
pymfa: A Tool for Performing Material Flow Analyses in Python 3

Carol Alexandru, 07-926-744
Project Report, Informatics and Sustainable Development, Fall Semester 2013

December 29, 2013

Contents

1 Introduction 2
1.1 Related Work . 2
1.2 Proposing a Web-Based Approach . 3
1.3 Report Outline . 3

2 pymfa Analysis DSL 3
2.1 Source File Structure . 3
2.2 Reflection . 4

3 Implementation 5
3.1 Core . 5
3.2 Importer . 6
3.3 Exporters . 6
3.4 Web Server . 6
3.5 Command Line Script . 7
3.6 Testing and Code Base . 7
3.7 Visualization . 8

4 Limitations and Future Work 9

5 Conclusion 9

6 Appendix 9

1

1 Introduction

The Material flow analysis (MFA) is an analytic method for determining the flows of material through
a well-specified system. Materials may originate in nature, be processed and used in the production of
goods, which are used by society and eventually discarded. The discarded products may be recycled,
but it is rarely the case that all of its raw materials can be recovered. In this fashion, materials may
exist as stock, for example while they are in use, or when they are being deposited in a land fill.

The MFA is used both in research and practice, either to gain a better understanding of existing
flows of materials in a given system or to plan and design new processes in such a way that the
processes can be implemented in real-world situations. Systems which are analyzed using MFAs can
be isolated and specific, as could be the case with a waste management system, or broad, involving
all of society, as could be the case with the life cycle of an electronics product[1, 3].

In all cases, the knowledge available when starting the analysis usually comprises the amounts
of material being fed into the system, as well as the transfer rates between places in the system.
For example, it might be known that a certainty amount of silicon, weighted in tons, goes into the
production of photo-voltaic cells, of which a certain percentage is lost during production in the form
of saw dust. A part of this saw dust may be recovered, while the other part ends up as waste. The
silicon which makes it into the PV cells stays there for the life time of the PV array, likely several
decades, after which the cells are disassembled and again, partially recycled. Some percentage may
be irrecoverable, ending up as emissions during incineration of the remaining scraps.

In this example, the original amount of silicon is known, as well as the percentages that are lost in
production and recycling. An MFA can reveal how much material in tons is actually wasted during
production, how much is stocked in PV cells being used at the moment, and how much material is
recovered and emitted by the end of the process. In this fashion, the MFA provides insights which are
both of economical value, as it reveals how much material is wasted or miss-directed in the system,
as well as of importance with regard to ecological questions, as it reveals how much material escapes
into nature during the entire process. MFAs can become arbitrarily complex, with many materials
traveling through many places.

1.1 Related Work

Material flow analyses can performed using Microsoft Excel, where it is possible to model all required
components of an analysis, and even graph them to some degree. When using VBA (Visual Basic for
Applications), it is also possible to implement dynamic behavior[1]. Because Microsoft Excel is a very
popular software, available both for Microsoft Windows and Mac OS, analyses created in Excel exhibit
relatively high portability, since Excel documents can simply be emailed or otherwise transferred for
others to view and adjust. Unfortunately, free alternatives to Excel such as LibreOffice Calc do not
support all the same features and depending on what Excel functionality is used for an analysis,
analyses may not run in LibreOffice Calc or other free alternatives.

STAN[2], a software developed at the Vienna University of Technology, has been written for the
specific purpose of performing material flow analyses. It is freeware, but the source code is unavailable
to the public. STAN is a stand-alone software for Windows.

GaBi[5], a commercial software developed by PE International, can be used to perform Life Cycle
Assessments for products or services. The assessments include material flow analyses. There is a free
30-day trial version available as well as a ‘GaBi Education’ license which is free for specific educational
purposes. GaBi only runs on Windows.

Another commercial solution for Life Cycle Assessments is Umberto NXT LCA[4], which offers
similar features to GaBi. There exists a 14-day trial version. It, too, is only available for windows.

All of these existing solutions have in common, that they need to be installed on the computer
where the analyses should be performed, edited or viewed. While Microsoft Excel is available for Mac
OS as well, the other solutions are available for Windows only.

2

1.2 Proposing a Web-Based Approach

While the existing software products offer the necessary functionality to perform MFAs, they exhibit
certain drawbacks: Most of them are only available for Windows and they all act as stand-alone
applications to be installed on a client computer. All participants in a research project, as well as
people interested only in the results, need to own the software and install it on their machines. In this
project, the attempt is made to use a different approach and provide the functionality necessary to
perform analyses as a web application. However, instead of providing a monolithic tool that clones the
features of existing stand-alone applications, a modular, more flexible approach is chosen: The web
application wraps around a core which only provides functionality to run analyses. The formulation
of analyses in CSV format is left to the user. The core of the web application is portable and can be
used even without the web application, making it possible to perform batch analyses or to incorporate
the simulation code into other applications.

