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Abstract: 

System Dynamics and Agent-based Simulation are two approaches that use computer 
simulation for investigating non-linear social and socio-economic systems with a focus 
on the understanding and qualitative prediction of a system’s behavior. Although the 
two schools have a broad overlap in research topics they have been relatively unnoticed 
by each other so far. This paper contributes to the cross-study of System Dynamics and 
Agent-Based Simulation. It uncovers and contrasts the primary conceptual 
predispositions underlying the two approaches. Moreover, ideas about how the 
approaches could be integrated are presented. 
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Introduction 

Computer simulation itself is still a relative young field; in the social sciences 
however, the use of computer simulation can be considered a well-established domain 
of research (Conte et al., 1998). Two main purposes of computer simulation are 
foresight and insight. According to Troitzsch (1997) prediction (foresight) can again be 
divided into qualitative prediction – prediction of behavior modes – and quantitative 
prediction – prediction of the state the system reaches at a specific point in time. There 
are predominately two simulation schools that use computer simulation for investigating 
non-linear social and socio-economic systems with a focus on the more quantitative 
goals – the understanding and qualitative prediction of a system’s behavior; they are 
System Dynamics and Agent-based Simulation. Although the two schools have a broad 
overlap in research topics they have been relatively unnoticed by each other so far 
(Phelan 1999), a cross-study of the two disciplines is overdue (Scholl, 2001). Meadows 
and Robinson (1985, p. 17) explain what new insights such cross-studying can bring 
about: “every modeling discipline depends on unique underlying assumptions; that is, 
each modeling method is itself based on a model of how modeling should be done.” The 
authors continue that these assumptions are constantly used but rarely examined by the 



 

modeling community, which is why they are called paradigms. “Different modeling 
paradigms cause their practitioners to define different problems, follow different 
procedures, and use different criteria to evaluate the results” (Meadows and Robinson, 
1985, p. 20).  

A cross-study of System Dynamics and Agent-based Simulation gives both 
communities the opportunity to learn about each other’s modeling paradigm, question 
own assumptions, see problems from a different viewpoint and probably identify 
potentials of integration that can overcome some of the pitfalls a single approach might 
have in certain areas.  

The main purpose of this paper is to uncover and compare the primary conceptual 
predispositions underlying System Dynamics and the Agent-based Simulation approach. 
In the first section a literature review separately examines the two fields. They are then 
compared in the second section. The paper concludes with some ideas about conceptual 
integration potentials. 

 
 

System Dynamics: modeling the forest 
System Dynamics is an approach that applies concepts from engineering 

servomechanism theory to social sciences (Richardson, 1991). It was developed in the 
1950s at the MIT, primarily by Jay W. Forrester who is himself an electrical engineer 
working in the field of servomechanism. In his 1958 article “Industrial Dynamics, a 
Major Breakthrough for Decision Makers” Forrester outlines the new approach – at that 
time called Industrial Dynamics – using a practical example: he models a four-tier 
downstream supply chain and analyses the effects of capacity constraints, different 
inventory and order handling policies, as well as advertising and supply chain size on 
demand amplification – a phenomenon that today is called the Bullwhip- or Forrester-
Effect.  

Forrester defines the new field as: “Industrial Dynamics is the study of information-
feedback characteristics of industrial activity to show how organizational structure, 
amplification (in policies), and time delays (in decisions and actions) interact to 
influence the success of the enterprise” (Forrester, 1961, p. 13). Since that time the 
method has been applied to a wide variety of social systems, the probably most popular 
being described in the book “Limits to growth” (Meadows et al., 1972). 

