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Abstract: Agent-basedmodeling is a promising method to investigate market dynamics, as it allows modeling
thebehavior of allmarket participants individually. Integrating empirical data in theagents’ decisionmodel can
improve the validity of agent-based models (ABMs). We present an approach of using discrete choice experi-
ments (DCEs) to enhance the empirical foundation of ABMs. The DCEmethod is based on randomutility theory
and therefore has the potential to enhance the ABM approach with a well-established economic theory. Our
combined approach is applied to a case study of a roundwoodmarket in Switzerland. We conducted DCEswith
roundwood suppliers to quantitatively characterize the agents’ decision model. We evaluate our approach us-
ing a fitness measure and compare two DCE evaluation methods, latent class analysis and hierarchical Bayes.
Additionally, we analyze the influence of the error term of the utility function on the simulation results and
present a way to estimate its probability distribution.

Keywords: Agent-BasedModeling, DiscreteChoice Experiments, PreferenceElicitation, DecisionModel, Market
Simulation, Wood Market

Introduction

1.1 An inherentadvantageofagent-basedmodeling is thepossibility tomodeleachagent individually,whichmakes
it a promising method to investigate market dynamics. Simulating the modeled individuals permits emerg-
ing behavior to be explored (Kelly et al. 2013). Crucial to developing an agent-based model (ABM) is creating
agents that are valid representations of their real-world counterparts. Until a few years ago, not many models
in the ABM literature had a strong empirical foundation (cf. Janssen & Ostrom 2006; Wunder et al. 2012). Even
when there was empirical foundation, the empirical data was o�en collected and integrated ad hoc, i.e., with-
out reference to a defined methodology. However, in recent years great e�orts have been made to increase
the empirical foundation of ABMs, including step-wise descriptions of methods guiding from semi-structured
stakeholder-interviews to implemented ABMs (Elsawah et al. 2015).

1.2 To further improve this situation, we present an approach where we have applied discrete choice experiments
(DCEs) to elicit preferences of actors that are later represented as agents in ourmodel. The termDCE is used ac-
cording to the nomenclature for stated preferencemethods proposed by Carson & Louviere (2011). We demon-
strate the potential of this approach with a case study of the Swiss woodmarket. The DCE was conducted with
roundwood suppliers to quantify the decision model of the supplying agents. We present two approaches, la-
tent class analysis and hierarchical Bayes, to evaluate the DCE data and show advantages and disadvantages
of each approach to parameterize the model. The decisionmodel is based on random utility theory and there-
fore contains a deterministic component, namely utility obtained through the DCE, and a random component
accounting for non-measurable factors of an individual’s decision. We present a method to estimate the prob-
ability distribution of this random component and analyze its influence on the simulation results.
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1.3 The Swiss woodmarket is a suitable market to explore the approach because importance of personal relation-
ships between traders is above average for trading within the market (Kostadinov et al. 2014). DCEs are partic-
ularly useful for identifying the personal preferences that form and a�ect such relationships. If the approach
proves to be suitable, we will extend our model to simulate scenarios that have been defined together with
policy-makers and other stakeholders. It will then be applied to explore the e�ect of changes such as the mar-
ket entrance of bulk consumers or subsidies that are introduced to increase wood availability. The project is
embedded in a national research programwhich aims to increase availability of wood and expand its use (SNF
2010).

RelatedWork

2.1 In the literature, many ABMs are described that use some kind of discrete choice model in the agents’ decision
process. The data for the choice models stem from a wide range of sources, in some cases from estimations.
However, only a few researchers used DCEs to improve the empirical foundation of their model.

2.2 Dia (2002) conducted a DCE with road users to study how theymake route choice decisions in tra�ic jam situa-
tions. With his DCE, he looked for socio-economic variables that have significant influence on route choice deci-
sions. A�er eliminating the non-significant variables, significant variables were applied to characterize agents
giving them a corresponding utility function to evaluate route choice options.

2.3 Garcia et al. (2007) used a choice-based conjoint analysis (CBC) to calibrate an ABM of the di�usion of an in-
novation in the New Zealand wine industry. They recruited wine consumers to evaluate their decision making
behavior and used the results from the CBC to instantiate, calibrate, and verify their ABM.

2.4 Hunt et al. (2007) linked ABMs and DCEs to study outdoor recreation behaviors. They compared the concepts
of agent-based modeling and choice models and combined them in a case study. They used choice modeling
to derive behavior rules, and used the simulated world of an ABM to illustrate and communicate the results.

2.5 Zhang et al. (2011) investigated the di�usion of alternative-fuel vehicles using an ABM approach. They con-
ducted a CBC in conjunction with hierarchical Bayes to elicit the preferences of the consumer agents in the
model. They used two utility functions in their model, where one is obtained by the CBC and the other by sep-
arate questions in the survey. While the utility function obtained by the separate questions includes an error
term, the utility function obtained by CBC does not, which would be required in random utility theory.

2.6 Gao & Hailu (2012) used an empirically based random utility model to represent the behavior of angler agents
in a recreational fishingmodel. The behavioral data is based onmultiple surveys fromdi�erent sources. Angler
agents choose angling sites based on individual characteristics and attributes of the alternative sites.

2.7 Arentze et al. (2013) implemented a social network as an ABM where the probability of a person being a friend
with another person depends on a personal utility function. The utility function accounts for social homophily,
geographic distance, and presence of common friends. It is based on the random utility model and therefore
includesanerror term. Theauthorsusea revealedpreferencemethod togather themodeldatabyasking survey
participants about characteristics of their existing friendships.

2.8 Lee et al. (2014) used an ABM to simulate energy reduction scenarios of owner-occupied dwellings in the UK.
The agents in the model were home-owners which had to decide, triggered by certain events, if they want to
carry out any energy e�iciency improvement in their house. The decision-making algorithm originates in DCE
data from two separate studies, where the population was divided into seven clusters with similar preferences.
The preferences of the agents in each cluster were distributed around the center point of the cluster to provide
a heterogeneous population. The utility function of the agents are deterministic, i.e. without error component.

2.9 It is striking that where combinations of ABMs and DCEs are applied in the literature, the role of the error com-
ponent and how it is modeled are o�en neglected or at least not explicitly mentioned. However, the error com-
ponent is central to random utility theory, which is the theoretical foundation of DCEs. This paper contributes
to this field by rigorously adhering to random utility theory that underlies the DCEmethod to improve the em-
pirical foundation of ABMs.

