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Abstract Private transport accounts for a large amount of total CO2 emis-
sions, thus significantly contributing to global warming. Tools that actively
support people in engaging in a more sustainable life-style without restricting
their mobility are urgently needed. How can location-aware information and
communication technology (ICT) enable novel interactive and participatory
approaches that help people in becoming more sustainable? In this survey
paper, we discuss the different aspects of this challenge from a technologi-
cal and cognitive engineering perspective, based on an overview of the main
information processes that may influence mobility behavior. We review the
state-of-the-art of research with respect to various ways of influencing mobility
behavior (e.g., through providing real-time, user-specific, and location-based
feedback) and suggest a corresponding research agenda. We conclude that fu-
ture research has to focus on reflecting individual goals in providing personal
feedback and recommendations that take into account different motivational
stages. In addition, a long-term and large-scale empirical evaluation of such
tools is necessary.
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1 Introduction

1.1 Motivation

Transport currently accounts for about a quarter of global CO2 emissions [4],
thus having a significant effect on global warming [41]. Given current trends,
this figure is to increase by roughly 50% by the year 2030 [4]. Even if emissions
were to be eliminated immediately and completely, the atmospheric concentra-
tion of CO2 would only be reduced by 40 ppm (i.e., roughly equivalent to its
1995 levels) in the remainder of the 21st century [79]. In order to (at least) slow
down this trend, it is indispensable that immediate actions are taken by leg-
islators, industry, and private individuals alike. Studies have shown that even
small changes in people’s individual behavior can lead to significant reduc-
tions in carbon emissions [86]. For example, Dietz et al.[26, p.18452] estimate
that the adoption of easily implementable actions on a household level (e.g.,
changing one’s driving behavior by slower acceleration and adhering to speed
limits) can “save 123 million metric tons of carbon per year”, a figure that
equals 7.4% of U.S. national carbon emissions.

Common approaches that aim at changing a person’s behavior rely on pro-
viding generic normative information, i.e., communicating whether or not a
given behavior is appropriate in a given context (e.g., “No littering!”). How-
ever, considering the fact that most mobility-related activities are shaped by
an individual’s spatial, temporal, and social constraints, as well as are not
tightly bound by social norms, generic normative information (e.g., “Use pub-
lic transport more often”) is often too unspecific. For someone who has no
(perceived) choice as to use privatized transport, or does not know of any
alternatives to perform an activity equally effectively (but in a sustainable
manner), more targeted forms of communication are needed.

In this paper, we explore how location-aware information and communica-
tion technology (ICT) can contribute to support private individuals in engag-
ing in a more sustainable life-style without posing unrealistic restrictions on
their mobility needs. ICT enables novel interactive, participatory, and collab-
orative approaches to support people in becoming more sustainable, because
it can provide real-time, user- and location-specific feedback on current, as
well as recommendations for future behavior. In two meta studies Hamari et
al. [39,40] found that ICT aimed at changing a person’s behavior can indeed
be effective, i.e., most analyzed studies showed positive or at least partially
positive results.

Although such “eco-feedback” technologies targeted at behavior change are
an active research area (cf. [27]), there are still many open questions on how
such systems can be designed effectively, e.g.:

– How can we avoid systems that patronize users, i.e., dictate behavior and
do not allow for empowerment? (cf. [15,82])

– How can we integrate a person’s “principle goals” [63] (e.g., to become
more sustainable) into their daily and established routines?
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– How can we account for an adequate use of “motivational affordances”
[96], i.e., how can we design systems that are easy to attend to, engaging,
and take individual skillsets into account? Often, user inhibitions towards
a system cannot be overcome due to its complexity, or perceived lack of
usefulness.

– How can feedback be designed, such that it is equally effective across all
of one’s motivational stages (cf. [43])?

– How can we make sure feedback on current behavior affects long-term
behavior, i.e., how sustainable is behavior change?

– How can we harvest the expertise of large numbers of socially connected
people to solve issues of sustainability collectively and interactively? (cf.
[58])

1.2 A Running Example

Throughout this paper we will use a running example of two individuals, each
of whom has a different background and preferences with respect to mobility
behavior and attitudes towards sustainability.

Our first character’s name is Bob and he is a high-school teacher who lives
in the outskirts of Zürich. Bob does a daily 45 minutes commute by public
transport. After work, he frequently goes to the gym for a workout, or (if time
permits) runs errands, such as buying groceries. For these after-work activities
he typically uses his own car. Bob is a typical LOHAS1, i.e., he is concerned
with reducing his CO2 footprint and wants to live an active healthy life. Bob is
not particularly technology-savvy, likes to play (board) games, and is mainly
interested in finding an efficient way to integrate his goals towards becoming
more sustainable into his daily routine.

Our second character’s name is Alice and she is a freelance designer who
lives in downtown Zürich. She does a daily 10 minutes commute, for which she
takes her private car. Her job involves a lot of traveling (abroad and domestic)
under restrictive time constraints. In general, she has problems fitting all her
commitments into her daily schedule. Environment and sustainability are not
among her top priorities, because she fears that becoming more sustainable
would interfere with her job. Alice is technology-savvy and mainly looking for
a mobile planning app that helps her cope with her schedule (cf. [1,3,2]).

1.3 Contribution

Designing an effective and successful system that promotes sustainable mobil-
ity behavior faces all of the challenges mentioned above. For example, Alice
does not want to feel patronized by the system she uses, because she has a
strong sense of freedom and is looking for technology that supports (but not
dictates) her activities and any associated time management. Similarly, Bob

1 Lifestyles of Health and Sustainability
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would like to use such a system, but is skeptical about its usefulness and the
long time required to get familiar with it. In addition, he is afraid that the
application would not be capable of taking into account all his different goals
implied by his daily routines.

As we will discuss in this paper, supporting Alice in making their activities
more sustainable is a major challenge, because it requires the careful embed-
ding of an external goal (i.e., sustainability) into her internal personal activity
history, as well as her schedule. The embedding of external goals is ideally done
by supporting people in adding them to their own goals. This requires both
supporting their future activity planning, as well as giving goal-dependent
feedback about their past.

