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Abstract

Today, the syntax of visual specification languages such
as UML is typically defined using meta-modelling tech-
niques. However, this kind of syntax definition has draw-
backs. In particular, graphic meta-models are not powerful
enough, so they must be augmented by a textual constraint
language.

As an alternative, we present in this paper, a text-based
technique for the syntax definition of a graphic specifica-
tion language. We exploit the fact that in a graphic specifi-
cation language, most syntactic features are independent of
the layout of the graph. So we map the graphic elements to
textual ones and define the context-free syntax of this textual
language in EBNF. Using our mapping, this grammar also
defines the syntax of the graphic language. Simple spatial
and context-sensitive constraints are then added by attribut-
ing the context-free grammar. Finally, for handling complex
structural and dynamic information in the syntax, we give a
set of operational rules that work on the attributed EBNF.

We explain our syntax definition technique by applying
it to the modelling language ADORA which is being devel-
oped in our research group. We also briefly discuss the ap-
plication of our technique to the syntax definition of UML.

At last we mention the advantages of our method over
the metamodeling techniques.

1. Introduction

Graphic modeling languages for expressing require-
ments and design have been used since about 25 years,
progressing from SADT [15] and Structured Analy-
sis [1] over early object modeling languages such as
OMT [16] to UML [13] which is the dominating mod-
eling language of today. In our research group in Zurich
we also have developed a modeling language for require-
ments and architecture called ADORA [3].

A proper definition of the syntax of such languages is
crucial both for their use by humans and for building ap-

propriate tools. In contrast to textual languages, where syn-
tax definition is well understood, the definition of the syn-
tax for a graphic language is not an easy task. Early graphic
modeling languages such as SADT or dataflow diagrams in
Structured Analysis did not have any formal definition at
all. The language was informally defined using natural lan-
guage and tables of the graphic symbols. On the other hand,
there were textual modeling languages that had a clean for-
mal definition, for example RML [4] or ESPRESO [9] and
its successor, SPADES [10].

In order to achieve a more formal definition of the syntax
of graphic modeling languages, three approaches have been
tried: metamodeling, graph grammars and abstract graphs.
We briefly review these three approaches.

Metamodeling emerged with the design of entity-
relationship-based modeling languages [5]. The principal
idea is to define the syntax of an entity-relationship-based
language by a model that is expressed either in the same
language or in a simpler, also entity-relationship-based lan-
guage. (Principally speaking, every definition of a modeling
language is a metamodel, including definitions by gram-
mars or by formal logic. However, the term ‘metamodel’
is typically restricted to the meaning described above.) To-
day, UML is the most prominent representative of this
style of syntax definition, using an elaborate metamodel-
ing technique with four layers of metamodels. The idea
of metamodeling is appealing, because (i) the syntax def-
inition diagrams are—at least in principle—easy to read
for humans, and (ii) when constructing tools, the meta-
model can directly be used as a database schema for
the repository of the tool and/or as a common data ex-
change model.

However, syntax definition by metamodeling has con-
siderable drawbacks in practice. Firstly, for big languages
such as UML, the metamodels become so large that under-
standing and navigating through them becomes a difficult
and tedious task for humans. UML makes the metamodels
more compact by extensively using inheritance. However,
this makes the comprehension and navigation problem even
worse [6]. Secondly, graphic metamodels are not powerful
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enough to express even the context-free syntax of a graphic
language completely. So the metamodel must be augmented
by constraints that must be expressed separately in a (typi-
cally textual) constraint language.

Graph grammars have been proposed for defining the
syntax of visual programming languages. The idea is to in-
terpret graphic models as mathematical graphs and to use
graph transformation rules to express the rules for con-
structing correct diagrams. Interpreting diagrams written in
a visual language as graphs is appealing because the graphs
preserve the information given by the graphic layout of the
diagrams which is syntactically relevant to a large extent
in visual programming languages [12]. However, in graphic
languages for modeling requirements and design, layout is
much less syntax-sensitive than in visual programming lan-
guages. Moreover, only a restricted class of graphs can be
described by graph grammars such that a parser can be con-
structed directly and easily from the grammar. In Section
7, we will compare string grammars, graph grammars and
our approach to syntax definition. This discussion will pro-
vide further arguments why graph grammars are not a good
fit for defining the syntax of typical graphic modeling lan-
guages.

Abstract graphs [2] is an approach that first trans-
forms concrete diagrams written in a graphic modeling lan-
guage into an abstract, topology-preserving graph with
typed nodes and edges. This graph is interpreted as a meta-
model of the language. Syntax information that can-
not be expressed in this metamodel has to be added using
a logic-based constraint language. This is a quite attrac-
tive technique when the focus lies on getting a sound
syntactical basis for the construction of tools. How-
ever, the syntax definition is difficult to read for hu-
mans.

In this paper, we explore an alternative path for the syn-
tax definition of graphic modeling languages. When con-
fronted with the problem of defining the syntax of our
own modeling language ADORA [3] [8] precisely, we were
both frustrated by the problems and inconveniences of the
existing techniques described above and appealed by the
elegance and simplicity of EBNF-(extended Backus-Naur
Form)-based syntax definition for textual programming lan-
guages. Hence we decided to try whether it would be possi-
ble to define the syntax of a graphic requirements and archi-
tecture modeling language such as ADORA using an EBNF-
style grammar.

