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Abstract 

In the context of Smart Grid applications, distributed control algorithms show advantageous 
properties over classical centralized approaches. Regarding their operation in a critical 
infrastructure, however, it is of utmost importance to validate the correct behavior of such 
approaches beforehand. In this paper, we give an overview on different aspects of evaluating 
Smart Grid applications, with a special focus on asynchronous distributed heuristics. 

1. Introduction 
A significant share of global CO2 emissions can be explained by the combustion of fossil fuels for 
power production. Hence, it has become politically widely accepted in Europe, to reduce national 
shares of fossil fuels in power production significantly. Such a politically driven evolution of the 
power system faces not only economical and societal challenges, but it must also address several 
technological challenges of ensuring a highly reliable power supply, as described in e.g. [1]. In 
order to address these challenges, new concepts for power grid operation are needed. The notion of 
Smart Grids has been introduced for this purpose. The European Technology Platform for 
Electricity Networks of the Future defines a Smart Grid as an “electricity network that can 
intelligently integrate the actions of all users connected to it – generators, consumers and those that 
do both – in order to efficiently deliver sustainable, economic and secure electricity supplies.”  [2] 
However, this implicates an increased computational complexity for optimizing the coordination of 
these individually configured, distributed actors. A significant body of research currently 
concentrates on this topic, see e.g. the research agenda proposed in [3]. 

In this context, the Smart Grid Algorithm Engineering (SGAE) process model introduces 
guidelines for application-oriented research and development in information and communication 
technology for power systems [4]. This envelops the phases Conceptualize, Design, Analyze, 
Implement, Experiment and Evaluate from a high-level perspective. In the contribution at hand, we 
focus on the “Analyze” and “Evaluate” parts in more detail. More specifically, we restrict our view 
to asynchronous distributed heuristics for solving optimization problems in Smart Grid 
applications. As the power supply system is a critical infrastructure, such approaches must be 
carefully evaluated in a secure environment before being implemented in the field. For gaining 
reliable results, however, this secure environment should reflect as many significant properties as 
possible of the targeted application area. Thus the objective of this contribution is to give an 
overview on the different aspects of evaluating asynchronous distributed heuristics for Smart Grid 
applications. 

First of all, we will characterize the properties of asynchronous distributed approaches in section 2. 
From this, various evaluation criteria are derived in section 3, followed by a description of different 
methods for collecting and valuating these criteria in section 4. As a case study, section 5 then 
presents the evaluation coverage of an exemplary heuristic. Finally, section 6 concludes the paper. 
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2. Asynchronous Distributed Heuristics 
In centrally organized systems, a single entity with global knowledge about a given objective and 
all involved components is in charge of calculating an appropriate solution for the objective. For 
example, the traditional power supply system can be seen as a centralized system. It consists of 
only a small number of controllable power plants. A control center acts as a central component that 
knows the operational constraints of the plants and stipulates the plants’ reactions when deviations 
from the original operating plans occur. However, as already indicated in the introduction, such a 
control paradigm is not suitable for future Smart Grids anymore. It is widely accepted that the 
power supply system of the future will be characterized by a distributed architecture comprising 
autonomous components with individual sub-objectives, see e.g. [5–8]. In order to orchestrate those 
components towards global stability and reliability of the system, appropriate control mechanisms 
are necessary. 

An example of such a problem—which we will again refer to in section 5—is the schedule 
optimization problem for autonomous distributed energy units (DEU) like generators, flexible loads 
or electrical storages: Given a target power profile, the task is to find a schedule assignment for 
each participating DEU over a specified planning horizon, such that the aggregation of all selected 
schedules directly corresponds to the predefined target power profile. This problem is commonly 
present in the day-ahead planning of dynamic virtual power plants [9]. Due to the inherent 
computational complexity of such optimization problems, heuristic approaches are being used in 
order to obtain a good solution for a problem as quick as possible. Moreover, such problems 
naturally require using distributed approaches. In the described schedule optimization problem, the 
DEU are autonomous entities. Thus the search space of the optimization problem is naturally 
distributed over the system, with each unit initially knowing only its own set of feasible schedules. 
To find an optimized schedule assignment with respect to the global goal, communication and 
coordination has to take place between units. Note that, while parallelization is another reason for 
using distributed heuristics, in order to accelerate the process or to increase solution 
quality [10, 11], we focus on naturally distributed problems here. 