In this paper, we provide a systematic survey of research challenges, the cor-
responding state-of-the-art, as well as future research opportunities of location-
aware ICT targeted at making people’s behavior more sustainable. For this
purpose, we identify the information necessary to allow for behavior change in
terms of required information processes, taking into account both the analy-
sis and planning aspects of sustainable activity alternatives. We then identify
open research questions by means of a literature review on the state-of-the-art
research, ranging from goal planning and activity detection, over activity scor-
ing, to the effective communication of sustainable alternatives. As a result we
suggest a research agenda that aims at tackling the identified open challenges.

1.4 Organization

In the next section, we argue why location-aware ICT can act as a supportive
tool for people who want to engage in a sustainable mobility life-style. In
section 3, we discuss central information requirements involved in influencing
and changing mobility behavior. Section 4 is a detailed discussion of related
information technology, state-of-the-art research and open research gaps for
each required information component. Section 5 concludes our discussion in
terms of a research agenda.

2 Location-Aware ICT: Supporting Behavior Change

2.1 Information Requirements for Behavior Change

There are several information requirements necessary to allow for some es-
tablished behavior to be changed. Note, the following discussion does neither
account for the psychological processes necessary to form an intention or at-
titude towards a change in behavior, nor does it treat the issue of linking
attitude and behavior (cf. [95]).

Behavior change requires becoming aware of one’s current and past behav-
ior, as well as about the existence of possible past and future alternatives. One
also needs a way to approve or disapprove of past behavior, as well as rate and
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rank planned future behavior, both against a previously defined norm or goal
(for two examples, see Figure 1). The rating and ranking process of planned
future behavior often becomes complex as various different and conflicting
goals need to be integrated.

(a) Radar Speed Sign: Current
speed vs. speed limit (Source: com-
mons.wikimedia.org)

(b) Pedometer: Current step count vs.
goal (Source: Authors)

Fig. 1: Examples of behavior comparison against a norm

There are several difficulties realizing behavior change, without the sup-
port of information technology. First, people are seldom aware of their routine
behavior, because large parts are carried out subconsciously [77]. This makes
it challenging to effectively self-monitor behavior. Second, it is difficult to be-
come aware of alternatives to established behavior. People are biased by the
availability [85] of their past routines and thus have difficulties mapping out
the space of possibilities. Third, efficiently dealing with many goals at a time
exceeds the cognitive capabilities of most people [19], and may be one reason
why they often do not succeed in integrating “principle goals” [63] with daily
necessities. Fourth, the rating and ranking of possible future behavior is diffi-
cult because it is often not possible to determine an activity’s metric and its
impact, especially in a systemic context.

2.2 What can location-aware ICT contribute?

In this paper, we argue that location-aware ICT can effectively support people
in dealing with these problems or at least mitigate them. Mobility has steadily
been increasing, and so has the availability and people’s use of location-aware
ICT. As a matter of fact, most people living in one of the privileged and
developed parts of the world belong to a mobile information society. One
prominent example of location-aware ICT are location based services [66],
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which exploit geospatial information about the user and her surroundings for
providing spatio-temporal decision support [68,75].

Location-aware ICT can be utilized in two ways: for direct support in
mobile decision-making and for evaluating various aspects of people’s mobile
behavior. The dynamic nature of mobility resulted in a shift of people’s infor-
mation needs because they often need to make quick decisions on the spot. The
interaction between environments, individuals, and mobile devices is thereby
critical for understanding how people make their decisions while on the move.
Mobile decision-making involves a multitude of spatio-temporal constraints,
relating not only to people’s spatio-temporal behavior in large-scale space [51]
but also to their interaction with mobile devices, and perceptual, cognitive,
and social processes.

While on the move, (geo)-sensors can be utilized for recording both track-
ing and context information, such as weather, pollution indicators, or mode of
travel. In addition, it has become possible for humans to annotate some per-
formed mobility behavior themselves. For example, users can rate their own
mobility performance and peers can tag each other’s mobility behavior with
“likes” (cf. [73]).

These data offer insights into people’s mobility behavior and can be of use
in analyzing, evaluating, and predicting human mobility patterns from both an
individual and an urban perspective. For example, one can detect similarities
and differences between travelers and their paths [92,93]. Furthermore, ICT
can support context and location aware planning, e.g., through the integration
of personal information such as calendars or to-do lists [1].

However, one of the major challenges from a Human-Computer-Interaction
(HCI) perspective lies in how context sensitive information should effectively
(i.e., timely and useful) be fed back to a person.

2.3 Persuasive vs. Supportive Technology

Persuasion can be defined as “an attempt to change attitudes or behaviors,
or both (without using coercion or deception)” ([31], p. 15). It is worthy to
note the differences between persuasion and coercion or deception. Coercion
is defined as ”the act to make (someone) do something by using force or
threats”, while deception is ”the act of making someone believe something that
is not true”2. In contrast, persuasion ”implies voluntary change - in behavior,
attitude, or both” ([31], p. 15). Thus, persuasive technologies are interactive
technologies that intend to change a person’s attitudes or behaviors [30].

Technology can persuade in various ways (see Figure 2), depending on its
functional roles [31]. Technology as a tool can persuade through making some
behavior easier to do, i.e., by increasing a user’s capability for some task.
Technology as a social actor can persuade through providing positive feedback
(e.g., rewards), i.e., by creating a relationship between the user and the system.

2 www.merriam-webster.com



Towards Sustainable Mobility Behavior 7

Finally, technology as a medium can persuade by letting one explore cause and
effect relationships (e.g., by means of simulation), i.e., by providing people with
experience and helping them to develop an expertise.

Fig. 2: Possible Functional Roles of Persuasive Technology (adapted from [31])

Persuasive technologies that aim at making people more sustainable, either
through strong (behavior comparison against a norm) or passive (behavior pre-
sentation in a sustainable context) types of persuasion, form a very active field
of research in the HCI community (cf. [27]). Despite its popularity the ”persua-
sive sustainability” approach has recently spawned some critique questioning
both its philosophical and practical implications (See for example [44,15]).

Critiques have mainly challenged persuasive technologies because of their
inherent concept of behaviorism. In particular, the sole focus on measurable
effects, e.g., the amount of CO2 produced for a given activity, neglects the
semantics of the corresponding actions and their underlying causes, especially
if put in a systemic context (See also [15]). The problem with many persuasive
technologies is that their design is based on three erroneous assumptions:

– Rationality: There is strong empirical evidence that the notion of an agent
who strives to optimize expected utility by using all available information
does not hold up in reality [47]. Thus, we cannot assume that optimal
information regarding sustainable alternatives (determined by means of
computation) is necessarily used by a person to optimize her behavior.