We exploit the fact that most syntactic features of a
graphic specification language are independent of the topol-
ogy of the graph. Topology-independent elements of a
graphic language can easily be mapped onto equivalent ele-
ments of a textual language. So the essence of our approach
is to define this mapping and to define the resulting tex-
tual language rigorously with an EBNF grammar. We

found that this works quite well for the context-free syn-
tax of the language, because the topology-dependent
features of a graphic modeling language are typically
context-sensitive (nesting of model elements, for exam-
ple). We define the context-sensitive syntax of the language
in two steps. Static context-sensitive constraints are ex-
pressed by attributing the EBNF grammar. For the remain-
ing complex and dynamic context-sensitive constraints,
we define a set of operational rules that work on the at-
tributed EBNF.

Although our syntax definition technique was developed
for the definition of the ADORA language, it applies to other
graphic modeling languages as well. At the end of this pa-
per, we will briefly discuss the applicability of our approach
to UML.

Using a BNF-style grammar for defining the syntax of
modeling languages is not new. It has been successfully ap-
plied before to textual modeling languages [9], including
textual languages that also have a graphic representation of
models or parts thereof (primarily for browsing purposes)
[10] [7]. There are also tools that represent graphic meta-
models internally with a textual language and define the
context-free syntax of this meta language with a BNF gram-
mar.

The contribution of our approach is threefold:
• We demonstrate that an EBNF-based syntax definition

of a graphic modeling language is feasible for model-
ing languages that have been designed as graphic lan-
guages from the beginning (in contrast to textual lan-
guages having an additional graphic representation).

• We achieve an elegant and concise syntax definition
with a clear separation between context-free syntax,
context-sensitive syntax and semantics. Moreover, we
introduce a new way of defining context-sensitive syn-
tax with operational rules.

• We express the syntax definition in a unified frame-
work whereas the currently dominating metamodel-
ing approaches require a combination of a (typically
graphic) syntax definition language and a (typically
textual) constraint language.

The rest of the paper is organised as follows. In section
2 we present the basic concepts of our approach. Section 3
gives a short introduction to ADORA , because this language
will be used as a sample graphic modeling language in this
paper. In section 4 we demonstrate the context-free syntax
definition in EBNF, using the core of ADORA as an exam-
ple. Section 5 discusses the definition of context-sensitive
syntax. Firstly, we demonstrate the definition of simple
static constraints by attributing the context-free grammar
which was introduced in the previous section. Secondly, for
expressing dynamic constraints we construct a set of oper-
ational rules that work on the attributed EBNF. Section 6
briefly investigates the applicability of our approach to the
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syntax definition of UML. We conclude with a discussion
of achievements, limitations and plans for future research.

2. Basic concepts

In this section, we introduce the four basic concepts of
our syntax definition method.

Graphics to text mapping. Let GML be a given graphic
modeling language the syntax of which we want to define.
We first define a textual modeling language TML such that
there exists an isomorphic (i.e. one-to-one) mapping from
every language element of GML to a corresponding lan-
guage element of TML. The mapping is defined in tabu-
lar form (cf. Figure 3). As graphic modeling languages for
requirements and architecture contain quite few elements
where the graphic layout is syntactically relevant, we can
successfully construct such a textual language and mapping.
Having defined TML and an isomorphic GML-TML map-
ping, every formal definition of the syntax for TML also de-
fines the syntax of our original language GML.

Context-free syntax. We use EBNF (extended Backus-
Naur form) for the definition of the context-free syntax of
the textual language TML. (E)BNF is a proven syntax def-
inition technique which is easy to understand for humans
and where we have mature and efficient techniques for con-
structing parsers.

Static context-sensitive syntax. Graphic modeling lan-
guages typically have a syntax that is partially context-
sensitive. For example, the rule that an aggregation hierar-
chy must be acyclic is context-sensitive. As long as these
rules pertain to static syntax, (i.e. they constrain the static
structure of models), they can easily be defined by attribut-
ing the EBNF grammar. The attributes of an EBNF produc-
tion rule are logic formulae that must evaluate to true when
the rule is evaluated. Attribute parameters may be passed
from rules to subrules and vice-versa.

Dynamic context-sensitive syntax. Finally, the syntax of
a graphic modeling language may also contain dynamic
rules. In ADORA for example, a diagram may be modified
by adding more detail to the representation of an object. In
this case, the graphic representation of the relationships that
this object has with other objects also must be modified.
Formally describing such consistency rules is rather diffi-
cult, because they cannot be modeled with attributed gram-
mars. We use operational rules similar to those used for op-
erational definition of language semantics [17] to express
such dynamic syntax constraints.

3. A short introduction to ADORA

In this section, we give a brief introduction to ADORA,
as we will use the ADORA language as a sample graphic
modeling language in the rest of this paper. ADORA is a
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Figure 1. An ADORA view of the heating sys-
tem: base view + structural view + context
view

modeling technique for requirements and software archi-
tecture that is being developed in our research group [3]
[8]. The acronym stands for Analysis and Description of
Requirements and Architecture. Figures 1 and 2 (taken from
the specification of a distributed heating control system)
give an impression how ADORA models look like. At the
first glance, ADORA diagrams look similar to UML dia-
grams. However, there are fundamental differences between
ADORA and UML [3]. Below, we summarize the distin-
guishing features of ADORA.