In general, a distributed heuristic for such a task defines what, when and with whom to 
communicate, and what to do with received information, in order to efficiently solve the problem in 
a distributed manner. Depending on the communication structure, the approach can further be 
classified as decentralized, hierarchical, distributed or fully distributed, c.f. [12]. Moreover, we 
may distinguish synchronous from asynchronous approaches [13]. The former are characterized by 
the existence of synchronization points. These define algorithmic phases, such that the coordinating 
actions of all components within a specific phase (e.g. calculations and communication) have to be 
completed before the next phase can start. Moreover, if the actions do not depend on each other 
within a single phase, this leads to a strong robustness against irregularities in the underlying 
communication system. In turn, those approaches usually compensate such irregularities with a 
larger run-time. On the other hand, asynchronous approaches are characterized by the absence of 
synchronization points. In these approaches, communication irregularities can have a severe impact 
on the overall progress, because they may change the order of actions that exert influence on each 
other. See [14] for a study regarding such effects on synchronous vs. asynchronous approaches. 

Hence, additional guidelines have to be followed when choosing or designing an asynchronous 
distributed heuristic for a specific problem. So besides performance and efficiency in terms of e.g. 
solution quality, run-time or communication complexity, further criteria are necessary. These 
include convergence properties, robustness analyses and scalability predictions with regard to 
different problem-specific parameters. In the following section, we give an overview on such 
criteria. 
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3. Evaluation Criteria 
Before presenting our taxonomy of evaluation criteria, we have to define a few terms. In 
compliance with the SGAE process model [4], we understand a scenario as a specific collection of 
Smart Grid components, which then constitute the actors that the heuristic under evaluation 
operates on. These components may be configured using a set of parameters. Then an instance of 
such a scenario is a parameter assignment for all components within the scenario. Finally, an 
experiment comprises one or more computational executions of a scenario instance. 

With respect to their dimensionality, we classify evaluation criteria into zeroth-, first- and higher-
order criteria. In this context, a zeroth-order criterion yields a basic decision, i.e. a yes-no answer, 
which should generally be independent of any scenario configuration. On the other hand, a first-
order criterion provides a scalar quantity, which is usually the outcome of an experiment, i.e. the 
interpretation of experimental data from a scenario instance. Finally, higher-order criteria allow 
quantifying effects that occur due to interdependencies between different scenario instances and 
first-order criteria, yielding higher-order quantities such as vectors or matrices as output values. For 
this, series of experiments are necessary, in which one or more dependent scenario parameters are 
varied from experiment to experiment. We will now describe these types of criteria in more detail. 

3.1. Zeroth-Order Criteria 

One of the most basic aspects to consider when dealing with heuristics that are targeted at the 
implementation in critical infrastructures is their correctness [15]. In the SGAE process model, this 
corresponds to the “Analyze” phase. First of all, showing correctness involves asserting that if the 
heuristic yields a solution, then this solution will satisfy a given specification, e.g. it is a valid 
solution for the given problem (partial correctness). An additional requirement is its termination, 
i.e. asserting that the heuristic terminates within a finite amount of time after it has been started 
(total correctness). In the field of distributed heuristics, this is also known as guaranteed 
convergence. Moreover, if this behavior additionally is independent of the system’s starting 
conditions, the heuristic is said to be self-stabilizing [16]. With respect to Smart Grid applications, 
one usually wants to show self-stabilization, as the involved autonomous components might be in 
arbitrary, unknown states when an optimization process is to be started. Moreover, as the 
occurrence of faults leads the system into arbitrary states, self-stabilization would allow such 
applications to recover from these faults autonomously. 

