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ABSTRACT: Crowdsourcing is traditionally defined as obtaining data or information by enlisting the services of a (potentially
large) number of people. However, due to recent innovations, this definition can now be expanded to include ‘and/or from a
range of public sensors, typically connected via the Internet.’ A large and increasing amount of data is now being obtained
from a huge variety of non-traditional sources – from smart phone sensors to amateur weather stations to canvassing members
of the public. Some disciplines (e.g. astrophysics, ecology) are already utilizing crowdsourcing techniques (e.g. citizen science
initiatives, web 2.0 technology, low-cost sensors), and while its value within the climate and atmospheric science disciplines
is still relatively unexplored, it is beginning to show promise. However, important questions remain; this paper introduces
and explores the wide-range of current and prospective methods to crowdsource atmospheric data, investigates the quality of
such data and examines its potential applications in the context of weather, climate and society. It is clear that crowdsourcing
is already a valuable tool for engaging the public, and if appropriate validation and quality control procedures are adopted
and implemented, it has much potential to provide a valuable source of high temporal and spatial resolution, real-time data,
especially in regions where few observations currently exist, thereby adding value to science, technology and society.
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1. Introduction

Information regarding the state of the atmosphere can
now be obtained from many non-traditional sources
such as citizen scientists (Wiggins and Crowston, 2011),
amateur weather stations and sensors, smart devices
and social-media/web 2.0. The term crowdsourcing’ has
recently gained much popularity; originally referring to
‘the act of a company or institution taking a function
once performed by employees and outsourcing it to an
undefined (and generally large) network of people in
the form of an open call (Howe, 2006) in order to solve
a problem or complete a specific task, often involving
micro-payments, or for entertainment or social recognition
(Kazai et al., 2013), it can now also be applied to data that

* Correspondence to: C. L. Muller, School of Geography, Earth and
Environmental Sciences, University of Birmingham, Edgbaston, Birm-
ingham, B15 2TT, UK. E-mail: c.l.muller@bham.ac.uk

is routinely collected by public sensors and transmitted
via the Internet. As such, people are no longer simply
consumers of data, but can also be producers (Campbell
et al., 2006).

These types of crowdsourcing techniques could play a
vital role in the future, especially in densely populated
areas, regions lacking data or countries where traditional
meteorological networks are in decline (GCOS 2010).
Fifty per cent of the world’s population now reside in
urban areas, with this number expected to increase to
70% by 2050 (UN, 2009). Although a relatively dense
network of standard in situ meteorological and climato-
logical instrumentation are located in highly populated
environs, cost-limitations often mean that these are not
widely available in real-time or at the range of spatiotem-
poral scales required for numerous applications, such
as: flood-water and urban drainage management (e.g.
Willems et al., 2012; Arnbjerg-Nielsen et al., 2013),
urban heat island monitoring (e.g. Tomlinson et al., 2013),
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planning and decision-making (e.g. Neirotti et al., 2014),
precision farming (e.g. Goodchild, 2007), hazard warning
systems (e.g. NRC, 2007), road winter maintenance (e.g.
Chapman et al., 2014), climate and health risk assess-
ments (e.g. Tomlinson et al., 2011), nowcasting (e.g.
Ochoa-Rodriguez et al., 2013), model assimilation and
evaluation (e.g. Ashie and Kono, 2011), radar and satellite
validation (e.g. Binau, 2012), and other societal applica-
tions. With extreme weather events expected to increase
in frequency, duration and intensity in many regions in
the future (IPCC, 2012), dense, high-resolution observa-
tions will be increasingly required to observe atmospheric
conditions and weather phenomena occurring in more pop-
ulous regions in order to mitigate future risks, as well as in
less populated regions where essential data is often lack-
ing. Indeed, Goodchild (2007, p.10) acknowledges that
the most important value of such information may be in
what it tells us about local activities in various geographic
locations that go unnoticed by the world’s media.

Computing power continues to increase, doubling
approximately every 2 years (Moore, 1965; Schaller,
1997), and with more than 8.7 billion devices connected
to the internet – expected to rise to more than 50 billion
by 2020 (Evans, 2011) – the amount of accessible data is
growing. The ‘Internet of Things’ (IoT) – referring to an
internet that provides ‘any time, any place connectivity for
anything’ (Ashton, 2009) – is enabling accessibility to a
vast amount of data, as more devices than people are now
connected to the Internet. It is predicted that the IoT could
add $14.4 trillion to the global economy by the end of the
decade (Bradley et al., 2013), and it has great potential to
improve our way of life (Gonzales, 2011). Many projects
are already sourcing, mining and utilizing this ‘Big Data’,
a buzzword du jour that has become an established term
over the past few years. Big Data refers to the ubiquitous,
often real-time nature of data that is becoming available
from a variety of sources, combined with an increasing
ability to store, process and analyse such data, in order
to extract information and therefore knowledge. Within
the climate and atmospheric sciences – and many other
scientific and mathematical disciplines – researchers are
very familiar with processing and analysing large datasets,
from model output to satellite datasets. However, Big Data
in this sense is a term that has been created to refer to
the sheer volume, velocity, variety, veracity, validity and
volatility (Normandeau, 2013) of data that is now available
from a range of sources. The term has been popularized
and driven forward by ‘smart’ technologies and investment
in the ‘smart city’ (Holland, 2008) initiative – with the
term ‘smart’ referring to advanced, internet-enabled tech-
nology, techniques or schemes that produce informed
and intelligent actions based on a range of input
[‘data-driven intelligence’, Nielsen (2011)] – whereby
populated regions are becoming equipped with various
sensors [e.g. intelligent transport systems, smart (energy)
grids, smart environments etc.], thereby generating a huge
amount of data as well as vast scientific, operational and
end-user opportunities.

With these innovations, the potential to ‘source’ infor-
mation about a specific, localized phenomenon or variable
at a high spatiotemporal resolution is at a level not previ-
ously experienced. Such data are already being used for
the benefit of both the telecommunications and financial
industries, with manufacturing, retail and energy applica-
tions also beginning to realise the potential that such data
can provide. Crowdsourcing is already being widely used
for acquiring data in other subjects (e.g. astronomy, ecol-
ogy, health; Cook, 2011; Nielson, 2011), yet the realization
of the potential for utilizing the data in scientific research
and applications (discussed in Section 4) remains in its rel-
ative infancy within atmospheric science disciplines. Such
data could therefore play an important role in the next age
of scientific research and have numerous societal applica-
tions, but in order to determine the extent to which these
non-traditional data could be incorporated, thorough qual-
ity assessments need to be conducted. Questions remain
regarding the precise scientific and societal applications
that could truly benefit from incorporating crowdsourced
weather and climate data, how and where data should
be crowdsourced from, and how the quality of this data
(which is more likely to be prone to errors than those data
provided by authoritative sources), can be assessed. More-
over, the issue of whether high-resolution data from smart
devices and ‘hidden’ networks in conjunction with vast
computing power, could lead to new innovations over the
coming decades also needs to be addressed. Clearly crowd-
sourcing has the potential to overcome issues related to
spatial and temporal representativeness of observations.