Using abstract objects (instead of classes) as the basis of
the model. Class models are inappropriate when more than
one object of a class and/or structural nesting of objects has
to be modeled. Therefore, ADORA uses abstract, prototyp-
ical objects instead of classes as the conceptual core of the
language. For example, in sample heating control system
(see Figure 1), there is a single Master Module, but mul-
tiple room modules. In ADORA, we model these entities as
abstract objects and thus can make these cardinalities imme-
diately visible. Moreover, the Boiler Control Panel in Mas-
ter Module and the Room Control Panel in the Room Mod-
ule may have the same type. Hence, they would not be dis-
tinguishable in a class model, while with abstract objects,
we can model them separately and place them where they
belong.

Hierarchical decomposition. ADORA systematically
uses hierarchical decomposition for structuring mod-
els. With the use of abstract objects, abstraction and de-
composition mechanisms can easily be introduced into
the language. We recursively decompose objects into ob-
jects (or other elements, like states). So we have the
full power of object modeling on all levels of the hi-
erarchy and only vary the degree of abstractness: ob-
jects on lower levels of the decomposition model small
parts of a system in detail, whereas objects on higher lev-
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els model large parts or the whole system on an abstract
level.

Integration of all aspects of the system in one coherent
model. An ADORA model integrates all modeling aspects
(structure, data, behavior, user interaction . . . ) in one coher-
ent model. This allows us to introduce strong rules for con-
sistency and completeness of models, reduces redundancy,
and makes the model construction more systematic.
Using an integrated model does of course not mean that ev-
erything is drawn in one single diagram. From the integrated
model, we can generate views pertaining to a given aspect.
The so-called base view of an ADORA model consists of
the hierarchical structure of objects only. Aspect views are
generated by combining the base view with all information
that is relevant for the selected aspect. For example, Figure
1 shows the structure view (which shows the static struc-
ture of the system by combining the base view with directed
relationships between objects/object sets) and the context
view (which shows all actors and objects in the environment
of the modeled system and their relationship with the sys-
tem) of the whole heating control system. Figure 21 shows
the behavior view (which shows the dynamic behaviors of
the system by combining base view with a statechart-based
state machine hierarchy) of the Room Module in our heat-
ing control system.
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Figure 2. A partial ADORA model of the heat-
ing system: base view + behavior view

1 In this figure, the triggering events and triggered actions/events are ex-
pressed in tabular form to make the model more readable. They can be
translated into the equivalent traditional form as an adornment of the
state transition arrows in the diagrams.

4. Definition of context-free syntax

Using the ADORA language as an example, we demon-
strate in this section how we define the context-free syn-
tax of a graphic modeling language in our approach. We
start with some notational definitions. Then we define the
graphics-to-text mapping and present the syntax definition
of the resulting textual language in EBNF.

4.1. Meta symbols and notations

First we introduce some notations and meta symbols
which will be used in our EBNF syntax. Let x, y, z be non-
terminal symbols.

• [x] denotes zero or one occurrence of x
• {x} denotes zero or many occurrence of x
• {x}1 denotes one to many occurrence of x
• x | y means either x or y
• z ::= . . . x : y . . . is a shorthand notation for the following

two rules: z ::= . . . x . . . and x ::= y.

4.2. The mapping

The mapping from the given graphic modeling language
(the ADORA language in our case) to an equivalent tex-
tual language is defined in tabular form (Figure 3). Every
graphic model element is uniquely mapped to a correspond-
ing textual phrase.

For example, a rectangle with a string in the upper left
edge in ADORA represents a single abstract object with its
name given by the string. This element is mapped to the tex-
tual phrase object name end. The graphic element in the
third row of the mapping table contains EBNF rules, for
example {system object}. Such a rule means that at this
place any graphic elements are allowed that translate to tex-
tual phrases satisfying the rule.

A naive mapping of the language elements may result a
table with infinite lines. By introducing some sophisticated
mapping techniques (e.g. using the defined EBNF grammar
categories in the graphical notation to summarize the com-
binations of basic graphic elements), we can map the whole
language in a table with some dozens of lines. Please re-
fer to [18] for the details.

Having done this mapping, we have a textual language
that is equivalent to the original graphic language.

4.3. EBNF syntax

Due to limited space, only the core part of the
ADORA EBNF syntax will be listed in this section. The
complete syntax definition can be found in [18].

Specification
specification ::= { specification fragment }
specification fragment ::= { model element }

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)  
1530-1362/03 $ 17.00 © 2003 IEEE 



name

Graphic element Equivalent textual element

object name end

object_set name {annotation}

end

association name numpair

from  obj1:object

to obj2:object  end

state name

start_state

name

name     {annotation}

 {system_object_chart}

name numpair name(obj2)name(obj1)

......

......

... ...

[contains {system_object_chart}]
1

Figure 3. An Excerpt of the ADORA Mapping
Table

model element ::=
object | state | scenario | relationship | annotation

Types
Literal ::=
FloatingPointLiteral | IntegerLiteral | CharacterLiteral |
StringLiteral | BooleanLiteral | NullLiteral

IntegerLiteral ::=
NonNegativeIntegerLiteral | NegativeIntegerLiteral

numpair ::=
NonNegativeIntegerLiteral “,” NonNegativeIntegerLiteral

name ::= identifier
. . .
Expression
. . .
Operator
. . .
Annotation
annotation ::= . . .
Objects/States/Scenario declarations
object ::= object i | singleton object e | object set e

system object ::= object i | state | scenario |
singleton object e | object set e

object i ::= singleton object | object set
singleton object ::= object name [obj body] end
singleton object e ::= object name “: external” end
object set ::= object set name [obj body] end
object set e ::= object set name “: external” end
env object ::= element of the environment name
obj body ::=
{annotation} [attributes {attribute}1]
[operations {operation}1] [contains {system object}1] attribute ::= . . .

