
Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany  September 10-12, 2014 

 

CONTEXTO: Leveraging Energy Awareness in the 

Development of Context-Aware Applications 

Maximilian Schirmer1, Sven Bertel2, Jonas Pencke3 

Abstract 

We introduce a new context classification and recognition framework for the development and 

deployment of mobile, context-aware applications. The framework is complemented with an 

energy calculator that specifically assists mobile developers in estimating the energy footprint of 

context-aware applications during the development process with the framework. The framework 

abstracts from the raw context information gathering, allows for sensor fusion, enables the 

prediction of custom and higher-level contexts, and provides for context sharing. 

1. Introduction and Motivation 

The evolution of mobile devices and the general availability of information sources that describe 

the situation and environment (i.e., the context) of mobile users offer new opportunities for 

innovative applications [1]. By constantly monitoring the contexts in which mobile users are 

situated, applications obtain a potential to adapt their behaviour to current contexts more 

intelligently and without user intervention. However, such mobile context awareness comes at a 

price: Novel challenges of the mobile environment and specific constraints of mobile devices and 

their use (e.g., limited battery life, a comparably small screen size, dependence on network 

infrastructure) can severely impact the acceptance of mobile context-based approaches. In addition, 

adequate developer support for the realisation of context-aware applications is currently lacking. 

Consequently, most application developers are on their own when realising the sensing and 

interpreting of context information, or the sharing of context. With the increasing interest in, and a 

growing market for, context-aware applications, developers are more and more in charge of 

carefully designing context-aware applications and they need to be able to competently address 

issues such as privacy [2], availability, precision of context recognition, or energy requirements.  

In this contribution, we address the energy-related implications of developers’ choices of sensing 

components, processing algorithms, and granularity or temporal frequency of sensing. We 

specifically aim at developer energy awareness and present CONTEXTO, an energy-aware 

framework for offline context classification and recognition on mobile devices. The framework 

provides a layered, component-based architecture that can easily be extended, modified, or 

customised. It follows established software engineering patterns to provide high learnability and a 

low threshold for beginners. Within the framework, the energy requirements for all used 

components on a specific device are always made transparent, and information about energy 

requirements can be used early in the design process with the help of the framework’s energy 

calculator, and at runtime.  

The following section will introduce the main concept and energy model of CONTEXTO. Section 3 

will address the software architecture and implementation details. Section 4 will give an overview 

of related work. Section 5 will provide an outlook on future work. 

                                                      
1 Bauhaus-Universität Weimar, Germany, maximilian.schirmer@uni-weimar.de, Usability Research Group 
2 Bauhaus-Universität Weimar, Germany, sven.bertel@uni-weimar.de, Usability Research Group 
3 Bauhaus-Universität Weimar, Germany, jonas.pencke@uni-weimar.de, Usability Research Group 

753



CONTEXTO: An Energy-Aware Framework for Offline Context Classification and Recognition 

 

2. Energy Model 

CONTEXTO aims at providing energy awareness for developers of context-aware applications. We 

hope that insights into the specific energy footprints of alternative implementations of context 

recognition will lead to more energy-efficient applications that, in turn, will be more widely 

accepted by its users. At its core, the framework employs an energy model for a number of 

smartphone devices. The model provides information on the individual power consumption and 

required energy for all of a device’s sensors in relation to a chosen sampling interval [3]. We 

conducted extensive measurement experiments with a software-based remaining capacity approach 

to build energy models for the Apple iPhone 4, 4S, and 5. A detailed description of the 

measurement setup would go beyond the scope of this paper, in essence we read the remaining 

battery capacity in mAh, as provided by the IOPowerSources part of the IOKit framework (please 

see [4] for further details). Information about the energy demand of the current selection of sensors 

is made available to developers at runtime, directly within the framework.  

In contrast to most of the classic context platforms and toolkits that rely on a distributed or 

client/server-based architecture, CONTEXTO is completely self-contained and provides true offline 

context classification and recognition. All steps of the processing pipeline (data acquisition, pre-

processing, context classification, context prediction) happen directly on the mobile device, and 

there is no external service or context platform required. Our tests of the framework have shown 

that recent smartphone models provide the required resources (e.g., CPU speed and RAM size) for 

all processing steps. We think that the offline approach is superior to online approaches because it 

allows for higher levels of privacy (all gathered data remain on the device), reduces the amount of 

energy required for the context recognition (UMTS and WiFi hardware requires most of the energy 

on a smartphone [5]), and does not rely on any kind of network infrastructure. 