As the analyses are available through a web application, researchers can simply send the link to
an analysis to a colleague or other people who are interested in viewing and browsing the results of an
analysis. It is also easy to allow others to create new analyses through a minimal user management
system.

As a basis for choosing an appropriate language and framework for the development of the web
application, the following considerations have been made: A common language should be used, and
Python offers itself as a typical beginners programming language. It may be the case that a functional
language would be equally, or even better suited to an analytic task such as the MFA, but knowledge
of functional programming languages is limited among non-experts. The language used for developing
the application should also offer libraries for visualization and data base access and there exist many
such libraries for python.

1.3 Report Outline

The following sections are organized as follows: In section 2, the domain specific language used to for-
mulate analyses is presented. Section 3 contains a detailed description of the software implementation
and section 4 contains a reflection on the limitations and possible future development of the solution.
A conclusion is given in section 5.

2 pymfa Analysis DSL

The stand-alone applications mentioned in section 1.1 (except for Excel) provide an interface that
allow users to create material flow systems using graphical tools. It is possible to implement such an
analysis designer for the web in Javascript, but such an implementation would exceed the scope of this
project. For this reason, it has been decided to design a simple domain-specific language which uses the
CSV format for serialization. It is intended to be used by researchers who do not posses programming
knowledge. Section 2.1 specifies the DSL and in section 2.2, the advantages and disadvantages of the
DSL are discussed. Table 1 in the Appendix shows an example analysis as it could be represented in
a spreadsheet calculator.

2.1 Source File Structure

The first row of the source should define the row headers and time indices. Subsequent rows define
links in the system, one link per row. Nodes are never defined explicitly; they are created implicitly
the first time they are mentioned by a link definition. The same is true for stocks: they do not need
to be specified and are created implicitly wherever not all material is forwarded from a given node.
Links should be in order of their location in the system, meaning that links that occur later in the
material flow should come later in the input file. More specifically, any link that transfers materials
into a specific node must come before any link that transfers material out from that node.

Every link is involved with two nodes, a source node and a target node. There are currently five
types of links:

3

• Inflow: This kind of link does not specify any source information, which is why cells 2-4 remain
empty. Inflow links are used to provide the system with raw materials. Hence, the value stored
for each time index represents a specific amount of material with a particular unit.

• Rate: A rate link simply takes the amount of material present at the source node for the given
fraction and multiplies it with the transfer coefficient provided as data for each time index,
forwarding the resulting amount of material to the target node. This means, that the sum of
transfer coefficients of links leaving a given node for a single material should be 1 if all material
should be forwarded from the node. If the sum is smaller than 1, a stock is created. If the sum
is greater than 1, a negative stock is created, which probably represents an error in the input
data.

• Fraction: Fraction links behave exactly like rate links, but they require different source and
destination materials. These links are used to split a fraction from a source node into multiple
fractions leaving the node. An example could be that mixed materials from recycling may be
split into different fractions such as plastic and different metals.

• Conversion: Conversion links also behave similarly to rate links, but they do not produce any
stock because the factors provided as data are simply applied to convert units. This makes it
possible to for example convert ‘pieces’ to ‘Kg’.

• Delay: a delay link forwards the materials according to a Weibull Distribution over time. This
means that materials which flow into a node in a particular year are distributed over several
years when leaving the node. The value stored in each time index represents the alpha and beta
parameters of the Weibull distribution.

Rate, fraction and delay links do not need to specify target units because they should be equal to
the corresponding source units. Likewise, rate and delay links do not need to specify target materials
either, because they should be equal to the source materials as well. All links may specify free text in
the description column.

2.2 Reflection

Using the CSV format to formulate analyses has the great advantage that it is possible to create and
view analyses in Microsoft Excel or any other spreadsheet calculator application, such as LibreOffice
Calc or even online in a Google Drive Spreadsheet. Analyses could also be created programmatically
from other sources, such as databases. Drawbacks include the fact that CSV is hard to read in plain
text and that there exist different CSV dialects. Different formats, such as XML and JSON have been
considered, but none of them can easily be created without having specific programming knowledge.

The DSL attempts to require minimal information. Because only the links in a system need to be
specified, the cognitive load on the person creating an analysis remains low. Nodes and stocks do not
need to be specified separately, neither is it necessary to connect the nodes and links in a particular
way. One particular drawback of the DSL is that there is only one row available for all information
on a given link. For the delay links, this means that for example alpha and beta parameters for the
Weibull distribution have to be specified in a single cell, separated by the ‘|’ character. Should the DSL
be extended with even more complex link types, the definition of such links may become increasingly
cumbersome.

