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ABSTRACT: Dynamic material flow analysis (MFA) is a
frequently used method to assess past, present, and future
stocks and flows of metals in the anthroposphere. Over the
past fifteen years, dynamic MFA has contributed to increased
knowledge about the quantities, qualities, and locations of
metal-containing goods. This article presents a literature
review of the methodologies applied in 60 dynamic MFAs of
metals. The review is based on a standardized model
description format, the ODD (overview, design concepts,
details) protocol. We focus on giving a comprehensive
overview of modeling approaches and structure them
according to essential aspects, such as their treatment of
material dissipation, spatial dimension of flows, or data
uncertainty. The reviewed literature features similar basic modeling principles but very diverse extrapolation methods. Basic
principles include the calculation of outflows of the in-use stock based on inflow or stock data and a lifetime distribution function.
For extrapolating stocks and flows, authors apply constant, linear, exponential, and logistic models or approaches based on
socioeconomic variables, such as regression models or the intensity-of-use hypothesis. The consideration and treatment of further
aspects, such as dissipation, spatial distribution, and data uncertainty, vary significantly and highly depends on the objectives of
each study.

■ INTRODUCTION

The industrial application of metals increased continually
during the 20th century, with around 60 metallic elements in
use today.1 In particular, the use of metals, such as indium,
platinum group metals, rare earth metals, or tantalum, which
play a crucial role in many emerging technologies, has grown
rapidly in recent years (e.g., refs 2 and 3). Increased
consumption has led to an accumulation of significant stocks
of metals in the anthroposphere, and the collection and
recycling of metals from these secondary resources has become
more and more important.4 These activities rely on knowledge
of anthropogenic material cycles regarding quantities, qualities,
and locations of metal-containing goods that have accumulated
in the past. Bulk metals (such as iron, copper, or aluminum)
entering the anthroposphere remain largely concentrated, and
dissipative losses to the environment are rather small.5 Other
metals, however, are often used at very low concentrations,
which leads to sparsely distributed stocks and flows that can
hardly be concentrated and recovered in current recycling
systems.3 Efforts to specifically recover these metals through

recycling are in most cases only just beginning, the metals are
thus often lost to recovered bulk materials or dissipated to the
environment.
Many studies analyzing the material cycles of metals in the

anthroposphere are based on material flow analysis (MFA) as
introduced and defined, for example, by Baccini and Brunner.6

In a critical review, Chen and Graedel7 give an overview of the
existing information on anthropogenic cycles, including those
of more than 60 metals. The major engineering metals iron/
steel, copper, lead, zinc, and aluminum, as well as silver and
chromium, have been studied most often and their material
cycles are thus the most well-understood. In recent years, some
MFAs were also conducted for metals, such as antimony,
cobalt, gold, platinum group metals (PMG), rare earth
elements (REE), indium, tantalum, tin, and tungsten.7 Most
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of these MFAs use static models with a time scale of one year,
thus providing only snapshots in time. They offer some insights
into the anthropogenic metabolisms of metals, but provide no
information about the dynamics of resource use and resulting
changes in stocks and flows. Estimations of past and future
flows can provide insights on factors influencing resource use
and early warnings of environmental problems, or they can
support investment planning in infrastructures for mining,
production, and waste management.8 After Baccini and Bader9

developed the methodology of dynamic MFAs, the first studies
on metals were published in 1999 for copper10 in the United
States and for aluminum11 in Germany. Since then, various
methods to dynamically model past and future stocks and flows
of metals, which provide information about the behavior of the
system as a function of time, have become well-established. The
existing dynamic metal flow models differ in terms of their
modeling approach, their temporal scale, or the inclusion of
processes, end-use sectors, or trade and loss flows, depending
on the study’s purpose and data availability. So far, the
methodological approaches to model the dynamics of metals, or
metal cycles, have not been standardized. This makes it difficult
to compare studies and combine their results.7

In this article, we present a Critical Review of the
methodologies applied in the literature on dynamic MFAs of
metals. We focus on giving a comprehensive selection of
modeling approaches that can be used as a basis for future
studies on the dynamics of metal cycles. We further identify
distinguishing aspects of MFAs, such as the treatment of
material dissipation, the spatial dimension of flows, or data
uncertainty. The review covers the published literature in
English on dynamic MFAs of metals. One German reference12

is included because it provides background data used by Bader
et al.13 Literature with only rudimentary or incomplete model
descriptions is not included. We thus compile information from
60 studies published between 1999 and 2013 and covering a
total of 34 metallic elements.

■ METHOD

The review is structured based on the standardized description
ODD (overview, design concepts, details) protocol that was
originally developed for the documentation of individual-based
and agent-based models.14,15 Although the studies we review
use a fundamentally different type of models, ODD has proven
to be useful for structuring them. The main objective of the
ODD protocol is to provide a complete, understandable, and
reproducible description of the models to make their
complexity manageable for the human reader.14,15 MFAs are
in general less complex than agent-based models, we therefore
simplified the ODD protocol slightly to adapt it to the field of
MFA. The adapted structure is provided in Table 1. Each
element of the protocol is further specified with one or more
questions.
The protocol is grouped into three parts. The first part gives

an overview of the study, including the purpose, the scope, the
system boundaries, and the structure of the MFA. The second
part describes the generic concepts and modeling approaches of
the research. The third part provides the details necessary to
ensure the reproducibility of the study.
MFA-specific terms in the ODD are used as defined by

Brunner and Rechberger.16 In the following, we will further
clarify some terms: static versus dynamic MFA, top−down
versus bottom−up approach to MFA, prospective versus
retrospective MFA, endogenous versus exogenous model
variable, and material dissipation.
An MFA is static if it describes a “snapshot” of a system in

time. An MFA is dynamic if it describes the behavior of a system
over a time interval.7

The material stock of a process can be measured by two
different methods. The first method, usually referred to as the
top−down approach, derives the stock from the net flow: the
difference between inflows (consumption) and outflows
(discard). The second method, the bottom−up approach,
directly estimates the stock by summing up the material in
question present within the system boundary at a certain
time.17 Most authors define stock as the in-use stock and do

Table 1. Elements of the ODD (Overview, Design Concepts, Details) Protocol for MFA

overview purpose What is the purpose and general framework of the model?
materials (goods, substances) What materials (goods/substances) are included? Are materials further divided into material categories (and

subcategories)?
processes What processes are included? Do they transform, transport, or store materials? Are processes further divided into

process categories (and subcategories)?
spatial and temporal scale and
extent

What is the spatial and temporal scale and extent of the study?

system overview What is the structure of the system regarding processes, stocks, and flows?

design
concepts

basic principles Static or dynamic, top−down or bottom−up, retrospective or prospective?
static or dynamic modeling
approaches

How are stocks and flows modeled? What are the extrapolation methods for exogenous variables?

dissipation How does the model account for dissipation?
spatial dimension How does the model account for the spatial distribution of stocks and flows?
uncertainty How does the model account for data and model uncertainty?

details initial condition How is the initial state (e.g., the initial stocks and flows) of the model set?
model input data What data is used as input to the model?
model output data What data is generated as model output?
evaluation What methods (e.g., for data aggregation and visualization) are used to evaluate the results?
detailed model description What, in detail, is the formal description (e.g., equations) of the system and what are the algorithms (e.g., solution

procedures) used for the calculations?
What are exogenous and endogenous model variables? What are the model parameters, their dimensions, and
reference values?
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not include “hibernating” materials, that is, those that have been
retired and remain somewhere in storage. Hibernating or
obsolete stock is explicitly included only by Daigo et al.18