Description of the Model

3.1 This section describes themodel according to the ODD + D protocol (Müller et al. 2013), which extends the ODD
protocol (Grimmet al. 2006, 2010) to bemore suitable for describing the decision-making process of the agents.
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Figure 1: Conceptual model of the Swiss wood market with the three assortments wood fuel, roundwood, and
industrial wood, and the corresponding sellers, buyers, and intermediaries. To reduce complexity, this paper
considers only public forest managers and sawmills.

The focus of this paper is more on themethod than on themodel; however, as especially the design of the DCE
is not separable from its application area, a rough understanding of themodel is neededbefore themethod can
bedescribed in detail. This is another reasonwhy the followingdescription aims at giving su�icient information
to understand the model, not to enable exact replication.

Overview

Purpose

3.2 The model represents the wood market in Switzerland and is used to simulate scenarios such as the market
entrance of bulk consumers or a fluctuating exchange rate. The goal of these simulations is to identify factors
influencing the wood availability on themarket. Themodel is used by the authors, while the simulation results
are reported to the appropriate stakeholders.

Entities, state variables, and scales

3.3 Entities: Entities in the model are di�erent types of agents which act within one or more markets (Figure 1).
However, to reduce complexity for the reader, we present our approach eliminating all but two agent types
from the market. This is possible because the main assortment on the Swiss wood market is roundwood, and
there isonlyone typeof consumeron themarket for it: sawmills. Twosupplyagent typesexist in the roundwood
market, namelyprivate forestownersandpublic forestmanagers. Since themajorityof roundwood isharvested
and soldbypublic forestmanagers (herea�er referred toas foresters), theprivate forest owners are alsoomitted
in this paper. The wood fuel market and the industrial woodmarket are dependent on the roundwoodmarket,
because wood fuel and industrial wood are by-products that accumulate during the roundwood harvesting
and production process. These two by-products can be omitted in this paper because they do not have a direct
impact on the main product roundwood.

3.4 State variables:

• Each agent has a location (x-/y-coordinate) and a portfolio of goods he buys or sells.

• Every agent has a confidence value for each and every contractual partner between which negotiations
have taken place. The confidence increases a�er successful negotiations leading to a contract and de-
creases if negotiations fail.

• Foresters have a certain monthly harvesting capacity, sawmills have a monthly processing capacity.

3.5 Scales: One time step represents onemonth, simulations were run for 20 years.
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Process overview and scheduling

3.6 A forest year starts in September and ends in August of the following year. Eachmonth proceeds in three steps:
in the first step, all agents are shu�led and then one a�er the other negotiates new contracts with other agents.
In the second step, foresters prepare their deliveries, i.e. they harvest wood and deliver to their contractual
partners. In the third step, sawmills process thewood received from the foresters. This process is alsodescribed
as pseudocode in the appendix.

Design concepts

Theoretical and empirical background

3.7 Theconceptualmodelof agentsand interactionswascreatedandcontinuously refinedbasedonsemi-structured
interviews and workshops with di�erent woodmarket actors and stakeholders.

3.8 Thedecisionmodel of theagents is basedon randomutility theory,which is thebasis of severalmodels and the-
ories of decision-making in psychology and economics (Adamowicz et al. 1998). Randomutility theory is based
on thework of (McFadden 1974), who extended the concepts of pairwise comparisons introduced by (Thurstone
1927). According to random utility theory, a person choosing between multiple alternatives chooses the one
with the highest utility, where the utility function is defined asU = V + ε, with U being the total unobservable
utility, V the deterministic observable component of the consumer’s behavior, and ε a random component rep-
resenting the non-measurable factors of an individual’s decision. This error term has a probability distribution
that is specific to the product and the consumer. In our model, such a utility function is used by each agent
to negotiate new contracts. Agents evaluate incoming and outgoing potential transactions by considering five
decision criteria. This leads to the following form of the utility function:

U = V + ε = β1c1 + β2c2 + β3c3 + β4c4 + β5c5 + ε (1)

where U is the total utility of a potential transaction, β1 − β5 are the part-worth utilities of the five decision
criteria, and c1 − c5 are the numerical values of the corresponding decision criteria. A potential transaction is
acceptable for an agent if its total utility is greater than βNone, the part-worth utility of not accepting a transac-
tion, i.e.,∆U must be positive:

∆U = U − βNone (2)

3.9 The part-worth utilities of the decision criteria can be assigned to each agent individually, per group of agents,
or they can be equal for all agents. Our approach to obtain the part-worth utilities will be explained in the
Method section.

Individual decision-making

3.10 Agents of di�erent types pursue di�erent objectives:

• Forester agents try to harvest a certain amount of wood during each forest year. The target amount of
wood is determined by the annual allowable cut. However, the target amount per month di�ers greatly
between the seasons because of various restrictions such as snowfall in winter and increased risk of log-
ging damages in summer. This is implemented in themodel by assigning each forester agent with amini-
mum, optimal, andmaximalmonthly harvesting amount that takes seasonal variability into account. The
minimum andmaximum amounts are attributed to themanpower available to each forester; employees
must be kept busy, but also have a maximum working capacity. Therefore, to reach the targeted yearly
amount, the foresters harvest an amount of wood each month close to the optimum, while balancing
monthly variations. To achieve their objective they continuously plan the coming months in the current
forest year and negotiate suitable contracts.

• Sawmill agents always try to maintain su�icient wood stocks for continuous processing. They negotiate
new contracts based on their demand, which is almost constant throughout the year, with onlyminor re-
ductionsduringperiodswhen lesswoodcanbeharvested. Theyhavewarehouses tobalance the reduced
wood availability during certain periods and include the warehouse capacity utilization in their planning
processes.
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3.11 When agents negotiate with potential contractual partners, they have to evaluate the potential transaction to
see if it is acceptable or not. For this purpose, each agent considers several decision criteria, which are defined
for each agent type.

3.12 Forester agents consider the following five decision criteria to evaluate a potential transaction. The criteria
were identified in semi-structured interviews and workshops with foresters and other domain experts:

• Amount of wood available. Foresters generally try to harvest approximately the amount of wood each
year that regrows in a year, but nevermore. Employees have to be kept busy. Therefore, there is pressure
to sell enough wood during the year.