There are three main reasons why the identification of the concepts and assumptions 
underlying System Dynamics is rather straightforward. Firstly, the approach was mainly 
developed by one person, J.W. Forrester. Secondly, in his early books, “Industrial 
Dynamics” (Forrester, 1961) and “Principles of Systems” (Forrester, 1968) he gives a 
detailed description of both, the theoretical concepts and definitions, as well as the 
practical application of the approach; the conceptual fundament is thus set in the very 
beginnings. And finally, succeeding work – most of which has been pragmatic, meaning 
application-oriented (Meadows and Robinson, 1985) – builds on Forrester’s work 
without changing the general concepts and definitions. The System Dynamics 
community therefore holds a relative homogenous view about the fundamentals 
underlying the approach. A comparison of Meadows and Robinson (1985) and Saleh 
(2000) who both aim at identifying the basic concepts of the System Dynamics 
approach supports this statement. The two works basically differ in the hierarchical 
organization of the individual concepts, not in the concepts themselves.  



 

In System Dynamics real-world processes are represented in terms of stocks (for 
example stocks of material or knowledge), flows between these stocks, and information 
that determines the value of the flows (Forrester, 1968). The primary assumption is that 
the internal causal structure of a system determines its dynamic tendencies (Meadows 
and Robinson, 1985); it is not single decisions or external disturbances that are 
responsible for a system’s behavior, but the structure within which decisions are made – 
the policies (Richardson, 1991). Abstracting from single events and concentrating on 
policies instead, System Dynamics takes an aggregate view (Forrester, 1961). The 
reasons for using continuous simulation can be found in this aggregate viewpoint as 
well as in the focus on structure in general (Forrester, 1961; Richardson, 1991). The 
mathematical description of a continuous simulation model is a system of integral 
equations (Forrester, 1968).  

The overall structure of a system is organized hierarchically as depicted in Figure 1 
(Forrester, 1968; Maier, 1994). Within a closed boundary – closed meaning that all 
elements relevant for generating a system’s characteristic pattern of behavior have to be 
modeled endogenously – a system is composed of interacting feedback loops. It is the 
concept of feedback, where output is again used as an input, that makes a system 
capable of generating behavior endogenously. Every feedback loop consists of two 
fundamental types of variables: Levels, representing the state of the system and rates, 
incorporating the elements of a decision process and by that resulting in action that 
changes the state of the system. Two fundamental types of feedback loops exist: 
negative loops in general showing goal-seeking behavior and positive feedback loops 
having the tendency to reinforce their input leading to exponential growth or decay. 

 

 
Figure 1: Metastructure in System Dynamics 

The basic structure of a decision process, modeled as an information-feedback loop, 
is depicted in Figure 2. Sterman (2000) distinguishes between the physical and 
institutional structure of a system and the decision rules of the participating agents, 
between decision making and action taking. The physical and institutional structure 
contains the measurement and reporting processes and produces the information cues 
that are then passed on to the decision maker. The decision maker interprets the 
available information cues by applying his/her decision rules (the policies). The output 
of a decision process, the decision, results in action which then alters the state of the 
system leading to a change of the information cues.  
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Figure 2: Basic structure of a decision process (Sterman, 2000) 

Only rarely information used for decision making is complete, unbiased and actual. 
The behavior of an information-feedback system is highly sensitive to the kind of 
information used to make decisions and the accuracy of that information (Saleh, 2000, 
p. 10). The addition of a time delay to a negative feedback loop, for example, can 
change the behavior of that model from goal-seeking to oscillating. Delay structures can 
thus be considered another essential concept of System Dynamics (Forrester, 1961). 

 
 

Agent-based Simulation: modeling the trees 
The second paradigm to be analyzed is Agent-based Simulation. Jennings et al. 

(1998) trace the concept of software agents back to three different areas of research: 
(i) artificial intelligence, (ii) object-oriented programming and concurrent object-based 
systems and (iii) human-computer interface design. The agent concept itself cuts across 
many different disciplines, but the use of agents for designing simulation models is 
mainly applied in the fields of complexity science (Phelan, 2001) and game theory 
(Axelrod, 1997).  