An MFA can be either retrospective, analyzing past stocks and
flows based on historical data, or prospective, looking into the
future using data extrapolation, or a combination of both
approaches.
An endogenous model variable is a variable whose value is

determined by one of the functional relationships in the model,
for example, the outflow of a given product as waste,
determined by the inflow and lifetime of that product. An
exogenous model variable is an independent variable that affects
endogenous model variables without being affected by any of
them. It represents a quantity that exists outside the chosen
system boundary. For simulation, an exogenous variable needs
input data, for example, data of the inflow of a certain product
or socioeconomic data such as time series of the gross domestic
product (GDP).
According to Ayres,19 who was one of the first to use the

concept of dissipation associated with material flows,5 “there are
only two possible long-run fates for materialsdissipative loss
and recycling or reuse.” He argues that materials are recycled or
reused if economically and technologically feasible, otherwise
they are eventually dissipated. In Ayres et al.,20 he later specifies
four categories of metal stocks: long-lived goods in use, short-
lived goods in use, landfill and identifiable mine waste dumps,
and finally metals that have been irrecoverably dissipated into
soil, groundwater, or surface water. In this definition, only the
last category accounts for material dissipation.

■ RESULTS

Purpose. Most of the reviewed studies (43 of 60) aim at
understanding the pathways of metals in the anthroposphere,
the magnitudes of their stocks and flows, and how they evolve
as a function of time. This involves quantifying and visualizing
the dynamics of relevant stocks and flows of metals and their
use in specific product groups or end-use sectors. Additional
purposes include to specifically examine the recycling potential
of metals, including recycling efficiency21,22 and future recycling
flows,23−25 to evaluate future scenarios of resource avail-
ability,20,26−28 to assess changes in environmental impacts
related to changes in material flows,29−31 and to compare
different methodological approaches.11,32−36

Materials. The studies assessed cover 34 metallic elements
as summarized in Table 2, with iron, aluminum, and copper
being the most frequently investigated elements. Dynamic
MFAs are still lacking for more than 30 metals.7

Thirty-four studies consider metal use in some or all of the
following end-use sector categories (sometimes disaggregated
into subcategories): transportation, buildings and construction,
infrastructure and telecommunication, machinery, electric
appliances, and consumer goods, and containers and packaging.
Instead of end-use categories, 20 studies assess metal use in

products. Among these, 13 studies cover the most relevant
products containing the investigated metal and 7 studies cover
the metal use only of individual products: CRT screens,33

vehicles,37,38 catalytic converters in automobiles,31 photovoltaic
systems,23,27 and products containing indium tin oxide
(ITO).39 Three further studies include both end-use sectors
and products,24,34,40 and three studies do not categorize metal
use.20,41,42

The metal content of stocks and flows is calculated either
directly by computing metal stocks and flows from input data
or indirectly by computing material stocks of end-use sectors or
products and then calculating metal quantities based on the
assumed metal share in an end-use sector or content in a
product. In the indirect case, the metal share or content is
usually considered time-variant.

Processes. The processes most commonly included in
MFAs of metals cover the whole life cycle of a metal, from
primary mining to raw material production to product
manufacturing to use and finally waste management. In most
of the models, the use phase is the only process that stores
materials, while the other phases transform them without
accumulating stocks. Potential stocks outside the use phase are
neglected because they are assumed to be stationary over the
smallest time interval considered, usually the period of one year
(this assumption may be challenged by stocks of very valuable
metals created for speculation). Additional processes such as
landfill, environment, or other repositories are often included to
illustrate the final sink of the assessed metals. Table S1 in the
Supporting Information (SI) gives an overview of the processes
covered by the studies.

Spatial and Temporal Scale and Extent. The spatial
extent ranges from urban to global system boundaries, though
most literature (38 studies) assesses metal stocks and flows of a
specific country. Figure S1 in the SI shows the percentage
distribution of the reviewed studies by spatial extent. Regional
or national studies exist mainly for industrial countries. Global
studies often extrapolate data from industrial countries because
of the lack of domestic data in developing countries.7

Thirty-one studies model both retrospective and prospective
flows, examining temporal extents in the time frame from 1700
to 2100. Twenty-six studies analyze only past flows and three
studies include only prospective flows. The temporal scale of
input and output data is usually one year. Hence, discrete-time
calculations are also carried out with time steps of one year.

System Overview. The structure of most studies is based
on a generic system with processes graphically represented in a
sequence or a loop.7 Although some studies include
subprocesses containing more details than the top-level
processes listed above, the general structure remains the same
(see Figure 1). The topology of flows between the processes
depends on the purpose, the characteristics of a considered
metal (e.g., potential toxicity), and the complexity of the study;
for example, some studies consider metal emissions of all
processes (e.g., refs 20 and 33), some only of the use phase
(e.g., refs 13 and 43), and other studies do not take emissions
into account at all (e.g., refs 11, 41, and 42).

Table 2. Metallic Elements Covered in the Reviewed
Literature

element (alloy)
covered in no. of

studies

Fe/steel 17
Al 12
Cu 11
Pb 6
Zn 4
Cr, Ni 3
Cd, Ce, Dy, Eu, Gd, In, La, Nd, Pt, Pr, Sm, Te,
Tm, Y

2

Ag, Co, Er, Hg, Ho, Lu, Pd, Rh, Se, Sn, Tb, W, Yb 1
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Basic Principles. The dynamic MFAs of metals generally
assume that in the production, manufacturing, and waste
management processes, no material is stored or the net flow
during the sample time is zero, that is, that this part of the
system can be treated as static. Hence, the dynamic modeling
approaches focus on the use phase (which has nonzero net
flows) and the resulting in-use stock changes. Stocks and flows
are often modeled as time series with a constant sampling rate
T, that is, f [n] = f(nT), typically with T = 1 year.
The in-use stocks are quantified by one of the following two

methods. The top−down approach derives the in-use stock S
from the net flow by using the balance of masses as shown in
eqs 1a, 1b, and 1c.17

= − · = ·S t t t t t td ( ) (inflow( ) outflow( )) d net flow( ) d
(1a)

= − · + −S n n n T S n[ ] (inflow[ ] outflow[ ]) [ 1] (1b)

∑= + · −
=

S N S T n n[ ] [0] (inflow[ ] outflow[ ])
n

N

1 (1c)

The second method, referred to as the bottom−up approach,
derives the in-use stock S[n] at a time n by summing all the
metals contents ci in their respective products or end-use
sectors Pi according to eq 217

∑= ·
=

S n P n c n[ ] [ ] [ ]
i

I

i i
1 (2)

where I is the total number of products or end-use sectors
considered. To construct time series of in-use stock, S[n] is
computed for every requested year n. If required, net flow can
be calculated by introducing eq 2 into eq 1b. Almost 90% of the
reviewed literature applies the top−down approach and 10%
the bottom−up approach.
For inflows, historical data (e.g., on long-term consumption)

is often accessible, but outflows are rarely measured. Most
authors use and adapt methods developed in the field of system
reliability to quantify the outflow of discarded items. The
frequently used quantitative measures to describe this process44

are listed in the SI.
Most authors choose to quantify outflows by assigning

lifetime distribution functions to specific products or end-use

sectors, with the relationship between inflows and outflows
corresponding to a convolution (eq 3 with “*” denoting the
convolution; this approach is also called the residence time
model or population balance model11,45−47). Since it is rarely
possible to solve this convolution analytically, it is integrated
numerically according to eq 4.