This paper provides an overview of crowdsourcing
techniques in the context of meteorology and climatology
by reviewing a number of current crowdsourcing projects
and techniques, addresses uncertainties and opportunities,
examines the current state of quality assurance and qual-
ity control procedures, explores future possibilities and
applications, and concludes with some recommendations
for these non-standard data sources that have the potential
to augment and compliment existing observing systems in
the future.

2. Current approaches

Crowdsourcing traditionally relies upon a distributed net-
work of independent participants solving a set problem.
However, crowdsourcing has now moved beyond this
basic approach to incorporate distributed networks of
portable sensors that may be activated and maintained
through the traditional protocol of crowdsourcing, such as
an open call for participation, as well as repurposing data
from large pre-existing sensor networks (i.e. a meteorolo-
gist deploying a network of low-cost sensors specifically
to examine urban climate is not crowdsourcing; while
a meteorologist accessing data from existing amateur
weather stations would be). Thus, it can be broken down
into several different approaches. These can be broadly
categorized as ‘animate’ and ‘inanimate’ crowdsourcing,
with the primary distinction being the nature of the ‘crowd’
in question. Inanimate crowdsourcing involves obtaining

© 2015 Royal Meteorological Society Int. J. Climatol. 35: 3185–3203 (2015)
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Figure 1. Venn diagram showing the interaction of animate and inanimate crowdsourcing components, including active and passive techniques.

or repurposing data from a range of sensors and sensor
networks (e.g. sensors on streetlights, city-wide telecoms
signals), while animate crowdsourcing requires some form
of human involvement. This may result in data collection
via automated (i.e. data is automatically collected via
sensors and uploaded, though may require some form
of human-intervention during installation for example),
semi-automated (i.e. data is collected using a sensor but
uploaded manually) or manual (i.e. human-generated data
that is manually collected, entered and uploaded) means.

Alternatively, these methods could be thought
of as active or passive: Active crowdsourcing (or
‘human-in-the-loop sensing’, Boulos et al., 2011) whereby
the citizen is constantly involved and is the primary pro-
cessing unit that outputs data to the central node (e.g.
citizen science initiatives, or utilizing website, smart
apps and web 2.0 platforms); Passive crowdsourcing,
on the other hand, is where the citizen becomes the
‘gatekeeper’ of their own individual sensor, installing
it and ensuring its continued operation [e.g. amateur
weather stations, mobile phone sensors or apps which
‘silently collect, exchange and process information’ (Cuff
et al., 2008)]. Thus, passive crowdsourcing requires no
human interaction during the data collection or upload
process, with citizens simply serving as regulators, while
semi-passive or semi-automated crowdsourcing requires
human-involvement if data needs to be pushed to a cen-
tral server. Figure 1 illustrates the breakdown of these
different approaches, while Table 1 provides an overview
of some current examples of atmospheric science-related
crowdsourcing approaches and projects, which are further
discussed below.

2.1. Citizen science

Citizen science is a form of collaborative research
involving members of the public: volunteers, amateurs
and enthusiasts (Goodchild, 2007; Wiggins and Crow-
ston, 2011; Roy et al., 2012). It can be thought of as
a form of animate crowdsourcing – or ‘participatory
sensing’ – when it actively involves citizens collecting
or generating data. Hardware sensors can be used by
citizens to collect data, but citizens themselves can also
be classified as ‘virtual sensors’ by interpreting sensory
data (Goodchild, 2007; Boulos et al., 2011). For example,
traditional eye witness reports were recently used to assess
the development and movement of a series of severe thun-
derstorms – including hail size – across the UK on 28
July 2012 (Clark and Webb 2013).

There are many examples of citizen science projects;
the Zooniverse (https://www.zooniverse.org/) and the Cit-
izen Science Alliance (CSA; http://www.citizenscience
alliance.org/) build, operate and promote numerous cit-
izen science projects on behalf of different groups of
scientists, the majority of which involve data analy-
sis rather than data creation. Some projects have been
branded ‘Extreme Citizen Science’ since participants
collect, analyse and act on information using estab-
lished scientific methods (Sui et al., 2013). Subjects
such as ecology (e.g. NestWatch: http://nestwatch.org/;
Birding 2.0: Wiersma, 2010), phenology (e.g. Natures
Calendar: http://www.natuurkalender.nl/) and astronomy
(e.g. Galaxy Zoo: http://www.galaxyzoo.org/) lend them-
selves well to such methods, with many projects finding
that citizen science can generate high quality, reliable
and valid scientific outcomes, insights and innovations

© 2015 Royal Meteorological Society Int. J. Climatol. 35: 3185–3203 (2015)
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(Trumbull et al., 2000). Its application within atmospheric
science disciplines is now increasingly well-conceived
and is now beginning to be objectively evaluated.

‘Old Weather’ (http://www.oldweather.org/) is a ‘data
mining’ citizen science project aiming to help scien-
tists recover Arctic and worldwide weather observations
made by US ships since the mid-19th century by enlist-
ing citizens to produce digital transcriptions from log-
book weather records (e.g. track ship movements), thereby
repurposing data into a format compatible with IMMA
and ICOADS. Such data can contribute to climate model
projections and ultimately improve our knowledge of past
environmental conditions. Similarly, the ‘Cyclone Centre’
project (http://www.cyclonecenter.org/) is utilizing citizen
scientists to manually classify 30 years of tropical cyclone
satellite imagery.

