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Abstract

In this thesis the model of a combined heating and cooling system is developed in
order to assess potential energy and costs savings. The system has been modeled
using the discrete event simulation paradigm, while the model has been implemented
with the help of the Desmo-J (Discrete Event Simulation Modeling in Java) frame-
work. The model flexibility allows to simulate very different scenarios, since a different
parametrization can be applied to the heating and cooling system configuration, the
control strategy used, the pricing model chosen as well as to the energy demands. Dif-
ferent experiments investigating the potential savings of using different price models
and energy capacities of the system storages have been executed. The results show
that the largest savings are reached by increasing the energy capacity of the waste
heat storage and by the use of a spot market based pricing model.
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Zusammenfassung

In dieser Arbeit wird ein Modell eines kombinierten Heiz-und Kühlsystems entwick-
elt, um mögliche Energie- und Kostensparpotenziale zu untersuchen. Um das Sys-
tem zu modellieren wurde der ereignisorientierte Simulationsmodellierungsstil ver-
wendet. Das resultierende Modell wurde mit Hilfe vom Desmo-J (Discrete Event Sim-
ulation Modeling in Java) Framework implementiert. Die Flexibilität des Modelles
ermöglicht es, sehr unterschiedliche Szenarien zu simulieren, da die Parametrisierung
bezüglich der Heiz-und Kühlsystem-Konfiguration, der verwendeten Kontrollstrate-
gie, des gewählten Preismodelles als auch des Energiebedarfs variiert werden kann.
Unterschiedliche Szenarien wurden durchgespielt, um die potentielle Ersparnis durch
den Einsatz von verschiedenen Preismodellen und Energiekapazitäten der System-
speicher zu untersuchen. Die Resultate zeigen, dass die grösste Ersparnis durch die
Erhöhung der Energiekapazität des Abwärmespeichers und durch den Einsatz eines
spotmarkt-bezogenen Preismodelles erzielt werden.
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1. Introduction

In office buildings, heating and cooling systems are at the same time one of the
major energy consumers [9] and the systems with the greatest energy saving
potential by optimizing their control strategy [3, 5]. A study quantifying the
saving potential for an existing office has been presented in [2, 6, 9].

This thesis models an adaptive heating and cooling system in order to as-
sess the potential impact of any possible electricity pricing model and system
setting on the electricity costs as well as on the total energy costs for any
given energy demand. The model is built using the discrete event simula-
tion paradigm. Different configurations of the original model and assumptions
about pricing models and energy demands can be adopted as model parame-
ters.

Section 2 of this document presents the models of the heating and cooling
system, the energy demand and supply as well as the control strategy. Within
that section an algorithm generating synthetic time series for energy demand
and supply has also been developed. Section 3 describes the implementation
of the model as a running computer simulation. Section 4 verifies the im-
plementation and validates the model by comparing it with the one in [9]
of Rasathurai. While our model has been successfully verified, the compari-
son with the one of Rasathurai highlighted major discrepancies between the
models, but also significant inconsistencies in the model of Rasathurai. In
a second part of Section 4 the impact of the accumulator’s energy capacity
and of different pricing models on the electricity costs and on the total energy
costs is investigated in different experiments. Section 5 concludes the thesis
with the main findings and offers future works. In the appendix, a user guide
explains how to create new experiments and investigate new scenarios with
the implemented model.
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1. Introduction
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2. Modeling

All the models presented in this section are an abstraction of the corresponding
real world systems, which are simplified in order to allow a clear but still
precise representation of a working heating and cooling system. For this reason
Section 2.1 presents the simplifications and the assumptions undertaken. After
this, we present three models: the model of a heating and cooling system, the
model of the energy demand and supply and a model describing the control
strategy for the heating and cooling system. The models are described with
the use of several parameters, which are assigned to specific values in each
experiment.

2.1. Simplifications and Assumptions

In a real world heating and cooling system there is a continuous stream of
energy flows between all the components. In our model, in order to simplify
this, we decided to map the continuous energy flows to discrete events, where
the energy flows change in their intensity. This simplification was also taken
for the incoming energy demands, mapping them to a list of discrete events of
changes in the demands’ intensity.

Across this thesis it is often referred to the term “cold energy”. This term does
not exist in thermodynamics; what we mean with “cold energy” is the heat
energy which is extracted from a given substance in order to cool it [9]. This
term is needed in order to simplify the description of cold demands quantities
and the fulfilling of such demands.

2.2. Heating and Cooling System

The heating and cooling systems of modern office buildings integrate the pro-
duction, storage and management of heating and cooling power as well as the
supply of domestic hot water. The demand for cooling power is determined by
various systems such as cooling ceilings, air handlers and no-frost refrigerators,
while the demand for heating power is generated by underflow heatings, air
heaters or other kinds of heating systems [9].

The components of a heating and cooling system can be classified in five main
categories: the producers of heating and cooling power, the accumulators, the
consumers, the energy flows and the controller.
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2. Modeling

Figure 2.1.: Components of a heating and cooling system

Category Component Ingoing Flows Outgoing Flows Parameters

Producers

Cooling Unit - cooling power,
heating power

-min/max power [kW]
-coefficient of performance

Gas Heating
Unit

- heating power -

Accumulators

Cold Storage cooling power cooling power
-water capacity [l]
-min/max temperature [◦C]
-max unload rate [kW]

Waste Heat
Storage

heating power heating power
-water capacity [l]
-min/max temperature [◦C]
-max unload rate [kW]

Hot Water
Storage

heating power hot water
-water capacity [l]
-min/max temperature [◦C]
-max unload rate [kW]

Consumers

Building
cooling power,
heating power,

hot water
- -

Cooling
Tower

heating power - -

Table 2.1.: Characteristics of the components of a heating and cooling system
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2.2. Heating and Cooling System

Figure 2.1 illustrates the components of a heating and cooling system. The
gray cuboids represent the heat and the cold energy consumers, which are
the building and the cooling tower. The yellow cones are the producers: the
cooling unit and the gas heating unit. The accumulators are drawn with a
cylinder shape and are used to model the cold, the waste heat and the hot water
storages. Finally, the energy flows are represented using arrows. The only
component which is not in the figure is the controller. The arrangement of the
system regarding its components (the type, the number and the connections
between them) is fixed, the only things which can be set in a different way are
the parameters that each component offers.

Table 2.1 states the characteristics of each component of the model. The
third and the fourth column contain the ingoing respectively outgoing flows
for a given component, the last column reports all the parameters, which are
going to be set in different ways depending on the experiment. In the following
subsections the functionalities and integration of each component are described
systematically.

2.2.1. Producers

In a heating and cooling system the producer components are responsible
for the production of the heating and cooling power necessary to fulfill the
demands.

• Cooling Unit: The cooling unit (also called heat pump) transfers, with
the use of electricity, the heat from the cold storage to the waste heat
storage, cooling the water contained in the cold storage and heating the
water of the waste heat storage. The coefficient of performance of a
cooling unit describes the ratio between input power and output power
and is explained in details here below. If the temperature of the water
in the waste heat storage already reached its maximum, the waste heat
is transferred to the cooling tower to be dissipated. The cooling unit can
work on different power levels within a minimum and a maximum range,
which are going to be parameters for the modeling of a cooling unit [2].

• Gas Heating Unit: The gas heating unit is used to heat the building
and/or the water coming from the hot water storage, in case the waste
heat of the cooling unit is not sufficient to do this.

Coefficient of Performance (COP):

The coefficient of performance COP of a cooling unit is given by the ratio of
output power Pout and input power P in [8]:

COP = Pout
Pin
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2. Modeling

The output power is equal to the waste heat H, which can also be expressed
as the sum of input power and the produced cold power C [9]:

Pout = H = Pin + C ⇒ COP = H
Pin

= Pin+C
Pin

Thus, the waste heat energy produced for a given time interval t is:

Ht = COP ∗ Pin ∗ t

and the cold energy produced is:

Ct = (COP − 1) ∗ Pin ∗ t

The technical specifications of a cooling unit specify P in, which is actually
the nominal power input, and C, which is the nominal cooling capacity of the
unit. With these two variables we are able to infer the COP .