In Agent-based Simulation universally accepted definitions lack for some key 
concepts (Jennings et al., 1998) what makes the identification of the basic concepts and 
assumptions underlying the discipline more difficult than in the case of System 
Dynamics. Even for the concept of a software agent the answer to the question, which 
properties an entity has to feature in order to deserve to be called “agent” is not clear-
cut: definitions range from a mere subroutine to a conscious entity (Rocha, 1999). As 
many of the agent-properties found in literature are developed to a greater or lesser 
extent – depending on the purpose the agent is designed for – it is probably more 
appropriate not to differentiate between agents and non-agents, but to speak of a 
continuum of agency. The more agent characteristics an entity possesses and the more 
developed those are, the higher the degree of agency it has. Table 1 gives an overview 
of agent properties that can be found in the literature (the list is not exhaustive).  
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Properties Description Literature 

Proactiveness, 
Purposefulness 

Ability to take the initiative in order to 
achieve goals 

Hayes-Roth (1995) 
Wooldridge and Jennings (1995)  
Ferber (1989)  
Klügl (2001) 
Nwana (1996) 
Jennings et al. (1998) 
Franklin and Graesser (1997) 
Maes (1995) 
Smith et al. (1994) 
Murch and Johnson (2000) 

Situatedness Agent is embedded in its environment and 
senses and acts on it 

Franklin and Graesser (1997) 
Russel and Norvig (2003) 
Hayes-Roth (1995) 
Ferber (1989) 
Klügl (2001) 
Ferber (1989) 
Goldspink (2000) 
Jennings et al. (1998) 
Maes (1995) 

Reactiveness, 
Responsiveness 

Ability to react in a timely fashion to 
changes in the environment  

Wooldridge and Jennings (1995)  
Goldspink (2000)  
Nwana (1996) 
Klügl (2001) 
Jennings et al. (1998) 
Murch and Johnson (2000) 

Autonomy Ability to control own actions and internal 
state 

Wooldridge and Jennings (1995) 
Maes (1995)  
Nwana (1996) 
Klügl (2001) 
Jennings et al. (1998) 
Murch and Johnson (2000) 

Social Ability 
Ability to interaction and communication 
with other agents, sometimes even 
awareness of other agents 

Wooldridge and Jennings (1995) 
Ferber (1989)  
Nwana (1996) 
Klügl (2001) 
Jennings et al. (1998) 
Murch and Johnson (2000) 

Anthromorphity Having human-like attributes, e.g. beliefs 
and  intentions 

Wooldridge and Jennings (1995) 
Klügl (2001) 
Murch and Johnson (2000) 

Learning Ability to increase performance over time 
based on previous experience 

Hayes-Roth (1995) 
Nwana (1996) 
Murch and Johnson (2000) 

Continuity Temporally continuous running process Hayes-Roth (1995) 
Murch and Johnson (2000) 

Mobility 
Ability to move around in the simulated 
physical space, sometimes even between 
different machines 

Nwana (1996) 
Murch and Johnson (2000) 

Specific 
Purpose Designed to accomplish well-defined tasks Smith et al. (1994) 

Maes (1995) 

Table 1: Properties of agents 

 



 

An agent-based system, is “one in which the key abstraction used is that of an agent” 
(according to the “definition” in table 1) (Jennings and Wooldridge, 1998, p. 5). The 
agents are modeled as to represent natural entities in the system under consideration, for 
example human beings, animals, or institutions (Edmonds, 2000). An agent-based 
simulation model mostly consists of more than one agent, why it is often called a Multi-
Agent System. According to Jennings et al. (1998, p. 17) Multi-Agent Systems have 
four characteristics: “ 

• each agent has incomplete information, or capabilities for solving … [a given] 
problem, thus each agent has a limited viewpoint; 

• there is no global system control; 
• data is decentralized; and 
• computation is asynchronous.” 
In such a system it is the interaction between the individual, often heterogeneous 

agents that creates the overall behavior; in other words, the macro-level system behavior 
is a result of the micro-level behavior of the agents (Schillo et al., 2000) – giving the 
agent-based simulation approach also the name bottom-up simulation (Axelrod, 1997; 
Richardson, 2003).  