There are also a number of citizen science programmes
that actively source data directly from members of the
public. For example, the Global Learning and Observa-
tions to Benefit the Environment Programme (GLOBE;
http://www.globe.gov/; Finarelli, 1998) is an established,
international science and education project whereby
students and teachers can take scientifically valid envi-
ronmental measurements and report them to a publicly
available database. As scientists can use the GLOBE
data, training programmes and protocols are provided,
the instrumentation involved must meet rigorous spec-
ifications and the data follows a strict quality-control
procedure. Such protocols should be an imperative part
of any citizen science project. In addition, the Com-
munity Collaborative Rain, Hail and Snow Network
(CoCoRaHS: http://www.cocorahs.org/) is a non-profit,
community-based network of volunteers who measure
and map precipitation using low-cost measurement tools
with an interactive website. The aim of CoCoRaHS is to
provide high quality data for research, natural resource
and education applications (Cifelli et al., 2005). The
project started in Colorado in 1998 and now has net-
works across the US and Canada, involving thousands
of volunteers, making it the largest provider of daily
precipitation observation in the US. CoCoRaHS inspired
a similar project that was trialled in the UK – ‘UK Com-
munity Rain Network’ (UCRaiN) – which showed the
potential for setting up a UK-based network (Illingworth
et al., 2014). International projects are also implement-
ing citizen observatories for collating information about
specific phenomena; for example the ‘We Sense It’
project (http://www.wesenseit.com/web/guest/home) will
develop a citizen-based observatory of water to allow cit-
izens and communities to become active stakeholders in
data capturing, evaluation and communication, ultimately
for flood prevention. Such networks can make real con-
tributions to the advancement of science. For example,
the National Oceanic and Atmospheric Administration’s
(NOAA) ‘Precipitation Identification Near the Ground’
(PING) project (Binau, 2012) is attempting to improve
the dual-polarization radar hydrometeor classification
algorithm, by recruiting volunteers to submit reports on
the type of precipitation that is occurring in real time,

via the internet or mobile phones (mPING; Elmore et al.,
2014), to allow radar data to be validated, while the
European Severe Weather Database collates eye-witness
reports of phenomena such as tornados, hail storms, and
lightening (http://www.essl.org/cgi-bin/eswd/eswd.cgi).
Furthermore, there are other forms of public crowdsourc-
ing that go beyond measurements and observations. For
example, ClimatePrediction.net is a distributed com-
puting, climate modelling project that utilizes citizen’s
computers to simulate the climate for the next century
(http://www.climateprediction.net/).

Overall, citizen science projects are becoming an
increasingly popular means to engage the public, while
also benefiting scientific research; indeed there has been
a surge in the number of citizen science projects in recent
years (Gura, 2013), due to both emerging and affordable
technological advances, and also the growing ubiquity of
social media and new communications platforms, which
offer increased accesses to participants (Silvertown, 2009)
as well as providing support during such projects (Roy
et al., 2012).

2.2. Social media

While e-mail, Short Message Service (SMS) and web
forms are the traditional means to transmit informa-
tion, the recent proliferation of web 2.0 channels (e.g.
the Twitter micro-blogging site, Facebook social media
site, Foursquare mobile information sharing site, picture
sharing sites such as Flickr and other blogs, wikis, and
forums) have opened up opportunities to engage with cit-
izens for scientific purposes, as well as for crowdsourc-
ing data. Volunteered Geographic Information (VGI) and
‘wikification of GIS’ are phrases previously coined to
describe the array of geo-located data that is now avail-
able from a large number of internet-enabled devices (Bou-
los et al., 2011); social media channels are another source
that can now be used to harvest an array of geo-located,
date and time-stamped information (e.g. data, notes, pho-
tos, videos), which can be accessed directly (e.g. using
hash-tags, key words), and in real-time.

For example, citizen-generated data has been used
to monitor and map snow via social media channels.
The ‘UK snow map’ (http://uksnowmap.com/#/) was
set up to monitor and map snowfall across the UK with
citizens giving the snowfall a rating out of 10 which,
in conjunction with a range of specific hash-tags (e.g.
#UKSnowMap, #UKSnow); Muller (2013) also used
social media to obtain higher-resolution snow-depths
across Birmingham, UK; and in Canada, the Univer-
sity of Waterloo’s ‘SnowTweets project’ (http://snowcore.
uwaterloo.ca/snowtweets/index.html) collates information
from snow-related tweets. Storms have also been mapped
using Twitter (e.g. https://ukstorm2013.crowdmap.com/),
with services such as ‘Twitcident’ (http://twitcident.com/)
monitoring, filtering and analysing twitter posts related
to incidents, hazards and emergencies in order to provide
real-time signals for use by police and other members of
society. Mobile applications (apps) are also providing a
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new means to collect a range of data. Social apps are a
means for citizens to submit information and there are
several apps now sourcing local weather information. For
example, Metwit (https://metwit.com/) is a social weather
application that allows users to submit and receive infor-
mation about current weather conditions using a range
of weather icons (e.g. sunny, rainy, foggy, snow flurries),
while Weddar (http://www.weddar.com/) is a ‘people pow-
ered’ service which asks users to indicate how they ‘feel’
using coloured symbols (e.g. perfect, hot, cold, freezing).

Social media can also be used in crisis management dur-
ing extreme events (e.g. Goodchild and Glennon, 2010),
as it enables situations to be monitored, and messages
to reach key demographics quickly and efficiently. For
example, one million tweets, text messages and other
social media objects were used to track typhoon Haiyan
and to map its damage (Butler, 2013), across the Philip-
pines during November 2013. However, as indicated by
the post-analysis of social media updates during Hurricane
Irene in 2011, there is still a lot of research needed to better
evaluate and inform the use and integration of social media
into relief response during such extreme events (Freberg
et al., 2013). Furthermore, social media feeds often gen-
erate a lot of ‘noise’ and invalid information (Scanfeld
et al., 2010), which can result in biased information being
amplified through the viral nature of social media misinfor-
mation (Boulos et al., 2011). Therefore caution is required
when utilizing uncontrolled social media-generated infor-
mation – both human and/or machine-based quality
control, filtering and validation procedures are essential
(discussed further in Section 3).

2.3. In situ sensors

While personal weather stations have been popular with
amateur weather enthusiasts for decades – indeed many
land weather stations in remote areas like Alaska were
once operated successfully by citizen volunteers – there
are now an increasing number of internet-enabled,
low-cost sensors and instrumentation becoming available
for personal, research and operational use. Data can now
be crowdsourced from dedicated sensors that are found
at home, or on buildings and roadside furniture (e.g.
lighting columns: Chapman et al. (2014); Smart Streets:
http://vimeo.com/80557594) that form part of research,
public or private sensor networks. These data can be
transmitted via a range of communication techniques,
such as Wi-Fi, Bluetooth and machine-to-machine SIM
cards, contributing to the IoT and making available a large
amount of data.