• Amountofwooddemanded. Largerorder sizes reduce transactioncosts, butalso increaseconcentration
risks.

• Trust in demander. On the Swiss wood market, wood is usually traded without written contracts. Fur-
thermore, the exact price paid for the logs is determined based on the measurements at the sawmill.

• Margin. The net amount ofmoney a forester receives (= price + subsidies – harvesting costs – transporta-
tion costs).

• Expectedpricedevelopment. Foresters have some tolerance in theannually harvestedamountofwood,
i.e., they can adapt the amount based on the expected price development. For example, if they expect
rising prices, they can postpone the sale of wood to a later date.

3.13 Sawmill agents consider five di�erent decision criteria to evaluate potential transactions. However, they are
conceptually similar to those of the foresters:

• Urgency. The sawmills must have a constant degree of capacity utilization. Supply bottlenecks can usu-
ally be absorbed by the warehouse stock, but stock may not be su�icient especially in the seasons when
only little wood is harvested. This can place a high urgency on obtaining additional supplies.

• Size of order. Larger order sizes reduce transaction costs.

• Trust in supplier. Supplies have to be on time and complete.

• Price. Higher prices reduce the margin of the sawmill.

• Expected price development. If prices are expected to drop and the warehouse stock is not empty, a
sawmill can wait for lower prices until making new purchases.

Learning

3.14 Learning is not included in the model.

Individual sensing

• Agents know the average market prices of previous months and use this information in their decision
process.

• If an agent contacts another agent between whom no previous negotiation has taken place, there exists
no confidence value for this agent. In such cases the confidence value is calculated by averaging the
confidence other agents have with the respective contractual partner. This, in e�ect, can be considered
the reputation of the contractual partner.
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Figure 2: Interaction pattern. An interaction is initiated by the requestor, who can be either a buyer or a seller,
and results in a contract if buyer and seller reach an agreement.

Individual prediction

3.15 The expected price development in the comingmonths is calculated using the information about pastmonths’
market prices, and is a criterion in agents’ decision process.

Interaction

3.16 Figure 2 depicts how agents interact with one another, i.e. how they negotiate a new contract. The interaction
is initiated by the requestor, who can be either a buyer or a seller. He sends a request including the assortment,
the amount, and the price to a potential contracting party. The contracting party can then either decline the
request or respond with an o�er. The price and the amount in the o�er can be di�erent than in the request.
Finally, the requestor has the opportunity to either accept or decline the o�er. There are no further rounds of
negotiation ina single interaction, asbargaining isunusualon the roundwoodmarket inSwitzerland. Therefore,
this interaction pattern induces three situations where a decision has to be made. These decisions are made
according to the approach presented in Design concepts (see 3.7).

Collectives

3.17 Each agent has a personal address bookwith potential contractual partners in his nearby area. Aside this, there
are no collectives in the model.

Heterogeneity

3.18 All forester agents have a forest with equal size and have equal harvesting capacity. All sawmill agents have the
sameprocessing capacity. Their aggregate capacity corresponds to theamountofwood that forester agents are
able to harvest; respectively supply and demand are balanced. In the reduced model presented here, import
and export within the modeled region are ignored. The two agent types di�er in the criteria they consider in
their decisions. The considered criteria are always the same per agent type, but the weighting of the criteria
may di�er from agent to agent.

Stochasticity

• The location of all agents is randomly determined during initialization.
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• Agents negotiate new contracts in a random order in each simulated month.

• At the beginning of the simulation, agents select potential contractual partners randomly, later they pre-
fer to negotiate with agents they already know from previous contracts.

• As long as agents do not have a contract history, prices are randomly set (Gaussian distribution).

• The utility value calculated in the decision process contains a random component reflected in the error
term ε (see Theoretical and empirical background).

Observation

3.19 Several approaches were used to test, analyze, evaluate, and finally validate the model:

• Evaluation of aggregated results. A multitude of variables are calculated over all agents for each simu-
latedmonth. Thesevariables includeaverage,minimum, andmaximumvalues forprices, tradedamounts,
monetary situation of agents, etc. The values are stored in a CSV file and are then predominantly evalu-
ated graphically.

• Evaluation of individual variables for each agent. Some variables are examined in more detail, i.e.,
not just minimum/average/maximum values over all agents are recorded, but the specific value for each
agent. This is done for variables such as degree of capacity utilization in the warehouse or of production,
and also allows the recognition of interesting patterns in the simulation results. This approach uses CSV
files aswell andwas also applied to track a fitness variablewhichwill be presented in themethod section.

• Individual agent evaluation. This approach traces some randomly selected agents in detail over the
whole simulation period. Almost all important data about an agent is stored in an XML file for each simu-
latedpoint in time, and thuspermits further evaluationwith a separate evaluationprogram. For example,
this data enables an understanding of the reasonswhy each and every incoming or outgoing request was
accepted or rejected. This approach is especially valuable if bugs are to be traced back to their source.

• Visual evaluation. It is possible to run the simulation programwith a GUI that includes amap containing
all agents. Arrows depict interactions of buyers and sellers live during the simulation. This approach
permits a monitoring of agents in their geographical contexts, which would otherwise be di�icult using
the methods mentioned above.

Details

Implementation details

3.20 The model was implemented in Java, a simplified UML class diagram is depicted in the appendix. The model
was tested and validated on the one hand with the approaches mentioned in the above section, which are
based on face validity (Sargent 2005) andmainly require the interpretation of graphs. On the other hand, Java
assertions were used in many methods to enable continuous testing during the development process. They
make it possible to insert preconditions, postconditions, and invariantswithin the code,making the codeeasier
to read andmaintain.