∫= * = − ·
−∞

∞
t f t t u f u uoutflow( ) (inflow )( ) inflow( ) ( ) d

(3)

∑= − ·
=−∞

∞

n n m f moutflow[ ] inflow[ ] [ ]
m (4)

where f(t) and f [m] are the probability densities of the lifetime
distribution function for the continuous and the time discrete
case, respectively.
The lifetime distribution functions most frequently used are

the Dirac delta distribution, which represents average and
constant lifetime, and the Weibull distribution. Other
distributions used are the normal, log-normal, beta, and
gamma distributions. In 23 of the reviewed studies, authors
use two or more distributions. They either choose this
approach according to available lifetime data for their
considered products or end-use sectors (e.g., refs 18, 48, and
49) or to explore the effect of applying different lifetime
distributions on the model output.11,21,50−55 Melo,11 for
example, uses the delta, Weibull, normal, and beta distributions
for modeling scrap flows. He concludes that by applying the
delta distribution, scrap flows are highly influenced by
fluctuations of the inflows, which can lead to significant
under- or overestimations of the scrap potential. All of the
other distributions lead to a smooth progress of outflows, but
compared to the normal distribution, the Weibull and beta
distributions can assume a wide variety of shapes. The results
thus show no significant difference between the two lifetime
distributions. Dahlström et al.50 compare the delta, Weibull,
and log-normal distributions and reach similar conclusions, as
the log-normal distribution can be adapted as well. Other
authors tested the sensitivity of their models regarding different
lifetime distributions, mean values of lifetimes, and deviations.
In addition to the findings described above, they find that their
models are most sensitive to the mean values of life-
times.35,51,53,55

Figure 1. System overview of a generic dynamic material flow model of metals.
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Instead of using a lifetime distribution, Cheah et al.37 choose
a logistic survival rate function. In their review of method-
ologies for estimating lifetime distributions of commodities,
Murakami et al.56 and Oguchi et al.57 give a comprehensive
overview of how a lifetime distribution and a survival rate
distribution, among others, are related. Only a few studies use
time varying, nonparametric lifetime data, for example, for
passenger vehicles and trucks in Japan18,34,58,59 and lead-
containing products in a global stock analysis.60

Table S3 in the SI summarizes the characteristics and
implementations of the different distributions.
Dynamic Modeling Approaches. The dynamic modeling

approaches can be grouped according to their temporal extent
and basic modeling principles as shown in Table 3.
The first dynamic MFAs of metals were modeled using

retrospective and partly also prospective top−down ap-
proaches. With the exception of Van Beers and Graedel,78

bottom−up approaches have been applied only since 2009.
Likewise, solely prospective dynamic MFAs of metals based on
scenario analyses have only been established recently. Figure 2
summarizes the development of modeling approaches over
time.
Retrospective Top−Down Approach. Probably the

simplest approach is the retrospective top−down dynamic
MFA. It analyzes past stocks and flows based on time series of
historical inflow data, such as trade, import, or consumption
statistics. Given the past inflows, the outflows are calculated
according to eq 4, and subsequently, stocks are calculated using
eq 1b. This approach is the most frequently chosen in the
existing literature on dynamic MFA of metals (see Table 3),
probably because of the better availability of inflow data
compared to the stock data needed for bottom−up approaches.
In a recent study, Pauliuk et al. extend the top−down

approach by calibrating its results based on the assumption that
the old scrap supply equals the apparent old scrap demand,
given a balanced scrap market, a homogeneous stock, and a
perfectly closed steel cycle.
Retrospective Bottom−Up Approach. A retrospective

bottom−up model produces time series of historical stock data
based on eq 2. If lifetime distributions and an initial stock value
S[0] are known, past inflows and outflows can be calculated
iteratively by applying eq 4 and eq 1c. These latter calculation
steps overlap with the retrospective top−down approach, so

both approaches can be used to calculate the missing time
series; given the inflow and a lifetime distribution, the outflow
and stock are calculated (thus an input-driven model) and
given the stock and a lifetime distribution, the outflow and
inflow are calculated (thus a stock-driven model). Hirato et al.34

use both retrospective top−down and bottom−up models for
automobiles in Japan and compare the results of the two
approaches.

Retrospective and Prospective Top−Down Approach.
Given that retrospective dynamic MFAs provide insights only
on resource use in the past, the top−down approach is often
combined with extrapolating time series of historical inflow data

Table 3. Dynamic Modeling Approaches Implemented in the Reviewed Literature

retrospective retrospective and prospective prospective

top−down historical data and lifetime
distribution8,18,22,34,35,39−41,45,46,50,52−55,59,61−71

historical data and lifetime distribution + individual consumption
scenarios23,27,28constant consumption model30,42,58,72,73

linear consumption model10,25,74

exponential consumption model11,32,37

logistic consumption model10,73

regression model33,43,73,75

intensity of use20,26

consumption scenarios according to existing
models38

individual consumption models for each product
group29

logistic stock/capita model24,47−49,76,77

bottom−
up

historical data and lifetime distribution34 historical data and lifetime distribution +
exponential stock model78

stock scenarios according to existing models31,79

individual stock models for each metal-
containing technology13,80

Figure 2. Development of modeling approaches used in dynamic
MFAs of metals from 1999 to 2013.
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by fitting an appropriate continuous time function. The same
approach can be used for a stock-driven model, as first
introduced by Müller,8 who proposes using the service
provided by the in-use stock as the main driver of a material
cycle, especially for materials with a long service lifetime. Past
stocks are first calculated using an input-driven model; then the
stocks are extrapolated to finally calculate future inflows using a
stock-driven model.
The models used by Michaelis and Jackson, Hatayama et al.,

Igarashi et al., and Oda et al.30,42,58,72,73 assume that metal
consumption is in a steady state at a level of a specific reference
year t0

=t tinflow( ) inflow( )0 (5)

According to Michaelis and Jackson42 and Oda et al.,58 this
simplification is justified when the metal stock has already
reached or is going to reach saturation.
Zeltner et al.,10 Park et al.,74 and Yan et al.25 use a linear

model to extrapolate total metal consumption

= · +

= · +

t p t p

n p nT p

inflow( ) (continuous time)

inflow[ ] (discrete time)

1 0

1 0 (6)

with p0 = initial value [kg/s] (all dimensions are given in SI
units) and p1 = gradient [kg/s2].
Models with an exponential consumption rate use a constant

consumption growth rate which can be based on, for example,
market reports or expert judgments11,32,37

τ

= · +

= · +

= = · +

τ

τ

t t p

n n T p

T n n T p

inflow( ) inflow( ) (1 )

inflow[ ] inflow( ) (1 )

if , then inflow[ ] inflow( ) (1 )

t

nT

n

0 1
/

0 1
/

0 1 (7)

with p1 = constant growth rate [-] in one period τ. Zeltner10

and Igarashi et al.73 also model future metal consumption with
a logistic function that takes growth limits of a system into
account

=
+

=
+

− −

− −

t
p

n
p

inflow( )
1 e

inflow[ ]
1 e

p t p

p nT p

1
( )

1
( )

2 3

2 3 (8)

with p1 = saturation value of inflow [kg/s], p2 = steepness of the
sigmoidal curve [-], and p3 = midpoint of the growth trajectory
[-]. The parameters are determined using fitting algorithms
(e.g., the ordinary least-squares method).
Elshkaki et al.33,75 and Yamaguchi and Ueta43 model inflows

of lead-containing products as a function of socioeconomic
explanatory variables, such as GDP, population size, product
price, etc.