For example, Air Quality Egg (http://airqualityegg.com)
is a community-led, air quality-sensing network that
allows citizens to participate in the monitoring of nitro-
gen dioxide (NO2), carbon monoxide (CO), temperature
and humidity using a low-cost, internet-enabled sen-
sor and web platform. Other low-cost sensors include
Bluetooth and internet-enabled sensors – for example,
infrared sensortag (Shan and Brown, 2005), rainfall dis-
drometers (e.g. Jong, 2010; Minda and Tsuda, 2012),

air quality monitoring (e.g. Honicky et al., 2008) and
other sensors modified to connect to Raspberry Pi
and Arduino boards (e.g. Goodwin, 2013). Numer-
ous websites have been set up to crowdsource data
from these devices – for example, tweets can be gen-
erated automatically from Air Quality Egg data, while
websites such as Weather Underground (http://www.
wunderground.com/personal-weather-station/signup), the
UK Met Office ‘Weather Observation Website’ (WOW:
http://wow.metoffice.gov.uk; Tweddle et al., 2012) and
the NOAA Citizen Weather Observer Program (CWOP:
http://wxqa.com/) harvest amateur weather data from
thousands of sites – vastly outweighing standard mea-
surement sites – and provide hubs for the sharing and
archiving of real-time and historic data (Bell et al., 2013).
Some of these even provide the ability to upload supple-
mental data (‘metadata’) about the location, equipment
and/or data. For example, WOW uses a star rating system
based on user-supplied information to indicate the quality
of the data, equipment and exposure, while other schemes
have implemented badges in recognition of expertise or
data quality (Tweddle et al., 2012). Furthermore, there
is also freely available software (e.g. Weather Display:
http://www.weather-display.com/index.php; Cumulus:
http://sandaysoft.com/products/cumulus), which can dis-
play live data from a variety of low-cost sensors, as well
as stream data via websites.

As a result of technological advances and the continued
miniaturization of technology, low-cost sensors are being
increasingly and routinely incorporated into devices such
as mobile phones, vehicles, watches and other gadgets;
they are even being attached to animals (e.g. pet cam-
eras). However, as for all forms of crowdsourcing, caution
must be exercised when utilizing data from such low-cost
devices; analysis, calibration and inter-comparisons are
required to investigate the accuracy and sensitivity of sen-
sors rather than simply relying on the information supplied
by the manufacturer.

2.4. Smart devices

Worldwide, one in every five people owns a smart phone
(Heggestuen, 2013), and this figure is even higher in
more economically developed countries. A large number
of sensors are now being designed for connection to
smart devices – for example, BlutolTemp Thermometer
(EDN, 2013); iCelsius thermistor (Aginova, 2011); Plus
Plugg weather sensors (http://www.plusplugg.com/en/#!);
iSPEX aerosol measuring sensor (www.ispex.nl); Air-
Casting Air Monitor (http://aircasting.org/); Netatamo
weather stations (e.g. http://www.netatmo.com/) – with
projects already set up to utilize these pervasive devices.
For example the N-Smarts pollution project is using sen-
sors attached to GPS-enabled smart phones to gather data,
in order to help better understand how urban air pollution
impacts both individuals and communities (Honicky et al.,
2008).

GPS have been embedded in mobile phones for some
time (since Benefon Esc in 1999) and hold much potential
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for applications such as distributed networks for traffic
monitoring and routing (Krause et al., 2008). Additional
sensors are increasingly being built into these devices
as standard (e.g. smart phones, tablets). For example,
the Galaxy S4 contains geomagnetic positioning, as well
as a gyrometer, accelerometer, barometer, thermometer,
hygrometer, RGB light sensor, gesture sensor, prox-
imity sensor and microphone (Nickinson, 2013). Data
collected by these sensors can be harvested via the Inter-
net, with this form of crowdsourcing often referred to
as ‘human-in-the-loop sensing’ (Boulos et al., 2011).
For example, Overeem et al. (2013b) recently crowd-
sourced battery temperature data from mobile phones
using the OpenSignal app (http://opensignal.com/). Uti-
lizing a heat transfer model, a relationship was found
between daily-averaged ambient air temperatures and
mobile phone battery temperatures for several cities.
In addition, WeatherSignal is a smart phone app that
collects live weather data by making use of the range
of sensors pre-built into smart phones. PressureNet
(http://pressurenet.cumulonimbus.ca/) is another app that
collects atmospheric pressure measurements from its
users, with the aim of using this data to help understand
the atmosphere and better predict the weather. How-
ever, temperatures and other weather variables can vary
significantly over small distances, especially over the
heterogeneous morphology found in urban areas. This is
clearly an advantage of using such sources of data, yet
simultaneously highlights the potential for issues regard-
ing data quality and reliability (e.g. errors, validations and
scaling up data – discussed further in Section 3).

2.5. Moving platforms

Many different types of platforms are traditionally used
to conduct scientific research and collect data, so the use
of moving platforms is far from a new concept. What is
novel is the potential for any moving platform to rou-
tinely collect information and potentially make use of
existing sensors that are already built-in. The low-cost sen-
sors mentioned above are essentially portable sensors, for
example the Air Project (Costa et al. 2006) used citizens
equipped with portable air monitoring devices to explore
their neighbourhoods for pollution hotspots. Other mov-
ing platforms can also be used to collect non-fixed data.
Bikes are one potential platform for crowdsourcing data
(e.g. Brandsma and Wolters 2012; Melhuish and Pedder
2012). For example, Cassano (2013) used a ‘weather bike’
(fitted with a Kestrel 400 hand-held weather station and
GPS logger) to collect temperature measurements across
Colorado, finding variations of up to 10 ∘C over a dis-
tance of 1 km, while the Common Scents project uses
bicycle-mounted sensors to generate fine-grain air quality
data to allow citizens and decision-makers to assess param-
eters in real-time (Boulos et al., 2011). Indeed, the use
of bicycles as vehicles for hosting air quality monitoring
devices is becoming increasingly popular. Work by Elen
et al. (2012) presents an air quality monitor equipped bicy-
cle, Aeroflex, which records black carbon and particulate

matter measurements as well as the geographical location.
Aeroflex is also equipped with automated data transmis-
sion, pre-processing and visualization.