Example: a cooling unit that has a nominal power input P in of 200 kW and
a nominal cooling capacity C of 600 kW has a COP of:

COP = 200 kW +600 kW
200 kW = 4

therefore, letting the cooling unit work for 6 minutes we have a produced waste
heat energy of:

Ht = 4 ∗ 200 kW ∗ 0.1 h = 80 kWh

and a production of cold energy equal to:

Ct = (4− 1) ∗ 200 kW ∗ 0.1 h = 60 kWh

2.2.2. Accumulators

The accumulators act as energy storages. Water is the medium used in order
to store energy. Thus, accumulators are water tanks containing a constant
volume of water in a constant temperature range, which are parameters that
can be set differently for each accumulator. A maximum unload rate is also
set for each accumulator as an additional parameter. The energy capacity of
an accumulator is given by the water mass contained, the temperature range
of the water and the specific heat capacity of water.

Example: if an accumulator contains 1000 kg of water, with a maximum
temperature of 50 ◦C and a minimum temperature of 40 ◦C and given the
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2.2. Heating and Cooling System

specific heat capacity of water of 4.187 kJ/ (kg ∗◦ C), then the energy capacity
of this accumulator is given by:
[1000 kg ∗ (50 ◦C − 40 ◦C)]∗[4.187 kJ/ (kg ∗◦ C)] / [3600 kJ/kWh] ∼= 11.63 kWh

An accumulator is said to be “empty” of its heating capacity when it comes to
its given minimum temperature, similarly an accumulator is said to be “empty”
of its cooling capacity when it gets to its given maximum temperature [2]. In
the model we find three different kinds of accumulators:
• Cold Storage: The cold storage contains cold water refrigerated by the
cooling unit. The cooling unit is responsible to keep the water within
the given temperature range. The temperature range chosen affects the
temperatures of the water contained in the waste heat and hot water
storages, since they just collect the waste heat. The only consumer of
cooling power is the building.
• Waste Heat Storage: The waste heat storage collects the waste heat
deriving from the cold storage and the cooling unit. The waste heat can
be used to heat the building or be transferred to the hot water storage.
• Hot Water Storage: The hot water storage stores hot water, which
is going to be used as domestic hot water. The water is heated by the
waste heat storage.

2.2.3. Consumers

There are two consumers of heating and cooling power as well as hot water:
• Building: The building shapes the demand for cooling and heating
power as well as hot water. The demand, as already mentioned, is cre-
ated by various systems such as cooling ceilings, air handlers, no-frost
refrigerators, underflow heatings, air heaters and other kinds of heating
and cooling systems. The daily demands can vary very much depend-
ing on the season, the week day, the volume and usage of the building.
Section 2.3 analyzes the demand and supply of energy.
• Cooling Tower: The cooling tower is a special type of consumer, since
it does not have any influence on the demands. The cooling tower con-
sumes the excess of waste heat dissipating it, which happens when the
waste heat storage and the hot water storage already achieved their full
capacity.

2.2.4. Energy Flows

The energy flows in the model are divided into three categories. There are
flows of cooling and heating power implemented through heat exchangers as
well as hot water flows [2]. The input flows of electricity and gas are not
explicitly modeled, but in the experiments we will keep track of the quantity
of electricity and gas used.
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2. Modeling

2.2.5. Controller

The controller is a piece of software, which manages the cooling unit, the gas
heating unit and the energy flows through a set of rules. The set of rules used
by the controller can be seen as a management strategy. The input variables
for the controller are the current demand and supply of energy, the current
state of the system including all the temperatures of the accumulators and all
the constant values given by the system such as the efficiency rate and power
capacity of the cooling unit and other components [2]. Section 2.5 presents
the control strategy model.

2.3. Energy Demand and Supply

In this section we describe the demand and supply of energy. The demand
is shaped by the consumers needs for cooling and heating power as well as
domestic hot water. The supply of energy is given by electricity and gas,
which are converted into cooling or heating power by the cooling unit and the
gas heating unit. Since the gas prices are assumed to be constant, our focus in
this section lies on the supply of electricity for the cooling unit. In particular,
we analyze how the system can adapt to pricing schemes with hourly variation
in the price.

2.3.1. Energy Demand

Figure 2.2.: Example of the power demand changes during a day, data from
[9]
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2.3. Energy Demand and Supply

The power demand at a given point in the time is expressed in kW, the energy
demand for a given period of time is given by the product of the power demand
and the period length.

Example: a power demand of 10 kW for a time period of 3 hours corresponds
to an energy demand during that period of: 10 kW ∗ 3 h = 30 kWh

Figure 2.2 gives an example of the changes in power demand during the day.
On the x-axis the time in hours is stated, on the y-axis the power demand in
kW is reported. The demand time series for cold power, heat power and hot
water are stated with different colors and shapes. All the time series are subject
to variations, which can appear in intervals of a few minutes. Depending on
the season, the week day and the weather conditions, the energy demand can
vary. From Figure 2.2, for instance, we can notice a peak in the cold demand
at 2 p.m., while the heat demand peak is achieved at 9 a.m..

2.3.2. Energy Supply

The supply of energy is composed by electricity and gas. Our focus lies on
the price at which energy is delivered. Gas supply is delivered at a constant
price. The electricity prices can derive from different pricing models. For
instance we can have pricing models with fix rates and others with flexible
rates. We want to present one of each: a fix rate pricing model we will call the
standard pricing model and a flexible rate pricing model called spot market
pricing model.

• Standard pricing model: The standard pricing model is very simple
and consists of a peak and an off-peak rate. The peak rate is applied
from Monday to Saturday from 6 a.m to 10 p.m., for the rest of the time
the off-peak rate is applied (i.e. Sunday is entirely an off-peak day).

Figure 2.3.: Peak and off-peak time between Monday and Saturday
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2. Modeling

• Spot market pricing model: The spot market pricing model is built
by taking the hourly price of electricity at the local energy exchange and
adding a profit margin rate of the local electricity distributor. Figure 2.4
shows the spot market price for the Swiss Electricity Index (SWISSIX)
negotiated at the European Energy Exchange of Leipzig in Germany for
a given day. The price varies during the day achieving a maximum price
twice as big as the minimum price. Given the hypothetical condition of
a free electricity market, it is rational also for the end consumer to buy
electricity when the price is low, store it in form of heating and cooling
power, and use it later in the day. In Figure 2.4 the red horizontal line
in the graph represents the average price during the peak hours and the
black line shows the average price for the entire day. Every different
week-day shows a different pattern and also the price spread between
the minimum and maximum price varies a lot. Figure 2.5 indeed shows
how the peak and the total average prices change from day to day during
an entire week. The first day in the graph, the 29.7., was a Monday.

Figure 2.4.: Example of the electricity price during a day for the Swiss Elec-
tricity Index (SWISSIX)1

Figure 2.5.: Example of the average electricity price during a week for the
Swiss Electricity Index (SWISSIX)1

1www.eex.com
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2.4. Synthetic Time Series Generation

2.4. Synthetic Time Series Generation

This section presents a method to generate synthetic time series of energy
demand and supply based on historical time series. Synthetic data allows
to explore the model with a richer set of possible energy demand levels and
supply prices. The synthetically generated time series should allow to abstract
from historical data, but still keep some properties of them.
For a given set of time series two parameters are given:
• the mean time series, which is the time series generated aggregating all
the time series in the set
• the variance of the time series in the set

Algorithmus 2.1 Synthetic Time Series Generator
input : time series t, series variance varS, points variance varP , percent p

1. generatedSeries; //the random generated time series

2. normalDistS; //the normal distribution that shifts the entire series up or down

3. normalDistP ; //the normal distribution that shifts every single point up or down

4. normalDistS = new normalDist(0, varS); //initialization with µ = 0, σ2 = varS

5. normalDistP = new normalDist(0, varP ); //initialization with µ = 0, σ2 = varP

6. seriesShift= normalDistS.sample; //The shifting value for the entire series

7. for i = 1, ..., t.length do

8. generatedSeries [i] = t [i] ∗ p + seriesShift + normalDistP.sample;

9. if (generatedSeries [i] < 0)

10. generatedSeries [i] = 0;

11. end if

12. end for

13. return generatedSeries;

Using these two parameters Algorithm 2.1 generates synthetic time series.
Starting from a time series, which can be seen as the mean time series, the
algorithm generates a new time series in two steps:

1. The entire time series is shifted by a random value, which is generated
using a normal distribution. The normal distribution has mean value
equal to zero and a variance which is given as input.