∑ ε= + · +
=

t p p X t tinflow( ) ( ) ( )r
i

n

i i
1 (9)

with pr = regression parameter [kg/s], n = number of
socioeconomic explanatory variables, pi = regression parameter
[kg/(s·U)] (U = unit of explanatory variable), Xi(t) = time
series of socioeconomic variables [U], and ε(t) = the model
error [kg/s].
Through regression analysis, the most significant socio-

economic variables can be found and evaluated based on

statistical tests, such as the adjusted coefficient of determi-
nation, t test, and F-statistics.33 The regression parameters are
determined via fitting algorithms. With extrapolations of the
explanatory variables, the regression model is then used to
estimate future inflows. Igarashi et al.73 apply linear and
nonlinear regression models in a similar approach.
Ayres et al.20 and Kapur26 use extrapolative scenarios based

on the intensity-of-use hypothesis, which describes a metal’s
intensity of use (metal demand per unit GDP) as a function of
per capita income with a general form of an inverse U-shaped
curve

=
+

· −y t
p

y t
pIU( ( ))

( )
p

y t

t t T1

( )
4

( )/

p
2

3

0

(10)

with y(t) = GDP per capita [US$/p], p1 = parameter [kg/p], p2
= parameter [US$/p], p3 = parameter [-], p4 = factor that scales
down the intensity of use with time) [-], and t0 = first year [s].
The inflow of metal is then

= ·t y t w tinflow( ) IU( ( )) ( ) (11)

with w(t) = GDP [US$].
The curve illustrates the development from an agricultural to

an industrial, more resource-intensive economy, and eventually
to a high-income, service-oriented economy, which in turn has
lower resource use. The extrapolation of population and GDP
is based on scenarios developed by the Intergovernmental
Panel on Climate Change (IPCC).20

Yano et al.38 model the current and future end-of-life vehicle
flows and their lead content based on Japanese car registration
statistics and forecasts.
In a study on platinum use for new technologies, Elshkaki

and Van Der Voet29 present individual production and
consumption models for each product group, often as functions
of the exogenous variables GDP and population. Future GDP
and population data is also taken from existing IPCC scenarios.
Instead of extrapolating inflows, Hatayama et al. and Pauliuk

et al.47−49 use forecasts of the in-use stock for their prospective
dynamic MFAs.
Pauliuk et al.49 apply logistic stock per capita models with

scenario-dependent saturation levels

=
+ − −⎜ ⎟

⎛
⎝

⎞
⎠

t
p

per capita stock( )
1 1 e

p

p
p p t

1

1

0

2 1

(12)

with p0 = initial value [kg], p1 = saturation value of total stock
per capita [kg], and p2 = constant [1/(kg·s)]. They choose the
parameters by assuming that the future per capita stock is
tangent to the actual development and will ultimately reach the
saturation level. Future inflows can be iteratively calculated
based on future stock data with an initial value for inflow (t =
t0) and eq 4 being introduced into eq 1b.
The models applied by Hatayama et al.24,47,48 are based on

per capita GDP as the only exogenous variable, allowing for
different growth rates between regions

=
+ − ·t

p
per capita stock( )

1 e p p t t
1

( (GDP( )/cap( ))2 3 (13)

with p1 = saturation value of total stock/capita [kg], p2 =
parameter [-], and p3 = parameter [1/(US$)]. The model
parameters are determined using nonlinear regression on the
historical relationship between the per capita stock and GDP.
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In their most recent studies, Pauliuk et al.76 and Liu et al.77

use a generalized five-parameter logistic function as a synthesis
of the logistic curve and a Gompertz model to choose the
saturation level and time independently for different world
regions.
Retrospective and Prospective Bottom−Up Ap-

proach. Van Beers and Graedel78 use a retrospective and
prospective bottom−up approach to model zinc in-use stocks
in Cape Town. They apply constant annual stock growth rates
based on literature data for extrapolating past and future in-use
stocks and flows.

= · + τt t pstock( ) stock( ) (1 )t
0 1

/
(14)

with p1 = constant growth rate [-] in 1 period τ. Stock-driven
copper flows were dynamically modeled by Bader et al.13 The
model comprises detailed analyses of historical copper stocks,
including individual models for different end-use sectors and
their copper-containing technologies.12 For the extrapolation of
stocks, Bader and his colleagues apply and fit logistic, linear-
logistic, or double-logistic stock growth models, depending on
the historical growth patterns. Gerst80 also proposes a dynamic
bottom−up model of global copper stocks. He derives his
models from the historical stock of copper-containing
technologies based on macrolevel socioeconomic variables
such as GDP per capita, population, average household size,
and level of urbanization. These time-dependent variables are
then extrapolated, partly based on existing models and
scenarios, to compute future stocks.
Saurat and Bringezu31 model the use of platinum group

metals in catalytic converters in automobiles in Europe based
on a bottom−up simulation of the European fleet of passenger
cars, including the expected evolution of the future fleet of fuel
cell vehicles. For their dynamic analysis of iron and steel in
Chinese residential buildings, Hu et al.79 use an existing
dynamic MFA model simulating the development of the floor
area stocks in China’s urban and rural housing systems.
Prospective Top−Down Approach. Zuser and Rechberg-

er,27 Marwede and Reller,23 and Alonso et al.28 model the
future consumption of metals used in emerging technologies
with a prospective top−down approach. Alonso et al.28 model
five demand scenarios for REE, basing the demand either on
historical production or demand growth rates or on expected
demand growth rates for emerging technologies according to
expert knowledge or existing scenarios.
Zuser and Rechberger27 analyze material demand for four

different photovoltaic technologies according to three demand
scenarios. In a similar approach, Marwede and Reller23 develop
three demand scenarios for tellurium in cadmium telluride
photovoltaic cells.
Dissipation. The focus of the dynamic MFAs of metals

reviewed is on bulk metal flows incorporated in durable goods
and infrastructure. Metals, however, are also dissipated to the
environment throughout their life cycle, with material
dissipation being understood as defined by Ayres and
colleagues19,20 (see also Method section). In about half of the
reviewed studies, dissipative flows are described as such or
referred to as emissions, loss flows, stock leakage or specific
flows to landfills or the environment. In 18 studies, the concept
is an inherent part of the methodology, with 11 of these
considering dissipative flows for all life phases and seven for
only the use or disposal phase. Dissipative outflows of a specific
process are calculated either from inflows and transfer

coefficients or loss rates (e.g., refs 13, 20, and 53), from stocks
and leaching/emission factors or corrosion coefficients (e.g.,
refs 13 and 75), from mass balances,59 or based on historical
data (e.g., slag sales51). Only three authors13,20,71 consider time-
variant coefficients; in all other studies, the share of dissipation
remains constant over time.
Some literature specifically focuses on time-variant dissipative

flows. In a recent study, Lifset et al.5 assess dissipative copper
flows in the United States based on historical data and
individual models for the different copper flows. They further
categorize these flows into “intentional and unintentional
release”, as well as “intentional and unintentional use”. They
also define a dissipation index that quantifies the ratio of
dissipative flows to bulk flows as a measure of resource
efficiency. Elshkaki et al.81 model the nonintentional flows of
lead in the Dutch economic system using a regression model
approach, Sundset et al.82 illustrate the mercury flows in the
European Union, and Yamasue et al.83 evaluate the potential
amounts of dissipated rare metals from waste electrical and
electronic equipment in Japan.