In general, CSV is easy to work with for both developers and users who do not posses programming
knowledge. Should a graphical editor be developed for pymfa, it would both be possible to keep the
DSL and create source files programmatically or to discard the DSL and work with a more structured
format such as JSON or XML.

4

3 Implementation

In this section, the different components of pymfa are presented. The core component needed to
perform analyses is written in pure Python and depends only on the SciPy library1. A script is
provided for running ad-hoc analyses without using the server, and the core components can be
used as a library as well. The web server utilizes the light-weight CherryPy web framework2 and
makes use of Jinja23 for templating. For reading and writing CSV and JSON files, Python standard
library components are used. The client-side Javascript implementation depends only on the d3.js
visualization library4.

3.1 Core

The core of the implementation contains the necessary code to construct and run analyses. It is defined
in lib/core.py and contains the following classes:

• System(object): A container class which stores a list of timeIndices, a dictionary of nodes
(using node names as keys) and a list of links of a simulation system. Once these properties
are set, one can call run() on the system to start the simulation.

• Node(object): The base class for all nodes. Every node has a name, a dictionary of fractions,
a reference to the systems timeIndices, and a type. This class provides a method sumStock,
which, depending on the type of the node and depending on the links connected the node,
calculates the stock for each fraction of the node. This function is called only once at the end
of the simulation. Node also provides a function data(), which returns the node properties in a
dictionary for further use. The return value of data() should never be modified, as it contains
references to actual node properties and does not constitute a deep copy of said properties.

• Inflow(Node): A special kind of node which can be initialized with existing values. It is used
to supply the system with material.

• Link(Object): The base class for all links. A link has numerous properties which correspond
to the cells of a single row in an analysis input file: It stores the optional free-text description
provided by the user, references to the src (source) and dst (destination) nodes and it stores
the source and destination materials and units as srcMaterial, srcUnit, dstMaterial and
dstUnit. The amounts of material transferred are stored in an ordered dictionary values, using
time indices as keys. Each node also holds a copy of the amount of material present at the
source in an ordered dictionary srcValues. Furthermore, each link has a type and a reference
to the system’s timeIndices. Similarly to the base class for nodes, the link class also provides
a function data(), which returns the link properties in a dictionary. There is also a helper
method initDst(), which is called for each link at the beginning of the simulation, and which
creates the necessary fraction containers inside the target node of each link. This is necessary
because node definitions are implicit, and the user does not need to specify which fractions a
node contains, as this is handled by initDst(). Finally, the base class for links specifies two
unimplemented methods, which may be implemented by its subclasses: propagate() implements
how the material is forwarded by this link and calculateStock() is a function similar to a node’s
sumStock() in purpose and use.

• Rate(Link): A kind of Link which simply forwards a given fraction of material from the source
node to the destination node. Besides the parent class arguments it accepts an additional
argument rates, which contains an ordered dictionary of time indices to transfer rates. When
propagating values for a given time index, this kind of links simply takes the amount of material

1The SciPy library is part of the SciPy library stack for scientific computing in Python: http://www.scipy.org/

scipylib/index.html
2http://www.cherrypy.org/
3http://jinja.pocoo.org/docs/
4http://d3js.org/

5

http://www.scipy.org/scipylib/index.html
http://www.scipy.org/scipylib/index.html
http://www.cherrypy.org/
http://jinja.pocoo.org/docs/
http://d3js.org/

available at the source and multiplies it by the given rate for that time index, storing the result at
the target node. It implements the propagate() and calculateStock() functions accordingly
and extends data() to include the rates property.

• Conversion(Rate): A special kind of Rate which only differs in its type property and in that
it does not create any stock, because conversion links are used to convert materials and units,
and not forward actual material.

• Fraction(Rate): Another subclass of Rate which exhibits exactly the same behavior and only
differs in its type property.

• Weibull(Link): A kind of Link which, similarly to Rate, takes an additional argument parameters,
which should contain a dictionary of time indices to Weibull (alpha, beta) parameter tuples. It
overrides the propagate() method so that materials are forwarded with a delay. The amount of
material forwarded for each time index consists of fractions of materials from several past time
indices according to a Weibull distribution. The data() function is extended so that it includes
the Weibull parameter dictionary.

The core only depends on SciPy for handling Weibull distributions and it is feasible to use the core
implementation as a library for other ventures. Through its object-oriented design, it allows for the
creation of new kinds of nodes and links. For example, one could implement a Sink node, which
discards incoming materials with just a few lines. Another plausible addition would be the creating
of new delay links, which use a different algorithm to determine the delay with which materials are
forwarded.