– Isolated Individuals and Behavior: People are social actors and play
different roles in different social contexts [29]. These roles are reflected by
different information requirements. Thus, the concept of ”one size fits all”
cannot be applied to provide meaningful information.

– Technological Paternalism: Users can feel patronized, if the system
designer specifies what sustainable behavior means in a top-down manner.
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In this way, a system may violate an individual’s psychological need for
autonomy, i.e., to experience choice [96].

The system we envision as a result of our review takes this critique of
persuasive systems into account. However, we prefer to call such a system
supportive technology rather than persuasive technology. This does not imply,
however, that such a supportive system does not have the means of persuad-
ing people of a behavior change. In fact, it may be more effective because it
attempts to overcome the limiting aspects of behaviorism, as sketched above.

3 Information Requirements for Behavior Change

In this section, we identify relevant information processes that are involved
in the analysis of current and past, as well as the planning of future mobility
behavior. Processes together form a feedback loop which represents information
requirements necessary to influence user behavior. This feedback loop involves
(1) measuring behavior, (2) relating it to other behaviors or norms (relevance),
(3) “illuminating the path ahead” (communication of consequences), and (4)
user action, an approach often used in human computer interaction (Compare
e.g. [36]). This approach helps us decide which processes should be supported
by a behaviour influencing system and also allows identifying and discussing
research gaps (See Section 4). Note that our process schema is preliminary and
serves only to systematically structure our paper, not to simulate or represent
the involved processes.

Figure 3 gives an overview of involved processes, which are depicted as
rectangles. Their inputs and outputs are denoted by parallelograms and linked
with directed arrows.

Consider the left part (analysis) of our model. People perform various
activities as part of their daily routines. For example, Bob takes the train at
5 pm and then takes his car one hour later, while Alice takes her car at 8 am
and at 6 pm. These activities (i.e., corresponding transport modes) need to be
detected and collected in a user’s individual activity history. Activity histories
are one aspect required in order to score (rate) a user’s past behavior.

However, meaningful activity scores depend on both ”principle and spe-
cific” goals [63] that users want to pursue on their own, or the system designer
intends to plant on them. For instance, Bob has the principle goal to ”become
more sustainable” and the specific goal to ”take the car only once during the
week”. The scoring process therefore needs to take into account many goals on
different hierarchical levels. Scoring activities in a context-dependent manner
avoids to produce unrealistic suggestions that cannot be integrated into one’s
mobility life-style. For example, scores that account for motorized transport
are not negative per se, but need to be generated as part of a systemic con-
text, e.g., take into account that Bob cannot do without his car after 12 a.m.
because where he lives there is only limited service of public transport.

The integration of different goals also requires taking into account different
qualities of activities. For example, being on time for meetings is of highest
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Fig. 3: Information processes required to provide meaningful suggestions for
behavior change. Rectangular boxes are processes and parallelograms are in-
puts and outputs.

priority to Alice, while Bob would like to avoid using his car altogether when-
ever he runs his errands. Therefore, one major task is to detect the different
goals (and their qualities) and to integrate them into the scoring process. Fur-
thermore, scoring past behavior by taking into account realistic alternatives
allows a user to develop personal benchmarks.

However, analyzing the past alone is not sufficient to provide useful sugges-
tions for behavior change. A user also needs a way to plan alternative future
behavior (See the right, planning part of our model). Future goals are output
of a goal planning process, and they are input of processes that schedule a
concrete future activity (activity scheduling). However, in order to introduce
behavior change, the space of possible activities must be analyzed and alter-
natives need to be computed and chosen. For the latter process, it is crucial
that alternatives need to take account of the same goals. Similarly, the scoring
of these planned alternatives needs to be based on future goals. For example,
Bob plans to avoid the car for shopping groceries. In order to do so, he needs
to figure out alternative transport possibilities that minimize CO2 and enable
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him to get his errands done, for example, using the supermarket next to his
school.

Finally, by communicating scored results, a user may or may not adjust
her activity behavior and its associated planning, which results in a feedback
loop.

4 Information technology for behavior change: a survey

In this section, we elaborate on the different components of our model, in-
troduced in Section 3. In particular, we discuss the state-of-the-art concerning
technical and theoretical approaches and identify open research gaps. We start
with the challenges regarding the evaluation of activities, i.e, their scoring (See
Section 4.1) and communicative aspects of providing feedback on a user’s be-
havior (See Section 4.2.1). Section 4.3 discusses various aspects of activity,
goal, and intention recognition. In Section 4.4 we elaborate on activity predic-
tion and support for activity planning.

4.1 Activity Scoring

In our model (See Section 3), activity scoring depends on a user’s concrete
activity history, her past and future goals, as well as any activity alternatives.
Goals include both external (i.e., the system designer’s perspective) goals, as
well as user goals, all of which may conflict on various hierarchical levels.
Thus, the challenge is to integrate them such that a meaningful score can be
generated [74], which is the basis for communicating alternatives or evaluations
of past behavior.

Note, our wording score is influenced by recent attempts to ”use design
elements characteristic for games in non-game contexts” [25]. Other examples
related to this ”gamification” approach are to give users rewards for some
performed activity, as well as high-score lists ranking users according to their
score. One of the challenges in enabling meaningful gamification lies in de-
signing scores which allow users to internalize externally intended behavior
[60].

4.1.1 Domains and Qualities of Scoring

The first step in building a scoring framework (See Figure 4) is to select the
activity types to be scored and assess which qualities of these activities should
be taken into account. Qualities can come from activities themselves, as well as
from activities’ outcomes [73]. In our attempt to support sustainable mobility
behavior, activities like “Bob takes the train at 8 am for 20 minutes”, or “Alice
drives her car at 5 pm for 10 minutes” are of particular interest. Qualities of
those activities are, e.g., velocity, cost, or CO2 emissions, while the qualities
of their outcomes could take into account whether one arrived at the intended
destination on time.
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It should be noted, however, that the selection of qualities will often be
restricted by the available technology. An activity’s velocity can be measured in
a relatively accurate and precise manner using accelerometers and GPS sensors
[78] while monetary cost or CO2 emissions will have to be approximated in
some way.

