trace and the model
difference is an ideal means for localizing errors as
they consider orthogonal aspects. The intersection of
ModelDiff and TraceDiff confirms the newly added
state divided is involved. It was changed in the model as
well as visited by the failing simulation run. This gives us
the strong indication that the recently changed model ele-
ments may be responsible for the deviating execution order
of the failing trace. Formally:

TraceDiff ∩ModelDiff = {idle → divided → idle}
The intersection is displayed graphically in Fig. 12. We

can clearly see how the failing execution thread passes
through the divided state.

To make our approach scalable, we reduce the long
traces in Fig. 11 to the moment where a difference occurs.
For the calculation thread this is: idle → divided / sub-
tracted → idle. The two other non-differing threads could
be left out. For better understandability what is going on
in the error situation, we leave them in, but reduced to this
moment. We can see, while a deviation in the calculation

* 1

o
o

User

Use
Calculator

Perform
Operation

Check
Result

Screen

Input
Value

Subtract

Add

Keyboard

display
Updated

result
Calculated

Engine

| send display(value)
 over showResult

receive valueChanged() |

Calculator

show
Result

perform
Operation

2

o
Divide

o
Multiply

divided

multiplied
subtracted

added
idle

receive add(i : integer) over perform
Operation | value = value + i;
send valueChanged();

receive subtract(i : integer) over
performOperation | value = value - i;
send valueChanged();

if a multiply event is
 received, perform the

 multiplication
update
 the

 display

receive subtract(i : integer) over
performOperation | value = value / i;

send valueChanged();

Figure 12. Changed elements and differing
traces (dashed vs. solid) visualized in model.

thread was noticed, the user executed the scenarios Subtract
and CheckResult and one display update was performed.
The diagram now easily reveals the error. As we cut the
traces to the first noticeable deviation, this approach works
for any length of execution.

Summarizing, the failing trace deviates in one point from
the passed trace (got from the TraceDiff). The first transi-
tion after that point is a newly added transition (got from the
ModelDiff). With this information in hand, we are able to
detect the copy/paste error easily and correct the transition
description to ’receive divide() . . . ’

6 Related Work

In our approach, we are using simulations as a testing
procedure of requirements models especially in an early
stage. Well considered inputs are entered into a discrete,
state-based, semi-formal model to validate its reactions.

There are a number of simulation approaches available
based on formal languages like a process calculus for La-
beled Transition Systems (LTS) [12] or formally specified
dictionaries and tables in the SCR method [10]. These lan-

guages are as complex as programming languages. Models
must be complete and totally formal before the first simula-
tion run can be performed. While these approaches are ap-
propriate for simulating models of high-risk systems when
models have been completed, they do not work for contin-
uously validating a specification that evolves in a series of
semi-formal steps.

In contrast, stochastic simulations (e.g. [5]) perform cal-
culations on qualitative models with randomly chosen in-
puts.

With Statemate [8], Harel et al. presented an approach
and tool that allows to simulate and generate code from for-
mal statecharts. An incomplete design can be compensated
by stub components. The Play-Engine [9] allows to inter-
actively play and test behavior of an incomplete component
via a prototypically built user interface. However, informal-
ity is not considered in these approaches.

Model checking [4] is another approach to verify mod-
els. There, the state space of a model is explored to
prove certain properties like safety and liveness or provide
counter-examples. However, the state space of typical mod-
els is too large to be explored. Remodeling to reduce the
state space must be performed manually by experts. It must
be repeated after each evolutionary step, thus preventing au-
tomatic regression model checking. Again, model checking
is based on totally formal languages.

Approaches to formally express incompleteness, e.g. by
introducing may and must modalities [11], enable an evo-
lutionary model development. Still, the modeling remains
difficult and informal descriptions cannot be handled.

In contrast to model checking approaches, simulations
are computationally much less expensive. As simulators
can be built flexible enough to deal with evolving, semi-
formal models [13], they are a suitable means to validate
requirements models and to detect errors early [10].