operation ::= . . .
state ::= pure state | start state
pure state ::= state name [contains {state}1] end
start state ::= start state end
scenario ::= scenario name [scenario body] end
scenario body ::= . . .
Relationship/Transition declarations
relationship ::=
association | abstract relationship | interrelationship

association ::= association name numpair
from obj1:object to obj2:object end2

2 In a pure context-free grammar, it would obviously be simpler to state
this rule just as: association ::= association name numpair from object
to object end. However, when we later attribute this rule for express-
ing the context-sensitive syntax, we need to denote the identifiers obj1
and obj2. The same is true for other rules, for example those defin-

abstract relationship ::=
abstract relationship {name}
connecting obj1:object and obj2:object end |
abstract relationship {name}
connecting obj:object and sc:scenario end |
abstract relationship {name}
connecting obj:object and e:env object end |
abstract relationship {name}
connecting sc:scenario and e:env object end

interrelationship ::= interrelationship
sub a:association
super ar:abstract relationship
end |
interrelationship
sub ar1 : abstract relationship
super ar2 : abstract relationship
end

transition ::= transition t condition/t action
from obj1:object i to obj2:object i end |
transition t condition/t action
from obj f:object i to s t:pure state end |
transition t condition/t action
from s f:pure state to obj t:object i end |
transition t condition/t action
from ss:start state to obj:object i end |
transition t condition/t action
from s1:pure state to s2:pure state end |
transition t condition/t action
from ss:start state to s:pure state end

t condition ::= . . .

t action ::= . . .

. . .

4.4. Remarks

Below, we make some remarks about the EBNF syntax
definition in the previous subsection.
• The non-terminal symbol names in our EBNF defini-

tion do not not always have the same meaning as these
names have in the ADORA language. For example,
the name “object” in the EBNF grammar includes the
types object, object set, external object, external object
set in the ADORA language. To avoid confusion, all
references to symbol names in the EBNF grammar are
underlined in the following text (e.g. system object).

• Due to space limitations, the detailed definition of
expression, operator, annotation, attribute, operation,
t condition, t action, etc. are not presented here, as
most of them are defined in the same way as in other
textual specification/programming languages, such as
Z, Java, etc.

• The meaning of abstract relationships and interrela-
tionships are explained in section 5.3.

• In a system specification, the names of objects and ob-
ject sets are unique. However, the names of relation-
ships, states, etc., are not unique. We need to define ex-
tra attributes, such as “associationID”, to identify those
elements. For simplicity, we assume in this paper that
these elements are also identified by their name.

ing transitions.
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• Abstract syntax vs. concrete syntax. The presented
EBNF grammar is an abstract syntax, which is used
for human beings to master the language. It needs to
be further optimized and concretized for the purpose
of construction of a parser/compiler (e.g. adding some
extra reference elements in the grammar to enhance
the parsing efficiency). Nevertheless, unlike the meta-
modeling technique, in which a concrete syntax for the
compiler design can only be derived from the seman-
tic interpretation of the metamodel (an abstract syn-
tax), the derivation from the abstract syntax to the con-
crete syntax in the EBNF-based approach is only a pro-
cess of optimization, and hence much easier and more
straightforward.

5. Definition of context-sensitive syntax

Even for textual programming languages, a context-free
grammar is in most cases not powerful enough for express-
ing the syntax of the language completely. In a graphic mod-
eling language, we have additional spatial layout constraints
that are also context-sensitive.

We define the context-sensitive syntax in a way that is
well-proven for EBNF grammars: we attach constraint at-
tributes to the EBNF grammar rules. Every attribute is a
logic formula. Whenever an EBNF rule is evaluated, all at-
tributes of this rule must be true.

Attributes are well suited for the definition of static
context-sensitive syntax constraints. However, in particu-
lar in the ADORA language, we also have dynamic context-
sensitive syntax constraints that pertain to transformations
of an ADORA model into another representation such that
syntactic correctness is preserved. Describing such con-
straints with an attributed grammar is hard or even impos-
sible. Therefore, dynamic constraints will be defined with
operational rules (see Section 5.3).

In the ADORA language, the hierarchical structure of ob-
jects is the most important source of static context-sensitive
syntax constraints. In order to express these constraints, we
introduce the concept of a pretrace in the following subsec-
tion. Using this concept, we will then present selected at-
tributed EBNF grammar rules.

5.1. Capturing hierarchical structure

Every object that is part of a hierarchical structure is hi-
erarchically embedded in one or more other objects. For ex-
ample, in Figure 4, A is embedded in A′, A′′ and in A′′′, A′

is embedded in A′′ and in A′′′, etc. Only the outmost ob-
ject A′′′ is not embedded. In order to get rid of this excep-
tion, we assume that every object is always embedded in it-
self.

A A′ A′′ A′′′

Figure 4. A sample object hierarchy

Let A ⇒ B denote the fact that A is directly embedded
in B; that means there exists no X such that A �= X �= B
and A ⇒ X ⇒ B.

Now we define the pretrace of a system object X to be
the ordered set 3 of model elements that X is embedded in.
Formally, we use a simple recursive definition:
if exists a system object B such that X ⇒ B then X.pre =
{X,B.pre}ordered, otherwise X.pre = {X}.

For example, for the objects of Figure 4 we
have: A.pre = {A,A′, A′′, A′′′}ordered, A′′.pre =
{A′′, A′′′}ordered and A′′′ = {A′′′}.