Spatial Dimension. It is important to know the location of
a resource in addition to its quantity and quality to consider it
for future mining.78 Thus, some studies include the spatial
distribution of in-use stocks, based on statistical or remote
sensing data and usually processed in geographic information
systems (GIS).84 Van Beers and Graedel78 link GIS data sets
from a population census in Cape Town with zinc densities per
area by applying weighting factors related to household income,
dwelling type, or length of roads. In combination with annual
stock growth rates, they also calculate the retrospective and
prospective zinc distributions. Pauliuk et al.70,76 and Liu and
Müller36 analyze steel and aluminum stocks and flows,
respectively, for all countries in the world, based on statistical
data. In addition, Pauliuk et al.76 include capacity models to
show how extensive tradeing of finished steel could prolong the
lifetime of the steelmaking assets in different world regions, and
Liu and Müller85 develop a trade-linked multilevel MFA to map
the global pathways of aluminum between countries. Remote
sensing methods are used by Takahashi et al.,86 who analyze in-
use copper stocks using satellite nighttime light observation
data.
Other studies that include the spatial dimension of metal

stocks are static MFAs.87−89

Uncertainty. Data included in an MFA of metals are
acquired from many different sources with varying data
reliability. If only individual values from measurements, expert
interviews, or historical sources are available, it is often difficult
to quantify the uncertainty of input data and parameters. The
reviewed literature can be roughly divided into four groups
according to how uncertainties are handled (see also Figure S2
in the SI).
The first group, comprising approximately half of the studies,

does not consider data uncertainty. The second group, 37% of
all studies, applies sensitivity analysis. A sensitivity analysis
helps to assess the relevance of uncertainties of the model
parameters by providing knowledge of how the model output
reacts to parameter changes. Many studies test the sensitivity of
the model to different average lifetimes22,35,45,51,67 or different
lifetime distributions and standard deviations,22,53,55,68,69

concluding that varying average lifetimes has a greater influence
on model results than varying standard deviations or lifetime
distributions. In addition to lifetime distributions, authors also
carry out sensitivity analyses for other key parameters, such as
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steel intensity,34,50,52,63,79 scrap recovery rate,37,50,52,59 pop-
ulation size, stock saturation level, and saturation time.76 In
their most recent studies, Liu et al.36,77 and Pauliuk et al.70 carry
out full sensitivity analyses for all model parameters according
to their estimated data uncertainty. Besides the average lifetime,
they found that the trade data estimation (based either on
reported import or export data) and the metal concentration in
commodities also have a high impact on resulting in-use stock
calculations.
McMillan et al.54 quantify the sensitivity of the lifetime

distribution, recycling rate, and metallic recovery by using the
Fourier Amplitude Sensitivity Test method, which provides a
measure of input sensitivity defined as the fraction of total
model variance.
The third group, 6% of all studies, uses uncertainty intervals.

In particular, Kapur26 assigns confidence levels to copper flows
according to a confidence scale developed by Moss and
Schneider.90 He states that, as a general rule, the data quality
decreases along the life cycle of a metal, that is, data for
production, manufacturing, and the inflows into the use phase
is more reliable than data for the waste management and
recycling processes. Hedbrant and Sörme include uncertainty
intervals as proposed in a comprehensive article on data
uncertainty in urban heavy metal data collection. They assign
uncertainty levels to sources of information, with associated
uncertainty intervals based on factors (e.g., the value x could be
as much as 3x or as little as 1/3x, annotated with “*/” analogue
to “±”), which is especially useful for large uncertainties.91 Van
Beers and Graedel78 apply asymmetrical uncertainty ranges for
the zinc stocks per end-use sector.
Finally, the fourth group (5% of all studies) uses the

Gaussian error propagation to calculate the standard deviation
of stocks and flows based on standard deviations that were
defined for each input variable and parameter.10,13,36

A different approach to handling uncertainty, which has not,
however, been applied to MFAs of metals thus far, is
probabilistic MFA, as proposed by Gottschalk et al.92 They
model inflows, transfer coefficients, and concentrations as
probability distributions. The shape of the distributions (e.g.,
uniform, triangular, or log-normal) is chosen based on the
characteristics of the available data. The dependent variables are
calculated by means of Monte Carlo simulation and are
therefore again provided as probability distributions. Bornhöft
et al.93 review existing modeling approaches and tools with
regard to the requirements of probabilistic MFA.
Initial Condition. The initial condition of an MFA model

depends primarily on the temporal extent chosen. If analyses go
far back in time, initial stocks and flows are often considered
zero at t = t0. If the temporal extent is short or starts in the
present, initial stocks, and flows are defined based on available
data or the authors’ assumptions.
Model Input Data. Model input data includes time series

for exogenous model variables such as metal inflow and stock
data, socioeconomic data such as GDP or population, and
model parameters such as the average lifetime of products or
end-use categories. A detailed discussion of the data sources
used by the studies reviewed is beyond the scope of this article.
Model Output Data. Model output data of the reviewed

dynamic MFAs of metals comprise time series of those stocks
and flows under investigation. Some studies quantify only the
in-use stock (e.g., refs 68 and 80), while others provide
information on all stocks and flows in their system from
extraction to landfilling.45 The resulting stocks and flows are

often further divided into end-use sectors or products (most
studies), disaggregated for different regions or countries,40,48 or
include details such as the chemical composition of scrap flows
or a breakdown into different alloy types (e.g., refs 59 and 72).

Evaluation. Besides a visualization and discussion of the
output data, some studies include further evaluation. Various
indicators can be applied that condense the results for better
explication and communication.16 Examples include the
recycling rate, defined as the ratio between the actual scrap
consumption and the scrap arising,52 the scrap self-sufficiency
ratio as the ratio of scrap recycling to scrap demand,74 or other
recycling indicators as applied by Glöser et al.22 or Yan et al.25

Zeltner et al.10 introduce the separation efficiency as the
fraction of recycling in the total waste flow and Bader et al.13

present the consumption loss as the sum of all metal flows to
landfills or the soil/aquatic system.
Some evaluations are based on the relationship between

material stocks and flows and socioeconomic indicators.
McMillan et al.54 analyze the relationship between the net
addition to stock and GDP, and Mao and Graedel66 and Liu
and Müller36 relate per capita stock to per capita GDP.
Comparisons of natural resources with anthropogenic stocks

and flows are performed by Müller et al.,51 Gerst80 Alonso et
al.,28 and Liu and Müller.36

Some authors evaluate results by comparing them with the
outcome of other studies (e.g., refs 13 and 80).
Further approaches evaluate the energy consumption or

environmental impacts of the metal flows. Dahlström et al.50

use value chain analysis to examine the material- and energy-
related resource productivity and efficiency of the iron, steel,
and aluminum industries in the United Kingdom, and Cheah et
al.37 analyze the embodied energy demand of automotive
aluminum. For the United Kingdom steel sector, Michaelis and
Jackson41,42 calculate the consumption and development of
exergy (available work). Hu et al.79 assess resource depletion
and global climate change by the accumulated net steel use and
the net CO2-equivalent emissions. The CO2 emission volume
reduction potential resulting from an enhanced collection of
postconsumer steel was analyzed by Igarashi et al.30 Saurat and
Bringezu31 model the SO2 emissions related to PGM
production and use in Europe. Liu et al.35,77 analyze the
energy use and greenhouse gas (GHG) emissions of the U.S.
aluminum cycle and the GHG emission pathways of the global
aluminum cycle.
Additional analyses include, for example, multimaterial pinch

analyses to derive optimized recycling,24 material intensity per
service unit, life-cycle assessment, cost-benefit analysis,
statistical entropy analysis,16 and entropy analysis.94−96

Detailed Model Description. The detailed model
description in the (adapted) ODD protocol comprises details
about the model’s formalisms (e.g., equations) and algorithms
(e.g., solution procedures), the exogenous and endogenous
variables, and the model parameters. Providing detailed model
descriptions beyond the generic equations already discussed is
beyond the scope of this article.