Initialization

3.21 A randomseed canbe set to initialize the simulation permitting the results to be reproducible (cf. Stochasticity),
which is an important prerequisite for the validation of a model (Amblard et al. 2007). At the beginning of a
simulation run, agents have to conclude contracts with other agents without an available contractual history.
Therefore, initially the contract properties such as the contracting party and the price are selected randomly.
With a growing contract history from several simulation rounds, agents will attempt to build contracts that are
similar to previous successful contracts. It follows that a�er an initial phase business relationships become
relatively stable (Figure 3). This substantiates the observation that over timemost business relationships tend
towards stability on the Swiss woodmarket.
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Figure 3: Number of distinct buyer/seller combinations permonth in a 20 year simulation (average of 100 runs).
Colored lines represent the final state of an interaction, black lines represent the corresponding 12-monthmov-
ing averages. It can be seen that a�er an initial phase of about three years business relationships become rel-
atively stable. In the first three years, there are many requests that do not lead to an o�er or a contract. The
striking yearly drop of contracts can be explained by the reduction of harvesting activities in summer months.

Methods

Discrete Choice Experiments

4.1 To know how individuals make decisions, their preferences need to be elicited. In our case, this implies that
the attributes of a potential transaction considered in a decision situation must be known (cf. sections on In-
dividual Decision-Making and Interaction). These attributes and their importance can be identified bymeans of
preference elicitation methods, of which a multitude exist. We concluded that DCEs are most suitable for our
case, since they are based on random utility theory (RUT), like the decision model of the agents in our model
(cf. section Theoretical and Empirical Background). DCEs are stated preference methods; while these have a
slightly lower accuracy than revealed preference methods, they have the advantage that an arbitrary number
of choice situations can be presented to an individual.

4.2 A central point in RUT is the error term. Using the standard choice-based conjoint analysis (CBC) approach
that is not based on RUT, evaluating utility functions results in choice probabilities for di�erent alternatives.
However, these choice probabilities are purely based on mathematical theories and not on theories of human
behavior or their preferences as in RUT (Louviere et al. 2010). CBC and DCEs both lead to coe�icients (also
known as “betas”) that describe the part-worths of individual attributes for a given target group.

4.3 As described in the section Theoretical and Empirical Background, the error term ε of a utility function has a
probability distribution that is specific to the product and the individual consumer. This is represented in the
model by drawing the error term from a normal distribution that was initialized with a random seed. This seed
is based on a combination of (i) the agent’s ID, (ii) the ID of the current negotiation with the contract partner,
and (iii) the random seed that was used to initialize the simulation. This procedure guarantees that if the same
o�er has to be evaluated multiple times by an agent, the error term is always the same.

Experimental setup

4.4 In our DCE, only the selling side of the roundwoodmarket was considered. We conducted the experimentswith
foresters in two Swiss cantons, Canton of Aargau (AG) and Canton of Grisons (GR). We chose these two regions
since they show some fundamental di�erences. First, AG is flat, while GR is mountainous. The mountainous
terrain in GR increases harvesting costs, which reduces the profitability of harvesting. There is also a lot of pro-
tection forest where harvesting is prohibited entirely. Second, although AG and GR are both border cantons,
GR is muchmore a�ected by the woodmarket of the adjacent countries. For this paper we decided to demon-
strate our approach only on AG, as this enables us to eliminate the aforementioned peculiarities of GR, which
are interesting for the overall study, but would introduce toomuch noise in the results for the specific purpose
of this paper.

4.5 Carson & Louviere (2011) categorized the di�erent types of DCEs. Three related approaches are: choice ques-
tions (one chooses the preferred option), ranking exercises (all options are ranked), and best-worst choice
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Figure 4: Example of a decision situation presented to a subject.

questions (the best and the worst option are chosen). Foster & Mourato (2002) showed that ranking exercises
with larger choice-sets (ranking many options) can lead to inconsistencies in the results. Caparrós et al. (2008)
showed that choice questions lead to similar results as ranking exercises that include only the first rank in the
evaluation. Akaichi et al. (2013) confirmed this for small choice-sets with only three options.

4.6 To avoid the problems of ranking larger choice-sets, we used best-worst choice questions where each question
has three options. Best-worst choice questions with three options are similar to ranking experiments. Having
exactly three options leads to a complete ordering of the options and thereby increases the number of implied
binary comparisons (Carson & Louviere 2011). Additionally, even though that in a best-worst DCE a respondent
is asked for more information than in a DCE where only the preferred option has to be chosen, the cognitive
e�ort is not much higher, as the respondent already evaluated all alternatives in the set to choose the best
(Lancsar et al. 2013).

4.7 One of the three options presented in our experiment is a “status quo alternative”. Having a status quo alterna-
tive has the advantage of always o�ering a feasible choice to the respondent (Carson & Louviere 2011).

4.8 Figure 4 shows an example of a decision situation used in our experiment. In each decision situation, the sub-
ject had to select the best and the worst options out of three. Two of them were options to sell wood, and one
was a “don’t sell” option, which was to be chosen if the subject would rather wait for other o�ers before selling
wood. The two selling options each had five attributes, corresponding to the decision criteria explained in the
section Individual Decision-Making and Interaction, and each attribute could take on three di�erent levels 1. All
attributes were quantitative, which later facilitates the integration of the DCE results into the ABM. Twelve deci-
sion situationswerepresented to each subject. The influenceof suchdesigndimensions –numberof attributes,
number of levels, number of decision situations – on DCE results have been studied by Caussade et al. (2005).
They found that particularly a large number of attributes, but also a large number of levels, have a negative
influence on the respondents ability to choose. We considered this point by reducing the attributes and levels
to an acceptable minimum. A subsequent study by Rose et al. (2009) showed that the influence of the design
dimensions also di�ers between countries, in particular for the number of decision situations to assess. When
Bech et al. (2011) investigated the influence of the number of decision situations onDCE results, they found that
even presenting 17 decision situations to each respondent does not lead to problems. However, their results
also indicated that the cognitive burden may increase with more decision situations presented. Since we had
a relatively low number of potential respondents, we needed to ask as many decision situations per subject
as possible, while being careful to not fatigue or even completely discourage the subjects from responding.
Therefore we decided that for our study presenting 12 decision situations to each respondent is a reasonable
compromise between these two subgoals.