2. Every single point in the time series is shifted by a random value, which
is generated using a normal distribution. The normal distribution has
mean value equal to zero and a variance which is given as input.

21



2. Modeling

With the first step the algorithm generates a time series which shows the same
variance as the input one. With the second step the algorithm aims to change
the shape of the time series by bringing in a certain additional randomness
regarding the values of the single points of the time series. Lines 1 to 3 of
the algorithm declare the variables necessary to store the generated series
and the normal distribution generators. Lines 4 and 5 initialize the normal
distributions with a mean equal to zero and the variances as given in the input.
Finally the for-loop of lines 7 to 12 generates a new time series making sure
that every value is bigger than zero.
In order to additionally steer the generation of new time series we introduced
an input variable p which is a percentage rate between zero and any positive
number. Multiplying the input time series with the percentage rate we aim
to simulate days that have generally high, respectively low energy demand or
electricity prices.

Figure 2.6.: Example of generated time series of the price of electricity

The input values are crucial in order to generate statistically valid data in
terms of mean value and variance. As we saw in the sections about energy
supply and demand it is very important to distinguish between different sea-
sons and days of the week. For instance, if we want to generate synthetic
data for a summer Monday, then we should take all the historical data about
Mondays in summer, aggregate them, and give the aggregated time series as
input. To aggregate data means, that for each timestamp of the time series
an average value among all the available data is taken. The value of the vari-
ance used for the normal distribution that shifts the entire time series should
be taken as the mean variance given by the distances of the aggregated time
series and the historical time series. The variance for the normal distribution
that shifts the single points should be chosen as one third of the one used for
previous normal distribution.
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2.5. Control Strategy

Figure 2.6 reports an example of a generated time series in red. This was
generated using the time series in blue and setting the variance for the shifting
of the entire time series to 5 and the variance for the single points shifting to
1.7.

2.5. Control Strategy

The control strategy of a heating and cooling system defines the execution
of two major tasks. On the one hand there is the fulfilling of the cold, heat
and hot water demand. On the other hand there is the reload of the various
accumulators depending on their energy state and on the energy demand and
supply.

2.5.1. Fulfilling the Demand

The demands for cold, heat and hot water are fulfilled using different compo-
nents of the system. In the following subsections we are going to describe the
process of fulfilling each demand.

2.5.1.1. Cold Demand

The cold energy demand is fulfilled by the cold storage. If the cold storage
does not contain enough energy in order to meet a given demand, then the
cooling unit starts working, loading the cold storage with the missing cooling
energy. The waste heat given by the loading process of the cold storage is
forwarded to the waste heat storage or the cooling towers in case the waste
heat storage is already full.

Example: if we have a cold energy demand of 51 kWh during 30 minutes and
the cold storage has a capacity of 30 kWh cold energy, the cooling unit is going
to produce the remaining 21 kWh. Having a cooling unit with COP = 4, the
input power for the cooling unit in order to produce the additional 21 kWh
cold energy during 30 minutes is:

Pin = Ct
(COP −1)∗t = 21 kW h

(4−1)0.5h = 14 kW

Thus the waste heat energy produced is:

Ht = COP ∗ Pin ∗ t = 4 ∗ 14 kW ∗ 0.5h = 28 kWh
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2. Modeling

2.5.1.2. Heat Demand

The heat energy demand is fulfilled by the waste heat storage and/or the gas
heating unit in case the waste heat storage does not contain enough energy in
order to meet the incoming demand.

Example: if we have a heat demand of 33 kWh for 15 minutes and the waste
heat storage only has a capacity of 12 kWh, then the gas heating unit will
supply the remaining 21 kWh. The waste heat storage output power will be
set to 12kW h

0.25h = 48kW .

2.5.1.3. Hot Water Demand

In order to meet the hot water demand the system uses the hot water storage.
If the energy present in the hot water storage is too low in order to meet
a given demand, then the gas heating unit will supply the remaining energy
exactly like in the example for the heat demand.

2.5.2. Loading the Accumulators

The loading of the three accumulators of the system is done differently ac-
cording to their function. In the following subsections we are going to explain
in detail the loading process of each accumulator.

2.5.2.1. Cold Storage

The cold storage is loaded by the cooling unit. The loading process is started
in two cases:

• An incoming cold demand cannot be satisfied by the capacity of the
cold storage. In this case the cold storage is loaded only with the energy
necessary to fulfill the incoming demand and not more.

• The control strategy states that the cold storage has to be reloaded.

For the second case we developed two possible strategies in order to decide
when and how much to reload the cold storage. The two strategies are the
following:

• Strategy 1: The first strategy relies on historical data. Historical data
of cold demand have to be entered in the system. Based on them the al-
gorithm makes an approximation of when the cold storage will be empty;
after this the time spot with the lowest price, before the cold storage will
be empty, is given and the cold storage is reloaded during this time frame.
If no historical data exist, then they can be synthetically generated using
the algorithm presented in Section 2.4.
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• Strategy 2: Using the second strategy a loading process is started
once the cold storage energy capacity drops a given percentage level of
its maximal capacity. The loading process can be shifted for a given
maximal amount of hours choosing the time spot where the price is the
cheapest. Thus, for this strategy, there are two parameters to be set:
the energy capacity percentage level after which the cold storage is going
to be reloaded and the maximal amount of hours that this process can
be shifted.

2.5.2.2. Waste Heat Storage

The waste heat storage is loaded with the waste heat of the cooling unit. The
cooling unit is never turned deliberately on in order to produce waste heat for
the waste heat storage.

2.5.2.3. Hot Water Storage

The hot water storage is loaded by the waste heat storage (see Figure 2.1). A
loading process is started once the energy capacity of the hot water storage has
dropped a given percentage level of its maximal capacity, which is a parameter
for the hot water storage.
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3. Implementation

This section describes how our model has been implemented as a running
application. At first the methodology is illustrated, after this the actual im-
plementation is presented in detail.

3.1. Methodology

Since all the data used in our model are referring to discrete changes of the
system, we chose the discrete simulation paradigm as the method to implement
and simulate our system. In a discrete simulation it is assumed that [7]:
“all system state changes are mapped onto discrete events and assuming that
nothing relevant happens between, i.e. that states remain constant and no
computations are needed during such intervals”. Thus, the discrete simulation
paradigm suites very well to simulate our system.

3.2. Implementation as a Running Application

In order to implement our model as a running application we were looking for
a tool enabling us to implement a discrete simulation and letting us define the
components of our system. In this range of tools we found Desmo-J (Discrete
Event Simulation Modeling in Java) [1] as the tool meeting our requirements
as well as being very user friendly.
Desmo-J supports the implementation of process-oriented, event-oriented as
well as a mix of the two modeling styles [1]. Since most of the events in our
system can be mapped to a single entity of the system, it has been convenient
to choose the process oriented paradigm . Here is a definition of process-
oriented modeling style:
“A process-based model design takes an object-oriented perspective, identify-
ing the relevant entities, their properties and behaviors. All activities "owned"
by an entity are grouped into a process, which can then be viewed as that
entity’s "life cycle". Model time passes during such active entities phases;
i.e. whenever a time delay is encountered. Lifecyles are described from the
modeled entities’ own perspectives. This includes all relevant activities, the
sequence in which they occur, and their relationship to other entities in the
model.” 2

2http://desmoj.sourceforge.net/tutorial/processes/design0.html
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Figure 3.1.: UML diagram of the implemented model
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As the definition of process-oriented modeling style states, for each entity of
the system a method called lifeCycle() has to be implemented. The lifeCycle()
method describes the behavior of the implemented entity during the simula-
tion. All the lifeCycle() methods for all the implemented classes are going to
be analyzed in the following subsections.
Figure 3.1 reports the UML diagram of the implemented entities as Java classes
and their attributes and methods as well as the relationships between them.
The HeatingCoolingSystemModel class is the central class of the model, which
instantiates all the other classes and maintains a reference to them. In return,
all the instantiated classes save a reference to the HeatingCoolingSystemModel
class, in order to be able to access all other classes in the model.
Three categories of classes are grouped with different colors: the classes mod-
eling the energy demand and supply in orange, the classes representing
the accumulators in green and the classes describing the producers in blue.