■ DISCUSSION
We reviewed 60 studies of anthropogenic metal flows,
comparing them with regard to their purpose, the materials,
products, and sectors investigated, the coverage of processes,
their spatial and temporal scale and extent, and the way they
conceptualize and delimit the system under study. We extracted
and summarized the basic concepts, principles, and methodo-
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logical approaches underlying the models used and showed
how the approaches developed over time.
The adapted ODD protocol proved to be beneficial for

structuring the review process as well as this article. The
literature fit well into the protocol’s structure, which helped us
to provide a one-to-one comparison of corresponding elements
of the models despite their high diversity. The ODD protocol
in our adapted form could hence provide a basis for the
standardized description of MFA models in general, providing
better orientation to the reader and supporting the
completeness of model documentation and reproducibility of
the results.
Most studies apply a top−down approach that could be used

for any material. The required time series of inflow data are
often provided by production, trade, or consumption statistics.
Data is mainly available for bulk metals or, in the form of global
production figures, also for less widely used metals. Because
available inflow data is often highly aggregated, the top−down
approach may be less suitable for specific products or smaller
regions.
Only 10% of the studies apply a bottom−up approach.

Bottom-up models are far less generic since the entire stock of a
specific metal has to be assembled from all product groups
containing that metal. These may all show different growth
patterns, requiring a specific stock model for each product
group as well as extensive data collection.13,78,80 This approach
is thus most suitable for analyzing metals that are only used in a
few products, or for focusing on a specific product. Bottom−up
models can also benefit from existing models that provide past
and future time series of stock data that can be directly applied
in an MFA.31,79

The bottom−up approach, although it has not been widely
applied to date, could provide important insights on consumer
behavior, which, for example, influences the product lifetime or
the disposal pathways, sociocultural and spatial differences in
patterns of metal use,36 the split of metals to different end-use
sectors, or the share of obsolete stock (e.g., stored products,
abandoned infrastructure) in the in-use stock70 by investigating
in detail the in-use stock, for example, through consumer
surveys.
Especially for studies with a long time horizon, the

assumption of constant model parameters, for example, the
lifetime distribution parameters, is a far-reaching simplification
that could add a significant error to the results.97,98 Sinha-
Khetriwal et al.99 also point out that forecasts of outflows can
be improved by introducing product mass functions incorpo-
rating the changing weight of products over time as in Gregory
et al.100 Such data can often only be derived from bottom−up
models. Detailed data generated by bottom−up models can
also be used to calibrate and validate top−down models, an
issue not yet often addressed in the literature. Future research
should therefore investigate time-variant systems and how top−
down and bottom−up models could be combined or
complemented.
The diverse extrapolation methods reveal various challenges.

Inflow data often fluctuates, depending on economic and
technological developments, such as market crises or product
substitutions, which are difficult to predict. Furthermore, linear
and exponential consumption models, since they do not take
into account resource scarcity and market saturation, are only
valid within a short time frame. Extrapolation of inflow data is
therefore prone to oversimplification. Stocks, however, are less
affected by short-term market fluctuations and thus provide a

more robust basis for forecasts.8,77 For regression models, too,
the forecasts based on socioeconomic variables are only valid as
long as no unpredicted societal or economic changes occur.33

The majority of studies analyze bulk metals such as iron/
steel, aluminum, copper, and zinc with increasingly detailed
information on their stocks and flows. Literature on less widely
used metals such as indium, tantalum or REE is still scarce. The
use of these metals highly depends on new emerging
technologies. At the end of product life, most of the metals
are not recovered but lost from the system considered, since
there is not yet any technically or economically feasible
recycling option for many of them. It is thus highly advisable to
further develop data and models with a special focus on metal
dissipation. Earlier, dissipation, losses or emissions of metals to
the environment were included in dynamic MFA models
focusing on heavy metal pollution. In recent years, dissipation
has also been addressed also from a resource point of view, but
data is extremely scarce and many authors have still not taken
up the issue. Moreover, metals may not only be dissipated, but
also distributed in low concentrations to many products, and,
within these products, scattered all over the globe. These metals
are not irrecoverable, but great efforts are needed to
concentrate them again. Rechberger and Graedel101 developed
statistical entropy analysis to measure the distribution pattern
of a substance over its life cycle, that is, to describe how a
system concentrates or distributes substances. It appears
promising to apply statistical entropy analysis to metals in the
anthroposphere for the measurement and illustration of their
distribution as a basis for improved resource management.
Future research should also investigate other, possibly new
indicators of dissipation and material distribution.
The most recent literature36,70,77 has shown that besides

lifetime distribution parameters there might be many other
parameters or variables with a strong influence on the model’s
output. Performing uncertainty analysis such as Gaussian Error
Propagation, or, if the data uncertainty is unknown, a full
sensitivity analysis, is therefore important to understand the
effect of uncertain model input. Probabilistic MFA by
Gottschalk et al.,92 which models all data as probability
distributions and thus accounts for the influence of the model
input’s uncertainty on the model output, is a comprehensive
approach for dealing with uncertainty.
Dynamic MFA is a useful method for providing knowledge of

metal stocks and flows in the anthroposphere in a simple and
comprehensible way. Many studies also include further
evaluations of their results or serve as a basis for further
assessments (e.g., ref 102). However, with the exception of
Kapur et al.,26 the results and conclusions of the reviewed
literature do not directly support environmental policy making.
Some studies indirectly give recommendations, for example,
regarding how to increase recycling rates (e.g., refs 23, 39, 49,
54, 62, and 65), reduce environmental impacts (e.g., refs 31 and
67) or mitigate climate change (e.g., refs 41 and 77), but
without a clear target audience. We suggest that future studies
that intend to provide environmental policy recommendations,
identify their target audience and their purpose from the
beginning. MFA could also be recognized as a necessary
element of impact assessments used for new regulations, such
as the sustainability impact assessment used for new trade
agreements by the European Commission.103 The mid- and
long-term impacts of political decisions on material stocks and
flows may become one of the most important economic and
environmental concerns in the coming decades. To fulfill the
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requirements of policy support, MFA models should be
embedded in an environment of scenario definition and
simulation that easily connects the models to socioeconomic
data taken from statistical databases and geographic informa-
tion systems.
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(22) Glöser, S.; Soulier, M.; Tercero Espinoza, L. A. Dynamic
analysis of global copper flows. Global stocks, postconsumer material
flows, recycling indicators, and uncertainty evaluation. Environ. Sci.
Technol. 2013, 47, 6564−6572.
(23) Marwede, M.; Reller, A. Future recycling flows of tellurium from
cadmium telluride photovoltaic waste. Resour. Conserv. Recycl. 2012,
69, 35−49.
(24) Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Evolution of
aluminum recycling initiated by the introduction of next-generation
vehicles and scrap sorting technology. Resour. Conserv. Recycl. 2012, 66,
8−14.
(25) Yan, L.; Wang, A.; Chen, Q.; Li, J. Dynamic material flow
analysis of zinc resources in China. Resour. Conserv. Recycl. 2013, 75,
23−31.
(26) Kapur, A. The future of the red metal-A developing country
perspective from India. Resour. Conserv. Recycl. 2006, 47, 160−182.
(27) Zuser, A.; Rechberger, H. Considerations of resource availability
in technology development strategies: The case study of photovoltaics.
Resour. Conserv. Recycl. 2011, 56, 56−65.
(28) Alonso, E.; Sherman, A. M.; Wallington, T. J.; Everson, M. P.;
Field, F. R.; Roth, R.; Kirchain, R. E. Evaluating rare earth element
availability: A case with revolutionary demand from clean technologies.
Environ. Sci. Technol. 2012, 46, 3406−3414.
(29) Elshkaki, A.; Van Der Voet, E. The consequences of the use of
platinum in new technologies on its availability and on other metals
cycles. In Conservation and Recycling of Resources: A New Research;
Loeffe, C. V., Ed.; Nova Publishers: Hauppauge NY, 2006; p 245.
(30) Igarashi, Y.; Daigo, I.; Matsuno, Y.; Adachi, Y. Dynamic material
flow analysis for stainless steels in Japan-reductions potential of CO2
emissions by promoting closed loop recycling of stainless steels. ISIJ
Int. 2007, 47, 758−763.