4.1.2 Standardization

To allow for meaningful scores, selected qualities need to be standardized. This
can be done in different ways, i.e., by comparing them to:

1. A user’s own past. This allows to measure an individual user’s change.
For example, if Alice starts using public transport more often, her measured
CO2 emissions will drop, which can result in a higher score.

2. The behavior of others. An example would be the comparison of CO2

emissions of a given transportation mode of Bob against Alice on a partic-
ular day.

3. Established norms. CO2 emission contingents for a user or a group of
users could, for instance, be based on the 2◦C standard of temperature rise
3.

4. Conceivable alternatives. This standardization method compares an
activity’s quality with what a user might have done instead. For example,
staying at home (cf. teleworker) instead of commuting to work would reduce
CO2 emissions, but is not an option for everyone. Likewise, using public
transport instead of a car might be an alternative for urban dwellers but
not for people living in rural areas.

The last point challenges a system designer to embed external goals into a
user’s context by providing alternatives that are favorable under these addi-
tional goals. This requires a detailed understanding of the user’s goals as well
as restrictions imposed upon the user.

4.1.3 Criteria and Score Construction

Once standardized, it needs to be determined how far qualities contribute to
a goal. By doing so, qualities become concrete criteria. Contribution towards
a goal can be analyzed by comparing values of qualities to a favored state
implied by a goal. For example, keeping CO2 emissions within internationally
established contingents might be considered a favored state with respect to
climate protection. However, it might make more sense to choose a personalized
standard as a favored state, such as minimizing CO2 savings with respect
to one’s own past or in competition with others, in order to keep a user’s
motivation alive.

3 “Copenhagen Accord’. U.N. Framework Convention on Climate Change. United Na-
tions. 18 December 2009.
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After criteria have been established, they can be turned into a single score.
Several strategies to integrate multiple criteria can be used, ranging from com-
pensatory to non-compensatory multi-criteria decision making techniques [46].
For example, if we want to combine Alice’s weekly activities into a single score,
we have to integrate her criteria for being time-efficient with a possible system
designer’s criteria for green mobility (e.g., reduction of CO2 emissions by some
factor x). This is difficult given the fact that these criteria will often contradict
each other.

Fig. 4: Model of the scoring process. Rectangular boxes are processes, paral-
lelograms are outputs. (Source: Authors)

4.2 Communication and Motivation

A major part of effectively influencing user behavior is to communicate sustain-
able activity alternatives in a meaningful way. This has to take into account
psychological, sociological and technical aspects.

In particular, a system should strive for offering a high number of moti-
vational affordances [96]. The concept of a motivational affordance comprises
the actionable properties between a user and the system, and whether it can
support a user’s motivational needs (e.g., autonomy, competence, relatedness).
Zhang [96] proposed a number of design principles for ICT that aim at offering
high motivational affordances. For example, a user’s need for autonomy should
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be supported by providing a personalized experience. Also, the need for feeling
competent can be satisfied by providing challenges, e.g., in the form of games
and learning systems.

4.2.1 Means of Feedback Communication

There are numerous ways to communicate feedback on a user’s behavior. Yun
et al. [94] distinguish between instructional, motivational, and supportive ways
of encouraging a more sustainable life-style. Instructional approaches include
education (i.e., ”why”), advice (i.e., ”how”), and self-monitoring (i.e., ”what
is”). Motivational approaches include setting goals, allowing for comparison
(own and other’s performance), keeping one engaged (e.g., to appeal to one’s
curiosity). Finally, supportive approaches encompass providing people with
communicative tools (e.g., social networks), ways to self-control behavior (e.g.,
by reducing complex tasks into an automated one), and rewards for the ac-
complishment of some target behavior.

Froehlich [32], as well as Fogg [31] suggested a number of design dimensions
relevant to the communication of feedback. Here we elaborate on four of them,
i.e., the frequency, timing, measurement unit, and recommending action of a
feedback.

The ideal frequency of feedback is difficult to determine because it depends
on several context-related factors, including a user’s motivational stage [43].
Fischer [28] found that frequently updated information on one’s behavior in-
creases the awareness between one’s actions and their impact. However, on
people like Alice who are still somewhat reluctant whether or not they should
act upon feedback to become more sustainable high intensity feedback may
have negative effects (cf. [59]).

Timing is equally important and the challenge is to find an opportune
moment for feedback [31]. It often involves (a combination of) elements of
the environment (e.g., location or social context), user characteristics (e.g.,
mood, motivation, self-worth, or feelings of connectedness to others), and the
currently performed activity [31,84,22]. In general, feedback should be given
timely in relation to the behavior that triggered the feedback to ensure a user
perceives the consequences of her actions (cf. [96]).

A choice of measurement units can help to provide users with easily un-
derstandable feedback [28]. For example, scores can have different scale levels,
ranging from nominal over ordinal and interval to ratio [81]. If Bob, for in-
stance, received a badge (as a reward) for completing the challenge of using his
car only 2 days of the week, this means that a ratio scale (CO2 emission sums)
was turned into a nominal scale (according to a minimal amount of CO2 sav-
ings). An example for an ordinal scale are narrative progression icons as used
by ”UbiGreen” [33] which reflect individual mobility behavior during a week.
Another possibility to simplify score communication is to change the scale
level of a score depending on the user and context, e.g., through classification
into understandable categories. Another possibility to ensure comprehension
of feedback is to use analogies instead of quantitative measurements (e.g.,
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“Bob, this week you saved the equivalent of a movies ticket by taking the
train instead of the car!”).

Recommending actions is more effective if they are (perceived to be) highly
personalized for a specific user in a given context (See Fogg [31] for an overview
of relevant studies). In addition, the type of wording of a suggestion can de-
termine whether or not it leads to desirable behavior. In one study, Schultz et
al. [76] demonstrated a boomerang effect in the behavior of some of the par-
ticipants to whom the researchers presented normative descriptive messages
on average neighborhood energy usage. While participants above the average
attempted to reduce consumption, those who were below the average increased
consumption. Apparently those participants who were below the ”norm” felt
they could increase consumption since they were better than the average.
Schultz et al. (ibid.) argued that this boomerang effect does not occur if users
are provided with an additional injunctive message, e.g., in the form of smileys
indicating social approval or disapproval.