3.2.1. Accumulators

All the accumulators, the waste heat storage, the cold storage and the hot
water storage inherit from the abstract class Storage. This abstract class
stores all the parameters for the accumulators presented in Table 2.1 plus
some variables keeping track of the current capacity of the storage, the total
energy consumed, the current load and unload rate as well as the total rate
which is the load rate minus the unload rate.

3.2.1.1. Cold Storage

The central method of each class is the lifeCycle() method, which contains a
loop that runs in intervals of one minute. An interval of one minute has been
chosen, since all the changes in the system are mapped to discrete events with
a maximum frequency of one minute between each others. Algorithm B.1 in
the appendix reports this method for the cold storage. Each minute of the
simulation time the algorithm checks the total rate (the difference between
load and unload rate) of the storage. In case the rate is bigger or equal to zero
nothing happens beside raising the total energy consumed. When the total
rate is negative however, it is checked if the storage still has enough energy in
order to fulfill the incoming demand or if it has to ask the cooling unit for an
additional load. Finally, the current capacity of the storage is updated.

3.2.1.2. Waste Heat Storage

Algorithm B.2 contains the lifeCycle() method for the waste heat storage.
As for the cold storage the algorithm checks if the total rate (the difference
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between load and unload rate) of the waste heat storage is positive or negative.
In case the total rate is bigger or equal to zero the total energy consumed as
well as the current capacity of the storage are updated; in case the total rate
leads to a fully loaded storage then the load in excess is forwarded to the
cooling tower. In a second step it is checked whether the hot water storage
needs to be reloaded or not; if so, the maximum possible load rate is applied
to the hot water storage.
In case the total rate is negative the algorithm checks if there is enough energy
to fulfill the incoming demand; if not, some additional power is requested from
the gas heating unit. If instead the current energy level is enough to fulfill the
incoming heating demand, it is checked if the hot water storage needs to be
reloaded.

3.2.1.3. Hot Water Storage

As for the two other storages, also the lifeCycle() method of the hot water
storages distinguishes between a positive and a negative total rate. In case
the energy level is too low to satisfy the incoming demand then an additional
power supply from the gas heating unit is requested. As an additional action,
at the end of each loop, it is checked if the capacity of the hot water storage
has dropped a given level; if so, a reload request to the waste heat storage is
sent (see Algorithm B.3).

3.2.2. Producers

3.2.2.1. Cooling Unit

The cooling unit class contains all the parameters described in Table 2.1 as well
as four additional variables keeping track of the total cold energy produced,
the total waste heat produced, the total electricity used and the total costs
for the used electricity.
The lifeCycle() method of the cooling unit controls every minutes if the cold
storage needs to be reloaded (which is a decision taken by the ControlStrategy
class). If this is the case, the cold storage is reloaded at its maximum pos-
sible rate and the waste heat resulting from this process is forwarded to the
waste heat storage. When the cold storage cannot be loaded further more the
reloading process is stopped (see Algorithm B.4).

3.2.2.2. Gas Heating Unit

The gas heating unit has an empty lifeCycle() method, since the only job of
the gas heating class is to keep track of the gas supplied for pure heating
purposes and to heat domestic hot water.
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3.2.3. Energy Demand and Supply

In order to better support the management of energy demand and supply data,
two new data types have been created: the Demand and the ElectricityPrice
data types. The raw data of Table 3.1 are read, transformed into Java-objects
of the given data type and stored into an array list of Demands respectively
ElectricityPrices. In the first column of the raw demands data we can find
the time duration in minutes for the incoming power demand, in the second
column the power demand in kW is stated and in the third column the resulting
energy in kWh is listed.

(a) Energy demand

duration
[minutes]

power
[kW]

energy
[kWh]

60 1.1415 1.1415

3 20.142 1.0071

29 2.2104 1.0684

(b) Electricity price

duration
[minutes]

price
[CHF/MWh]

60 126.054

32 107.964

44 101.826

Table 3.1.: Raw data of energy demand and supply

The raw data of the demands can be of either cold, heat or hot water, but
the data structure is the same for all of them. For the raw data containing
the electricity prices we can read the time duration in minutes from the first
column and the actual price in swiss francs per MWh from the second column.
After the array lists are created they are forwarded as parameters to the
constructors of the energy demand and supply classes, which are described
below.

3.2.3.1. Energy Demand

After the raw data of the demands are transformed into array lists of Java-
objects, an object at the time is removed from the array list and the data
is read. Algorithm B.5 gives an example with the reading of cold energy
demands: a new cold demand is stored into the currentDemand object; after
this the new cold demand is forwarded to the cold storage; finally the total cold
energy demand is updated and the while-loop holds a break of the duration
of the demand just read before reading a new one.

31



3. Implementation

3.2.3.2. Energy Supply

Similarly as for the energy demands, also on the energy supply side a new
electricity price is read and then as much time is waited (before reading a new
one) as the current price lasts (See Algorithm B.6).

3.2.4. Control Strategy

The control strategy class controls the loading of the cold storage. For this
task we implemented two different strategies as described in Section 2.5.2.1.

3.2.4.1. Strategy 1

Algorithm B.7 illustrates the first strategy (the one relying on historical data).
At first the algorithm, if needed, generates historical data from an input time
series using the method described in Section 2.4 and implemented in Algorithm
B.8. In a second step the algorithm of Strategy 1, using the historical data,
estimates the minutes remaining before the water storage will be empty. As a
third step the algorithm sets when to reload the cold storage, looking for the
best price during the time interval before the cold storage will be empty. The
entire process is repeated every minute in a loop.

3.2.4.2. Strategy 2

The second strategy is implemented as in Algorithm B.9. As described in
Section 2.5.2.1 this strategy is based on two parameters. Every minute the
algorithm controls that the current energy capacity of the cold storage has
dropped a given energy capacity level (first parameter); if this is the case then
the best time frame in order to reload the cold storage is chosen from a given
time interval (second parameter) and the cold storage is reloaded then. The
best time frame corresponds to the cheapest price for electricity.
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This chapter has two goals. The first one is to verify our implementation and
to validate our model using different experiments as described in Section 4.1.
Section 4.2 investigates the impact of the energy capacity of the accumulators
and of different pricing models on the electricity costs as well as on the total
costs; two pricing models are used and only one or few parameters are changed
at once. This section is intended to demonstrate the flexibility of our model
and its easy configuration capacity that enables the investigation of a large
number of different scenarios.

4.1. Implementation Verification and Model Validation

In a first step we verify our implementation looking if it corresponds with
the model we wanted to implement. Section 4.1.1 shows the results of the
verification of the implementation. In a second step our model is validated
comparing it with the one of [9] as reported in Section 4.1.2.

4.1.1. Verification of the Implementation

The implementation is verified by setting the system to a given configuration
(Section 4.1.1.1). Using such configuration, four different experiments under
a given control strategy (Section 4.1.1.3) and different energy demand and
supply time series (Section 4.1.1.2) are run. Finally, it is verified that the out-
put values of the simulation coincide with the expected output values (Section
4.1.1.4).

4.1.1.1. Heating and Cooling System Configuration

Figure 4.1 shows the setting of the heating and cooling system used to verify
the implementation.