Environmental Science & Technology Critical Review

dx.doi.org/10.1021/es403506a | Environ. Sci. Technol. 2014, 48, 2102−21132111

http://pubs.acs.org
mailto:esther.mueller@empa.ch


(31) Saurat, M.; Bringezu, S. Platinum group metal flows of europe,
Part II exploring the technological and institutional potential for
reducing environmental impacts. J. Ind. Ecol. 2009, 13, 406−421.
(32) Hedbrant, J. Stockhome: A spreadsheet model of urban heavy
metal metabolism. Water Air Soil Pollut. Focus 2001, 1, 55−66.
(33) Elshkaki, A.; Van Voet, E. D.; Timmermans, V.; Van
Holderbeke, M. Dynamic stock modelling: A method for the
identification and estimation of future waste streams and emissions
based on past production and product stock characteristics. Energy
2005, 30, 1353−1363.
(34) Hirato, T.; Daigo, I.; Matsuno, Y.; Adachi, Y. In-use stock of
steel estimated by top−down approach and bottom−up approach. ISIJ
Int. 2009, 49, 1967−1971.
(35) Liu, G.; Bangs, C. E.; Müller, D. B. Unearthing potentials for
decarbonizing the U.S. aluminum cycle. Environ. Sci. Technol. 2011, 45,
9515−9522.
(36) Liu, G.; Müller, D. B. Centennial evolution of aluminum in-use
stocks on our aluminized planet. Environ. Sci. Technol. 2013, 47, 4882−
4888.
(37) Cheah, L.; Heywood, J.; Kirchain, R. Aluminum stock and flows
in U.S. passenger vehicles and implications for energy use. J. Ind. Ecol.
2009, 13, 718−734.
(38) Yano, J.; Hirai, Y.; Okamoto, K.; Sakai, S. Dynamic flow analysis
of current and future end-of-life vehicles generation and lead content
in automobile shredder residue. J. Mater. Cycles Waste Manage. 2013,
DOI: 10.1007/s10163-013-0166-1.
(39) Yoshimura, A.; Daigo, I.; Matsuno, Y. Global substance flow
analysis of indium. Mater. Trans. 2013, 54, 102−109.
(40) Harper, E. M.; Kavlak, G.; Graedel, T. E. Tracking the metal of
the goblins: Cobalt’s cycle of use. Environ. Sci. Technol. 2012, 46,
1079−1086.
(41) Michaelis, P.; Jackson, T. Material and energy flow through the
U.K. iron and steel sector. Part 1: 1954−1994. Resour. Conserv. Recycl.
2000, 29, 131−156.
(42) Michaelis, P.; Jackson, T. Material and energy flow through the
U.K. iron and steel sector. Part 2: 1994−2019. Resour. Conserv. Recycl.
2000, 29, 209−230.
(43) Yamaguchi, R.; Ueta, K. Substance Flow Analysis and Efficiency
Conditions: A Case of Lead; Discussion Paper No. 119; 21COE
Interfaces for Advanced Economic Analysis: Kyoto University, Kyoto,
2006.
(44) Rausand, M.; Arnljot, H. System Reliability Theory: Models,
Statistical Methods, and Applications; John Wiley & Sons: Hoboken, NJ,
2004.
(45) Spatari, S.; Bertram, M.; Gordon, R. B.; Henderson, K.; Graedel,
T. E. Twentieth century copper stocks and flows in North America: A
dynamic analysis. Ecol. Econ. 2005, 54, 37−51.
(46) Tabayashi, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Development
of a dynamic substance flow model of zinc in Japan. ISIJ Int. 2009, 49,
1265−1271.
(47) Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Outlook of the
world steel cycle based on the stock and flow dynamics. Environ. Sci.
Technol. 2010, 44, 6457−6463.
(48) Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Assessment of
the recycling potential of aluminum in Japan, the United States,
Europe and China. Mater. Trans. 2009, 50, 650−656.
(49) Pauliuk, S.; Wang, T.; Müller, D. B. Moving toward the circular
economy: The role of stocks in the Chinese steel cycle. Environ. Sci.
Technol. 2012, 46, 148−154.
(50) Dahlström, K.; Ekins, P.; He, J.; Davis, J.; Clift, R. Iron, Steel and
Aluminium in the UK: Material Flows and Their Economic Dimensions,
Final Project Report, March 2004; CES Working Paper 03/04; Centre
for Environmental Strategy, University of Surrey, Surrey, 2004.
(51) Müller, D. B.; Wang, T.; Duval, B.; Graedel, T. E. Exploring the
Engine of Anthropogenic Iron Cycles. Proc. Natl. Acad. Sci. 2006, 103,
16111−16116.
(52) Davis, J.; Geyer, R.; Ley, J.; He, J.; Clift, R.; Kwan, A.; Sansom,
M.; Jackson, T. Time-dependent material flow analysis of iron and