3.2 Importer

The file lib/importer.py defines a class CSVImporter(object) which is responsible for reading and
parsing CSV analysis source files and constructing a System instance via its load() method. The
importer uses Python’s CSV.Sniffer implementation to attempt to determine the CSV dialect of
the source file, which means that it is able to understand a variety of different quoting and delimiter
characters. The importer performs many sanity checks against the values contained in the CSV source
file and when errors occur, it throws a CSVParserException including the row and column where the
specified error occurred. This allows users to debug their source files more easily.

Like it has been mentioned earlier, analyses are defined through their links. Nodes are not specified
by the user and are created implicitly whenever a link defines a particular source or target node for
the first time.

3.3 Exporters

The current implementation provides two exporters for serializing analyses, contained in lib/exporter.py.
The CSVExporter stores the results of an analysis in CSV format, while the JSONExporter stores the
entire state of the system as a JSON file. The JSON exporter is primarily used to transfer data from
the web application to the client, but it could be used for other purposes as well.

3.4 Web Server

The file pymfa-server.py implements a simple web server using the light-weight CherryPy web frame-
work for Python. It uses Jinja2 to render HTML templates contained in the template folder and serves
static files from the static directory. The server configuration is contained in cfg/cherrypy.ini,
which also contains the user configuration. The web server offers basic functionality that enables
users to upload, view and explore analyses as well as download analysis results. The server exposes
the following URL scheme:

• /index: Shows the list of existing analyses. Users who are logged in are able to delete their own
existing analyses from this page. The admin user can delete any analysis.

6

• /analysis/<name>: Serves HTML, CSS and Javascript code that allows users to view the
analysis with the given name. The visualizations utilized are discussed in section 3.7. If the
analysis with the given name does not exist, a different page is served, providing an upload form
for the user to create a new analysis. The upload page also provides instructions on how to
create a valid source file.

• /analysisJSON/<name>: Serves the JSON representation of the simulation system and its re-
sults. This URL is used by the visualization components as well.

• /source/<name>: Serves the original, unmodified source analysis file uploaded by the user.

• /results/<name>: Serves the results of an analysis in CSV format.

• /upload: Upload handle which is used by the upload form to submit a new source file to the
server.

• /login: Handle used by the login form to authenticate users and create a session for them. The
handle is protected by HTTP Basic Authentication, which serves as a simple login mechanism.
Note that HTTP Basic Authentication is not secure over plain HTTP. If security is a concern,
HTTPS must of course be used.

• /logout: Handle used by the logout button to invalidate user sessions. Returns a ‘401’ HTTP
status code which causes the browser to discard the HTTP Basic Authentication credentials.

The web server stores uploaded CSV analysis source files in the analyses folder, and prefixes the
original file name with the user name of the uploader, followed by a ‘§’. This way, the ownership of
an analysis is stored as part of the file name, avoiding the need for storing additional state, separately
from the analysis sources. Analysis results are not persisted, and if a user downloads or views an
analysis, the results are calculated from the source, instead. However, a simple caching mechanism is
employed: When an analysis is viewed for the first time, the System instance is stored by the server,
so that subsequent views do not require the analysis to be re-run.

There are four Jinja2 templates used by the server. template/main.html is always rendered, as
contains the necessary <script> elements as well as the navigation bar at the top. The other templates,
analysis.html, existing.html and new.html are rendered nested inside the main template.

3.5 Command Line Script

A small script is provided for performing ad-hoc analyses without using the server or any of its
components: pymfa-cli.py can be run from the command line and takes two arguments: The first
argument should point to a CSV source analysis file and the second argument specifies the desired
output file location. Which exporter is used to write the output is automatically determined from the
suffix of the second argument, either ‘.csv’ or ‘.json’.

The command line script only depends on the files contained in lib and their dependencies, which
means that this small subset of files can be used to run analyses in a stand-alone environment, for
example for the purpose of performing batch analyses or periodical analyses governed by a scheduler
such as cron.

3.6 Testing and Code Base

A unit test suite is contained in the test folder, with test data contained in test/testdata. The
tests ensure the correct behavior of the CSVImporter. For this purpose, 9 tests are performed against
invalid source analysis files, checking whether the importer throws a parser exception containing the
correct error message. Another 4 tests check for the correct parsing of 6 different CSV dialects and
different file encodings. The source analysis files for these checks implement all possible features (such
as multiple inflows or conversions and delays). The script pymfa-runtests.py can be used to run the
tests.