The behavior of an agent is defined by its internal state, its schema which is “a 
cognitive structure that determines what action the agent takes at time t, given its 
perception of the environment” (Anderson, 1999, p. 219). An agent’s schema can 
evolve over time what allows it to adapt to its environment. From a modeling 
perspective, this adaptation can be achieved by the use of feedback and learning 
algorithms (Phelan, 2001). Often schemata are modeled as sets of simple generative 
rules. Nevertheless, complex patterns can arise from the interaction of the agents. 

 
 

A comparison of the approaches  
Table 2 extracts the major differences between System Dynamics and the Agent-

based Simulation approach from the literature section. For the identification of the 
differences it also draws upon work done by Dong-Hwan Kim and Juhn Jae-Ho (1997), 
Pourdehnad et al. (2002), and Schieritz and Größler (2003). The following section will 
be used to elaborate on these differences. 

 



 

 System Dynamics Agent-based Simulation 

Basic building block Feedback loop Agent 

Unit of analysis Structure Rules 

Level of modeling Macro Micro 

Perspective Top-down Bottom-up 

Adaptation Change of dominant structure Change of structure 

Handling of time Continuous Discrete 

Mathematical formulation Integral equations Logic 

Origin of dynamics Levels Events 

Table 2: System Dynamics versus Agent-based Simulation 

 
 

Basic building block: feedback loop versus agent 
A System Dynamics model consists of interacting feedback loops. This feedback 

structure leads to endogenously generated behavior, the kind of behavior a System 
Dynamist is mainly interested in. The feedback loop can therefore be considered the 
basic building block of a System Dynamics model (Forrester, 1968). 

In Agent-based Simulation the basic building block is the agent (Jennings et al., 
1998). A model consists of multiple agents and their environment. Often even the 
environment is modeled as one or more agents, of course featuring different properties 
than the actors. Every agent is given a set of rules according to which it interacts with 
other agents; this interaction then generates the overall system behavior.  

 
Basic unit of analysis: structure versus rules 

The behavior of a System Dynamics model is determined by its structure. The 
structure itself has to be defined before starting the simulation, it is fix. It is the structure 
in which System Dynamists try to find leverage points for changing the behavior of the 
system in a deliberate direction.  

In Agent-based Simulation the focus lies on agents’ rules. An agent’s rules determine 
its interactions with other agents what then determines the macro system behavior. 
Rules often are flexible, that is they can change in the course of the simulation. The 
policies of a System Dynamics model also represent rules of how decisions are made. 
Compared to Agent-based Simulation however, they are modeled structurally. 
 
Level of modeling: macro versus micro 

The type of simulation used in System Dynamic belongs to the group of macro 
simulation approaches. The term macro simulation can be somewhat misleading, it does 
not imply that System Dynamics can only be used for macro-economic, or more 
general, macro-social problems. System Dynamics – depending on the problem under 
consideration – can also be applied to the level of individual actors, being the micro 
level of a social system (Schillo et al., 2000). Davidsson (2000, p. 97) explains the 



 

differences of micro and macro simulation as follows: “…in macro simulations, the set 
of individuals is viewed as a structure that can be characterized by a number of 
variables, whereas in micro simulations the structure is viewed as emergent from the 
interactions between the individuals”. In System Dynamics, a system is modeled from 
an aggregate view, representing the characteristics of objects or the objects themselves 
via average properties. This is a direct result of the modeling technique used: the level 
variables are accumulations of the flows; therefore, single objects flowing through the 
system can not be identified.  

Using Davidsson’s definition Agent-based Simulation belongs to the micro 
simulation approaches, as it concentrates on modeling populations by modeling the 
behavior of the heterogeneous individuals and enable them to interact. The modeler 
does not determine the characteristics of a population in advance, but they evolve in the 
course of the simulation. By that, Agent-based Simulation establishes a link between the 
micro and the macro level of a model, whereas System Dynamics establishes a link 
between system structure and system behavior. 
 