3.2. First-Order Criteria 

The probably most evaluated criterion, however, is performance. The performance of a heuristic 
describes a quantification of its ability to achieve its goal [11]. Typically, this is measured in terms 
of solution quality, e.g. a fitness value that is calculated using an objective function. Here it is 
important to maintain a defined frame of reference, such that the measured value can be interpreted 
properly. For example, an adequate approach would be to determine the theoretically best and the 
theoretically worst solution for a given optimization problem as upper and lower bounds, and to 
normalize the fitness value to the interval that is spanned by these bounds. Apart from such general 
measurements, Smart Grid specific performance indicators play an important role to assess the 
performance of a heuristic in this field. Such performance indicators are yet to be defined and will 
be subject to future work (c.f. the “Conceptualize” phase in the SGAE process model). 

Besides performance, the efficiency of a heuristic is of interest, which describes the resource 
requirements of a heuristic [11]. Regarding centralized approaches, this is usually measured in 
terms of run-time, e.g. the amount of “steps” an algorithm takes for a given input, and memory, e.g. 
the amount of storage capacity an algorithm consumes while processing its input. For distributed 
approaches, determining the efficiency is more complicated: Regarding run-time, we have to 
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distinguish the amount of time until the whole system terminates from the amount of “steps” the 
individual system components will take to reach this state. The former can be measured easily by 
means of real time, and will be an important information regarding the speed of the system in a 
specific hardware environment. The latter, however, is a more general measure as it determines the 
amount of work a system has to carry out. In this regard, a common practice is to count the number 
of calls to the objective function of the optimization problem, in each distributed component 
respectively. This way, both the individual work of the components as well as the overall effort can 
be determined in a hardware-independent manner. Finally, an additional evaluation criterion for 
distributed systems regarding the efficiency are communication expenses. As we are focusing on 
autonomous distributed components here, this leads to a message-passing paradigm (in contrast to a 
shared-memory model, in which multiple components possess a common working memory, 
c.f. [13]). Following, both the amount of exchanged messages as well as the size of these messages 
are significant factors for determining the efficiency of a heuristic. 

3.3. Higher-Order Criteria 

In this category, first-order criteria are evaluated against varying input parameters, i.e. changing 
scenario instances, in order to quantify correlation effects, or to perform a sensitivity analysis. In 
this regard, a prominent higher-order criterion is the scalability of an approach [17]. Here, the 
influence of a change in magnitude of input parameters on one or more relevant first-order criteria 
is determined. For example, given a centralized heuristic for calculating the schedule of energy 
resources for a future time horizon with respect to e.g. demand predictions, one could study the 
effects of the length of the considered planning horizon on the run-time of the heuristic. An 
example regarding distributed heuristics is the influence of the amount of autonomous components 
that are present in the system on communication expenses. 

Another important higher-order criterion is robustness [17], which determines the influence of 
incidental disturbances from the environment on one or more first-order criteria. Such disturbances 
could be either “dynamic” incidents at run-time like e.g. varying message delays during the 
execution of a distributed system, or “static” perturbations that determine the sensitivity to 
changing starting conditions. 

It is natural that higher-order criteria are rather difficult to analyze as they include lower-order 
criteria in different magnitudes. On the other hand, they are especially important when targeting 
critical infrastructures such as the power supply system. 

4. Evaluation Methods 
Each of the criteria introduced in the previous section can be valuated using different methods. 
Here, analytical methods are distinguished from empirical methods [10]. 

4.1. Analytical Methods 

In an analytical approach, evaluation criteria are quantified by mathematical calculus, i.e. 
inspecting the inherent design of the heuristic formally. For this, the semantic of the heuristic has to 
be described rigorously. An overview in this regard is given in [18, p. 27]. For example, 
deterministic sequential algorithms can be described using a denotational semantic, which 
primarily relies on fixed-point iterations for modelling loops and recursions. For nondeterministic 
or distributed algorithms, however, the operational semantic (also called transition systems, 
see [19]) is more suitable, as it relies on formulating transitions between configurations, or states, 
of a system and thus eases the modeling of interactions between distinct components. A popular 
example in this context is the I/O automata formalization [13], which explicitly models the 
behavior of different components of a system through a standardized interface and thus allows for 
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reasoning about the system’s progress as a whole. Based on this, well-known proof techniques like 
e.g. variant functions or convergence stairs can be easily applied [16]. Another approach would be 
to employ automatic model checkers. Due to the numerous different semantic descriptions and 
methods that are available in this field, we refer to [20] for an introduction. 