⊃ and ⊇ are the usual mathematical subset relations. Due
to the definition of pretraces, A.pre ⊃ B.pre means that A
is embedded in B. Additionally, we define a special sub-
set relation � for pretraces: A.pre � B.pre if and only if
A ⇒ B.

In the example of Figure 4, we have
A.pre � A′.pre,A′.pre � A′′.pre,A′′.pre � A′′′.pre.

We call the pretraces of two system objects A and B to
be hierarchically equivalent if and only if there exists an-
other system object X where both A and B are directly em-
bedded in, or both A and B are outmost objects that are not
embedded at all. In formal terms, we write:
Hierarchical equivalence. A.pre � B.pre iff
∃X : system object• (A.pre � X.pre∧B.pre � X.pre)
∨(A.pre = {A} ∧ B.pre = {B})

The intuitive meaning of A.pre � B.pre is that either
are A and B on the same hierarchical level within a com-
mon system object or they are both not embedded (except in
themselves). The pretrace of a system object includes this
object itself. Although this makes the definition of hierar-
chical equivalence more complex, it greatly simplifies the
definition of the context-sensitive syntax of ADORA in later
sections.

5.2. Attributing the EBNF grammar

The static context-sensitive syntax can now be defined
by attributing the EBNF grammar (written with Boldface
text in Italic shape). The attributes of an EBNF grammar
rule must be true whenever this rule is evaluated. In this pa-
per, we present two typical examples only. The first exam-
ple describes two context-sensitive constraints for associa-

3 Ordered sets are also called lists in the literature on formal methods.
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tions, the second one a constraint for state transitions. In
both cases the constraints are needed to ensure the hierar-
chical (de-)composability of ADORA models. The rest con-
straints can be found in [18].

In the declaration of an association, the constraint is:

association ::= association name numpair
from obj1:object to obj2:object
Constraints:

obj1.pre ⊃/ obj2.pre
∧
obj2.pre ⊃/ obj1.pre

end

This means that if an object C is embedded in another
object A (it can be one level embedded or several levels em-
bedded), an association connecting A and C is not allowed.
In Figure 5, r1 is syntactically wrong and r2 is syntactically
correct. The EBNF rule for transitions in the syntax of the

A

B C
r 1

D
r 2

Figure 5. Context-sensitive syntax of associ-
ations: r1 is wrong, r2 is correct

ADORA language needs six attributes to specify all the con-
straints. Here we present one case of this rule where a tran-
sition leads from a pure state to an object (which has an in-
ternal state). Intuitively, the constraint is that a state transi-
tion may cross state boundaries (as it is usual in statecharts),
but must not cross object boundaries except the boundary of
the destination object.

transition::= . . .
. . . |
transition t condition/t action
from s f:pure state to obj t:object i
Constraints:
∃ S:state • S ∈ s f.pre ∧
S.pre � obj t.pre ∨ S.pre � obj t.pre
. . .

Stated in natural language, the constraint says that there
must exist a state S in the pretrace of the source state (with
S being identical to the source state as a special case) such
that S is either directly embedded in the destination object
or S is on the same hierarchical level as the destination ob-
ject (i.e. their pretraces are hierarchically equivalent). This
constraint is equivalent to the intuitive rule stated above. In
the example of Figure 6, transitions t1, t2 and t3 are syn-
tactically correct, while transition t4 is syntactically wrong.

X

C

t 1

t 2

 A

S
T

U

t 3

t 4

Figure 6. Context-sensitive syntax of state
transitions. Transitions t1, t2, t3 are legal, t4
is illegal.

5.3. Operational rules

As we already mentioned at the beginning of sec-
tion 5, there are complex context-sensitive constraints
that are hard or even impossible to express with con-
straint attributes. In ADORA, a particular problem of this
kind is the syntactic correctness of diagrams that show
a (partial) view of a larger underlying model. In con-
trast to languages such as UML, the syntactic correctness
of an ADORA diagram not only depends on the infor-
mation given in the diagram, but also on information
which is present in the model, but not visible in the par-
ticular diagram. At a first glance, this may look strange.
However, it is a quite important feature if we want to guar-
antee consistency between diagrams as well as between
the overall model and a diagram that shows a particu-
lar view of the model.

Example. Suppose we have a quite simple model of a
system S consisting of objects P,Q,X, Y and an associ-
ation r from P to Q (c.f. Figure 7c). Furthermore, let P
be embedded in X and Q in Y . Now assume that we want
to draw an overview diagram which shows only the over-
all system and its two main components, X and Y . If we
would draw this diagram in the way shown in Figure 7a, we
would suppress two important facts:
• X and Y have inner components
• X and Y may exchange information (due to the rela-

tionship between P and Q).
In this situation, ADORA requires us to model hints that

point at suppressed information (Figure 7b):
• Trailing dots are added to the names of X and Y to in-

dicate that these objects contain other objects that are
not shown on the diagram. We also call these trailing
dots an is-partial indicator.

• A so-called abstract relationship (thick line) is drawn
between objects X and Y to indicate that at least one
relationship from an inner element of X to an inner el-
ement of Y is suppressed.

When we expand this diagram to display the complete
model (Figure 7c), the syntax must be changed: the dots
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and the abstract relationship disappear.

SS SX

Y

X... X

Y... Y

P

Q

r

a) b) c)

Figure 7. Syntax of ADORA diagrams that
show partial models only. Diagrams b) and
c) are syntactically correct representations of
the example model given above in the text;
diagram a) is syntactically wrong.