7

To give a rough impression of the size of the project and its sub-components, here are the lines of
code (not counting empty lines and comment lines): The core implementation for performing analyses
has only 148 lines of code and the command line script adds another 35 lines. The importer has 149
lines and the exporter has 80 lines. The Javascript visualization is by far the largest code component,
comprising 580 lines of code with 36 lines of helper code for the navigational components of the web
site. There exist an additional 356 lines of HTML template code and 178 lines of CSS. The test suite
has 72 lines and there exist 20 test files of varying length.

3.7 Visualization

The pymfa web application allows users to view analyses online. On the analysis page, a Sankey chart
is drawn to give an overview on the nodes and links of the system. The material flows during each time
index are summed up and the Sankey chart hence represents the total flows of materials over all time
indices. The user can now click on a link or node in the Sankey chart to drill-down and reveal more
detailed information in form of a bar chart. For nodes, the amounts of different materials flowing into
the node are visualized, together with the stock of each material. For links, the amounts of material
transferred are drawn.

Figure 1 shows an extract of the analysis page for a particular analysis. In this example, the user
has clicked on the ‘emissions’ link. The bar chart shows two columns for each time index: the left
column represents the inflow of different materials, while the right column represents stock. The colors
used to differentiate materials are always the same, no matter which node or link is visualized. This
makes it easier for viewers to associate a color with a given material across visualizations.

The user can hover over nodes and links in the Sankey chart and over time indices and bars in
the bar chart to reveal more information. In Figure 1, the user is currently hovering over a stock
column at time index 2015. The tooltip shows the exact amounts of different materials as well as the
total for the given time index. Hovering over a time index label at the bottom reveals information on
both inflows and stock, making it possible to view values even where the columns are too small to be
targeted, as is the case for the first few years in this example.

Figure 1: Viewing analysis results using the web application.

8

4 Limitations and Future Work

The biggest limitation of the current implementation is that it has limited support for circular material
flows. The core library is able to process such flows and produces results but the Sankey chart
visualization does not support circular topologies properly. Viewing a system with circular flows is
difficult for this reason. It would also require a real-world scenario and appropriate data to test the
implementation more thoroughly. Furthermore, the Sankey chart visualization is not drawn for every
year, but only once over all time frames.

The core implementation of pymfa is intended to be both minimal and extensible. All code
concerned with (de-)serialization, visualization and other tasks is separate. This should allow for
future extension of the core analysis library and the corresponding DSL. For example, it is easily
possible to add new types of links or nodes in order to for example model more complex delay and
stock mechanisms.

One particular idea for future extension would be the implementation of an importer that grabs
data from Google Drive Spreadsheets to perform analyses and visualize the data. This would offer
a work-flow which does not require the user to formulate analyses in a client-side software such as
Microsoft Excel as it would occur completely online. The user could simply modify the data on a
spreadsheet and the web application would automatically use the most recent data from the online
source.

Results of analyses in pymfa are not currently stored anywhere except for a temporary cache.
There exist many easy to use data base libraries for Python, so it is very feasible to add database
support to pymfa in the future.

5 Conclusion

This project has investigated the feasibility and level of difficulty for performing material flow analyses
programmatically in Python. The result is a toolkit which can be used to perform one-off analyses from
the command line or which can run a server providing an easy-to-use web application for individuals
to perform analyses. No client-side software is required, except for some means of creating CSV files.
The source file for an analysis can be created in a spreadsheet calculator, a software which is commonly
installed on most machines and is even available online.

In conclusion, it can be said that material flow analyses are conceptually simple. The core imple-
mentation has barely 150 lines of code. Simply importing and exporting data from the core system
needs just as much code. Furthermore, the visualization using Sankey diagrams and bar charts rep-
resents the largest effort. Compared to the effort required to construct MFAs in Microsoft Excel,
the simple core implementation is probably easier to use, however it does require some programming
knowledge in Python. The web application on the other hand offers non-programmers the opportunity
to use the implementation.

6 Appendix

Table 1 contains a table representation of a source analysis formulated using the pymfa DSL. Table 2
contains the results of the same analysis, represented as a table. The first part contains information
on how much material has flown along all the links in the system. This is followed by a rundown of
the inflows into the different fractions of each node, followed by an aggregation of all fractions with
the same unit for each node, followed by the stocks of each node.

9

Table 1: An example CSV analysis source file represented as a table.