On each accumulator the water volume contained, its temperature range and
the maximum unload rate are stated. On the cooling unit the minimal and
maximal working powers are reported. The coefficient of performance of the
cooling unit is given by the formula of Section 2.2.1. The nominal power input
for the cooling unit is 609 kW and the nominal cooling capacity is 2706 kW,
therefore we have a coefficient of performance of:
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COP = 609kW +2706 kW
609 kW = 5.443349754

The hot water storage has been chosen to be reloaded after it comes to less
than 50% of its energy level.
This configuration is inspired from the configuration of the office building of
IBM Switzerland in Zürich-Altstetten as described in [9]. Given this configu-
ration the next section presents the energy demand and supply data used to
verify the implementation.

Figure 4.1.: Configuration of the system to verify the implementation

4.1.1.2. Energy Demand and Supply Data

On the demand side we use two different data sets. The data sets are taken
from [9] and refer to the demands for heat, cold and domestic hot water in
the months of December 2011 and June 2012 derived from a real heating
and cooling system. The total energy demands are reported in Table 4.1. The
heat and the domestic hot water energy demands are high during the month of
December since in Switzerland it is winter. The month of June is characterized
by a high cold energy demand and low heat and domestic hot water demands.

Heat Cold Domestic Hot Water
December 175018.39 143863 5244.98

June 42275 306421 2044
Table 4.1.: Total energy demands in kWh
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On the energy supply side we investigate two different pricing models (also
taken from [9]): the fix prices pricing model, that is the one actually in
use for the city of Zurich and the spot market prices pricing model, that
instead is the construction of a potential future pricing model. Here is a
detailed description of the two pricing models:

• Fix prices: For the fix prices pricing model a peak and an off-peak rate
is applied depending on the week day and the time. A peak rate of 162
CHF/MWh is applied from Monday to Saturday from 6 a.m to 10 p.m.,
for the rest of the time an off-peak rate of 86.4 CHF/MWh is applied.
Therefore the average price of such model is 130.8 CHF/MWh.

• Spot market prices: The spot market prices for our experiment are
based on the SWISSX index of the energy exchange of Leipzig in Ger-
many. A conversion in CHF is done using an exchange rate of 1.2
CHF/EUR as fixed by the Swiss National Bank in the summer of 2011
as the minimum exchange rate between the Swiss Franc and the Euro.
Moreover, a profit margin for the local energy distributor is added to
build the final spot prices for the consumer. Such a profit margin is cal-
culated by dividing the average fix price applied by the local distributor
by the average price on the market. In our case we have an average spot
market price of 71.047 CHF/MWh in December and 47.171 CHF/MWh
in June, which gives a yearly average spot market price of about 59.109
CHF/MWh; dividing 130.8 (the average fix price) by 59.109 we obtain
a profit margin for the local distributor of about 2.21 times the market
price. Thus a total conversion rate of 1.2*2.21= 2.652 has to be applied
to the spot market prices of the energy exchange of Leipzig [4, 9]. There-
fore the average spot market prices for the end-consumers are 157.014
CHF/MWh in December and 104.248 CHF/MWh in June.

For each month (December and June) both pricing model are investigated.
Thus we have a total of four different experiments.

4.1.1.3. Control Strategy

The control strategy chosen for all the experiments is reported in Section
2.5 and more specifically, regarding the strategy for the loading of the cold
storage, we chose to use Strategy 1 as described in the corresponding Section
2.5.2.1. This means that historical data are used to steer the loading of the
cold storage. In order to keep the system as simple as possible we decided to
assume that the historical data state with no error the future energy demands.
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4.1.1.4. Results

In order to verify the implementation of our model we are going to look at four
crucial output values: the cold energy produced, the electricity consumed, the
waste heat produced and the electricity costs. For each of these output values
a value, deriving from a right implementation of the model, is calculated , we
will further refer to such a value as the “expected value”. The expected values
will be then compared with the simulation values. The expected values are
calculated as following:

• Cold energy produced: follows the total cold energy demand as re-
ported in Table 4.1

• Electricity consumed: is equal to the cold energy produced divided
by (COP -1) as explained in Section 2.2.1

• Waste heat produced: is, as reported in Section 2.2.1, equal to the
electricity consumed times the COP

• Electricity costs: are calculated taking the electricity consumed mul-
tiplied by the average prices reported in the previous section

Table 4.2 confronts the expected and the simulated output values. The cold
energy produced shows simulation values extremely close to the expected
ones; the small differences are given by the fact that the cold storage remains
partially full at the end of the experiments. In fact, the differences do not
go over 30.24 kWh which is the maximum energy capacity of the cold water
storage. The same situation and arguments also apply for the electricity
consumed and the waste heat produced.

December June

Fix
Prices

Spot
Market
Prices

Fix
Prices

Spot
Market
Prices

Cold Energy
Produced in kWh

Expected 143863 143863 306421 306421
Simulated 143888 143887 306432 306432

Electricity
Consumed in kWh

Expected 32377 32377 68962 68962
Simulated 32383 32383 68964 68964

Waste Heat
Produced in kWh

Expected 176239 176239 375383 375383
Simulated 176270 176270 375396 375395

Electricity Costs
in CHF

Expected 4235 5084 9020 7189
Simulated 4479 5289 9542 8164

Table 4.2.: Expected results and simulated output values
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The expected electricity costs are smaller than the simulation output val-
ues. This derives from the fact that taking the average prices to estimate the
electricity costs assumes that the electricity is bought uniformly during the
course of the day. Instead, we actually have the peaks in the demand coincid-
ing with the peaks in the prices. Thus, the differences between expected and
simulated electricity costs are not to be considered as an error in the model
implementation.

Given these results we can assume that our implementation coincides with the
model we wanted to implement. Thus, the implemented model can be used
for further analysis.

4.1.2. Comparison with Another Model

In order to validate our model, we compare it with the one implemented by
[9]. In the work of Rasathurai three different scenarios are investigated. All
experiments are run with energy demands time series derived from original
data, which are the same as the ones described in the implementation verifi-
cation section (Section 4.1.1.2). Using these fixed assumptions, the rest of the
setting for each of the three scenarios is varied as following:

• Experiment 1 (current strategies): This experiment uses the fix
pricing model as described in Section 4.1.1.2. The heating and cooling
system configuration is the same as reported in Section 4.1.1.1. The
only difference between this experiment and the one for testing the im-
plementation is given by the control strategy. The control strategy in
this case imposes that the cold storage is reloaded every time its energy
capacity drops under 75% of the maximum capacity.

• Experiment 2 (new control strategies): The second experiment
examines the model under the assumption of a different control strategy.
It extends the temperature range of the cold storage moving the minimal
temperature to 5 degrees Celsius instead of 11 and bringing the maximal
temperature of the hot water storage to 41 degrees Celsius instead of 40.
Furthermore, this experiment applies a different logic to determine when
the cold storage is reloaded. The control strategy states that the cold
storage is already reloaded when its energy content drops under 95% of
the maximum. In addition, the loading process can be shifted 6 hours
in December and 12 hours in June, if better prices are available in these
time frames.

• Experiment 3 (dynamic electricity pricing): The last experiment
has exactly the same setting as the second one except for two things. The
first is that the reloading process can be shifted 12 hours in December
and 24 in June instead of 6 and 12 hours. The second difference is
the use of the spot market prices pricing model as described in Section
4.1.1.2, with the difference that the profit margin of the local energy
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distributor is set to 1.5 instead of 2.21. There is apparently no reason
for this choice; indeed the profit margin in [9] is calculated the same way
as in this thesis, however in the simulation a profit margin of 1.5 is used.
Thus, in order to achieve a fair comparison, we will also set the profit
margin of the local energy distributor to 1.5.

December June
Rasathurai This

thesis
Rasathurai This

thesis
Exp. 1: current
strategies

Consumption [kWh] 45789 32378 101485 68962
Costs [CHF] 24530 4483 53372 9543

Exp. 2: new
control strategies

Consumption [kWh] 37054 32395 76979 68962
Costs [CHF] 22056 4457 44147 9539

Exp. 3: dynamic
electricity pricing

Consumption [kWh] 31770 32395 76138 68962
Costs [CHF] 21937 3593 36786 5543

Table 4.3.: Comparison with Rasathurai

The model of Rasathurai and the one of this thesis are compared by the
quantity of electricity used and the costs for it. Table 4.3 reports these two
output values for the simulation with both models.