4.9 The experimental design (combinations of attribute-levels presented to the subjects) is a controlled random
design where all subjects are given di�erent versions of the questionnaire. In this case controlled random de-
sign means that the levels are balanced, i.e. each level is presented approximately an equal number of times.
Level overlap is allowed to occur, i.e. in a single decision situation an attribute can have the same level in both
options presented.
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Attribute Levels Explanation

Amount of wood available 70% / 40% / 15% Amount of wood that has not yet been sold compared
to the yearly total amount that can be sold

Amount of wood demanded 15% / 10% / 1% Size of order compared to the yearly total amount that can be sold
Trust in demander 0.2 / 0.5 / 0.8 1 = highest trust, 0 = no trust
Margin CHF 25 / CHF 10 / CHF -5 Net margin perm3 in Swiss Francs
Expected price development +10% / 0% / -10% Expected price in a year in relation to current price

Table 1: Attributes and levels in the DCE. The selected levels represent typical situations a forester is faced with
during a forest year.

DCE evaluation and agent parameterization

4.10 There are several methods for evaluating DCEs. We used the following three, because each of them is useful for
a specific purpose that we consider valuable for ABMs:

• Logit. This evaluationmethodmeasures theaveragepreferencesof thepopulationby regardingall actors
as having equal preferences. This method provides a good starting point to evaluate DCEs, as it gives an
overview of the whole population. However, since logit assumes that all agents have equal preferences,
much of agent individuality, which is one of themajor strengths of ABMs, is lost. Themethod is described
in more detail by So�ware (2015) and Hosmer Jr & Lemeshow (1989).

• Latent Class Analysis (LCA). This method divides the sample into several classes of subjects with sim-
ilar preferences. Using LCA in combination with choice-based conjoint analysis was first proposed by
DeSarbo et al. (1995).

• Hierarchical Bayes (HB). The individual preferences of each subject in the sample are estimated. This
method became popular at the end of the nineties, as it requires muchmore computational e�ort as the
other two methods mentioned above. Early uses of this method are described by Allenby & Lenk (1994),
Allenby & Ginter (1995), and Lenk et al. (1996).

4.11 The DCE was designed and evaluated using the Sawtooth 8.3 so�ware. A comparison of this so�ware with
other DCE design approaches can be found in Johnson et al. (2013). The evaluation of the DCE leads to a part-
worth utility value for each attribute level and one for the “don’t sell”-option, the none-option. Therefore three
values for the part-worth utilities are obtained per attribute, one for each level. A linear regression leads to the
coe�icients of V, the deterministic observable part of the utility function (cf. Equation 1). While the betas are
obtained from the DCE, the error term ε is randomly generated during simulation. It has a mean of zero and a
variable standard deviation. An approach to calculate the standard deviation is presented in the next section.

4.12 For privacy reasons, the forester agents have random locations that do not conform to the real locations of the
corresponding DCE subjects. We assume that this is acceptable, since we do not see any considerable regional
distinctions in our study region where this procedure might introduce errors. Additionally, we repeated our
simulations multiple timesmapping the DCE data di�erently each time, which should further reduce potential
errors.

Estimating the standard deviation of the error term

4.13 In order to evaluate if a request can be accepted or not, one has to compare its utility against the utility of
the none-option (Equation 2). This is achieved by calculating the observable deterministic part of utility (V) of
the request with the part-worth utilities obtained by evaluating the DCE (Figure 5, step 1). If this value V plus
the error term is greater than the utility of the none-option (βNone), the request is accepted, as random utility
theory states that always the option with the highest utility is chosen.

4.14 The evaluation of the DCE is based on the Multinomial Logit model (MNL), which states that when these two
utility values are exponentiated, the ratio of the resulting values corresponds to the probability that the request
can be accepted (Figure 5, step 2).

4.15 Ourmodel should comply with randomutility theory, therefore the utility functionsmust have the form ofU =
V + ε. The option with the highest utility is selected and thus a request is accepted if:

V + ε ≥ βNone or ε ≤ V − βNone (3)
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Figure 5: Example of the calculation of the standard deviation σ of the error term ε to obtain a probability dis-
tribution that accounts for the uncertainty in the MNL model. The resulting σ is specific to the given agent for
the given request.

4.16 Therefore it is possible to select the standard deviation of ε in such a way that the resulting probability distri-
bution leads to an equal choice probability as the one obtained in the MNLmodel (Figure 5, step 3).

4.17 However, thedistributionof ε calculated in thiswayonly accounts for theuncertainty in theMNLmodel. Accord-
ing to randomutility theory, the error term ε also accounts for unobserved product attributes or characteristics
of the deciding individual (Manski 1977). Therefore it might be possible that the standard deviation σ of the
error term needs to be higher than calculated above. This can be solved by increasing the standard deviation
for each agent individually with a factor that is based on the accuracy of the subject’s answers. However, since
the error term is not measurable, we cannot know its exact probability distribution. The general influence of
the magnitude of σ on the model is discussed in the Results and Discussion section.

Enhancing ABMs with DCEs

4.18 Our goal is to enhance ABMs with DCEs by improving the empirical foundation of the model and benefitting
from the well-established random utility theory. Empirical information can be used either as input data or to
test amodel (Janssen & Ostrom 2006). Our approach uses the DCE data as input data for the decisionmodel of
each forester agent.

4.19 As (empirical) validity is not measurable, but rather a subjective human judgment (Amblard et al. 2007), it is
di�icult to quantify to what extent the ABM is enhanced by the empirical data and thus to assess the success
of our approach. Additionally, the extent to which the ABM is enhanced would depend on the accuracy of the
estimated decision behavior without having empirical data from the DCE. Hilty et al. (2014) describe this as
the problem of defining the baseline. We therefore assess our approach by performing a parameter variability-
sensitivity analysis (Sargent 2005). With this validation method, we check the plausibility of the simulation
output when agents are parameterized with the results from the DCE. We focus on control variables of which
their evolution in reality and under normal market conditions is known. By using the validation methods de-
scribed in the section Observation, we ensure that these observed variables always stay within a realistic range
over the entire simulation period. This is, the behavior of themarket participants in our simulation is compared
with the expected behavior in reality. To illustrate this process, we identified one variable as a fitness measure.
This variable is explained in the following section.