TimeIndex Source Node Source Material Source Unit Target Node Target Material Target Unit Description 1989 1990 1991 1992 1993 1994

Inflow DirectSale Laptops Pieces Laptops sold in stores 90000 95000 125000 150000 155000 140000

Inflow OnlineSale Laptops Pieces Laptops sold via online store 30000 60000 100000 120000 170000 200000

Rate DirectSale Laptops Pieces Business Use Devices being sold to business cus-
tomers

0.4 0.35 0.4 0.4 0.35 0.4

Rate DirectSale Laptops Pieces Private Use Devices being sold to private cus-
tomers

0.5 0.5 0.5 0.5 0.5 0.5

Rate DirectSale Laptops Pieces Public Use Devices being sold to public insti-
tutions

0.1 0.15 0.1 0.1 0.15 0.1

Rate OnlineSale Laptops Pieces Business Use Devices being sold to business cus-
tomers

0.5 0.5 0.5 0.5 0.5 0.5

Rate OnlineSale Laptops Pieces Private Use Devices being sold to private cus-
tomers

0.4 0.35 0.4 0.4 0.35 0.4

Rate OnlineSale Laptops Pieces Public Use Devices being sold to public insti-
tutions

0.1 0.15 0.1 0.1 0.15 0.1

Delay Business Use Laptops Pieces Business Decom-
missioning

Delayed decomissioning, because
devices remain in use for several
years

1|3 1|3 1|3 1|3 1|3 1|3

Delay Private Use Laptops Pieces Private Decom-
missioning

Delayed decomissioning, because
devices remain in use for several
years

1|3 1|3 1|3 1|3 1|3 1|3

Delay Public Use Laptops Pieces Public Decom-
missioning

Delayed decomissioning, because
devices remain in use for several
years

1|3 1|3 1|3 1|3 1|3 1|3

Rate Business Decom-
missioning

Laptops Pieces Decommissioning Combine all the devices from dif-
ferent user groups into a combined
pool of decomissioned devices

1 1 1 1 1 1

Rate Private Decom-
missioning

Laptops Pieces Decommissioning Combine all the devices from dif-
ferent user groups into a combined
pool of decomissioned devices

1 1 1 1 1 1

Rate Public Decom-
missioning

Laptops Pieces Decommissioning Combine all the devices from dif-
ferent user groups into a combined
pool of decomissioned devices

1 1 1 1 1 1

Conversion Decommissioning Laptops Pieces Preprocessing Mixed Materials Kg Convert number of laptops to mass 2.9 2.8 2.8 2.6 2.7 2.6

Fraction Preprocessing Mixed Materials Kg Plastic Process-
ing

Plastic Split the mixed materials into dif-
ferent fractions

0.8 0.8 0.8 0.8 0.8 0.8

Fraction Preprocessing Mixed Materials Kg Meta Processing Metal Split the mixed materials into dif-
ferent fractions

0.15 0.15 0.15 0.1 0.1 0.1

Fraction Preprocessing Mixed Materials Kg RecyclingParts Parts Split the mixed materials into dif-
ferent fractions

0.05 0.05 0.05 0.1 0.1 0.1

Rate Plastic Process-
ing

Plastic Kg Incineration Plastic being incinerated 0.95 0.95 0.95 0.95 0.95 0.95

Rate Plastic Process-
ing

Plastic Kg Dumping Plastic being dumped 0.05 0.05 0.05 0.05 0.05 0.05

Rate Meta Processing Metal Kg Incineration Metal being incinerated 0.3 0.3 0.3 0.2 0.2 0.2

Rate Meta Processing Metal Kg Dumping Metal being dumped 0.7 0.7 0.7 0.8 0.8 0.8

10

Table 2: An example CSV analysis results file represented as a table.

Type Source Node Source Material Source
Unit

Destination
Node

Destination
Material

Destination
Unit

Description 1989.00 1990.00 1991.00 1992.00 1993.00 1994.00

rate directsale laptops units business use laptops units Devices being sold to busi-
ness customers

36000.00 33250.00 50000.00 60000.00 54250.00 56000.00

rate directsale laptops units private use laptops units Devices being sold to pri-
vate customers

45000.00 47500.00 62500.00 75000.00 77500.00 70000.00

rate directsale laptops units public use laptops units Devices being sold to pub-
lic institutions

9000.00 14250.00 12500.00 15000.00 23250.00 14000.00

rate onlinesale laptops units business use laptops units Devices being sold to busi-
ness customers

15000.00 30000.00 50000.00 60000.00 85000.00 100000.00

rate onlinesale laptops units private use laptops units Devices being sold to pri-
vate customers

12000.00 21000.00 40000.00 48000.00 59500.00 80000.00

rate onlinesale laptops units public use laptops units Devices being sold to pub-
lic institutions