The differences in the output values are large. The consumptions of electricity
in the “current strategies” and “new control strategies” experiments are much
bigger with Rasathurai’s model than with ours, reaching 47% more consume in
June of the first experiment. In the “dynamic electricity pricing” experiment,
using our model, we have a higher electricity consumption in December, but
not in June. The electricity costs are always much bigger in Rasathurai’s
results, constantly deviating with at least factor four higher costs.

These disparities cannot be explained by invoking some little rounding or
precision discrepancy, thus the definition of the models itself has to play a role.
For instance, regarding the consumptions of electricity for a given month in
Rasathurai, it is not possible that the consumptions change so much from one
experiment to the other, since the cold demand, as well as the efficiency of the
cooling unit, is always the same. The only plausible changes are in the range
of the capacity of the cold storage, which can be empty or full at the end of an
experiment. But since the cold storage has a maximal capacity of 30.24 kWh
in the first experiment and of 211 kWh in the second and third experiment,
the differences cannot be explained with it. Furthermore, the costs resulting
from the electricity consumption in Rasathurai lead to an average electricity
price of 530 CHF/MWh in the first experiment, 584 CHF/MWh in the second
one and 586 CHF/MWh in the third one. These average prices are completely
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incompatible with the given average price of 130.8 CHF/MWh for the fix
prices pricing model used in the first two experiments. The third experiment
makes use of the spot market prices pricing model with a profit margin of 1.5
for the local distributor, which leads to an average price of 88.64 CHF/MWh,
that in turn is much smaller than the average price of 586 CHF/MWh of the
third experiment of Rasathurai.
The comparison with the model of Rasathurai has not led to the expected
results and we could not assess the validity of our model. However, we were
able to catch some significant inconsistencies in the model proposed by [9], so
that our model is not invalidated by this comparison.

4.2. Impact of the Accumulators’ Energy Capacity and
of Different Pricing Models

In this section we analyze the impact of the energy capacity of the accumu-
lators as well as the use of different pricing models on the electricity costs
and on the total energy costs which include the electricity costs plus the costs
for natural gas. The price for natural gas has been taken as 0.1 CHF per
kWh. This is approximately the price for natural gas offered by the natural
gas provider of the city of Zurich (Erdgas Zürich3) during 2011 and 2012.
In order to vary the energy capacity of the accumulators we chose to change
their water volume capacity. More water capacity means more energy capacity
as shown in Section 2.2.2.

Multiplier Cold Storage
(26000 liters)

Waste Heat Storage
(18000 liters)

0.1 2600 1800

1 26000 18000

5 130000 90000

10 260000 180000

20 520000 360000

30 780000 540000

40 1040000 720000

50 1300000 900000

60 1560000 1080000

70 1820000 1260000

80 2080000 1440000

90 2340000 1620000

100 2600000 1800000

200 5200000 3600000

Table 4.4.: Water capacity of the accumulators during the experiments

3http://www.erdgaszuerich.ch
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All experiments are run using exactly the same configuration as the one pre-
sented in Section 4.1.1 regarding the heating and cooling system parametriza-
tion, the control strategy as well as the energy demand and supply time series,
whereby only the water capacity of the accumulators is going to vary. This
means that, as in the implementation verification section, each experiment
will be run using four different settings and thus, four different sets of out-
put values will be available. The different settings are given by the use of
two different pricing models and two different data sets regarding the energy
demands as described in Section 4.1.1.

Changes in the water volume capacity of the accumulators are made in three
distinct experiments. In a first experiment we vary the water volume capacity
of the cold storage only. In a second experiment we vary the water volume
of the waste heat storage alone. And in the third experiment we vary the
water volume capacity of both the cold and the waste heat storages at the
same time. The modifications of the water volume capacity are made taking
the initial setting of 26000 liters for the cold storage and 18000 liters for the
waste heat storage and multiplying them with a factor called multiplier that
goes from 0.1 to 200. Table 4.4 shows how the water volume capacity of the
accumulators changes through the experiments: the initial values times the
multiplier gives the water volume capacity in liters.

4.2.1. Cold Storage Only

In this first experiment the cold storage is set to contain an increasing water
volume that goes from 2600 to 5.2 million of liters as stated in Table 4.4.

Figure 4.2 reports two graphs. On the left side of the figure the results of the
experiment that is run with the December data set for the energy demands
are stated. On the right side the output values of the same experiment using
the data set of June are reported. On the x-axis the multiplier factor is stated,
while on the y-axis the costs in CHF can be read. In each graph four lines are
drawn. In light and dark blue the costs using the fix prices pricing model are
stated. The light blue line reports the electricity costs, while the dark blue
line states the total energy costs. On the light and dark red lines the costs
using the spot market prices pricing model can be read. The light red line is
used for the electricity costs, while the dark red line is intended for the total
energy costs.

One of the goals of this thesis is to assess the impact of the electricity pricing
models on the electricity costs as well as on the total energy costs. In order
to do this we have to compare the two light lines with each other and the two
dark lines together. Comparing the light lines shows the impact of the pricing
models on the electricity costs. With the December data set the electricity
costs are lower using the fix prices pricing model, with a constant costs saving
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rate of 15% on the spot market prices. In June instead, the electricity costs
can be minimized with the use of the spot market prices, which constantly
save 15% of the costs in comparison to the fix prices. This makes sense, since
the distributor profit margin of 2.21 for the spot market prices calculated in
Section 4.1.1.2 is a yearly average. Thus, depending on the season, you can be
better off with the fix prices or with the spot market prices. In our case, the
spot market prices are high in December and low in June compared to the fix
prices.

Figure 4.2.: Costs evolution with increasing water volume capacity of the cold
storage

However, in absolute values, the saving potential for the electricity costs in
June is twice as much as the one in December with 1400 CHF against 700
CHF. This is given by the fact that the cold energy demand in June is much
higher than the one in December. Thus, all in all, the spot market prices
pricing model is to be preferred to the fix prices pricing model. Regarding the
impact of the pricing models on the total costs we can say that for the month
of December the total costs using the spot prices pricing model show better
results for almost the entire experiment. In June instead, the two pricing
models show the same impact on the total costs.

The impact of the water volume capacity on the electricity costs is to be
considered as low, since highly decreasing electricity costs are observed starting
just at a greater water volume capacity than 2 million of liters (a multiplier
of 80 in the graphs), which is in reality already an unimplementable value
for a cold storage. On the side of the total energy costs however, a negative
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impact of the increasing water volume capacity is observed. This effect is
created by the fact that more and more electricity can and is bought on single
relatively cheap price time spots, triggering two consequences at the same
time: an increased quantity of waste heat destroyed by the cooling tower,
since the waste heat storage cannot store large quantities of waste heat, and,
as a second effect, an increased future consume of gas, since part of the waste
heat has been destroyed. We can say that the heating section of the heating
and cooling system suffers from the repeated production of big quantities of
waste heat in a short period of time, preferring instead a linear production of
waste heat over time.

In general, from this experiment we can observe that almost no saving po-
tential is given by buying electricity in the off-peak time spots. There are
two connected reasons for that: on the one hand the peaks in the cold energy
demand correspond to the peaks in the prices, so, in order to save money,
more electricity should be bought in advance (in the off-peak time spots),
but on the other hand, in order to do this, we should be capable of storing
enormous quantities of cold energy, having cold storages with a water volume
capacity of millions of liters (as shown in the graph). The saving potential of
using spot market prices, as well mainly derives from the average lower prices
in the summer months, where also the highest demands for cold energy are
registered.