4.20 The reasons explained above prevent a real proof that our approach does in fact enhance ABMs; however, we
are convinced that includingempirical data inamodel is inmost casesan improvementof amodel. By including
empirical data on the micro level we also aim at a higher structural validity (Zeigler et al. 2000) of the model,
as we try to generate the macro behavior with a similar mechanism as in the real system. It may be possible
that a model with “invented” (non-empirical) decision parameters would perform better regarding the model
validity on themacro-level, but this would prevent fromunderstanding the causalmechanisms inside the ABM.
This is discussed in detail by (Boero & Squazzoni 2005), where they state (2.13): "[..] what else, if not empirical
data and knowledge about the micro level, is indispensable to understand which causal mechanism is behind
the phenomenon of interest?".
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Observed fitness variable

4.21 In our study region (cf. section Experimental Setup), foresters try to equate yearly wood sales to the level of
yearly wood growth, as long as no storm damages occur. This means that the amount of wood sold annually
per forester can be assumed to be nearly constant, as it depends mainly on the size of the forest. We define
our fitness variable as the ratio of roundwood sold in one year to the amount of wood that is regrown in the
same period and usable as roundwood. Harvesting more wood in one year than the amount that regrows is
not allowed, which is regulated by the determination of the annual allowable cut. Therefore the defined fitness
variable should always have a value very close to one, but not greater.

4.22 Becauseweknowwhich value this variable shouldnormally have, it is ideally suited for checking theplausibility
of theDCE results. In ourDCE, the foresters had to imagine themselvesbeing involved in thepresented situation
and decide how they would react in it. Therefore, the 12 decision situations presented to each subject only
represent 12 arbitrary situations in a year. A problem of such stated preference methods is the possibility that
a subject indicates decision behavior that does not conform to reality. In our case, this would mean that if we
equipeach forester agentwith the indicateddecisionbehavior obtained fromtheDCE, it could lead to too fewor
toomany transactions in themodel. This would imply that the decision behavior parameters are not plausible.

Simulation procedure

4.23 The current version of the simulation program is intended to verify the suitability of using DCEs to parameterize
an ABM and to evaluate di�erent approaches to integrating the DCE data. Therefore only a standardmarket sit-
uationwithout any specialmarket events (e.g., entry of newmarket participants) is simulated. In the simulated
market situation, the margins of the foresters are rather low, but still within the range that was covered by the
DCE. This procedure is necessary because if themargins were very high, the foresters would almost always sell,
and there would be little to observe.

4.24 In each simulation run, a period of 20 years is simulated. The first three years of the simulation are ignored in
the analysis to avoid bias due to the initialization phase (cf. Figure 3). Because the model is stochastic, each
simulation run is repeated 100 times using di�erent random seeds.

Results and Discussion

Comparison of Hierarchical Bayes and Latent Class Analysis

5.1 Latent class analysis (LCA) candivide a sample into anarbitrary numberof classes; for simplicity’s sake,weused
anexamplewith three and later onewith two classes. To illustrate the consequences of using either hierarchical
Bayes (HB) or LCA to parameterize the decision behavior of the agents, a comparison of the two approaches is
presented in Figure 6. In order to check the plausibility of the decision behavior parameters, we observe the
fitness variable defined above, which should always have a value very close to one. The error term is set to zero
in this example permitting a better comparison of the results.

5.2 Each approach has its specific advantages and disadvantages. Since HB estimates an individual utility function
for each DCE respondent, it is very sensitive to the answers the respondents give. This also implies that respon-
dents who do not respond with reasonable care (reasons may be, e.g., reluctance or fatigue) provoke utility
functions and therefore decision behavior parameters that make it impossible to survive on the market. One
such possible case occurs if a forester agent never sells, although he should. This can be observed in the le�
diagram of Figure 6; there are three forester agents who sell less than half of the available roundwood, and one
who does not sell anything at all. This leads to an average of the observed variable of around 93%. It should be
noted that the first three years of the simulation are omitted from the calculation of the averages, cf. section
Simulation procedure.

5.3 The right diagram in Figure 6 shows the simulation results when the agents are initialized with LCA parameters
using three classes of agents. The overall average is slightly higher with 97%. However, if per-class averages are
examined, a similar phenomenon canbeobserved. There are two classeswith anobserved value of about 99%,
and one class with an average value of about 82%. The latter class contains nine of the 80 foresters modeled.
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Figure 6: Comparison of HB and LCA for a simulation period of 20 years. The variable shown specifies the ratio
between the amount of roundwood that has been sold and the annual allowable cut of roundwood. Each col-
ored line represents one of the 80 simulated forester agents, while the black line represents the average. The
three dashed lines in the right diagram represent the averages of the three di�erent classes identified by latent
class analysis.

Figure 7: Comparison of average roundwood prices in two di�erent classes of foresters.

5.4 Whether HB or LCA is themore appropriate approach firstly depends on the quality of the DCE survey data and
secondly on the scenarios to be simulated. Low data quality, for example caused by subjects reluctantly partic-
ipating in the DCE, might lead to implausible results when using HB. This e�ect might be reduced by manually
sortingout thedataof some respondents. However, this poses a risk for a selectionbias, and itmight bedi�icult
todi�erentiate between lowdataquality andunusual but existingdecisionbehavior. LCA ismore robust to such
outliers, but also reduces the diversity of decision behaviors. Whereby it is this diversity in which each market
participant can bemodeled with an individual way of deciding that is one of the key benefits that agent-based
simulations provide.

A closer look at Latent Class Analysis

5.5 Figure 7 shows the per-class average price foresters receive for roundwood when they are divided into two
classes using LCA. Two interesting phenomena can be observed. First, the class that gives more weight to the
margin criterion (class 1) also achieves higher prices. Second, in class 1 the prices rise towards the end of the
forest year, while in the class 2 they fall. This can be explained by looking at the coe�icients for the criterion
“amount of wood available”: class 1 has a positive coe�icient, while class 2 has a negative one. A positive coef-
ficientmeans that a forester is more likely to sell woodwhilst still having a large amount of available wood, i.e.,
at the beginning of the forest year. Therefore, there is a tendency to negotiate higher prices towards the end of
the year. The class with the negative coe�icient behaves conversely. Note that the average simulated market
price a�er several rounds is largely independent on the initial price level given at the start of the simulation.
As we simulate a business-as-usual scenario without external influences such as import/export or scenarios of
over- or undersupply, the price solely emerges from the utility functions of the agents.