steel in the U.K.. Part 2. Scrap generation and recycling. Resour.
Conserv. Recycl. 2007, 51, 118−140.
(53) Chen, W.; Shi, L.; Qian, Y. Substance flow analysis of aluminium
in mainland China for 2001, 2004 and 2007: Exploring its initial
sources, eventual sinks and the pathways linking them. Resour. Conserv.
Recycl. 2010, 54, 557−570.
(54) McMillan, C. A.; Moore, M. R.; Keoleian, G. A.; Bulkley, J. W.
Quantifying U.S. aluminum in-use stocks and their relationship with
economic output. Ecol. Econ. 2010, 69, 2606−2613.
(55) Chen, W.-Q.; Graedel, T. E. Dynamic analysis of aluminum
stocks and flows in the United States: 1900−2009. Ecol. Econ. 2012,
81, 92−102.
(56) Murakami, S.; Oguchi, M.; Daigo, I.; Hashimoto, S. Lifespan of
commodities, Part I: The creation of a database and its review. J. Ind.
Ecol. 2010, 14, 598−612.
(57) Oguchi, M.; Murakami, S.; Tasaki, T.; Daigo, I.; Hashimoto, S.
Lifespan of commodities, Part II: Methodologies for estimating
lifespan distribution of commodities. J. Ind. Ecol. 2010, 14, 613−626.
(58) Oda, T.; Daigo, I.; Matsuno, Y.; Adachi, Y. Substance flow and
stock of chromium associated with cyclic use of steel in Japan. ISIJ Int.
2010, 50, 314−323.
(59) Daigo, I.; Hashimoto, S.; Matsuno, Y.; Adachi, Y. Material stocks
and flows accounting for copper and copper-based alloys in Japan.
Resour. Conserv. Recycl. 2009, 53, 208−217.
(60) Mao, J.; Graedel, T. E. Lead in-use stock: A dynamic analysis. J.
Ind. Ecol. 2009, 13, 112−126.
(61) Daigo, I.; Matsuno, Y.; Adachi, Y. Substance flow analysis of
chromium and nickel in the material flow of stainless steel in Japan.
Resour. Conserv. Recycl. 2010, 54, 851−863.
(62) Du, X.; Graedel, T. E. Global in-use stocks of the rare earth
elements: A first estimate. Environ. Sci. Technol. 2011, 45, 4096−4101.
(63) Geyer, R.; Davis, J.; Ley, J.; He, J.; Clift, R.; Kwan, A.; Sansom,
M.; Jackson, T. Time-dependent material flow analysis of iron and
steel in the UK: Part 1: Production and consumption trends 1970−
2000. Resour. Conserv. Recycl. 2007, 51, 101−117.
(64) Harper, E. M.; Graedel, T. E. Illuminating tungsten’s life cycle in
the United States: 1975−2000. Environ. Sci. Technol. 2008, 42, 3835−
3842.
(65) Izard, C. F.; Müller, D. B. Tracking the devil’s metal: Historical
global and contemporary U.S. tin cycles. Resour. Conserv. Recycl. 2010,
54, 1436−1441.
(66) Mao, J.; Graedel, T. E. Lead in-use stock: A dynamic analysis. J.
Ind. Ecol. 2009, 13, 112−126.
(67) Matsuno, Y.; Hur, T.; Fthenakis, V. Dynamic modeling of
cadmium substance flow with zinc and steel demand in Japan. Resour.
Conserv. Recycl. 2012, 61, 83−90.
(68) Müller, D. B.; Wang, T.; Duval, B. Patterns of iron use in
societal evolution. Environ. Sci. Technol. 2011, 45, 182−188.
(69) Ruhrberg, M. Assessing the recycling efficiency of copper from
end-of-life products in Western Europe. Resour. Conserv. Recycl. 2006,
48, 141−165.
(70) Pauliuk, S.; Wang, T.; Müller, D. B. Steel all over the world:
Estimating in-use stocks of iron for 200 countries. Resour. Conserv.
Recycl. 2013, 71, 22−30.
(71) Kavlak, G.; Graedel, T. E. Global anthropogenic selenium cycles
for 1940−2010. Resour. Conserv. Recycl. 2013, 73, 17−22.
(72) Hatayama, H.; Yamada, H.; Daigo, I.; Matsuno, Y.; Adachi, Y.
Dynamic substance flow analysis of aluminum and its alloying
elements. Mater. Trans. 2007, 48, 2518−2524.
(73) Igarashi, Y.; Kakiuchi, E.; Daigo, I.; Matsuno, Y.; Adachi, Y.
Estimation of steel consumption and obsolete scrap generation in
Japan and Asian countries in the future. ISIJ Int. 2008, 48, 696−704.
(74) Park, J.-A.; Hong, S.-J.; Kim, I.; Lee, J.-Y.; Hur, T. Dynamic
material flow analysis of steel resources in Korea. Resour. Conserv.
Recycl. 2011, 55, 456−462.
(75) Elshkaki, A.; Van Der Voet, E.; Van Holderbeke, M.;
Timmermans, V. The environmental and economic consequences of
the developments of lead stocks in the Dutch economic system.
Resour. Conserv. Recycl. 2004, 42, 133−154.

Environmental Science & Technology Critical Review

dx.doi.org/10.1021/es403506a | Environ. Sci. Technol. 2014, 48, 2102−21132112



(76) Pauliuk, S.; Milford, R. L.; Müller, D. B.; Allwood, J. M. The
steel scrap age. Environ. Sci. Technol. 2013, 47, 3448−3454.
(77) Liu, G.; Bangs, C. E.; Müller, D. B. Stock dynamics and emission
pathways of the global aluminium cycle. Nat. Clim. Change 2013, 3,
338−342.
(78) Van Beers, D.; Graedel, T. E. The magnitude and spatial
distribution of in-use zinc stocks in Cape Town, South Africa. Afr. J.
Environ. Assess. Manage. 2004, 9, 18−36.
(79) Hu, M.; Pauliuk, S.; Wang, T.; Huppes, G.; van der Voet, E.;
Müller, D. B. Iron and steel in Chinese residential buildings: A
dynamic analysis. Resour. Conserv. Recycl. 2010, 54, 591−600.
(80) Gerst, M. D. Linking material flow analysis and resource policy
via future scenarios of in-use stock: An example for copper. Environ.
Sci. Technol. 2009, 43, 6320−6325.
(81) Elshkaki, A.; van der Voet, E.; Holderbeke, M. V.; Timmermans,
V. Long-term consequences of non-intentional flows of substances:
Modelling non-intentional flows of lead in the Dutch economic system
and evaluating their environmental consequences. Waste Manage.
2009, 29, 1916−1928.
(82) Sundseth, K.; Pacyna, J. M.; Pacyna, E. G.; Panasiuk, D.
Substance flow analysis of mercury affecting water quality in the
European Union. Water. Air. Soil Pollut. 2012, 223, 429−442.
(83) Yamasue, E.; Nakajima, K.; Daigo, I.; Hashimoto, S.; Okumura,
H.; Ishihara, K. N. Evaluation of the potential amounts of dissipated
rare metals from WEEE in Japan. Mater. Trans. 2007, 48, 2353−2357.
(84) Han, J.; Xiang, W.-N. Analysis of material stock accumulation in
China’s infrastructure and its regional disparity. Sustain. Sci. 2013, 8,
553−564.
(85) Liu, G.; Müller, D. B. Mapping the global journey of
anthropogenic aluminum: A trade-linked multilevel material flow
analysis. Environ. Sci. Technol. 2013, 47, 11873−11881.
(86) Takahashi, K. I.; Terakado, R.; Nakamura, J.; Adachi, Y.; Elvidge,
C. D.; Matsuno, Y. In-use stock analysis using satellite nighttime light
observation data. Resour. Conserv. Recycl. 2010, 55, 196−200.
(87) Van Beers, D.; Graedel, T. E. Spatial characterisation of multi-
level in-use copper and zinc stocks in Australia. J. Clean. Prod. 2007,
15, 849−861.
(88) Van Beers, D.; Kapur, A.; Graedel, T. E. Copper and zinc
recycling in Australia: potential quantities and policy options. J. Clean.
Prod. 2007, 15, 862−877.
(89) Rauch, J. N. Global mapping of Al, Cu, Fe, and Zn in-use stocks
and in-ground resources. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,
18920−18925.
(90) Moss, R. H.; Schneider, S. H. Uncertainties in the IPCC TAR:
Recommendations to Lead Authors for More Consistent Assessment and
Reporting, Guidance Papers on the Cross Cutting Issues of the Third
Assessment Report of the IPCC; Pachauri, R., Taniguchi, T., Tanaka,
K., Eds.; World Meteorological Organization: Geneva, Switzerland,
2000; pp 33−51.
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