3000.00 9000.00 10000.00 12000.00 25500.00 20000.00

weibull business use laptops units business de-
comissioning

laptops units Delayed decomissioning,
because devices remain in
use for several years

12181.03 23834.96 40962.87 58012.43 74826.72 90875.32

weibull private use laptops units private decomis-
sioning

laptops units Delayed decomissioning,
because devices remain in
use for several years

13614.09 26115.72 43194.22 60327.79 75948.35 90245.94

weibull public use laptops units public decomis-
sioning

laptops units Delayed decomissioning,
because devices remain in
use for several years

2866.13 7606.79 10824.49 14204.86 21821.86 23756.74

rate business de-
comissioning

laptops units decomissioning laptops units Combine all the devices
from different user groups
into a combined pool of de-
comissioned devices

12181.03 23834.96 40962.87 58012.43 74826.72 90875.32

rate private decomis-
sioning

laptops units decomissioning laptops units Combine all the devices
from different user groups
into a combined pool of de-
comissioned devices

13614.09 26115.72 43194.22 60327.79 75948.35 90245.94

rate public decomis-
sioning

laptops units decomissioning laptops units Combine all the devices
from different user groups
into a combined pool of de-
comissioned devices

2866.13 7606.79 10824.49 14204.86 21821.86 23756.74

conversion decomissioning laptops units preprocessing mixed materials kg Convert number of laptops
to mass

83117.63 161160.91 265948.42 344617.24 466011.72 532682.77

fraction preprocessing mixed materials kg plasticprocessing plastic kg Split the mixed materials
into different fractions

66494.11 128928.73 212758.73 275693.79 372809.38 426146.22

fraction preprocessing mixed materials kg metalprocessing metal kg Split the mixed materials
into different fractions

12467.64 24174.14 39892.26 34461.72 46601.17 53268.28

fraction preprocessing mixed materials kg recyclingparts parts kg Split the mixed materials
into different fractions

4155.88 8058.05 13297.42 34461.72 46601.17 53268.28

rate plasticprocessing plastic kg incineration plastic kg Plastic being incinerated 63169.40 122482.29 202120.80 261909.10 354168.91 404838.91

rate plasticprocessing plastic kg dumping plastic kg Plastic being dumped 3324.71 6446.44 10637.94 13784.69 18640.47 21307.31

rate metalprocessing metal kg incineration metal kg Metal being incinerated 3740.29 7252.24 11967.68 6892.34 9320.23 10653.66

rate metalprocessing metal kg dumping metal kg Metal being dumped 8727.35 16921.90 27924.58 27569.38 37280.94 42614.62

Type Node Name Material Unit 1989.00 1990.00 1991.00 1992.00 1993.00 1994.00

fraction directsale laptops units 90000.00 95000.00 125000.00 150000.00 155000.00 140000.00

fraction onlinesale laptops units 30000.00 60000.00 100000.00 120000.00 170000.00 200000.00

fraction business use laptops units 51000.00 63250.00 100000.00 120000.00 139250.00 156000.00

11

fraction private use laptops units 57000.00 68500.00 102500.00 123000.00 137000.00 150000.00

fraction public use laptops units 12000.00 23250.00 22500.00 27000.00 48750.00 34000.00

fraction business de-
comissioning

laptops units 12181.03 23834.96 40962.87 58012.43 74826.72 90875.32

fraction private decomis-
sioning

laptops units 13614.09 26115.72 43194.22 60327.79 75948.35 90245.94

fraction public decomis-
sioning

laptops units 2866.13 7606.79 10824.49 14204.86 21821.86 23756.74

fraction decomissioning laptops units 28661.25 57557.47 94981.58 132545.09 172596.93 204877.99

fraction preprocessing mixed materials kg 83117.63 161160.91 265948.42 344617.24 466011.72 532682.77

fraction plasticprocessing plastic kg 66494.11 128928.73 212758.73 275693.79 372809.38 426146.22

fraction metalprocessing metal kg 12467.64 24174.14 39892.26 34461.72 46601.17 53268.28

fraction recyclingparts parts kg 4155.88 8058.05 13297.42 34461.72 46601.17 53268.28

fraction incineration plastic kg 63169.40 122482.29 202120.80 261909.10 354168.91 404838.91

fraction incineration metal kg 3740.29 7252.24 11967.68 6892.34 9320.23 10653.66

fraction dumping plastic kg 3324.71 6446.44 10637.94 13784.69 18640.47 21307.31

fraction dumping metal kg 8727.35 16921.90 27924.58 27569.38 37280.94 42614.62

fractions w/
same unit

directsale laptops units 90000.00 95000.00 125000.00 150000.00 155000.00 140000.00