4.2.2. Waste Heat Storage Only

In this experiment the water capacity of the waste heat storage is increased
like we did for the cold water storage. Increasing the capacity of the waste
heat storage means that more and more waste heat energy can be stored and
used to fulfill the heat and the hot water energy demands instead of being
dissipated. Therefore, we expect decreasing total costs and stable electricity
costs, since the cold storage is set to contain a constant standard value of
26000 liters of water. The waste heat storage water content is going to vary
using the same mechanism as in the previous experiment. Table 4.4 states the
water capacities that the waste heat storage is going to acquire by multiplying
the standard content of 18000 liters with an increasing multiplier factor.

Figure 4.3 reports the evolution of the electricity costs and the total energy
costs with an increased capacity of the waste heat storage.

As in the previous experiment a constant electricity costs saving of 15% in
December is observed using the fix prices, while in June the same saving rate
is achieved using the spot market prices. Furthermore, in this experiment, the
pricing models show the same impact on the total costs in both months.
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4.2. Impact of the Accumulators’ Energy Capacity and of Different Pricing Models

Figure 4.3.: Costs evolution with increasing water volume capacity of the waste
heat storage

As expected, the increasing water capacity for the waste heat storage has no
impact on the electricity costs, but does have an effect on the total costs.
Indeed, the total costs decrease with the increasing capacity of storing big-
ger quantities of waste heat. This effect is particularly visible in December,
since the demand for heat and hot water energy is very high during the winter
months. In December the total costs decrease as an inverse logarithmic func-
tion, while in June the total costs almost equal the electricity costs, meaning
that nearly the whole heat and hot water energy demand is fulfilled with the
use of waste heat.

4.2.3. Cold and Waste Heat Storages Together

As a last experiment the water volume of both the cold and the waste heat
storages vary at the same time, taking values as shown in Table 4.4. Figure
4.4 states the results.

Varying at the same time the water volume of both the cold and the waste
heat storage shows nearly the same results as increasing the water volume of
the waste heat storage only. The only difference are the slightly decreasing
electricity costs triggered by the higher capacity of the cold storage (as already
observed in the experiment with the cold storage only).
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4. Simulation and Results Evaluation

Figure 4.4.: Costs evolution with simultaneously increasing water volume ca-
pacity of the cold and waste heat storages
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5. Conclusions and Future Work

The implemented heating and cooling system model has been proven to be
very flexible and to permit to simulate very different scenarios thanks to its
simple configuration capacity. The implementation has been successfully ver-
ified. The comparison with the model in [9] could not validate our model.
However, since the model implemented by Rasathurai showed some signifi-
cant inconsistencies, it is rather unlikely that our model is the cause of the
discrepancies between the models.

The experiments investigating the impact of the energy capacity of the accu-
mulators and of different pricing models on the electricity costs and on the
total costs revealed very interesting results, which are summarized hereafter:

• The use of different pricing models showed that the fix prices pricing
model is to be preferred in December, while the spot market prices
pricing model shows better performances in June. The saving poten-
tial amounts to 15% on both the electricity and the total costs for
both months using the better pricing model. But looking at the sav-
ing amounts in absolute values, the spot market prices pricing model
should be preferred to the fix prices pricing model since the saving po-
tential in June is twice as much as the one in December with 1400 CHF
against 700 CHF. The savings are to be attributed to differences in the
average electricity price for a given month.

• Increasing the energy capacity of the cold storage alone has a small
effect on the electricity costs decreasing them, but a big impact on the
total costs, increasing them. The repeated production of big quantities
of waste heat in short time periods causes a raising of the total costs,
since the waste heat is dissipated by the cooling tower when it cannot be
stored anymore. A linear production of waste heat over time is therefore
preferred in order to lower the total costs.

• Increasing the energy capacity of the waste heat storage has a big impact
on the total costs, decreasing them. In December the reduction of the
total costs is highly visible, in June instead just a slight decrease is
observed. During this experiment the electricity costs remain constant.

• Increasing the energy capacity of the cold and the waste heat storages
at the same time shows nearly the same results as increasing the energy
capacity of the waste heat storage only. In conclusion we can say that
the best results are given by increasing the waste heat storage energy
capacity and by using the spot market prices pricing model.
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5. Conclusions and Future Work

Although the implemented model fulfilled the goals of this thesis, some im-
provements and extensions could be undertaken. For instance, it would be rea-
sonable to introduce other control strategies, which are optimized by means of
the total costs, or to add a graphical user interface in order to control and play
with the system. Finally, the implemented model could be used for further
experiments, investigating new scenarios.

46



Bibliography

[1] Bornhöft N. A., Page B. and Schutt H. (2010): Modelling of in-
novative Technologies for Container Terminal Yard Stacking System using
an Object-Oriented Simulation Framework. A.G. Bruzzone, et.al. (eds.),
Proc. The International Workshop on Applied Modelling and Simulation,
pp. 310–315.

[2] Bornhöft N. A., Rasathurai S. and Hilty L. M. (2013): Simula-
tion der Smart-Grid-Integration eines modernen Bürogebäudes am Beispiel
von IBM-Schweiz. In: Marx-Gómez, J., Lang, C. V. and Wohlgemuth, V.
(Eds.): IT-gestütztes Ressourcen- und Energiemanagement, Konferenz zu
den 5. Buis Tagen, Berlin, Springer.

[3] Erdmann L. and Hilty L. M. (2010): Scenario Analysis: Exploring the
Macroeconomic Impacts of Information and Communication Technologies
on Greenhouse Gas Emissions. Journal of Industrial Ecology 14(5), pp.
826-843.

[4] Fox-Penner P. (2010): SMART power. Climate Change, the Smart
Grid, and the Future of Electric Utilities. Island Press.

[5] Hilty L. M., Arnfalk P., Erdmann L., Goodman J., Lehmann
M. and Wäger P. (2006): The Relevance of Information and Com-
munication Technologies for Environmental Sustainability – A Prospective
Simulation Study. Environmental Modelling & Software 21(11), pp. 1618-
1629.

[6] Hilty L. M. and Bornhöft N. A. (2013): Smart Grid Integration
of an Existing Office Building: Modelling and Simulation of Adaptation
Strategies. Shaker Verlag.

[7] Page B. and Kreutzer W. (2005): The Java Simulation Handbook.
Simulating Discrete Event Systems with UML and Java. Shaker Verlag.

[8] Petchers N. (2003): Combined Heating, Cooling and Power Handbook.
Technologies and Applications: an Integrated Approach to Energy Resource
Optimization. The Fairmont Press Inc.

[9] Rasathurai S. (2012): Improving on the Electricity Costs of Office Build-
ings by Optimal Smart Grid Integration. Master’s thesis, University of
Zurich.

47



Bibliography

48



A. User Guide

This user guide explains how to run new experiments using the implemented
heating and cooling system simulation tool.

After having imported the project into the Eclipse Integrated Development
Environment4 open the “Experiments” package and the contained class “Run-
Experiment.java”. The class is illustrated in Algorithm A.1.

The “RunExperiment” class instantiates a new heating and cooling system
model and a new experiment. The model and the experiment are then con-
nected together and the experiment is run. In order to instantiate a new
model we first need to set three things: the energy demand and supply time
series (lines 5-9 in the algorithm), the parameters for the heating and cooling
system (lines 12-27) and the parameters for the control strategy (lines 30-33).
The energy demand and supply times series are to be given as .csv files being
formatted as presented in Section 3.2.3. The parameters for the heating and
cooling system are the one described in Section 2.2. The control strategy pa-
rameters are reported in Section 2.5.2.1. At first a strategy has to be picked
(Strategy 1 or Strategy 2), then the parameters for the given strategy can be
set as desired.

Lines 36-43 instantiate a new heating and cooling system model with the given
input values. Line 46 creates a new experiment. In line 49 the model is con-
nected to the experiment. Lines 51-53 set the parameters for the experiment.
Line 53 is particularly important, since it sets after how many minutes to stop
the experiment. After this, the experiment is started (line 56) running for as
many minutes as set on line 53. Line 65 closes the experiment, while line 69
prints out the output values on the console.

Pay particular attention to:

• All the demands and the electricity prices time series have to be syn-
chronized. This means that they all have to start from the same week
day at the same hour and have the same length.

• The experiment’s end-criterion of line 53 is very important and has to
be set in accord with the length in minutes of the energy demands and
supply time series.