4.2.2 Motivation

Many theories on motivation advocate models that consist of several stages.
For instance, the transtheoretical model [64] argues that one’s motivation un-
dergoes five stages: precontemplation, contemplation, preparation, action and
maintenance. During precontemplation, one is either unwilling to change or
unaware of a problem in their behavior (cf. our character Alice). During con-
templation, one knows that a behavior change is required and intends to change
in the near future. During preparation, one is committed to change and works
on a concrete plan on how to achieve this (cf. our character Bob). During
action, one has actively and substantially changed their behavior over some
longer period of time. During maintenance, one attempts to keep up with the
new behavior. Note, it is possible for someone to be in different motivational
stages for different forms of behavior.

Depending on a user’s current stage, different communication means should
be applied in order to ensure progression to the next, or avoid relapsing to a
prior stage. For example, early stages (where users are unwilling or are not
aware of concrete alternatives to their behavior) need communication on an
educational and informational level [43]. Users in the progress of changing their
behavior need regular feedback and comparison to their previous behavior,
while users in later stages need irregular reminders [43].

Another important distinction is whether a user is intrinsically or extrin-
sically motivated [71]. In general, intrinsic motivation is desired, as it allows
long-lasting behavior change. In addition, people who are intrinsically moti-
vated (e.g., interested, curious, feeling of competence and enjoyment) should
not be exposed to extrinsic forms of motivation, e.g., by giving them rewards
(cf. [24]) for their behavior. Instead, intrinsic motivation should be controlled
by giving positive feedback [23], or alternatively letting a user experience “free-
dom” [45] and choice in terms of which goals she wants to pursue. In contrast,
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people who are extrinsically motivated can be presented with a variety of
action choices to increase their sense of intrinsic motivation [45].

4.2.3 A Note on Empirical Studies

Although there is a large number of studies that aim at supporting people to
engage in a more sustainable life-style, many of them suffer from methodologi-
cal issues (cf. [34,40,15,39]), which makes it difficult to evaluate their validity
and reliability:

1. Small Sample Size: In an evaluation of 95 studies that tested persuasive
technologies, Hamari et al. [39], found that the participants’ sample sizes
were rather small (median N = 26).

2. Lack of Control Group: Some of the studies reviewed by Hamari et al.
[40,39] did not include control groups. Froehlich [34] specifically looked at
8 studies that included eco-feedback technologies and out of the 4 studies
that reported behavior change none included a control group, and only one
accounted for baseline data.

3. Short Time-frame: Only one of the 36 studies reviewed by Brynjardottir
et al. [15] can be considered long-term (i.e., 3 months). In fact, only 2
studies were found to last longer than one month. The relatively short
time frames typically found in such studies may lead to a novelty effect
that ”might have skewed the test subjects’ experiences in a significant
way” [39, p.127].

4. Lack of Psychometric Measurements: In many studies, no psychome-
tric measurements about the subjects’ experiences and attitudes were used
[40].

5. No Distinction between Motivational Affordances: Often, the suc-
cess of the persuasive system was evaluated as a whole [40], without testing
the effects of motivational affordances (e.g., rewards, feedback, suggestions,
etc.) individually.

6. No Statistical Significance: Most evaluations relied on descriptive statis-
tics alone [39] and claim behavior changes but ”without any statistically
significant effect on the intended metric” [15].

4.3 Transparency of the past

In order to know how behavior could be changed in the future, one first needs
to know how people have behaved in the past. However, past behavior can only
become transparent once mobile applications can reliably recognize a user’s ac-
tivity pattern. Furthermore, evaluating and scoring past behavior (See Section
4.1) such that it is useful for personal feedback requires to take into account a
user’s underlying personal goals and constraints. Only in this case can behav-
ior scoring become personal and integrated into a person’s life routines. In the
remainder of this section we explore state-of-the-art approaches and principle
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technical challenges for the recognition of a personal history of activities (See
Section 4.3.1) and their underlying goals and intentions (See Section 4.3.2).

4.3.1 Activity recognition

As stated in Section 3, daily routines consist of a sequence of activities (which
form the activity history). Take Bob for example, who boards the train in
the morning, takes the ride, steps off, and walks to his school. The process of
activity detection maps the current state of a person to an activity. Activity
detection is difficult when performed algorithmically, especially if only little
sensory information is available. For state-of-the-art activity detection using
mobile phones or MSPs4 the input consists of sensor readings such as loca-
tion, acceleration, step count, or compass heading. Using various techniques,
these inputs are mapped to a predefined set of activities. In the following, the
technical challenges when inferring transportation activities are summarized:

– Accurate, frequent, and energy-efficient sensor readings: Activ-
ity detection can utilize a variety of sensors [61]. While GPS provides the
most accurate location information, it also causes quick power drains and
is unavailable indoors [57]. On the other hand, accelerometer data is al-
ways available and relatively cheap to read (in terms of the battery). It
is therefore important to find sets of sensors to be used in different situa-
tions [91]. Parkka et al. [61] provide a comparison between different sensors
and their suitability for activity detection. Actual implementations use a
variety of sensors: accelerometer only [91], accelerometer and GSM loca-
tion [78], accelerometer and GPS [57], GPS only [80] or a combination
thereof, e.g., acceleromenter, barometer, and microphone [69]. While ac-
celerometers yield the best overall results, new algorithms for GPS-based
activity recognition are gaining momentum, especially in terms of accurate
detection rates [14,13].
It is noteworthy that phone manufacturers start to integrate activity recog-
nition using specialized hardware and operating system functions with the
goal of reducing power consumption5.

– Models that capture the activity domains and yield high classifi-
cation accuracy: A number of models for activity detection is currently
being analyzed. Liao et al. [53] test an unsupervised layered Markov model
that is able to predict user goals and activities, and determines when a
user diverges from a known or planned route. Stenneth et al. [80] examine
and compare Bayesian net, decision tree, random forest, näıve Bayesian
and multilayer perceptron algorithms on previously annotated data. Shin
et al. [78] favor an approach with predefined thresholds in sensory data as
well as time. Riboni and Bettini [69] propose an ontology that asserts ac-
tivities that can be performed at a user’s location. The prediction accuracy

4 Mobile Sensing Platforms
5 cf. http://en.wikipedia.org/wiki/Apple_M7
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usually ranges from about 75% to 95% for various activities, depending on
the sensor output difference.