Boats and ships have a long history of providing
meteorological data; Since the 1850s ships have rou-
tinely collected sea surface temperature observations,
and thousands of merchant ships already partici-
pated in the global voluntary observing ships (VOS)
scheme (http://www.vos.noaa.gov/vos_scheme.shtml).
All boats – commercial, military and private – therefore
provide opportunities for crowdsourcing, especially if
linked to low-cost technology. For example, the Inter-
national Comprehensive Ocean-Atmospheric Data Set
(ICOADS) collates extensive data spanning three cen-
turies from a range of evolving onboard observation
systems, which is critical for data-sparse marine regions
(Woodruff et al., 1987; Worley et al., 2005; Berry and
Kent, 2006). Oceanographic science applications are
being further explored through data obtained from
low-cost, homemade conductivity, temperature and depth
instruments (Cressey, 2013). A large range of atmospheric
data could also be crowdsourced if other low-costs sen-
sors were installed on ships, or by utilizing data from
smart devices and/or citizens on board. For example, the
TeamSurv (Thornton, 2013) project is enabling mariners
to contribute to the creating of better charts of coastal
waters, by logging depth and position data while they are
at sea, and uploading the data to the web for processing
and display. Similarly, data can be crowdsourced from
other transportation such as commercial airplanes, with
further potential for emergency service helicopters, and
public trains. A significant amount of data is routinely
collected by aircraft, but as noted by Mass (2013) a large
proportion of this potentially valuable data is currently
not being used. Tropospheric Airborne Meteorological
Data Reporting (TAMDAR) is collected by short-haul
and commuter aircrafts, and low-level atmospheric data
collected during take-off and landing could significantly
benefit the forecasting of thunderstorms and other weather
features, in a similar manner to Aircraft Meteorological
DAta Relay (AMDAR) which is utilized for forecasting,
warnings and aviation applications.

One of the most mature versions of a moving plat-
form, in terms of crowdsourcing, research and exploration,
are road vehicles. Commercial, public and personal road
vehicles are beginning to contain Internet-connected sen-
sors and have the potential to make high-resolution sur-
face observations (Mahoney et al., 2010; Mahoney and
O’Sullivan, 2013), with research exploring data collected
from such road vehicles already being undertaken. For
example, Inrix (http://www.inrix.com/) collects data from
trucks and other fleets as a source of real-time informa-
tion about congestion and other issues affecting travel,
while the Research and Innovative Technology Admin-
istration’s (RITA) connected vehicle research initiative
is encouraging the use of data from vehicle sensors
(e.g. temperature, pressure, traction-control, wiper speed:
Drobot et al., 2010; Haberlandt and Sester, 2010; Rabiei
et al., 2013). Other studies (e.g. Ho et al., 2009; Aberer
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et al., 2010; Rada et al., 2012; Devarakonda et al., 2013)
have used vehicles and other moving platforms to host sen-
sors for monitoring air quality. Overall, miniaturization of
the sensors used in these studies creates opportunities for
smaller mobile platforms to be used for traditional obser-
vations as well as crowdsourcing (e.g. commercial/private
Unmanned Aerial Vehicles (UAVs), hot air balloons).

2.6. ‘Hidden’ networks

Finally, it is important to highlight the potential for
repurposing data from ‘hidden’ networks, as a form of
inanimate, passive crowdsourcing. Numerous municipal
networks exist, out of sight, quietly collecting routine
data for various applications (e.g. transmitting mobile
phone signals, sensors on lighting columns to control light
levels, city-wide traffic sensors for transport management,
in-built mobile sensors for monitoring the performance of
the handset). However, these have the potential to be used
as proxies for monitoring other variables. For example,
Overeem et al. (2013a) used received signal level data
from microwave links in cellular communication networks
to monitor precipitation in the Netherlands (Messer et al.,
2006; Leijnse et al., 2007). Other work that has used
sensors for monitoring environmental variables for which
they have not specifically been designed includes the use
of GPS measurements from low earth orbiting satellite
and ground-based instruments for monitoring atmospheric
water vapour (e.g. Bengtsson et al., 2003; de Haan et al.,
2009) and Mode-S observations from air traffic control
radars to observe wind and temperatures (e.g. de Haan
and Stoffelen, 2012). It is therefore likely that there are
many other environmental uses for instruments or sensor
networks that have been designed and implemented for
other purposes.

3. Quality assurance/quality control

Arguably the biggest challenge in incorporating crowd-
sourced data in the atmospheric sciences – as for other
disciplines – is overcoming the barriers associated with
utilizing a non-traditional source of data, i.e. calibra-
tion and other quality assurance/quality control (QA/QC)
issues. Clearly crowdsourcing has the potential to over-
come the spatial and temporal representativeness of stan-
dard data. However, although the measurement quality of
traditional data is not often an issue due to the use of
rigorously calibrated instrumentation located in sites that
adhere to strict standards, crowdsourced data can provide
an acceptable level of accuracy, certainty and reliability?

Cuff et al. (2008) previously noted issues related to
‘observer effect’ and bad data processing, highlighting the
need for verification when utilizing the public sensor data.
While Dickinson et al. (2010) stated – in reference to the
ecological uses of citizen science – it produces large, lon-
gitudinal datasets, whose potential for error and bias is
poorly understood and is best viewed as complementary.
Is this true for all crowdsourced data, or do certain types
of crowdsourced data or techniques show more potential?

It is likely that the utility of such data is both application
and parameter-specific. In order to assess the true accuracy
and value of crowdsourced data, it is clear that the qual-
ity and accuracy must therefore be assessed, particularly
if is to be applied to extreme events that affect property,
infrastructure and lives in the future. But how can this be
achieved on a routine basis? At what spatial and tempo-
ral resolution must these studies be conducted? Is there
an optimal density of ‘crowdsourcing sites’, after which
statistical analyses and filtering can be used to extract a
signal from the noise? And how much does quality vary
with source or product?

The great potential of crowdsourcing as a source of data
is strongly tempered by concerns about its quality. The lat-
ter arises mainly because the data are typically not acquired
following ‘best practices’ in accordance to authoritative
standards, and may come from a variety of sources of vari-
able and unknown quality. In the absence of information on
the quality of crowdsourced data, it may be tempting to use
inputs from a large number of contributors, as a positive
relationship between the accuracy of contributed data and
number of contributors has been noted in the literature (e.g.
Raymond, 2001; Flanagin and Metzger, 2008; Snow et al.,
2008; Girres and Touya, 2010; Goodchild and Glennon,
2010; Haklay et al., 2010; Heipke, 2010; Welinder et al.,
2010; Basiouka and Potsiou, 2012; Goodchild and Li,
2012; Neis et al., 2012; Comber et al., 2013; Foody et al.,
2013; See et al., 2013). This may not, however, always
be appropriate as the accurate contributions may be lost
within a large volume of low quality contributions. Indeed,
there is some evidence that indicates that it can be unhelp-
ful to have too many contributors, with accuracy declining
as more data are made available (Foody et al., 2014). This
issue has some similarity to the curse of dimensionality
which is widely encountered in satellite remote sensing,
which often leads to a desire to reduce the size of the
data sets in order to achieve high accuracy (Pal and Foody,
2010). The ability to rate sources of data may allow a focus
on the higher quality contributions that result in the pro-
duction of more accurate information (Foody et al., 2014).