Perspective: top-down versus bottom-up 

As explained in the last two paragraphs, aggregation is imposed by the modeler in 
System Dynamics, but occurs as a bottom-up process in Agent-based Simulation. This 
bottom-up process is often seen as the source of a phenomenon called emergence. 
According to Gilbert (1995, p. 15) “emergence occurs when interactions among objects 
at one level give rise to different type of objects at another level. More precisely, a 
phenomenon is emergent if it requires new categories to describe it that are not required 
to describe the behavior of the underlying components”.  

If a System Dynamics study is to analyze an emergent phenomenon it would capture 
this phenomenon by modeling its properties, its structure. That is, the emergent 
phenomenon itself is modeled. In an Agent-based model, however, it evolves in the 
course of the simulation. 
 
Adaptation: change of dominant structure versus change of structure  

The process of adaptation takes an important role in both approaches. According to 
Holland (1975) adaptation is the modification of structure with the goal to better 
perform in a given environment. In a System Dynamics model the structure has to be 
determined before starting the simulation; it cannot be modified in the course of the 
simulation. Therefore, System Dynamics models are not capable of adaptation in the 
sense Holland uses it. However, by defining a weaker sense of adaptation, meaning no 
change in structure, but shifts in loop dominance generated by nonlinearities (Forrester, 
1987), adaptation can be achieved by a System Dynamics model. According to 
Richardson (2000) “nonlinearities enable continuous models to adapt and change over 
time”.   

Agent-Based models on the other hand have the possibility to adapt in the strong 
sense. The change in structure can for instance be achieved by the use of evolutionary or 
genetic algorithms. A genetic algorithm makes a subsequent generation of agents evolve 
from its ancestors. This development is mainly achieved by two processes: cross-over 
and mutation (Holland, 1975). Cross-over occurs, when the genes of a new agent consist 
of a mix of its parents’ genes, mutation is the accidental change of genes. 

 



 

Handling of Time: continuous versus discrete 
System Dynamics focuses on a continuous representation of real-world systems. 

Forrester (1961) advocates a continuous point of viewpoint for several reasons. Firstly, 
he argues for a “continuous point of view” (Richardson, 1991, p. 152) in general when 
he claims that “even major executive decisions represent a rather continuous process” 
(Forrester, 1961, p. 65), especially when the focus lies on the general framework of the 
decision. Secondly, the process of aggregation leads to a more continuous overall 
behavior than the consideration of single events. Finally, Forrester argues that the 
dynamics of a continuous-flow model are easier to understand and should therefore be 
the starting point of the modeling efforts. This does not imply that discontinuities are 
not compatible with the idea of System Dynamics (Forrester, 1961) it is just that its 
focus is on the continuities in socioeconomic systems (Richardson, 1991).  

In the Agent-based Simulation literature no clear proposition is made about the 
handling of time. But, in general a discrete view is applied (Dong-Hwan und Jae-Ho, 
1997). This partly results from Holland’s (1975) definition of adaptation, as structural 
changes require some degree of discreteness. The genetic algorithm proposed by 
Holland for achieving this adaptation is inherently discrete through its two central 
concepts: cross-over and mutation. 
 
Mathematical formulation: integral equations versus logic 

The structure of a feedback loop consists of two fundamental types of variables: 
levels and rates (Forrester, 1968). Levels are the accumulations of rates of flow, which 
themselves are the output of the decision rules and represent action. The process of 
accumulation is mathematically expressed by integrating the net difference between 
inflow and outflow over time (Forrester, 1968). The state of a system at any specific 
point in time is solely described by the level variables. Levels are necessary for a 
system’s dynamics, as they “permit the inflow rates to differ … from the outflow rates” 
(Forrester, 1968, p. 86). Mathematically, a System Dynamics Model is “a system of 
coupled, non-linear first-order integral equations” (Saleh, 2000, p. 13).  

There is no universally accepted formalism for the mathematical description of 
Agent-based Simulation models. According to Inverno et al. (1997) most formalisms 
are logic-based, for example Fisher and Wooldridge (1996) suggest the use of temporal 
logic as a general framework for modeling Agent-based Systems. But, as Dong-Hwan 
und Jae-Ho (1997) state, the research methodologies in Agent-based Simulation are so 
diverse that no common modeling platform exists.  