The above methods are particularly useful for zeroth-order evaluation criteria, e.g. for deriving 
convergence and termination properties. Recently, this has been adapted to first-order criteria as 
well. For example, in the context of self-organizing systems, [21] proposes quantitative definitions 
of the first-order criteria adaptivity, target orientation, homogeneity and resilience. These are based 
on an operational semantic in principle, which has been extended by stochastic automatons though. 
This allows for modeling the system’s behavior not only in extreme cases (i.e. the best and worst 
cases as in the evaluation of zeroth-order criteria), but also in the average case, which is crucial for 
quantifying first-order criteria. The deduced average case behavior, however, directly depends on 
the chosen distribution functions for the stochastic parts of the model. As a consequence, special 
care must be taken in order to properly reflect the real behavior of the modeled system when 
employing such a method. Hence, if adequate distribution functions for a given system cannot be 
derived easily, an empirical study might be more appropriate in these cases. This approach is 
described in the following section. 

4.2. Empirical Methods 

In contrast to formal reasoning based on a rigorous semantic description of an algorithm, empirical 
methods are based on actually executing the algorithm, i.e. the heuristic in the scope of this paper, 
within a dedicated environment. From monitoring such executions, quantitative data can be 
recorded, whose dissection and interpretation then leads to the valuation of first- and higher-order 
criteria. 

This involves a number of subsequent steps: As a single execution of a heuristic usually does not 
yield enough information to deduce general conclusions about the behavior of the system in the 
average case, an adequate experiment design has to be defined in the first step (“Design of 
Experiments” in the SGAE process model [4]). Primarily, this includes tactical decisions, such as 
the number of repetitions of the executions, in order to level out random effects from uncertain 
environments or uncontrollable parameters. This will increase the confidence level of the deduced 
insights later on. Especially for higher-order evaluation criteria, additional strategic decisions have 
to be made, such as defining a strategy for the intentional variation of input parameters in order to 
analyze the heuristic’s behavior under varying conditions. A comprehensive overview on these 
topics from the perspective of simulation experiments can be found in [22]. In the context of 
heuristics, additional care has to be taken regarding the type of scenario instance that is to be solved 
by a heuristic in a series of experiments [10]. While parts of this, like e.g. the magnitude of input 
parameters, are usually already covered in the described tactical and strategic decisions, the 
inherent type of an underlying problem instance might be of interest as well. In the SGAE process 
model, this corresponds to the “Scenario design” phase. Here, on the one hand, synthetically 
crafted problem instances can be used. These do not reflect the targeted application field, but are 
constructed in such a way that specific properties are present in the problem to solve. For example, 
“deceptive” problem instances [23] are useful to analyze whether a given heuristic is able to 
overcome local optima in the search space. This way, a deep understanding of the observed effects 
can be gained. On the other hand, application-specific problem instances aim at reflecting the target 
application of a heuristic as close as possible, such that the heuristic’s behavior can be observed 
directly in in its presumed environment. 
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In the second step, the experiment is actually carried out. This can either be done in a physical test 
bed, or by means of computer simulation. Again, a physical test bed—if built properly—can 
provide a higher degree of realism regarding the targeted application field. But as this may be 
inappropriate due to pragmatic reasons like e.g. implementation costs, computer simulations are 
often used as a substitute for physical experiments. Moreover, computer simulations offer greater 
flexibility regarding the system configuration. According to J. Kleijnen, the core of a simulation is 
a simulation model, which is defined as a “dynamic model that is meant to be solved by means of 
experimentation.” [22] Regarding our focus on heuristic approaches for Smart Grid applications in 
this contribution, the simulation model for a computer simulation then comprises both the heuristic 
under evaluation and the environment this heuristic is executed in. Following, it is of utmost 
importance to build the model as realistic as needed, i.e. such that all relevant interdependencies 
between the (simulated) environment and the heuristic are incorporated into the model. For 
example, if a given distributed heuristic is said to be asynchronous based on message passing 
between components, possible flaws from the underlying communication technology such as 
message delays or buffer overflows should be anticipated. The other way around, if the outcome of 
a heuristic affects e.g. the power flow in an electricity grid, and the resulting effects are relevant for 
the evaluation, the grid must be modeled in such a way that those effects are properly accounted 
for. Again, [4] gives further suggestions regarding this topic. There, besides conceptual 
considerations, the modular Smart Grid simulation framework mosaic [24] is given as a tooling 
example in the SGAE process model. Moreover, we refer to textbooks such as [25, 26] for further 
reading. 