– User-dependent activity model: While Berchtold et al. [11] built a
user-specific classifier, a lot of research solely relies on sensory data and
is user-agnostic [78]. As users have different patterns for certain activities,
classification accuracy can be increased by building personalized classifiers,
or at least by training with different data [11]. The use of ontologies can
further decrease the set of possible activities for a single user, thus yielding
a higher accuracy [69].

– Training data for supervised learning: While it is a common approach
to have labeled data, i.e., users annotate data with corresponding activities
[78], other approaches evaluate unsupervised learning. They enable learning
important places and distinct activities, but are often not able to detect
their semantics, e.g., activity type labels [53]. Because manually labeling
data requires users to actively cultivate data, it can prevent scaling [48].
Thus, for supervised training it is always required to initially learn activity
labels. One of the important questions is where one can get the necessary
data from?

– Integration with other knowledge sources. Using additional data
such a user’s calendar entries [55], street-topology information [80], or on-
tologies [69], activities can be detected with higher accuracy. For example,
past activities can be associated more easily with current ones using a cal-
endar. Also, possible activities can be constrained by the restrictions given
by an underlying road network. Furthermore, an ontology can be used to
assert activities that are allowed in certain places.

In summary, to be able to deduce higher-level goals, a solid detection and
classification of activities is needed. Accuracy can be increased by choosing
suitable sensors depending on the current activity, a model that both captures
the problem domain and allows user specific adjustments, and the integration
of external knowledge. However, there is a lack of a combined solution that
optimizes all the noted points. Furthermore, there is only little research that
evaluates how and which external knowledge sources can be integrated with
existing detection models.

4.3.2 Goal and intention recognition

In order to put an activity into a person’s context and to help her evaluating
it from her own perspective, it is necessary to know about the goals and
intentions underlying the history of activities. How can we find out about
these goals?

Children and adults are adept at guessing why someone has done some-
thing, i.e., inferring a person’s intention from perceptions of his or her behav-
ior, while computers are not [42]. The underlying inference problem was called
inverse planning by Baker et al. [10]. Observers invert a probabilistic gener-
ative model of plans to infer their goals starting from their behavior. This is
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a typical example of abductive reasoning, i.e., inferring probable causes given
the results and a set of explanatory models.

If inverse planning is an abductive reasoning task, then one could use ab-
ductive reasoning techniques to solve it technically. Logically, abduction can be
split into two subtasks [5]: (1) inference strategy (infer activities from goals),
and (2) search strategy (for probable goals given an activity). For example,
inferring a goal’s probability from an action can be estimated based on Bayes’
rule, i.e., using a prior probability of acting in this way given a goal plus a prior
probability of this goal [10]. However, how can we know about the probabil-
ity of the goals? While search strategies in standard abduction techniques are
based on “fixed” global goal probabilities, they may be unknown for a specific
person. There are also “learning” approaches which incorporate the history of
explanation, for example, based on case-based reasoning [52]. However, if goals
are learned that way, then we need a training data set6, which may be difficult
to get.

The challenge seems to be that a goal search strategy (goal probability)
needs to take into account the goal history of a person, which does not only
change from one person to the next but (for a given person) also in time. Thus,
there is a need to know about higher level goals in order to estimate which
low-level intention of a user is most probable given an activity. For example,
if we know that Bob is doing workouts, then his car ride to a gym after
work has an obvious purpose. Thus, similar to our discussion about activity
inference, we come to the conclusion that we require top-down information to
correctly and reliably use bottom-up inference techniques. A complementary

Fig. 5: How can inverse planning and planning be tightly integrated?

approach to learning about goals (as well as about types of activities) is based
on combining bottom-up techniques with top-down user generated input. In
this case, we use some form of interaction with a user to learn about his or her
past goals. For example, if Alice travels a lot between meetings, then being
present at a meeting can be inferred as a goal from her calendar, while hooking

6 Unsupervised learning, e.g. clustering, does not require training data, but leaves open
what kind of goal was detected in a set of activities.
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up this calendar to measured locations and times allows intermediate travel
events to be automatically added to it [20]. Fusing calendar events with sensor
events has been used by Lovett et al. [55], in order to improve the quality
of both, calendar completeness and consistency, as well as sensor-based event
detection and labeling. Results show that calendars alone are not a reliable
source for detecting meeting events, however, fusing sensor-based detection
with calendar information can be such a source.

Thus, an obvious way to address these research challenges is to combine
inverse planning with ordinary planning in a tight loop. The question is how
this loop can be technically realized (See Figure 5)?

4.4 Transparency of the future

Influencing or changing one’s behavior is a matter of actionable knowledge. It
is a matter of how one’s own prospect on the immediate future deviates from
one’s own old habits. If Bob knew that there was a way of easily getting to
a nearby gym in a colleague’s car directly from his work place (saving him
time as well as resources), then he might choose against returning home and
taking his own car to the gym, as he was used to. And similarly, if Alice knew
that while on a business trip to the U.S. the newly built airport train took
her to downtown Dallas more easily, quickly and cheaply, she would not rent
a car at the airport. The question is how we can be made aware of our future
prospects and how they deviate from our old habits, opening up a space of
practical opportunities for behavior change.

4.4.1 Activity planning and computation of alternatives

Eco-feedback tools, such as [33], have primarily focused on giving feedback
on past behavior. The idea is that feedback lets people control their behavior
without any need to reflect on future decisions. However, we have argued in
the last sections that meaningfully scoring and evaluating behavior as well
as reliably detecting behavior needs top-down information about intentions
and goals, and that a primary information source for the latter are calendars
or other planning tools. Furthermore, feedback on past behavior is not yet
actionable knowledge, because it misses the part of decision support, and thus
a chance of recommending activities that change behavior.

Which kinds of mobility planning tools are available? (See also [65]):

– Web calendar services (e.g., Google calendar).
– Spatio-Temporal Personal Information Management Tools (cf. [2]).
– Mobile guides, which allow users to select tourist destinations or short

trips to surrounding places. This can involve sophisticated optimization
problems [87].

– Driver assistance and navigation systems.
– Multi-modal trip planning.
– Activity planning microsimulation models (see e.g. [9])
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– Ride sharing systems (cf. [58]).