Component 
Energy demand (J, 10 minutes) 

iPhone 4 iPhone 4s  iPhone 5 

Sensors 

Accelerometer 29.15 25.13 20.42 

Camera 217.02 317.00 293.89 

GPS 143.29 143.56 180.44 

Gyroscope 61.67 49.53 34.26 

Heading (Compass) 69.23 70.34 37.41 

Features (measurement / computed) 

Camera+GPS 543.31 / 549.63 662.45 / 657.00 638.49 / 646.16 

Accelerometer+Orientation 237.68 / 240.86 247.28 / 241.93 202.97 / 205.79 

Framework (local / remote) 

Baseline 211.86 / 268.18 245.12 / 318.92 181.89 / 249.30 

Battery+Carrier+Contacts+Date+Reminder 302.45 / 380.18 358.31 / 486.87 307.44 / 399.47 

Camera+GPS+Heading+NetworkInfo 671.80 / 750.35 846.49 / 977.99 694.60 / 808.45 

Table 1: Device-specific energy demand overview of hardware sensors 

We conducted an extensive series of experiments on all three devices. On each device, the energy 

demand of about 20 hardware and software sensors (the exact number varies, depending on the 

device capabilities and available sensors) and 10 features was measured with a sampling frequency 

754



Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany  September 10-12, 2014 

 

of 1 Hz over the course of 10 minutes. For every sensor/feature, we repeated each trial three times 

on every device. We also evaluated if our initial argument for local (offline) processing and 

classification directly on the device had a positive energy impact, compared to a remote solution 

where gathered sensor data was sent to a server using WiFi. Table 1 gives a short overview of some 

of the most interesting findings. In the table, we compare the energy demand (expressed in Joule 

for a 10-minute trial, all values are averages across three trials) of selected sensors and features 

across our tested devices. Furthermore, we used the measured energy demand of individual sensors 

to approximate the energy demand of our features. Finally, we evaluated the difference between 

keeping all data local vs. sending data to a remote server for processing. 

Our gathered data indicates that most of the sensors in the iPhone 5 (the most recent device among 

our test devices) show a lower energy demand than the older sensor components in the iPhone 4 

and iPhone 4S. There is an exception with the GPS sensor of the iPhone 5. Since that sensor’s 

performance has drastically improved since the iPhone 4S, we suppose that, for the iPhone 5, 

Apple opted for high accuracy and low latency over low energy demand. 

We were also able to show that the sum of the individual energy demands of sensors very well 

approximates the energy demand of features using these sensors. In most cases, the computed 

energy demand overshoots the measured energy demand; this is probably due to internal 

optimisations of the underlying iOS sensor APIs. 

Finally, our evaluation clearly shows that sending sensor data over a WiFi connection requires a 

considerable amount of energy; and that this overhead cannot be compensated with energy saved 

by outsourcing the processing and classification algorithms. We are still looking into this issue, 

since we assume that very complex processing algorithms and classifiers running on the 

smartphone may change this circumstance. 

3. Implementation 

The CONTEXTO framework follows a layered architecture, based on the proposed architectures in 

[6, 7]. As shown in Figure 1, it separates context usage from context detection. In the Context 

Detection layers, we set a Managing layer that contains context models and persistence 

functionality on top of classifiers and features of the Thinking layer. The basic Sensing layer 

contains all sensors that are used as data sources.  

 

Figure 1: Layer architecture of CONTEXTO 

Our prototype implementation is currently available as an iOS framework, but the concept can be 

adapted to other smartphone operating systems with little effort. The sandbox design of iOS 

currently prohibits a service architecture for providing context data to other applications, but this 

could easily be overcome on other platforms. The framework implementation was tailored to 

support easy extensibility, learnability, customisability, and maintainability by paying particular 

attention to accepted design principles (Separation of Concerns, Single Responsibility, Interface 

755



CONTEXTO: An Energy-Aware Framework for Offline Context Classification and Recognition 

 

Segregation, Dependency Inversion). This means in particular that developers familiar with 

common iOS frameworks should have a fast learning experience and quickly make efficient use of 

CONTEXTO. All components can easily be extended or replaced. In our prototype implementation, 

we currently provide a naïve Bayes classifier; additional classifiers can be added by overriding our 

well-documented JPClassifier class. All key components follow this pattern of extensibility. 