4http://www.eclipse.org

49



A. User Guide

Algorithmus A.1 Run experiment class
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B. Algorithms

B.1. Accumulators Life Cycles

Algorithmus B.1 Cold storage life cycle
public void lifeCycle() {

while(true){

//the total rate is bigger than zero
if(totalRate >= 0){

totalEnergyConsumed += unloadRate/60;

}
//the total rate is smaller than zero
else{

//there is enough capacity to satisfy the unload rate
if(currentCapacity + totalRate/60 >= 0){

totalEnergyConsumed += unloadRate/60;

}
//there is not enough capacity to satisfy the unload rate
else{

double missingPower = unloadRate - currentCapacity*60;
//the power demand in excess is satisfied by the cooling unit
myModel.coolingUnit.supplyAdditionalPower(missingPower);
totalEnergyConsumed += unloadRate/60;

}

}
currentCapacity += totalRate/60;
hold(new TimeSpan(1 ,TimeUnit.MINUTES));

}

}
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B. Algorithms

Algorithmus B.2 Waste heat storage life cycle
public void lifeCycle() {

while(true){

myModel.hotWaterStorage.setLoadRate(0);
//the total rate is bigger than zero
if(totalRate >= 0){

totalEnergyConsumed += unloadRate/60;
currentCapacity += totalRate/60;
if(currentCapacity > capacity){

myModel.coolingTower.distroyEnergy(currentCapacity-capacity);
currentCapacity = capacity;

}
if(reloadHotWaterStorage){

this.reloadHotWaterStorage();

}

}
//the total rate is smaller than zero
else{

//there is enough capacity to satisfy the unload rate
if(currentCapacity + totalRate/60 >= 0){

totalEnergyConsumed += unloadRate/60;
currentCapacity += totalRate/60;
if(reloadHotWaterStorage){

this.reloadHotWaterStorage();

}

}
//there is not enough capacity to satisfy the unload rate
else{

//the energy demand in excess is satisfied by the gas heating unit
myModel.gasHeatingUnit.supplyEnergyForHeat(-totalRate/60-currentCapacity);
totalEnergyConsumed += (unloadRate/60)-(-totalRate/60-currentCapacity);
currentCapacity = 0;

}

}
hold(new TimeSpan(1 ,TimeUnit.MINUTES));

}

}
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B.1. Accumulators Life Cycles

Algorithmus B.3 Hot water storage life cycle
public void lifeCycle() {

while(true){

//the total rate is bigger than zero
if(totalRate >= 0){

totalEnergyConsumed += unloadRate/60;
currentCapacity += totalRate/60;

}
//the total rate is smaller than zero
else{

//there is enough capacity to satisfy the unload rate
if(currentCapacity + totalRate/60 >= 0){

totalEnergyConsumed += unloadRate/60;
currentCapacity += totalRate/60;

}
//there is not enough capacity to satisfy the unload rate
else{

//the energy demand in excess is satisfied by the gas heating unit
myModel.gasHeatingUnit.supplyEnergyForHotWater(-totalRate/60-currentCapacity);
totalEnergyConsumed += (unloadRate/60)-(-totalRate/60-currentCapacity);
currentCapacity = 0;

}

}
//if the current capacity drops under the limit then reload
if(currentCapacity < (capacity*startLoadingAt/100)){

myModel.wasteHeatStorage.setReloadHotWaterStorage(true);

}
hold(new TimeSpan(1 ,TimeUnit.MINUTES));

}

}
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B. Algorithms

B.2. Producers Life Cycles

Algorithmus B.4 Cooling unit life cycle
public void lifeCycle() {

while(true){

myModel.coldStorage.setLoadRate(0);
myModel.wasteHeatStorage.setLoadRate(0);
if(reloadColdStorage){

double maxPossibleLoadRate = (myModel.coldStorage.getCapacity() -
myModel.coldStorage.getCurrentCapacity())*60;
if(maxPower*(COP-1) <= maxPossibleLoadRate){

myModel.coldStorage.setLoadRate(maxPower*(COP-1));
totalColdEnergyProduced += (maxPower*(COP-1))/60;
myModel.wasteHeatStorage.setLoadRate(maxPower*COP);
totalWasteHeatProduced += (maxPower*(COP))/60;
totalElectricityCosts += (maxPower/60)*(myModel.priceChanger.getCurrentPrice()/1000);
totalElectricity += (maxPower/60);

}
else if((maxPossibleLoadRate/(COP-1)) >= minPower){

myModel.coldStorage.setLoadRate(maxPossibleLoadRate);
totalColdEnergyProduced += (maxPossibleLoadRate)/60;
myModel.wasteHeatStorage.setLoadRate(maxPossibleLoadRate);
totalWasteHeatProduced += (maxPossibleLoadRate/(COP-1)*COP)/60;
totalElectricityCosts += ((maxPossibleLoadRate/(COP-1))/60)*
(myModel.priceChanger.getCurrentPrice()/1000);
totalElectricity += ((maxPossibleLoadRate/(COP-1))/60);
this.reloadColdStorage = false;

}
else{

this.reloadColdStorage = false;

}

}
hold(new TimeSpan(1 ,TimeUnit.MINUTES));

}

}

54



B.3. Energy Demand and Supply Life Cycles

B.3. Energy Demand and Supply Life Cycles

Algorithmus B.5 Cold energy demand life cycle
public void lifeCycle() {

while(coldDemand.size() > 0){

Demand currentDemand = coldDemand.remove(0);
myModel.coldStorage.setUnloadRate(currentDemand.getPower(),currentDemand.getDuration());
totalColdDemand += currentDemand.getEnergy();
hold(new TimeSpan(currentDemand.getDuration() ,TimeUnit.MINUTES));

}

}

Algorithmus B.6 Electricity supply life cycle
public void lifeCycle() {

while(electricityPrices.size() > 0){

ElectricityPrice newPrice = electricityPrices.remove(0);
currentPrice = newPrice.getPrice();
hold(new TimeSpan(newPrice.getDuration() ,TimeUnit.MINUTES));

}

}
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B. Algorithms

B.4. Control Strategy Life Cycles

Algorithmus B.7 Strategy 1
public void strategy1(){

generateHistoricData();
while(true){

myModel.coolingUnit.setReloadColdStorage(false);
//the approximated minutes before the system will be empty
int minutesToEmpty = getMinutesToEmpty();
if(minutesToEmpty != -1){

//the exact minutes to the best price
int minutesToBestPrice = myModel.priceChanger.getBestPrice(minutesToEmpty);
if(minutesToBestPrice == 0){

myModel.coolingUnit.setReloadColdStorage(true);

}

}
hold(new TimeSpan(1 ,TimeUnit.MINUTES));

}

}

Algorithmus B.8 Generate historic data
private void generateHistoricData() {

double shiftCurve = seriesShift.sample();
for(int i = 0; i < historicColdDemand.size(); i++){

double shiftHour = hourlyShift.sample();
double shiftedPower = (historicColdDemand.get(i).getPower()*percentShift/100)+
shiftCurve+shiftHour;
if(shiftedPower < 0){

shiftedPower = 0;

}
double shiftedEnergy = (historicColdDemand.get(i).getDuration()/60)*shiftedPower;
historicColdDemand.get(i).setPower(shiftedPower);
historicColdDemand.get(i).setEnergy(shiftedEnergy);

}

}
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B.4. Control Strategy Life Cycles

Algorithmus B.9 Strategy 2
public void strategy2(){

int minutesToBestPrice = -1;
while(true){

if(myModel.coldStorage.getCurrentCapacity() <
myModel.coldStorage.getCapacity()*startLoadingAt/100){

if(minutesToBestPrice < 0){

minutesToBestPrice = myModel.priceChanger.getBestPrice(maxShiftHours*60);

}
if(minutesToBestPrice == 0){

myModel.coolingUnit.setReloadColdStorage(true);

}

}
minutesToBestPrice --;
hold(new TimeSpan(1 ,TimeUnit.MINUTES));

}

}
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