Activity planning primarily involves the computation of feasible alterna-
tives. This includes the consideration of alternative activity types as well as
alternative activity schedules (temporal sequences of activities). Regarding the
latter problem, one way is to use multicriteria optimization technology (e.g.,
the branch-and-bound algorithm to solve linear programs) in order to schedule
sequences of activities with space time constraints (see [21]), as envisioned by
space-time geography [38]. Regarding the former problem, it is necessary to
keep a plan library of possible activities and goals which allows for substitu-
tions of activity types. Here, one could rely on classical planning algorithms in
Artificial Intelligence, see [70]. Recent transport microsimulation approaches,
such as ADAPTS [9], integrate empirically tested algorithms for activity plan-
ning, destination selection and activity scheduling into a single decision model
which adapts to a particular planning situation.

However, despite the diversity of tools and solutions available, current tech-
nology still has a number of shortcomings in order to serve as goal-aware and
feedback friendly mobile planning tools which are needed to close the various
feedback loops in our model of Figure 3:

1. Missing decision support: As Raubal [67] has argued, current tools
seldomly incorporate personal preferences and multiple criteria (e.g., multi-
criteria decision making approaches) to select a goal or a mode of action.
However, the latter is needed in order to support activity scorings and
evaluations of future activities.

2. Missing calendar integration: To date calendars are not integrated
with spatial or location aware planning tools [3,1]. For example, when
Alice plans to attend a meeting overseas, she cannot schedule her flight
in the calendar such that the calendar is aware of any associated spatial
constraints. Calendars do only allow integrating time constraints into trip
planning [56].

3. Missing abstract goal representation: Planning tools often have a too
narrow notion of a goal (if at all). Either it is assumed that a goal is given
(trip planning, driver and navigation assistance systems) or that a goal is
simply a target location that a user selects. A location-independent and
abstract goal such as Bob’s need to perform regular workouts cannot be
taken into account. Goals can be abstract and can be reached by differ-
ent means and at different locations. One way to integrate abstract goal
hierarchies into planning are ontologies [83].

4. Missing goal inference from past behavior: Planning tools often do
not make use of learning about past habits and frequent behavior and the
corresponding goals. For example, if Bob goes to the gym frequently, he
can infer his own health goal and take it into account in planning support.

5. Missing collaborative scheduling tools. Collaboration can broaden
alternatives and thus the possibilities of planning, as it generates new mo-
bility options [58]. This, however, requires tools that facilitate collaboration
beyond the sharing of data, and beyond established solutions such as car
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sharing or couch surfing, incorporating many aspects of daily life. Collab-
oration may, e.g., be embedded into calendars and may involve activities
such as running errands together or jogging together. Furthermore, it needs
a way of generating trust and privacy, because collaboration requires the
sharing of personal details.

One way to meet these requirements is based on an integrated activity calendar,
which we will sketch in our research agenda (See Section 5).

4.4.2 Activity prediction

Closely interconnecting the activity past with the future can be done by bas-
ing recommendations on probable behavior as observed in the past. Predicting
activities can be used to fill empty calendar slots, to make conservative rec-
ommendations, or to deliberately deviate from choices of the past in activity
planning.

In transportation science, daily activities are commonly predicted based on
logistic regression and models of choice for the purpose of travel demand mod-
elling [12]. We focus here more on data driven machine learning approaches.

Predicting a user’s next activity can be modeled as a problem of reasoning
under uncertainty, given the user’s (most recent) activity history [54]. Activity
prediction identifies future activity candidates, assigns probabilities to them,
and returns the most likely one. In case several candidates are assigned similar
probabilities we are facing a problem of ambiguity. For the case of mobility
prediction, ambiguity occurs on several levels [49, p.6]: there may be several
locations the user will go to next, a location may belong to several places
(spatial context ambiguity), and a place may have several actions a user might
plan to perform there (affordance ambiguity). Some application domains may
have a higher intrinsic ambiguity than others. Alices’ activities at the airport,
for instance, will be more structured (check-in, drop luggage, pass through
security, etc.), and thus easier to predict, than her freetime activities on a
Saturday afternoon.

The challenge for the system designer consists in designing a prediction
algorithm which reduces ambiguity, given the domain at hand [50]. Method-
ologically, prediction algorithms are closely related to recognition algorithms
(see Section 4.3.1), sharing the same algorithmic foundations, e.g., multi-layer
DBN [62] and machine learning [7]. However, activity prediction algorithms
are the more challenging problem because they always have to cope with in-
complete activity histories and offering predictions that need to be made on
the spot (time constraints). In addition, it also requires the accurate detection
of previous activities and/or goals. If an activity history on which we base the
inference has been recognized with a high uncertainty value, the result is that
the uncertainty propagates to the future activity candidates, leading to higher
ambiguity and incorrect predictions. It may also become necessary to revise
recognition attempts made previously.

In the most simple case, activity prediction uses a history of size 1, e.g.,
using a first-order Markov model [8]. This is often very effective. For instance,
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if Alice is walking towards her car on a Monday morning, we can infer that
her most likely next activity will be driving to work (based on an individual
user model and a user-independent plan library). While in principle, a larger
activity history may help to reduce ambiguity, it is often unavailable [6], or
the size of the activity history needed to capture a certain activity pattern
is too large to be modeled with formalisms that provide an efficient inference
[49, pp.63ff]. For instance, if Bob visited a public library at some point during
the last 4 weeks, the likelihood of re-visiting that library is higher than the
base probability for library visits (because he needs to return the borrowed
items at some point). Making probabilistic inference on an activity history of
4 weeks (e.g., with a DBN), however, is not feasible without the introduction
of a belief state aggregating the past before a certain point, which however
may require exponential memory for complex domains [18].

5 Conclusion and Research agenda

In this paper we explored research challenges for location-aware ICT that
provide users with suggestions of sustainable activity alternatives. We struc-
tured research challenges according to information processes that illustrate the
information requirements for changing one’s behavior both from an analysis
(current and past behavior) as well as a planning (future behavior) perspec-
tive. In particular, we distinguished activity scoring (rating) and challenges
that arise during meaningful communication (through feedback) of activity
alternatives. In addition, we talked about activity recognition, as well as goal
and intention recognition, and identified open research gaps.