In order to define such dynamic syntax constraints, we
introduce operational rules. The logical structure of these
rules is similar to the rules being used in the definition of op-
erational semantics for programming languages. However,
we use a different notation in this paper in order to make
the rules easier to read for humans. Due to space limita-
tions, we present only a few rules here. The complete defi-
nition can be found in [18]. Before we can state these rules,
we must define some syntactic functions.

5.3.1. Syntactic functions. We need the following syn-
tactic functions for determining the visibility of model el-
ements in a given partial ADORA model (typically repre-
sented in a diagram).

Let M be an ADORA model with X,Y, Z : model
element,A,B,C,D : object, r : association, u : abst-
ract relationship and let Γ be a partial view of M .
• visible(X,Γ) is a boolean function that is true if and

only if X is visible in Γ.
For a set of model elements, visible({X,Y, Z},Γ)
means visible(X, Γ)∧ visible(Y,Γ)∧ visible(Z,Γ).

• hidden(X, Γ) is a boolean function that is true if and
only if X is not visible in Γ. This function is defined
for convenience only. By definition holds
hidden(X,Γ) = ¬visible(X,Γ) for all X and Γ.

• partial(A,Γ) is a boolean function that is true if and
only if the name of A in Γ is followed by three dots.

• The meaning of the ⊂ and � operators is extended to
relationships as follows.

– r(A,B) ⊂ u(C,D) if and only if A.pre ⊃
C.pre and B.pre ⊃ D.pre.

– r � u, if and only if r ⊂ u and there is no u1 in
Γ, such that r ⊂ u1 ⊂ u.

5.3.2. General format of rules. Every operational rule
has the following format.

Rule rule-name (parameters)

Z
X

A

C

Y

B

Z

C

Y

B

X ...

Z

C

Y

B
X ...

r

s

r
s

ar

s

α

Step 1              Rule “Hide an object”

Step 2     Rule “Abstract a relationship”

Step 3   Rule “Adjust interrelationships”

Z

C

Y

B
X ...

ar

s

Figure 8. The process of hiding an object
from an ADORA diagram. The original and the
final diagram are syntactically correct, the in-
termediate ones are not.

Given: M ; Γ; model elements

Condition: predicate pre

Assertion: predicate post

Next Rule: rule-name (parameters)

Rule names need not be unique; we may have more than
one rule with the same name but with different conditions.
A rule is interpreted as follows: for any ADORA model M
that contains the given model elements and has a partial
model Γ such that predicate pre is true, the application of
the rule modifies Γ so that predicate post becomes true.
The application of the rule does not modify anything that is
not specified in predicate post. If the Next Rule field con-
tains a name, the rule(s) matching this name must be ap-
plied next in order to transform a syntactically correct view
Γ eventually into a new view Γ1 which is also syntactically
correct. Rule execution stops when the Next Rule field is
empty or when the conditions (predicate pre) of all match-
ing rules are false. Parameters may be used to transfer infor-
mation from a rule to the next one.

5.3.3. Rules for hiding an object. In this subsection, we
present the operational rules that describe the process of
making an ADORA diagram more abstract by hiding one of
its objects. The process is illustrated in Figure 8. In this ex-
ample, three rules must be applied consecutively in order to
transform an syntactically correct diagram into a more ab-
stract one that is again syntactically correct.

The dashed line in the bottom diagram of Figure 8 con-
necting the association s and the abstract relationship ar is
a so-called interrelationship. It denotes the fact that ar is
not only an abstraction of the hidden association r, but also
of s.
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Hide an object
Rule Hide an object (A)
Given: M ; Γ; X : object i; A : object

Condition: (A.pre � X.pre) ∧ visible({A, X}, Γ) ∧
( ¬∃Y : object • Y.pre ⊃ A.pre)

Assertion: hidden(A, Γ) ∧ partial(X, Γ)
Next Rule: Abstract a relationship (A)

. . . . . .

Abstract a relationship
Rule Abstract a relationship (A)
Given: M ; Γ; X : object i; A, B : object;

r(A, B) : association
Condition: (A.pre � X.pre) ∧

hidden(A, Γ) ∧ visible({B, X, r(A, B)}, Γ)
Assertion: hidden(r(A, B)) ∧ ∃ar : abstract relationship •

(ar(X, B) ∈ Γ) ∧ visible(ar, Γ)∧
∀z : abstract relationship

¬∃α : interrelationship • α(r, z) ∈ Γ

Next Rule: Adjust interrelationships (ar)

. . . . . .

Adjust interrelationships
Rule Adjust interrelationships (ar)
Given: M ; Γ; s : association; ar : abstract relationship

Condition: (s � ar) ∧ visible(s, Γ) ∧
¬∃α : interrelationship • α(s, ar) ∈ Γ

Assertion: ∃α : interrelationship • α(s, ar) ∈ Γ

Next Rule: Adjust interrelationships (ar)

Rule Adjust interrelationships (ar)
Given: M ; Γ; ar, z : abstract relationship

Condition: (ar � z) ∧
¬∃α : interrelationship • α(ar, z) ∈ Γ

Assertion: ∃α : interrelationship • α(ar, z) ∈ Γ

Next Rule: Adjust interrelationships (ar)

Rule Adjust interrelationships (ar)
Given: M ; Γ; s : association; ar, z : abstract relationship

Condition: visible(s, Γ) ∧ (s � ar � z) ∧
∃α : interrelationship • α(s, z) ∈ Γ

Assertion: ¬∃α : interrelationship • α(s, z) ∈ Γ

Next Rule: Adjust interrelationships (ar)

. . . . . .