fractions w/
same unit

onlinesale laptops units 30000.00 60000.00 100000.00 120000.00 170000.00 200000.00

fractions w/
same unit

business use laptops units 51000.00 63250.00 100000.00 120000.00 139250.00 156000.00

fractions w/
same unit

private use laptops units 57000.00 68500.00 102500.00 123000.00 137000.00 150000.00

fractions w/
same unit

public use laptops units 12000.00 23250.00 22500.00 27000.00 48750.00 34000.00

fractions w/
same unit

business de-
comissioning

laptops units 12181.03 23834.96 40962.87 58012.43 74826.72 90875.32

fractions w/
same unit

private decomis-
sioning

laptops units 13614.09 26115.72 43194.22 60327.79 75948.35 90245.94

fractions w/
same unit

public decomis-
sioning

laptops units 2866.13 7606.79 10824.49 14204.86 21821.86 23756.74

fractions w/
same unit

decomissioning laptops units 28661.25 57557.47 94981.58 132545.09 172596.93 204877.99

fractions w/
same unit

preprocessing mixed materials kg 83117.63 161160.91 265948.42 344617.24 466011.72 532682.77

fractions w/
same unit

plasticprocessing plastic kg 66494.11 128928.73 212758.73 275693.79 372809.38 426146.22

fractions w/
same unit

metalprocessing metal kg 12467.64 24174.14 39892.26 34461.72 46601.17 53268.28

fractions w/
same unit

recyclingparts parts kg 4155.88 8058.05 13297.42 34461.72 46601.17 53268.28

fractions w/
same unit

incineration plastic kg 66909.69 129734.54 214088.47 268801.45 363489.14 415492.56

fractions w/
same unit

dumping plastic kg 12052.06 23368.33 38562.52 41354.07 55921.41 63921.93

stock directsale laptops units 0.00 0.00 0.00 0.00 0.00 0.00

stock onlinesale laptops units 0.00 0.00 0.00 0.00 0.00 0.00

stock business use laptops units 38818.97 78234.01 137271.14 199258.70 263681.98 328806.67

stock private use laptops units 43385.91 85770.18 145075.96 207748.17 268799.82 328553.88

12

stock public use laptops units 9133.87 24777.09 36452.60 49247.74 76175.88 86419.14

stock business de-
comissioning

laptops units 0.00 0.00 0.00 0.00 0.00 0.00

stock private decomis-
sioning

laptops units 0.00 0.00 0.00 0.00 0.00 0.00

stock public decomis-
sioning

laptops units 0.00 0.00 0.00 0.00 0.00 0.00

stock preprocessing mixed materials kg 0.00 0.00 0.00 0.00 0.00 0.00

stock plasticprocessing plastic kg 0.00 0.00 0.00 0.00 0.00 0.00

stock metalprocessing metal kg 0.00 0.00 0.00 0.00 0.00 0.00

stock recyclingparts parts kg 4155.88 12213.93 25511.35 59973.07 106574.24 159842.52

stock incineration plastic kg 63169.40 185651.69 387772.49 649681.59 1003850.50 1408689.41

stock incineration metal kg 3740.29 10992.53 22960.21 29852.56 39172.79 49826.45

stock dumping plastic kg 3324.71 9771.14 20409.08 34193.77 52834.24 74141.55

stock dumping metal kg 8727.35 25649.25 53573.83 81143.21 118424.15 161038.77

13

References

[1] P. H. Brunner, H. Rechberger: Practical Handbook of Material Flow Analysis (Google eBook);
CRC Press, ISBN: 978-1-56670-604-9 (2003)

[2] O. Cencic, H. Rechberger: Material Flow Analysis with Software STAN; Journal of Environmental
Engineering and Management (2008)

[3] F. Hinterberger, S. Giljum, M. Hammer: Material Flow Accounting and Analysis (MFA): A Valu-
able Tool for Analyses of Society-Nature Interrelationships; Sustainable Europe Research Institute
(SERI), Background Paper Nr. 2, ISSN: 1729-3545 (2003)

[4] ifu Hamburg GmbH: Umberto NXT LCA; http://www.umberto.de/en/umberto-nxt-lca/ retrieved
20131227

[5] PE INTERNATIONAL AG: GaBi; http://www.gabi-software.com/solutions/life-cycle-
assessment/ retrieved 20131227

14

	Introduction
	Related Work
	Proposing a Web-Based Approach
	Report Outline

	pymfa Analysis DSL
	Source File Structure
	Reflection

	Implementation
	Core
	Importer
	Exporters
	Web Server
	Command Line Script
	Testing and Code Base
	Visualization

	Limitations and Future Work
	Conclusion
	Appendix