In the remainder, we outline a research agenda as the summary of our liter-
ature review (See Section 4) and related to the model we introduced in Section
3. The following subsections are ordered in terms of priority with respect to a
typical design process of ICT, starting from the definition of requirements and
design principles for such a system and ending with an empirical large-scale
user evaluation. Note, in Table 1 we give an overview of our suggestions for
future research and the associated challenges. For better reference, we link
each suggestion with its corresponding section in our paper.

5.1 Conceptual Requirements

5.1.1 Design Principles For Meaningful Recommendations

A set of cognitively and psychologically sound design principles that can guide
system developers in choosing the appropriate use of motivational affordances
(see Section 4.2.1) for a given user context is urgently needed (cf. [88]). These
principles must be grounded in research on the psychology of motivation to
increase user acceptance and the likelihood that the system’s suggestions are
actually carried out.
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Table 1: Overview of suggestions and corresponding research challenges as
discussed in this article.

Agenda section Agenda suggestion Challenge Section

Conceptual
requirement

Design principles
Strategies f. feedback commu-
nication

4.2.1

Design for motivational stages 4.2.2
Ontologies Missing abstract goal represen-

tation
4.4.1

Collaborative planning Missing collaborative schedul-
ing

System
components

Activity
calendar Activity

recognition

Accurate, frequent, energy-
efficient sensor readings

4.3.1

Model that capture activity
domains
User-dependent activity model
Acquisition of training data
Integration with other knowl-
edge sources

Goal and
intention
recognition

Integration of inverse planning
and planning

4.3.2

Planning

Missing decision support 4.4.1
Missing calendar integration
Missing goal inference from
past behavior
Activity prediction 4.4.2

Activity scoring
Score standardization 4.1.2
Score construction 4.1.3

Evaluation Empirical studies

Small sample sizes 4.2.3
Lack of control group
Short time-frame
Lack of psychometric measure-
ments
No distinction between motiva-
tional affordances
Statistical significance

For example, the fact that people typically undergo different motivation
stages for behavior (see for example Section 4.2.2) is often not explicitly con-
sidered in the design process. Someone who contemplates behavior change
needs different forms of feedback (in type, magnitude, and frequency) than
one who is actively preparing to change (cf. [43]). In addition, people’s moti-
vational needs [72] such as the innate needs for autonomy, competence, and
relatedness can act as guiding principles on how and what type of informa-
tion is provided. For instance, systems let users define their own goals may be
less patronizing than systems that “dictate” external goals set by the system’s
designer (see Section 2.3).
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5.1.2 Ontologies for goal and activity representation

Because goals and activities are tightly interlinked, both causally (e.g., in
order to get to the gym, some form of transport has to be used), as well as
conceptually (“working out” is an abstraction of “going to the gym”), a way
of modeling such dependencies is needed. This will be one requirement for
using goals and activities in reasoning. The use of ontologies and rules for
representing abstract goals in planning, as well as for activity recognition and
prediction could fill this gap and enable users to specify goals on a higher level
of abstraction (cf. [35]), leaving their spatio-temporal realization in terms of
activities up to recommendation. One major challenge is to find a level of
abstraction that fits well with user specific goals and allows for the activity
calendar integration (see Section 5.2.1).

5.1.3 Methods For Collaborative Planning

Planning tools that can automatically take into account several users, offer
decision support for multiple goals, provide calendar integration, as well as
knowledge integration with past behavior are still missing. The conceptual
foundation for such a tool is an open and extensible infrastructure to support
both communication and matching of potential collaborators [16,17,37]. This
will broaden the range of activity options, e.g. the improved access to shared
resources. In addition, it will be one way to empirically test all involved plan-
ning conditions and the limits of cooperation towards a common goal (cf. [58,
90]).

5.2 System Components

5.2.1 The integrated activity calendar

Tools that attempt to integrate personal information (e.g., to-do-lists) with
spatio-temporal information [1] are required to connect higher-level goals (e.g.,
intentions) with low-level activities such as navigation. The integration of plan-
ning with inverse planning, as sketched in Section 4.3.2, would allow a more
reliable detection of (especially user-specific) types of activities (See Section
4.3.1), as well as their specific goals and goal probabilities. The benefit will be
an external knowledge source and thus training data for the recognition of the
past, but also a reliable platform for planning support. However, it remains an
open question how both planning and inverse planning and activity detection
can be technically integrated.

5.2.2 Meaningful Personal Activity Scoring

Goals of a user and external goals both need to be taken into account in scoring
a user’s activities (see Section 4.1). This enables the development of intrinsic
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motivation [60,72] and allows to plant external goals on somebody. In addition,
personal scoring of activities relative to alternative activities is needed. The
space of alternatives is then determined by personal goals. This also motivates
people to change behavior inside the boundaries of their personal possibilities.
However, how should score and criteria construction, standardization, goal
integration and score communication be carried out technically?

5.3 System Evaluation

5.3.1 Empirical Evaluation of Behavior Change

In order to make valid and reliable empirical claims on the effectiveness of
technologies that support people in a sustainable mobility life-style, it will be
necessary to conduct long-term and large-scale user studies that overcome the
methodological issues mentioned in Section 4.2.3. The design of large-scale and
long-term studies are challenging but can give valuable feedback on whether
the design principles (see Section 5.1.1) initially selected led to the intended
results. It will thus be required to carry out an iterative system design in
which the design and evaluation of a system (for specific user groups in a
given context) are mutual inputs.

Large-scale and long-term empirical studies, however, will face new emerg-
ing challenges. For example, how can people be motivated to use such a system
for longer periods? What are effective mechanisms that can keep users moti-
vated once the novelty effect of such a system has worn off [40]? Recent stud-
ies have pointed at the long-term motivating potential of gamification, i.e.,
“the use of design elements characteristic for games in non-game contexts”
[p.9][25]. Leaderboards, social comparison and peer pressure, as well as setting
objectives and goals, can influence a user’s motivation both towards using the
system and changing her behavior. Yet, similarly to the necessary design prin-
ciples for information feedback (See Section 5.1.1) it is still unclear how much
potential “gamified” systems have for the purpose of behavior change.

In addition, tracking users over longer periods will yield very detailed and
extensive user profiles, especially if spatio-temporal information is connected
to a user’s preferences and attitudes. How can we assure the user’s right to
geoprivacy [89] and, (how) do we sufficiently address ethical concerns, if we
design systems intended to change behavior?
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