A variety of methods have been applied to assess the
accuracy of crowdsourced data (Raykar and Yu, 2011,
2012; Foody et al., 2014). In relation to crowdsourced
data on geographical phenomena, a range of approaches
to quality assurance are possible (Goodchild and Li,
2012). For example, the contributions from highly trusted
sources or selected gatekeepers might be used to support
quality assurance. Furthermore the geographical context
associated with contributions may be used to check the
reasonableness of the data provided by a source given
existing knowledge (Goodchild and Li, 2012). There is
also considerable interest in intrinsic measures of data
quality that indicate features such as its accuracy, which
can be obtained from the data set itself (Hacklay et al.,
2010; Foody et al., 2014). These approaches can, in cer-
tain circumstances, allow the accuracy of the individual
data sources to be assessed (Foody et al., 2013, 2014).
They have, however, typically been based on categorical
data, therefore research into methods more suited to
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higher level, more quantitative data, such as that used in
characterizing atmospheric properties, would be required.

For temperature studies, such as detailed investigation
of the Urban Heat Island (UHI) effect, it is important
to have a good spatiotemporal coverage, but it is also
imperative that the data are accurate and representative.
For example, existing, in-built car thermometers have
the potential to provide high spatiotemporal resolution
data, however the accuracy of this data is questionable
as quality will vary between vehicles (e.g. variety of car
makes, models, and ages; different sensors of varying
precision and quality, located in different parts of the
vehicle; varying microscale morphological information).
However, by using smart technologies and standardizing
instrumentation, the utility of such data appear to show
potential. For example, the National Centre for Atmo-
spheric Research Vehicle Data Translator (VDT) has
started to extract and process data from vehicular sensors
with the long-term aim to obtain data from millions of
connected vehicles in an operational setting. The VDT is a
modular framework designed to ingest observations from
vehicles, combine it with ancillary data, conduct quality
checks, flag data, compute statistics and assess weather
conditions (Drobot et al., 2009; 2010). Anderson et al.
(2012) recently tested air temperature measurements from
nine vehicles (two vehicle models) over a 2-month period,
these data were then run through the VDT and a 2 ∘C
difference between the vehicle data and the measurement
from the nearest (<50 km radius) Automated Surface
Observing System station reading was used to flag suspect
data, the outcome of which was that a consistent agree-
ment with weather stations was found at this relatively
coarse spatial scale. This also highlights the issue of scale
and the importance of understanding what data is actually
being crowdsourced (e.g. microclimate vs. local-scale vs.
mesoscale; Oke, 2004; Muller et al., 2013a) in order to
utilize data for appropriate applications.

Furthermore, as mentioned, smart phones have also
been used to indirectly estimate temperature data at
high-resolutions. However, the relationships Overeem
et al. (2013b) found between ambient air temperatures
and smart phone battery temperatures were averaged
across entire cities and over whole days, therefore the
utility of smart phones for higher resolution UHI analysis,
for example, is still to be explored. Indeed, initial analyses
in Birmingham, UK, indicated that using more appropriate
representative local data for validating crowdsourced data
shows promise since the accuracy of mobile temperature
data that were validated using local urban weather sta-
tions showed improvement over readings validated using
data from a more remote, less representative climate
station (Figure 2). However, this may also be due to using
higher-precision data for the validation. Therefore, in
order to fully explore this, a larger number of participants
are needed to supply data before higher-resolution (in
both time and space) investigations can be conducted
using a high-resolution urban meteorological testbed for
validation (Chapman et al., 2012).

For parameters such as precipitation – which can vary
significantly over short distances (e.g. 30–40% over 1–2
miles: Doesken and Weaver, 2000) particularly for con-
vective rainfall – extra information gained from crowd-
sourcing could indeed provide essential data to supplement
global in situ rainfall networks (Figure 3), many of which
are on the decline (Lorenz and Kunstmann, 2012; Walsh,
2012; Yatagai et al., 2012; Tahmo, 2013; Kidd et al.,
2014). For example, in the United States the CoCoRaHS
and PING programmes provide high quality data used
for research, natural resource and education applications
(Cifelli et al., 2005); indeed data from PING are already
being used to improve the dual-polarization radar hydrom-
eteor classification algorithm. Moreover, there is potential
for more unusual-yet-pervasive platforms to be utilized for
monitoring rainfall; umbrellas with built-in piezo sensors
that measure raindrop vibrations on the canvas and trans-
mit data to smart phones via Bluetooth – or ‘smart brol-
lies’ – are being explored for crowdsourcing rainfall data
at ground-level (Hut et al., 2014).

Wind can also vary significantly over short distances,
particularly in areas with high roughness length (e.g.
street canyons, forests) and crowdsourcing may prove
useful. However, as was found to be the case for amateur
weather stations, in order for data to be reliable, details
about the site of the instrumentation need to be known
(Steeneveld et al., 2011; Wolters and Brandsma, 2012;
Bell et al., 2013), although Agüera-Pérez et al. (2014)
did find that useful wind descriptions could be gener-
ated using high-density stations – run by various public
institutions – based on quantity rather than quality. Other
variables may only benefit significantly from supple-
mentary crowdsourced data for certain applications; for
example pressure does not tend to vary significantly over
short distances except during the passage of a front or
convective bands. Madaus et al. (2014) recently found
that assimilating additional pressure tendency data from
privately owned weather stations reduced forecast error
for mesoscale phenomena, offering potential for other
crowdsourced data such as dense barometric readings
from smart phones for the real-time tracking of storms.
Therefore extreme weather phenomena that exhibit sig-
nificant pressure and wind variations (e.g. tornados,
hurricanes) could perhaps benefit from other forms of
crowdsourced data, but at present it is difficult to deter-
mine which particular technique would be most suitable
for observing such an extreme event.

Concentration of atmospheric pollutant species can also
vary significantly. Very low-cost air quality sensors, such
as the Air Quality Egg, iSPEX aerosol measuring sensor
and AirCasting Air Monitor, are becoming more popular
with members of the public. However, due to their low-cost
nature, trade-off between quality and quantity is often nec-
essary. For example, Air Quality Egg does not calibrate all
the sensors prior to shipping; instead they rely on making
use of the potentially large network of sensors to compen-
sate for a large range of readings from individual sensors
(AirQualityEgg, 2014). However, the problem with this
is that it is difficult to determine whether the sensors are

© 2015 Royal Meteorological Society Int. J. Climatol. 35: 3185–3203 (2015)



3196 C. L. MULLER et al.

Figure 2. Estimation of air temperature from smart phone battery temperatures: comparison with data from (top) WMO Birmingham airport site
(located just outside the city) and (bottom) two central Birmingham UKMO sites (which are located in the vicinity of a large number of battery
readings): (a) Map of Birmingham (UK; © OpenStreetMap contributors; openstreetmap.org) showing locations of selected smart phone battery
temperature readings (dots; blue in online) from 1 June to 31 August 2013 and location of WMO and UKMO weather stations (circles; red in online)
(b) Time series of daily averaged observed and estimated air temperatures, as well as battery temperatures in Birmingham for same period. (c) Scatter
plot of estimated daily air temperatures against observed daily air temperatures based on data from Birmingham for 1 June to 31 August 2013. Grey
line is y= x line. ME denotes mean error (bias), MAE is mean absolute error, CV is coefficient of variation, 𝜌2 is coefficient of determination. CAL

and VAL stand for calibration and validation data set, respectively. WMO nr. is World Meteorological Organization station index number.