4. CONTEXTO Energy Demand Calculator 

The Energy Demand Calculator (see Figure 2) is a tool for developers to estimate additional 

energy demands of selected information sources (sensors and features) for context acquisition. The 

tool gives developers the ability to determine an approximated energy demand early in the 

development process of a context-aware application. The calculator allows developers to try out 

different combinations of information sources, and visualises their impact on the energy demand of 

the application. Such information allows optimising an application’s energy footprint and increases 

the awareness for major energy consumers.  

 

Figure 2: Graphical user interface of the CONTEXTO Energy Demand Calculator 

The previously introduced energy model serves as the basis for all estimations. In order to compute 

the energy demand of an application, the calculator searches recursively for related sensors, 

generates a unique sensor pool by removing duplicates. The construction kit of the calculator 

provides a Sensor, Feature, and Application component to interact with. This allows developers to 

rebuild their context-aware application and simulate possible configurations. The Application 

component represents the real-world application that is yet to be developed by holding a set of 

assigned feature components. A feature component is composed of necessary Sensor and Feature 

components, just as is the case in the framework. As lowest-level component, Sensors provide 

information about their average and device-specific energy demand. Based on this information, 

Feature and Application components accumulate their own energy demand, show the overall 

energy demand of their sources, and provide a breakdown of the energy demand of sensors they 

When measuring on other devices or other operating systems, the experimental 

design, test execution, and evaluation method presented in this thesis can be 

reused.!

6.4 Energy Demand Calculator!

The Energy Demand Calculator is a tool for developers to estimate the additional 

energy demand of selected information sources for context acquisition. As most 

important benefit, developers have the ability to determine an approximated 

energy demand before starting development of a context-aware application. 

The calculator allows developers to try out various combinations of information 

sources that come into question, and visualises their impact on energy demand. 

This information allows optimisations in regards to the energy footprint of an 

application and raises the awareness of major energy consumers. Figure 56 

shows the user interface of the prototype.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
FIGURE 56. UI  OVERVIEW OF ENERGY DEM AND CALCULATOR!

"  of "106 142

756



Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany  September 10-12, 2014 

 

depend on. Figure 3 shows a detail views of all three component types. In addition, the calculator 

roughly estimates the time the component would need to completely drain a charged battery. This 

estimate helps developers to get a better sense of the actual impact of their application. 

 

Figure 3: Detail view in the CONTEXTO Energy Demand Calculator 

For a still better orientation, the calculator introduces three general energy demand classes: Low, 

Mid, and High. Class membership is defined in terms of varying energy thresholds for sensors, 

features, and applications. Sensors belonging to the low energy class require barely more energy 

than an idle application. Sensors in the mid class have a noticeable impact, but are still far from the 

high energy demand class. The average energy demand of all sensors is approximately 40 J in 10 

minutes. The classification uses this as a reference value and assigns sensors with an above-average 

energy demand into the high energy demand class. The remaining range is divided into two 

identical parts. Sensors belonging to the low energy demand class do not exceed an energy demand 

of 19 J. The mid class ranges from 20 J to 39 J. Table 2 provides an excerpt of the framework’s 

sensor classification. 

Low Mid  High 

BatterySensor AccelerometerSensor CameraSensor 

CalendarSensor AudioInSensor GPSSensor 

ContactsSensor MuteSwitchSensor GyroscopeSensor 

Table 2: Energy demand classes for sensors (excerpt) 

5. Related Work 

The research presented here is embedded in a broad range of mobile, pervasive, and ubiquitous 

computing activities. Within these communities, there has been active research on context models, 

context recognition, and context-aware applications and devices. Concept and implementation of 

CONTEXTO highly benefit from this previous research. Various frameworks for context 

classification and recognition exist: Context Toolkit [8] supports developers in rapid prototyping of 

context-aware applications. The framework relies on a distributed architecture and provides sensor 

fusion. The Hydrogen Context-Framework [9] is based on a centralised architecture comprising 

adaptor, management, and application layers. The centralised design makes it more robust against 

network failures, and permits context use by multiple applications. ContextDroid [10] is an 

The energy model of the previous section serves as basis for the estimations. To 

compute the energy demand of an application the calculator searches 

recursively for related sensors, generates a unique sensor pool by removing 

duplicates and handling the special case of the motion sensor. The construction 

kit of the calculator provides a Sensor, Feature, and Application component to 

interact with. This allows developers to rebuild their context-aware application 

and simulate possible configurations. The application component represents the 

yet to be developed real-world application holding a set of assigned feature 

components. A feature component is composed of necessary sensor and feature 

components, just as is the case in the framework. As lowest component, sensors 

provide information about their average and device-specific energy demand. 