One fundamental difference between System Dynamics and Agent-based Simulation 
can be found in the transition from one state to the next: future behavior of a System 
Dynamics model solely depends on the current state; in an Agent-based Simulation 
model, however, agents can possess a stable memory that uncouples future behavior 
from the current dynamics. Joslyn and Rocha (2000) call such agents dynamically 
incoherent. 
 
Source of dynamics: levels versus events 

A central concept of the System Dynamics approach is the concept of accumulation 
(Saleh, 2000). Accumulation is achieved by integration that “uncouple[s] inflow rates 
from outflow rates and make[s] dynamic behavior possible. A system representation 
with no accumulators can show only static, equilibrium conditions.” (Forrester 1989, 
p. 9) The system elements that represent accumulation processes are referred to as state 



 

variables or levels. They create inertia or delays and thus determine the timing of 
system behavior (Meadows, 1985). The significance of levels is emphasized by the fact 
that they are one of the two basic elements of a model (the other being flow variables 
that represent the inflow respectively the outflow rates). All sub-structures (e.g. delays, 
feedback-loops) contain levels. 

The statements found in the System Dynamics literature regarding the significance of 
the accumulation process for the dynamic behavior of systems are universally valid. 
Without accumulation (whether discrete or continuous) no dynamics can exist, as 
nothing changes. However, the Agent-based Simulation approach does not emphasize 
the process of accumulation at all. A concept applied in Agent-based Simulation that 
can be used to oppose the level concept in System Dynamics is probably the idea of 
events. Events can be considered the source of dynamics as they trigger a change in 
system behavior. A variable that crosses a threshold can for example cause an agent to 
interact with other agents. 
 
Modeling the forest versus modeling the trees 

How would now a forest system generally look like when modeled using the System 
Dynamics respectively the Agent-based Simulation approach? 

First of all, applying an Agent-based perspective one starts with identifying the 
different agents of the system under perspective, which in this case are the different 
types of trees (as well as the environment), provides them with the necessary properties 
and gives them rules to interact. The forest then is a phenomenon that emerges in the 
course of the simulation from the interactions of the trees with each other and with their 
environment. In a System Dynamics study, however, the forest properties are 
constituents of the model; the overall structure of the forest is modeled by a number of 
variables and their causal relationships. Thus, the emergent phenomenon itself, the 
forest, is modeled. 

Moreover, an Agent-Based model would probably be spatial explicit leading to the 
fact that the consequences of decisions not only have a temporal, but also a spatial 
element. Let’s assume the agent fire “decides” to break out at a specific position within 
the forest. The ability of the fire to spread then depends on the wood quality of the 
direct neighbors of the smutted tree. A System Dynamics model, by aggregating the 
different types of trees in level variables (one level for every type), does not possess 
spatial explicitness. Here, the ability of a fire to spread is calculated using the overall 
(meaning aggregated) wood quality of the forest; it determines the proportion of the 
forest to be destroyed. 

The outbreak of a fire is also a good starting point for exemplifying differences in the 
handling of time and in the importance of events. In an Agent-based model such an 
outbreak is an event; it has a beginning and an end. The occurrence of fire can be 
modeled using a probability distribution; the duration then depends on the wood quality 
of the neighboring trees as discussed above. System Dynamics in contrast does not 
model the outbreak per se, but continuously a proportion of the forest is destroyed by 
the fire; that is, at any point in time the fire is present. What changes in the course of the 
simulation dependent on the overall wood quality is the proportion of wood destroyed. 
 
 



 

Potentials of integration: modeling the forest and the trees? 
Despite the many differences between System Dynamics and Agent-based 

Simulation, there are also some obvious similarities: both focus on social systems with 
local, meaning decentralized, decision making. And, both have the same aim: the search 
for principles underlying the dynamics of complex systems (Phelan, 1999). An 
integration of the two concepts can be fruitful when it allows for the combination of 
properties that are otherwise proprietary to a single concept. This section intends to 
identify potential sources of synergy by looking at different approaches to integrate 
System Dynamics and Agent-based Simulation. 