7 Conclusions

We have demonstrated that regression simulation is a
useful means for continuously assuring the quality of a re-
quirements model that is developed in an incremental, evo-
lutionary style.

The contribution of this paper is threefold. Firstly, we
exploit the idea of regression simulation (which is a rather
obvious one) systematically for the first time.

Secondly, we extend the notion of simulation from for-
mal models to semi-formal ones, concentrating on the situ-
ation where models are not yet complete. This is our main
contribution: the ability to interactively specify missing or
informal behavior or functionality in a simulation case, but
nevertheless allowing regression simulations to run auto-
matically makes regression simulation applicable in prac-
tice, where models are not completely formal most of the

time.
Thirdly, we have demonstrated how execution traces as

well as evolution information can be used to visualize fail-
ing regression runs and how this information can be used
for localizing defects in a model.

Our future research will concentrate on (i) the evalua-
tion of performance and usability for larger models, and (ii)
the investigation of simulation and regression simulation for
aspect-oriented requirements models.

References

[1] A. Almagro and P. Julius. Cruisecontrol, Continuous In-
tegration Toolkit. http://cruisecontrol.sourceforge.net,
2004.

[2] R. J. A. Buhr. Use Case Maps as Architectural Entities for
Complex Systems. IEEE Transactions of Software Engi-
neering, 24(12):1131–1155, 1998.

[3] P. Cederqvist et al. Version Management with CVS.
Online Manual, 1.11.19, http://www.cvshome.org/docs/
manual/, 2005.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
Verification of Finite-State Concurrent Systems Using Tem-
poral Logic Specifications. ACM Transactions on Program-
ming Languages and Systems, 8(2):244–263, 1986.

[5] M. S. Feather and T. Menzies. Converging on the Optimal
Attainment of Requirements. In Proceedings of the 10th
IEEE Joint International Conference on Requirements En-
gineering (RE’02), pages 263–272. IEEE Computer Society,
2002.

[6] M. Fowler. Continuous Integration. http://www.
martinfowler.com/articles/continuousIntegration.html,
2004.

[7] M. Glinz, S. Berner, and S. Joos. Object-oriented modeling
with ADORA. Information Systems, 27(6):425–444, 2002.

[8] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. B. Trakhtenbrot.
STATEMATE: A Working Environment for the Develop-
ment of Complex Reactive Systems. Software Engineering,
16(4):403–414, 1990.

[9] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-
Verlag New York, Inc., 2003.

[10] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for Formal
Specification, Verification, and Validation of Requirements.
In Proceedings of COMPASS ’97, pages 35–47, 1997.

[11] K. G. Larsen. Modal Specifications. In J. Sifakis, editor, Au-
tomatic Verification Methods for Finite State Systems: Pro-
ceedings, volume 407 of LNCS, pages 232–246. Springer,
1989.

[12] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer.
Graphical Animation of Behavior Models. In International
Conference on Software Engineering, pages 499–508, 2000.

[13] C. Seybold, S. Meier, and M. Glinz. Evolution of Require-
ments Models By Simulation. In Proceedings of the 7th In-
ternational Workshop on Principles of Software Evolution
(IWPSE’04), pages 43–48, 2004.

http://cruisecontrol.sourceforge.net
http://www.cvshome.org/docs/manual/
http://www.cvshome.org/docs/manual/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

	Introduction
	Prerequisites
	Simulation of requirements models
	The modeling language
	Iterative requirements engineering process

	Simulating Semi-formal Models interactively
	Incomplete Semi-Formal Simulation

	Regression simulation
	Storing cases under version control
	Running the regression
	Possible outcomes of a regression run
	Incomplete Regression Simulation

	Locating model defects
	Evolved Model Parts
	The Simulation Trace
	Combination of Trace and Evolved Model

	Related Work
	Conclusions