Figure 3. Map showing the sparse global distribution of stations included in the Monthly Climate Data for the World report for July 2013 (Source:
NOAA National Climatic Data Centre, http://www1.ncdc.noaa.gov/pub/data/mcdw/).

measuring extreme values (due to its location next to a pol-
lutant source, for example) or whether there is a problem
with the sensor.

Evidently, methods for assessing crowdsourced data
are beginning to emerge (e.g. Honicky et al. (2008)
discussed a Gaussian, process-based noise model for
handling non-uniform sampling and imprecision in
mobile sensing) but there are also many techniques and

lessons that can be learned from other fields and disci-
plines. For example, satellite validation techniques, model
performance evaluation methods, calibration techniques
for in situ instrumentation (e.g. Young et al., 2014).
Furthermore, different crowdsourcing techniques each
have their own issues, for example human error or bias,
low-cost instrumentation precision and accuracy, amount
of data/coverage/spatial heterogeneity (bias towards
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populous areas), differing amount of metadata that can
be provided, varying level of data-processing, network
issues (e.g. stability, availability, time-delay), varying data
types and descriptions, and privacy. Metadata is therefore
important for interpreting data. It is already collected for
standard meteorological stations and UMNs (e.g. Muller
et al., 2013a, 2013b) and it is logical that metadata would
also accompany crowdsourced data. However, standards
and protocols for this do not currently exists; at most it
is simply geographic and timestamp information that is
provided with data, whereas for atmospheric variables
and applications, information (e.g. local and microscale
conditions, sensor details etc.) are useful or even essen-
tial for evaluation purposes. Some amateur observations
website have started to encourage contributors to supply
detailed supplementary information (e.g. UKMO WOW;
Meteoclimatic: http://www.meteoclimatic.com/), however
it is not usually obligatory to supply complete metadata.
Metadata is especially important for moving sensors, and
location sensing is a developing technology. The potential
for sensor combination is evolving, e.g. by allowing the
mobile phone itself to identify its context through the
use of multiple sensors. For example, Google have a
new API called ‘Activity Recognition’ that recognizes
whether the user is walking, cycling or in a vehicle, using
the movement pattern recorded by the accelerometer
and other sensors (Robinson, 2013). Other applications
include using light sensors on mobiles to determine out-
door readings (Johnston, 2013), and the use of barometer
readings to determine change in height. Thus, sensors or
devices could simultaneously collect data and metadata,
allowing for more effective cleaning of the dataset. To this
end, timestamps and geo-location data are crucial.

4. Applications and potential innovations

If indeed the accuracy of a range of crowdsourced data
can be assessed for different types, scales and quantities
of data, and if protocols are put in place to monitor data
quality and ensure that all the relevant supplementary
information is supplied, what, therefore, is the value and
utility of crowdsourced data? As discussed earlier, there
are a number of applications that may indeed benefit
from the increased spatiotemporal resolution and real-time
nature of measurements made available by these forms
of data-sourcing techniques; whereas other applications
may find the quality and reliability of the data to be too
poor and/or may not provide any further benefit to the
standard techniques that are already utilized. An overview
of some of the potential applications of crowdsourced data
are outlined in Table 2.

Weather forecasting models have already been
developed to utilize a range of crowdsourced data in
an attempt to provide highly localized, minute-by-minute
forecasts (‘nowcasts’). For example, the IBM ‘Deep
Thunder’ micro forecasting technology (http://www-03.
ibm.com/ibm/history/ibm100/us/en/icons/deepthunder/)
is a targeted weather forecasting program which uses

a range of public weather data from NOAA, NASA,
the U.S. Geological Survey, WeatherBug and other
weather sensors. Other similar apps include Sky-
Motion (http://skymotion.com), Dark Sky (http://dark
skyapp.com/), RainAware (http://www.rainaware.com/),
Nooly (http://www.nooly.com/) and TruPoint (http://www.
weather.com/encyclopedia/trupoint.html). However, the
accuracy of models and other products utilizing ama-
teur, crowdsourced data are very much reliant on the
quality of the observations, reemphasizing the need
for quality control. There are many potential societal,
environmental and economic applications of crowd-
sourced data (Table 2) – including public health (e.g.
OpenSense air quality monitoring: Aberer et al., 2010),
infrastructure (e.g. Climate resilience: Chapman et al.,
2013), education (e.g. DISTANCE IoT project: www.
iotschool.org; Pham, 2014), transportation (e.g. Ad
hoc networks for urban routes: Ho et al., 2009), winter
road management and flood management (e.g. Smart
Streets project: www.smartstreethub.com; Chapman
et al., 2014); energy (e.g. Farhangi, 2010; Agüera-Pérez
et al., 2014); other societal uses (e.g. Urban Atmospheres:
http://www.urban-atmospheres.net) – and therefore real
opportunities for utilizing it to improve our way of life.
Indeed, with continuous technological advances, miniatur-
ization of sensors, improvements to hardware and software
involved in data transmission, processing and storage, and
availability of ‘free’ internet connections (Muller et al.,
2013a), infrastructure and devices are becoming even
smarter, which will result in a multitude of future pos-
sibilities. For example, the possibility of crowdsourcing
weather using Google glass (Sheehy, 2013) or webcams;
the potential to utilize data from sensors built into smart
lighting columns (e.g. LUX sensors on modern lampposts)
or even the use of Wi-Fi within city-wide infrastructure
to upload data (e.g. the use of Smart bus-stops); routine
upload of data from cars (e.g. windscreen wipers, brake
pads etc) and smart phones.

Furthermore, there will be scope for utilizing other forms
of platforms in the future. For example, UAVs, once the
preserve of targeted meteorological research, are another
platform that may be increasingly used since they show
potential for various applications such as CCTV, filming
sporting events, delivery vehicles (e.g. ‘Prime Air’: Ama-
zon, 2013). They are becoming increasingly sophisticated
and miniaturized, with much potential for hosting a range
of sensors. If they are used more routinely in the future,
these platforms and others (e.g. hot air balloons: de Bruijn,
2013) hold further potential for crowdsourcing data (e.g.
for use in real-time monitoring, management, planning) in
a similar way to vehicles and other moving platforms.