In the situation illustrated in Figure 8, the transformation
starts with the “Hide an object” rule. According to its Next
Rule clause, “Abstract a relationship” rules have to be exe-
cuted next, with the hidden object A as a parameter. There
exist several rules with this name. However, in this paper we
show the sole rule which applies in our example case (i.e.
where the condition is true). In the next step, “Adjust in-
terrelationships” rules have to be executed. Three of these
rules are listed in the paper. In our example, only the condi-
tion of the first of them is true. So this rule is executed. Ac-
cording to the Next Rule clause,”Adjust interrelationship”
rules have to be executed again. However, in the new situ-
ation the conditions of all these rules are false. Hence, rule
execution terminates and the transformation is complete.

For readers who do not want to dig into the formalisms,
we give the meaning of the first rule (Hide an object) in
words. The rule applies to any model M and view Γ where
we have objects A and X such that (i) A is directly em-
bedded in X , (ii) there are no objects embedded in A, and
(iii) both A and X are visible in the view Γ. After applica-
tion of the rule, A is hidden from the view, and the name of
object X has three dots appended.

5.3.4. Remarks. The Given field and the parameters of
the rule define the model elements being used as variables.
Note that there are no free variables in the Condition pred-
icate. Parameter variables are externally bound; the other
variables are bound to the existential quantifier.

Here only the rules relating to a simple linear sequence
of view transitions are given. Actually the real situation is
much more complex: when an object is hidden (or becomes
visible), depending on the original states of the surrounding
objects and relationships, the resulting view may look con-
siderably different from the originating one. The complete
definition, which covers all the possible situations, has more
than 30 operational rules. The strict logic definition of the
rules and the execution sequence are given in [18].

5.3.5. Syntax vs. Semantics. The context-sensitive syn-
tax and the operational rules could also be considered to be
semantics instead of syntax. For example, in the UML spec-
ification documents from OMG [13], the constext-sensitive
syntax mentioned above is called static semantics, because
it specifies how an instance of a construct to be meaning-
fully connected to other instances. In some literature, opera-
tional rules are even classified as dynamic semantics, as they
imply the meanings of some constructs (e.g. is-partial indi-
cator and abstract relationship) and provide the theoretical
foundation for specification verification and refinement. On
the other hand, [11][14] think that the syntax encompasses
all the compile-time aspects, while (dynamic) semantics en-
compasses the run-time aspects.

Both classifications are reasonable in some sense. How-
ever, only one should be used in a paper to avoid ambiguity
and misunderstanding. In our approach we adopt the sec-
ond classification from Frank Pagan[14].

6. Syntax definition of UML

In this paper, we selected the ADORA language as a ve-
hicle for demonstrating our new method of syntax definition
for graphic modeling languages. We did so for two reasons.
Firstly, the hierarchical decomposition mechanism and the
elaborate model integrity concept in ADORA are challeng-
ing problems when defining more than just the context-free
syntax formally. So if our approach works for ADORA, it
should also work for other, less demanding graphic lan-
guages. Secondly, we needed a precise syntax definition of
ADORA as a part of our effort to develop this language.

For the definition of the syntax of UML, our method can
be applied in a quite similar way as we did it for ADORA: (1)
setting up a mapping table which defines an equivalent tex-
tual expression for every graphical element and constructor
in UML; (2) defining the context-free syntax of UML with
EBNF on the translated textual form; (3) adding context-
sensitive syntax rules by attributing the context-free gram-
mar to describe the spatial information in the UML. As
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UML lacks a sound and elaborate concept for inter-diagram
integrity checking, an attributed grammar should be expres-
sive enough to describe the whole UML syntax. Defining
operational rules for parts of the syntax will most proba-
bly not be necessary.

We are currently defining a part of the UML 1.4 core us-
ing our syntax definition method. As a preliminary result,
we can say that our technique is simpler and more system-
atic than the metamodeling technique used in the OMG def-
inition of UML 1.4 [13]. For example, when looking for a
precise definition of “class” in the OMG metamodel (which
implies inspecting also the inherited and associated proper-
ties of “class”), the reader has to inspect 5 metamodel dia-
grams and about 3 pages of OCL constraints – and the meta-
model does not provide the reader any roadmap for system-
atically navigating through this material in order to find the
relevant information. In our attributed EBNF grammar we
need fewer rules and we provide a simple and straightfor-
ward navigation strategy: rule inspection starts with the rule
where “class” appears on the left side. Then the reader has
to inspect recursively all rules that appear on the right side
of an inspected rule.

In essence, our EBNF grammar (in a textual form) and
OMG’s metamodel (in a graphical form) describe the struc-
ture of the language (the language constructs and the rela-
tionships among those constructs). The constraints on this
language structure are described in textual forms both in our
approach and in the OMG-UML technique: we use an attri-
bution of the EBNF grammar and operational rules, OMG
uses OCL. As we define the language structure and its con-
straints both in a textual form, our language definition is rel-
atively easier to be organized in a more systematic way. For
users, it is also easier to read it in a systematic way. More-
over, as our constraints are embedded in the EBNF gram-
mar, they are more concise (no elements in metamodel dia-
grams need to be extra referred to) and straightforward.