5.6 With LCA, the subjects in the sample can be divided into an arbitrary number of classes. The model builder
must choose the appropriate number of classes. When consulting experts operating in the Swiss wood mar-
ket with the two- and three-class parameter set, they clearly favored the two-class approach. They could not
imagine that there are foresters that rate all attributes more or less the same, as a class with about 10% of the
subjects indicated in the three-class approach. The simulation which applied three classes confirmed their ex-
pectation that the behavior of the agents in this 10%class is rather implausible. Because such an e�ect can only
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Figure 8: Influence of the standard deviation σ of the error term ε on the simulation result with utility functions
based on hierarchical Bayes. The selected ratios of σ

∆V correspond to choice probabilities of 99.4%, 95.2%,
84.1%, and 59.9% for the option with the highest V (cf. Figure 5). The development of the same variable with
σ = 0 can be seen in Figure 6.

be verified in a simulation, simulating results obtainedbyDCEs also increases the transparency of these results.
However, an explanation for such behavior, while seemingly implausible, might be that product attributes that
are important in the decision of an individual were not included in the DCE. This shows the importance of the
error term of the utility function, which accounts for such cases.

Influence of the error term

5.7 Figure 8 illustrates how themagnitude of the error term ε influences the simulation results. The standard devia-
tion of the error term is set in relation to the average∆V (see Figure 5) and is varied between 40% and 400%of
the average∆V . The observed variable is again the fitness variable described above, the ratio between round-
wood sold and the annual allowable cut, which should always be close to one. It can be observed that the
variance of the curves decreases with an increasing standard deviation of the error term. The reason for this
e�ect is in the error term whereby increasing its standard deviation respectively increases the randomization
of the entire utility function. This means that utility functions which previously resulted in very lowmarket ac-
tivity now have a higher probability of allowing normal market participation. However, this leads to the e�ect
thatmore negotiation rounds are necessarywhen the standard deviation increases. The additional negotiation
rounds compensate for the increased randomness in the utility function; if the randomness is high, the prob-
ability that lucrative o�ers are rejected and unprofitable ones accepted increases. Therefore, a high standard
deviation of the error term also leads to lower cost-e�ectiveness of the market. However, including the error
term in the utility functions is important, as otherwise they are no longer consistent with random utility theory
(cf. section Discrete Choice Experiments; Louviere et al. (2010)).

Challenges of the approach

5.8 Several challenges emergewhen using DCEs to parameterize an ABM. The first challenge is data collection. The
number of attributes and levels in the DCE must be in accordance with the number of subjects in the survey,
the sample size. A rule of thumb for DCEs with aggregated analysis is defined by Johnson & Orme (2003) and
Orme (2009). They recommend calculating the minimum sample size with

n ≥ 500 ∗ c
t ∗ a

(4)

where n is the number of respondents, t the number of tasks, a the number of alternatives per task (without
the none-option), and c the number of levels per attribute when only main e�ects are considered. For our
experimental setup, this would require at least 63 respondents.
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5.9 A more general statement was made by Lancsar & Louviere (2008): “one rarely requires more than 20 respon-
dents per version to estimate reliablemodels”. Wewere able to conduct almost a full population survey (n = 55,
N = ca. 80), though the absolute number of subjects was still not very high. The problemwas also exacerbated
in that some respondents felt the survey method overly theoretical, which may have reduced the data quality.
However, we suppose that a population data coverage of 70% is su�icient for the given purpose.

5.10 Another problem is “how to derive observations of a social system over time” (Janssen & Ostrom 2006) or, in
other words, “using cross-sectional data to estimate parameters of function forms of agents’ decisions” (Vil-
lamor et al. 2012). This problem also occurs when conducting DCEs. Even whenmultiple hypothetical decision
situations are presented to each subject; wemight face the problem that the subject has the currentmarket sit-
uation in mind, which might influence his decision. It is therefore possible that we would obtain di�erent data
if the realmarket situation changed. If it is not possible to repeat the experiment at di�erent points in time, this
problem could be reduced by considering in the DCEmore attributes per option that also take themarket situ-
ation into account. However, adding more attributes complicates data collection, because more respondents
or more questions per respondent are necessary.

5.11 Finally, we only collected data from the selling side of themarket, which directly influences the interactionwith
the forester agents. This is the case because forester agents might be faced with nonsensical requests or o�ers
from sawmill agents that can for instance lead to an unrealistic shi� of market power. This can only be avoided
by estimating and calibrating the sawmills’ decision behavior parameters with reasonable care.

5.12 One way to address some of the problems mentioned could be to automatically adapt the utility function of
each agent during simulation. This could be achieved through learning algorithms that adapt the utility func-
tions in small steps to the changed simulated market conditions. However, this would weaken the empirical
foundation on which the original DCE was created.

Conclusion and Outlook

6.1 We presented an approach combining DCEs with ABMs and conclude that DCEs are a suitable method to en-
hance the empirical foundation of ABMs. We demonstrated this approachwithin a case study of a Swiss round-
woodmarket. Byobservinga fitness variable,wewereable to state that thedecisionbehaviorparametersof the
agents obtained through the DCE are plausible for most agents. For the small share of seemingly unusual deci-
sion behavior, the standard deviation of the error term can be increased, which is in accordance with random
utility theory. We presented amethod to calculate this standard deviation and demonstrated how increasing it
leads to increased randomness of decisions and hence lower cost-e�ectiveness of the market.

6.2 The comparison of latent class analysis (LCA) and hierarchical Bayes (HB) as DCEs evaluationmethods prove in
both cases to be useful for evaluating DCEs and integrating the results into an ABM.While LCA ismore robust to
outliers (whichmayoriginate from lowdataquality), HB isbetter suited to theagentparadigmaseach individual
agent can have his own empirically based decision behavior.

6.3 As the approach of enhancing ABMs with DCEs looks promising for our application, our next step will be to
conduct the DCE with the buying side of the wood market. Our goal is to implement a model of the Swiss
wood market containing all three major wood assortments and corresponding agent types (cf. Figure 1). This
will enable us to simulate scenarios that can provide decision support for policy-makers and other interested
parties.
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Appendix

Appendix A2: UML Class Diagram

Figure 9: UML diagram showing themost relevant classes of the simulation program. In each simulation round,
first all action situationsareexecuted, thenmultiple evaluator classes evaluate thenewstatusof the simulation.
Each agent has a planner that supports him in negotiating new contracts to have continuous supply / sales.