The idea of integrating the System Dynamics and the Agent-based Simulation 
approach is not new. Dong-Hwan und Jae-Ho (1997) call for the use of System 
Dynamics as a platform for Agent-based Simulation. The authors use array variables to 
model different agents in a System Dynamics environment. Using a system of price 
adjustment as an example, they find that the dynamics of an aggregate simulation model 
substantially differ from those of a multi-agent model. Akkermans (2001) also uses a 
System Dynamics environment for simulating adaptive – in the weak sense – agents. He 
models a supply network with every agent carrying a mental model of the performance 
of the agents it is interacting with and analyzes the stability of the network. 

Milling (2002) builds a System Dynamics Model for the analysis of diffusion 
patterns. In order to model the occurrence of innovations in organizational settings he 
uses a genetic algorithm, a concept widely used in Agent-based Simulation to model 
learning and adaptation of agents over generations. Analyzing the dynamics of policy 
evolution in a software engineering setting, it is again the genetic algorithm and its 
inherent discreteness that lets Hines and House (2001) integrate System Dynamics and 
Agent-based Simulation. In the System Dynamics part the authors model a number of 
projects, each controlled by a manager. The managers themselves are modeled as 
individual agents, as every manager has his/her own policy for controlling his/her 
project (a policy includes the number of programmers on the project, the time to hire 
and the time to change schedule). After a project is completed, managers learn and 
innovate – modeled with the help of the genetic algorithm. They then apply their new 
policies to a new project. By combining the two approaches the authors allow for 
adaptation in Holland’s sense within a System Dynamics model – part of the structure 
becomes modifiable. 

Jager (2000) takes a similar approach: in his analysis of resource management of 
individual agents in a commons dilemma situation and its effect on the environment, he 
uses an agent-based approach for modeling the individuals, whereas the environment is 
modeled using System Dynamics. Jager (2000, p. 28) establishes his argumentation for 
this choice as follows: “…in modelling a macro-economic system it seems appropriate 
to use a system-dynamical modelling framework, whereas the modelling of processes 
that involve social interaction requires a multi-agent framework.” 

Schieritz and Größler’s approach (2003) contrasts this statement. They combine 
System Dynamics and Agent-based Simulation in a supply chain setting. But contrary to 
Jager (2000), they use System Dynamics to model the internal structure of the agents, 
their mental models in System Dynamics terms or schemata in Agent-based Simulation 
terms. The supply chain structure evolves from the agents interaction which is a result 
of decisions they make based on their internal structure. The authors state that the idea 
of modeling an agent’s internal structure with the help of System Dynamics was already 
implicitly suggested by the agent-based community, with Phelan (2001) claiming that 



 

an agent’s rules are to be modeled using feedback and learning algorithm or Choi et al. 
(2001, p. 353) comparing schemata with “Senge’s [1990] notion of mental models”. 
Schieritz and Größler allow for structural insights in the agents’ policies (structure-
behavior-link on the micro level) while at the same time establishing a link between the 
micro and macro level of a supply chain and allowing for a flexible supply chain 
structure. 
 
 
Summary 

This paper aimed at comparing two approaches for the simulation of non-linear 
socio-economic systems: System Dynamics and Agent-based Simulation. Primary 
conceptual predispositions underlying the approaches have been contrasted and 
integration potentials have been identified. However, the integration of the two concepts 
does certainly not only implicate advantages. Model validation for instance is one field 
where every method itself developed a vast body of literature. It has yet to be answered 
whether this knowledge can also be applied to an integrated approach. However, despite 
of this and probably a lot of more problems that have to be solved, an integrated 
approach possibly has the potential to help decision makers develop the capacity of 
thinking at one and the same time of both, the forest and the trees. 
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