7. Conclusion

Achievements. A good syntax definition for a modeling
language should serve two purposes. On the one hand, it
should help users to understand and master the language.
On the other hand, it should help the tool developers to con-
struct tools that support the language. As we discussed in
the introduction, the existing syntax definition techniques
for graphic languages, in particular the metamodeling tech-
nique, do not achieve these goals satisfactorily.

We think that our approach performs better with respect
to both goals. Our EBNF-based syntax definition is a com-
pact reference that helps system developers to understand
the language and to create syntactically correct models. For
the tool designer, it gives a formal and unambiguous speci-
fication of the language. Every graphic modeling language

contains textual elements for modeling detail (for exam-
ple, definitions of attributes and operations). While we can
easily integrate the syntax definition for these parts of the
language, metamodeling-based or graph-based techniques
can’t.

Moreover, the defined syntax of a graphical modeling
language using our EBNF-based method is very similar
to that of a textual specification language or programming
language. Therefore, the existing semantics definition tech-
niques which are used in defining semantics of textual spec-
ification or programming languages, can also be applied to
a graphical modelling language with a few changes only.

We do not dismiss the other syntax definition techniques
for modeling languages (in particular, metamodeling) as be-
ing bad or obsolete. Our approach is meant to be an alterna-
tive that avoids problems of the existing techniques. Neither
do we claim that constructing a textual modeling language
and defining its syntax with a BNF grammar are new ideas.
Our contribution is to demonstrate that this technique is fea-
sible for a complex graphic modeling language and that it
can be used not just as an internal representation in a tool,
but as a reference both for the human users of the language
and for the tool builders.

Graph grammars extend string grammars [12] (e.g.
EBNF) in the following points: (i) terminals are inter-
preted as two-dimensional objects; (ii) attributes are used
to specify the spatial information; (iii) the one-dimensional
concatenation in the production rules is extended to
multi-dimensional concatenation; and (iv) the functionali-
ties of the elements in the production rules are augmented.
In a sense, our EBNF based definition method can also be
somehow thought as an extended string grammar: the termi-
nals in our grammar are actually also the two-dimensional
object, after reverse mapping from the textual modeling lan-
guage to the graphical modeling language. The difference
is: in most graph grammars, those two-dimensional ob-
jects are basic graphical elements, such as straight line,
arc, etc. In our method, those “two-dimensional ob-
jects” are basic model elements, such as object, associa-
tion, etc. That is to say, the abstract levels of the termi-
nals in the two approaches are different. As our grammar
is not intended to be used in fields such as image pro-
cessing, our interpretation is proper for our purposes.
Furthermore, as our interpretation makes a graphic mod-
eling language nearly one dimensional, attributes in our
approach are mainly used to specify context sensitive syn-
tax (static semantics), instead of spatial information. The
third and fourth extensions in graph grammars are not nec-
essary in our approach at all. In a word, our approach
extends the string grammar in a suitable way to be ex-
pressive enough to handle the typical graphic modeling
languages. At the same time, it is far from the complex-
ity of graph grammars, which are certainly more ex-
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pressive (the extra expressiveness is not useful for our
purposes) but much more difficult to use and under-
stand.

Another important contribution of this paper is our in-
novative way of defining dynamic context-sensitive con-
straints with operational rules. We demonstrate that these
operational rules are a clean and elegant way of dealing with
hierarchy and with partial models and that they nicely in-
tegrate with our grammar-based definition of context-free
syntax. The advantage of operational rules over a declara-
tive set of constraints is that quite complex syntactic rules
can be expressed as a series of sequential steps, each of
which being easily readable and implementable.

Last but not least, a formal and complete syntax defi-
nition for wide spectrum graphic modeling languages (e.g.
ADORA and UML), which are a set of tight and loose cou-
pled simple graphic modeling languages (e.g. statechart,
MSC, Petri Net), is a significant work worthy of much more
attention than what the existing researches are devoted to.
After a careful survey, we do not find any works similar
to our approach. Metamodeling is a semi-formal approach
even for the context-free syntax definition. In other liter-
ature, the works on syntax definition are only for simple
graphic modeling languages, and most of them are just by-
products of semantics definition. This is not acceptable for a
wide spectrum graphic modeling language with a rich syn-
tax, where integration conflicts of different sub-languages
must be eliminated and constraints on the numerous con-
structs have to be precisely specified.

Limitations. When used by humans, our syntax definition
technique requires mental effort for translating graphic con-
cepts into textual ones and vice-versa, using the mapping ta-
ble. Therefore, our approach is limited to languages where
this mapping is easy and straightforward. As we discussed
in the paper, there is always an easy mapping when the
graphic layout of the diagrams has little or even no syntactic
relevance. With few exceptions, this is the case for require-
ments and architecture modeling languages. In this fam-
ily of languages, only sequence diagrams have a strongly
layout-dependent syntax. Moreover, other techniques such
as metamodeling also require substantial mental effort for
combining a graphic language (the metamodels) with a tex-
tual language (the constraints).

Future work. With the development in the software engi-
neering field, the ADORA language will also evolve. Ex-
isting constructs will be modified and new concepts will
be supported. Correspondingly, the language definition will
not be frozen, but evolve too. We also plan to develop a
parser for the ADORA language based on our syntax def-
inition and to integrate it into our prototype ADORA tool.
What is more, based on the current language definition (es-
pecially on the operational rules, which handle hierarchi-
cal structure of the system), a refinement calculus is pro-

posed. A set of verification rules can also be built on our
formally defined syntax. These works make software devel-
opment using ADORA with different degrees of formality
(from semi-formal to totally formal) possible.
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