Appendix A2. Pseudocode

S imu la t ion . s t a r t ( ) {
FOR EACH round {

fo res tG rowth . executeRound ( )
roundwoodMarket . executeRound ( ) / / d e t a i l s see below
FOR EACH eva l ua to r {

e va l ua to r . evaluateRound ( )
e va l ua to r . w r i t e T o F i l e ( )

}
}

}
RoundwoodMarket . executeRound ( ) {
a l l A g e n t s . s h u f f l e ( )

FOR EACH agent {
/ / Conclude new con t r a c t s with the
/ / subgoa ls mentioned in s e c t i on " I n d i v i d u a l Dec i s ion−Making "
agent . makeNewContracts ( )

}
FOR EACH s e l l e r {

s e l l e r . p r e p a r eD e l i v e r i e s ( ) / / f o r e s t e r s ha r ve s t wood
s e l l e r . e xecu teCon t rac t s ( ) / / wood i s t r a n s f e r r e d from buyer to s e l l e r

}
FOR EACH agent {

buyer . p r o c e s s D e l i v e r i e s ( ) / / sawmi l l s process the wood rece i v ed
}

}
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Appendix A3. DCE data

Percentage Available Demanded Trust Margin Price Trend
None

0.521 1.10765 3.71545 2.29954 0.13907 -0.50003 -0.17317
0.365 -1.33519 2.69343 1.39942 0.08656 2.93641 -2.36081
0.114 -2.76458 7.73036 2.43698 0.06526 15.15206 -0.26193

Table 2: DCE data used for the latent class analysis example.
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Respondent id Available Demanded Trust Margin Price Trend None

1 -1.65021 11.74185 1.48699 0.15045 27.9498 -0.32893
2 0.00152 2.7108 5.86578 0.09515 -4.68225 -0.34429
3 -0.93907 5.69982 5.73421 0.17154 9.39712 -1.73636
4 -0.20594 2.33914 6.60405 0.23196 -10.79376 0.31855
5 0.48267 5.1465 1.14684 0.01039 4.58829 -1.69116
6 -0.05803 5.31644 3.92213 0.20255 -2.34701 1.46233
7 3.53005 4.62726 0.43271 0.08359 9.86007 -0.74989
8 1.03595 1.81 1.26642 0.01212 -6.1483 -4.34665
9 1.29175 3.2495 3.28484 0.22383 2.36744 -3.70485
10 -0.72595 5.86004 1.67825 0.26147 6.32396 -4.58434
11 -3.7714 12.07729 1.70283 -0.03799 25.765 -2.91517
12 -0.64134 8.66919 0.58588 0.85216 15.23726 -2.73378
13 -2.38885 9.75864 2.67844 0.24657 19.48115 -3.76842
14 1.47113 1.94409 5.63944 0.15977 -8.73772 0.94164
15 0.44531 5.3594 3.3253 0.19398 0.54057 -0.40329
16 0.68513 6.56316 0.70069 0.1629 4.2541 0.09896
17 -0.69656 6.18657 4.20723 0.34206 -0.80857 3.16604
18 1.11296 6.6634 3.31843 0.84481 8.06414 -0.74866
19 0.43058 8.34134 1.61603 0.24749 10.11763 -0.26094
20 0.52809 3.32461 3.3177 0.18038 -8.54455 -1.11341
21 1.03296 4.5115 4.35263 0.05935 6.28141 -0.5846
22 -2.57125 10.19657 0.41028 0.00238 9.9161 -2.34199
23 -1.96979 2.11568 2.3026 0.0533 -20.95443 -1.47928
24 2.65001 3.70051 1.57828 0.84137 8.09823 -2.12457
25 -0.01849 6.02466 2.32619 0.11939 -1.67464 -0.15444
26 -0.71414 4.73313 4.6687 0.23562 -5.16314 -0.9748
27 -0.90609 5.99437 4.26545 0.03039 7.9698 0.26158
28 2.24163 3.11603 2.7478 0.21428 -1.59987 -2.08913
29 -0.80157 5.809 2.49672 0.30295 8.62159 -3.36045
30 -1.78717 8.37476 4.15142 0.11689 15.34745 -1.11911
31 2.60449 -0.18525 2.17123 0.13614 -10.09713 -0.3845
32 -0.88535 5.57735 3.11717 0.10382 4.42179 -2.89004
33 1.25579 5.57075 2.49091 0.16504 4.07795 -0.52886
34 0.5901 3.62148 3.9655 0.79139 -8.39507 1.37867
35 -2.45724 9.34384 2.73292 0.29417 16.68159 -3.43844
36 0.10763 5.43047 3.14805 0.23269 -0.64867 -1.32549
37 -2.24524 10.24467 1.1318 0.09598 9.4068 0.99438
38 -0.30457 9.82876 -0.06199 0.056 20.60886 -0.59821
39 0.9982 6.18441 0.79915 0.25892 10.17568 -2.38179
40 0.58834 3.92607 3.35001 0.07797 2.16074 -4.57116
41 -1.66035 3.96522 3.93209 -0.00443 -1.15795 -3.02296
42 -1.97189 7.22988 1.38998 0.1213 11.93619 -5.62056
43 0.82819 4.7467 0.9625 0.22142 3.96102 -0.63942
44 1.54494 6.12931 3.13649 0.82428 8.72477 -1.06492
45 1.95801 4.49723 2.90722 0.08472 7.18297 0.98367
46 1.04304 4.29444 1.97797 0.29028 5.68395 -4.11341
47 -2.3322 10.35659 2.32305 0.42228 18.24946 -2.65153
48 -0.97862 6.06758 4.7696 0.22328 0.21119 -0.12754
49 0.6094 4.66721 0.57257 0.12686 -6.20349 -0.75471
50 -2.8735 7.12722 3.65683 0.06123 7.4203 -3.33714
51 0.51633 7.26817 2.54608 0.12281 7.2992 -2.4483
52 0.54491 3.98197 3.23532 0.19742 2.13933 -4.80881
53 -2.37632 10.46205 -1.59661 0.20672 15.16371 -3.85899
54 2.29437 0.31326 4.51728 0.35852 -15.97996 2.14107
55 -0.66437 8.80765 2.02634 0.13916 22.59912 -4.28693

Table 3: DCE data used for the hierarchical Bayes example.
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