Finally, in a third step, the preceding executions of the heuristic have to be analyzed with respect to 
the criteria of interest. Especially for higher-order criteria, specific metrics and suitable statistical 
methods can then be applied, in order to draw conclusions from the possibly vast amounts of 
recorded data. Examples for methods and metrics regarding various evaluation criteria can be 
found in [17, 10, 22]. 

5. Case Study 
For an exemplification of the presented evaluation guidelines, we will in the following describe the 
evaluation process of the Combinatorial Optimization Heuristic for Distributed Agents (COHDA), 
which initially was published in [27] as a heuristic for the schedule optimization problem for 
autonomous DEUs that we introduced in section 2. Thus COHDA operates in a multi-agent system, 
where each agent represents a DEU with a private search space of feasible schedules. The goal is to 
select exactly one schedule for each DEU, such that a given target power profile is approximated 
by the sum of all selected schedules as close as possible. As the individual search spaces are to be 
kept private, the agents have to communicate via messages in order to coordinate towards a 
common solution. Basically, COHDA realizes an asynchronous iterative approximate best-
response behavior, where each agent reacts to updated information from other agents, by adapting 
its own selected schedule with respect to the global target power profile. 

The evaluation coverage for COHDA is depicted in figure 1. To prove the correctness of the 
heuristic in terms of convergence, termination and self-stabilization, a formal analysis has been 
conducted. For this, the approach has been described semantically in the I/O Automata 
framework [13], followed by formal reasoning using the convergence stairs method [16] (this proof 
will be published in a subsequent paper). As a side effect, the best case and worst case run-time 
could be determined in the process. Following, a simulation study has been conducted. Here, the 
performance of the heuristic was evaluated in two application specific scenarios: trading active 
power products in day-ahead electricity markets and load profile smoothing (these results are not 
published yet, but [9] and [28, sect. 3] provide more details on the respective tasks). Finally, the 
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higher-order criteria scalability and robustness were evaluated for various parameters (c.f. figure 1) 
with respect to the first-order criteria performance (solution quality) and efficiency (run-time, 
computational expenses, communication expenses). Here, both synthetic and application specific 
scenarios have been employed, see [29, 30, 14]. 

6. Conclusion 
The Smart Grid Algorithm Engineering (SGAE) process model [4] provides a foundation for the 
structured development of Smart Grid application algorithms. In the paper at hand, we explicate the 
“Analyze” and “Evaluate” phases of the model in more detail, with a specific focus on 
asynchronous distributed heuristics for solving optimization problems in Smart Grid applications. 
The main contribution of this paper is a taxonomy of evaluation criteria, followed by an overview 
of methods for valuating these criteria. Finally, we presented a case study regarding the evaluation 
of an exemplary heuristic for the schedule optimization problem for autonomous distributed energy 
units. 

Future work in this context will be to define application specific performance indicators, such that 
Smart Grid application algorithms, especially distributed control approaches, can be developed and 
evaluated using standardized and accepted criteria from the problem domain. 
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