5. Conclusions and recommendations

Some traditional meteorological networks are in decline
(GCOS 2010), yet the demand for real-time, high spa-
tiotemporal resolution data is increasing; therefore there
is a clear need for crowdsourcing weather and climate
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data. Non-traditional data are now being harvested from
a large number of sources at high resolutions, and the
amount of crowdsourced data is only going to increase
with time. As computing power increases, our ability to
process and utilize this Big Data will also increase, there-
fore we must explore its potential. While some fields (e.g.
land mapping) have already shown evidence of the value
of crowdsourcing, for the atmospheric science community,
in the near future at least, it will rarely be a replacement
for traditional sources of atmospheric data and in some
cases many provide a valuable solution. It could, how-
ever, become a useful, cost-effective tool for obtaining
supplemental, higher-resolution information for a range of
applications, especially in economically developing coun-
tries or areas containing few weather stations. In order to
determine the precise benefit of utilizing such data as well
as the amount of validation needed, a thorough analysis
of the spatiotemporal scales required and the acceptable
precision and accuracy for a range of parameters, applica-
tions and/or geographic regions is required. For example,
what are the spatial and temporal scales and errors required
for monitoring the UHI compared to pluvial flash flood-
ing? Five-minute resolution data may be required for
urban hydrological applications, while hourly data may
be acceptable for other regional hydrological applications.
Similarly, the density of air temperatures measurements
needed for observing the UHI will vary according to the
urban morphology of a city (Stewart and Oke, 2012). A
comprehensive assessment of this is beyond the scope of
this paper, but would be extremely useful for future crowd-
sourcing endeavours.

However, in order for progress to be made, thorough ver-
ification and quality-checking procedures must be in place.
To-date only a few studies have begun exploring the accu-
racy and quality of crowdsourced atmospheric data, and
even fewer at high spatiotemporal resolutions. In order to
validate such crowdsourced data at a high spatiotemporal
scale, standardized, calibrated and quality-checked, high
resolution UMNs and air quality networks are required.
Such testbeds may only be required in a small number
of regions in order to verify crowdsourced data prior to
use elsewhere. Others have also highlighted this need;
for example, Boulos et al. (2011) stated that eradicating
or lessening the issues related to crowdsourced data can
be achieved by the verification of data with other sensor
nodes, but acknowledged that this would depend on the
density of network and the existence of other related data,
which in turn depends on the requirements for each param-
eter or application. In a recent study, Young et al. (2014)
installed a network of low-cost air temperature sensors
within an urban weather station test bed in Birmingham,
UK (Chapman et al., 2012). This testbed was designed for
UHI analysis, so is ideal for assessing the ability of this
sensor for UHI monitoring.

Furthermore, in order to achieve a high-level of reli-
ability, specific guidelines, standards and protocols are
required to enable interoperability and in order to quantify
the reliability of crowdsourced data (e.g. metadata pro-
tocols: Muller et al., 2013b; QA/QC procedures: Boulos
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et al., 2011). Current crowdsourcing projects could act as
catalysts for such an international movement and encour-
ages the use of such data by a range of end-users. Indeed,
national meteorological services could even collect, verify
and distribute crowdsourced data (and metadata) from
separate projects and eventually integrate data via a
co-ordinated initiative in order to encourage open data
sharing and standardization. Such schemes may indeed
set the foundation for a future ‘data web’ (Nielsen, 2011).

It is also important to acknowledge the ethical implica-
tions of crowdsourcing, which depend heavily on the type
of crowdsourcing in action, and the extent to which the
data could be used to individually identify either the con-
tributor or individuals exposed to the sensor network. In
participatory crowdsourcing there is often a distinct con-
tract between the individual and the organisers therefore
many of the usual concerns about data collection, storage
and dissemination do not apply since there is specific
consent by the user to provide data to a central location
for processing. However, there are a few issues related
to user privacy, primarily the ability to identify people
by very few location points (Montjoye et al., 2012). It
is therefore necessary to keep raw data private, and only
publish data that does not show which device is contribut-
ing (and perhaps apply some small degree of distortion to
location, whilst keeping information such as device type).
Nevertheless, since crowdsourcing from members of the
public is such a specific transaction that relies on partic-
ipation and comprehension, it means that most privacy
concerns are reduced to basic data security – provided
that the organizers make clear the type of data that is
being collected and its intended purpose or future use, as
well as making a commitment to only making publicly
available non-identifying data. A full examination of
this is beyond the scope of this paper, but readers are
referred to Nissenbaum (2004) for a discussion about how
expectation of privacy is dependent upon the transactional
context, including the ways in which it is disseminated
post-transaction.

Public engagement is also a positive side effect of many
types of crowdsourcing. Indeed, the contribution to sci-
ence and society as well as the appreciation, wonder and
connection to the natural world are key motivations for
many people to become involved in such projects (Roy
et al., 2012). However, some schemes further incentivise
people by using rewards (e.g. monetary payment), or
by using ‘gamification’ devices such as league tables to
appeal to the competitiveness of participants (Hochachka
et al., 2012).∗ Therefore, at the very least crowdsourcing is
a tool to engage the general public; at most it is an impor-
tant source of valuable, real-time, high-resolution informa-
tion where none previously existed.

Nevertheless, with improving technology and connec-
tivity, the miniaturization of devises and lower-costs, the

∗It is worth noting, however, that the different motivations of contributors
can impact on accuracy; for example, there is some evidence that those
motivated by money are more accurate – if the amount is sufficient – than
those who contribute out of enjoyment (Kazai et al., 2013).

‘Internet of Everything’ is inevitable; we need to determine
how we can take advantage of this source of data for a vari-
ety of applications such as scientific research, education,
policy generation, environmental monitoring, and societal
applications. Crowdsourcing as a research field has great
potential to bridge the gap between the social scientists,
computer scientists and physical and environmental sci-
entists, thereby encouraging interdisciplinary working and
enhancing knowledge exchange and scientific discovery
(Wechsler, 2014). However, due to the immature nature of
this source of data, this review has inevitably raised more
questions than answers. It is expected that over the com-
ing years, the field will move on considerably and more of
these queries will be resolved in due course. Is this truly the
start of a new and valuable age of ‘society in science’, or is
crowdsourcing simply an en vogue technique? For atmo-
spheric science disciplines, time will tell whether or not it
is just a lot of ‘hot air’.
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