Based on this information, feature and application components accumulate their 

own energy demand, show the overall energy demand of their sources, and 

provide a breakdown of the energy demand of sensors they depend on. Figure 

57 illustrates the detail views of the components. In addition, the calculator 

roughly estimates the duration the component would need to completely drain 

a charged battery. This estimation helps developers to get a better sense of the 

actual impact. !

!
FIGURE 57. DETAIL VIEWS OF CALCULATOR COM PONENTS!

"  of "107 142

757



CONTEXTO: An Energy-Aware Framework for Offline Context Classification and Recognition 

 

expression-based context framework that is implemented as an Android platform service. The 

framework utilises context entities that abstract from sensors. CONTEXTO is also related to research 

in the field of energy-aware software engineering and development: [11] presents the concept of 

energy labels for Android applications, a simple mechanism that easily allows end-users to assess 

the energy demand of their apps. PowerTutor [12] was one of the first energy models that were 

used for a mobile application. Numerous ongoing research regarding the measurement of energy 

demand on smartphones also exists (e.g., [3], [13]). 

6. Future Work 

CONTEXTO aims to provide energy awareness to developers of context-aware applications. In the 

future, we would like to make the framework itself aware of energy requirements. Using an energy 

budget system, developers will then specify a desired energy footprint, and the framework will 

make sure that the allocated budget is respected. This raises questions of the relation between 

energy demand and user requirements such as accuracy, precision, availability, or actuality of 

sensor data and context recognition. These parameters greatly influence the user acceptance of 

context-aware applications, which we will investigate further with the help of the framework. On a 

closer time horizon, we will conduct a user study with developers, to see if our design goals 

regarding the ease of use of the framework have been met. 

References 

[1] W. Clark, D. W. Cearley, and A. Litan. (2012, 8/5/2014). Context-Aware Computing and Social Media 

Are Transforming the User Experience. Available: 

http://www.gartner.com/doc/1916115/contextaware-computing-social-media-transforming 

[2] V. Bellotti and A. Sellen, "Design for privacy in ubiquitous computing environments," in ECSCW'93, 

New York, NY, USA, 1993. 

[3] H. Höpfner and M. Schirmer, "On Measuring Smartphones' Software Energy Requirements," in 

ICSOFT 2012, Rome, Italy, 2012. 

[4] M. Schirmer and H. Höpfner, "Software-based Energy Requirement Measurement for Smartphones," in 

First Workshop for the Development of Energy-aware Software (EEbS 2012), Braunschweig, 

Germany, 2012. 

[5] M. Schirmer and H. Höpfner, "SenST: Approaches for Reducing the Energy Consumption of 

Smartphone-Based Context Recognition," in CONTEXT'11, Karlsruhe, Germany, 2011. 

[6] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on context-aware systems," Int. J. Ad Hoc 

Ubiquitous Comput., vol. 2, 2006. 

[7] S. Loke, "The Structure And Elements Of Context-Aware Pervasive Systems," in Context-Aware 

Pervasive Systems: Architecture for a New Breed of Applications, ed Boca Raton, FL, USA: 

Auerbach Publications, 2007, p. 25. 

[8] A. K. Dey, G. D. Abowd, and D. Salber, "A conceptual framework and a toolkit for supporting the rapid 

prototyping of context-aware applications," Hum.-Comput. Interact., vol. 16, 2001. 

[9] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann, and W. Retschitzegger, "Context-

awareness on mobile devices - the hydrogen approach," in System Sciences 2003, 2003. 

[10] B. van Wissen, N. Palmer, R. Kemp, T. Kielmann, and H. Bal, "ContextDroid: an Expression-Based 

Context Framework for Android," in PhoneSense 2010, Zurich, Switzerland, 2010. 

[11] C. Wilke, S. Richly, G. Püschel, C. Piechnick, S. Götz, and U. Aßmannn, "Energy Labels for Mobile 

Applications," in First Workshop for the Development of Energy-aware Software (EEbS 2012), 

Braunschweig, Germany, 2012. 

[12] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, et al., "Accurate online power 

estimation and automatic battery behavior based power model generation for smartphones," in 

Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software 

codesign and system synthesis, Scottsdale, Arizona, USA, 2010. 

[13] A. Pathak, Y. C. Hu, and M. Zhang, "Where is the energy spent inside my app?: fine grained energy 

accounting on smartphones with Eprof," in Proceedings of the 7th ACM european conference on 

Computer Systems, Bern, Switzerland, 2012. 

758




