Foundation of Computer Science 1

 © Laura Kovács
Revision 1

October 21, 2009

Problem 1. Consider an information system $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ with 5 messages x_{1}, \ldots, x_{5}. The probabilities of transmitting the messages x_{1}, \ldots, x_{5} are, respectively, $p_{1}=0.5$, $p_{2}=0.25, p_{3}=0.125, p_{4}=0.0625$, and $p_{5}=0.0625$.
What is the minimal length of a word code in a binary encoding of X ?
Solution. The minimal word length cannot be bigger than the average word length $L(X)$ of X, nor smaller than the entropy $E(X)$ of X. To this end, as $L(X) \geq E(X)$, the minimal word length is (lower-) bounded by $E(X)$, and it is the closest integer to $E(X)$.
We have:

$$
E(X)=\sum_{i=1}^{5} p_{i} \operatorname{ld}\left(1 / p_{i}\right)=\frac{1}{2} \operatorname{ld}(2)+\frac{1}{4} \operatorname{ld}(4)+\frac{1}{8} \operatorname{ld}(8)+2 \cdot \frac{1}{16} \operatorname{ld}(16)=\frac{15}{8}=1.875 \mathrm{bits}
$$

Hence, the minimal word length is 2 bits.
Problem 2. Let p, q and r be propositional formulas.
2.1 By computing truth tables, show that $p \wedge q \wedge(\neg p \vee \neg q)$ and $\neg p \wedge \neg q \wedge(p \vee q)$ are logically equivalent.

Solution.

p	q	$\neg p$	$\neg q$	$\neg p \vee \neg q$	$p \wedge q \wedge(\neg p \vee \neg q)$	$p \vee q$	$\neg p \wedge \neg q \wedge(p \vee q)$
0	0	1	1	1	0	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	0	1	0
1	1	0	0	0	0	1	0

The formulas $p \wedge q \wedge(\neg p \vee \neg q)$ and $\neg p \wedge \neg q \wedge(p \vee q)$ are logically equivalent as they have the same truth values.
2.2 Prove that $(p \Longrightarrow r) \wedge(q \Longrightarrow r)$ and $(p \vee q) \Longrightarrow r$ are logically equivalent. Your proof should rely on using equivalent transformations rules.

Solution.

$$
\begin{array}{ll}
& (p \vee q) \Longrightarrow r \\
\text { Implication } & \\
\text { deMorgan } & \neg(p \vee q) \vee r \\
\text { Distributivity } & (\neg p \wedge \neg q) \vee r \\
\text { Implication } & (\neg p \vee r) \wedge(\neg q \vee r) \\
& (p \Longrightarrow r) \wedge(q \Longrightarrow r)
\end{array}
$$

2.3 Consider the propositional formula

$$
(p \vee q) \wedge(\neg p \vee r) \Longrightarrow(q \vee r)
$$

By using those simplification rules which you consider appropriate, show that it is a tautology.

Solution.

$$
\begin{array}{ll}
& (p \vee q) \wedge(\neg p \vee r) \Longrightarrow(q \vee r) \\
\text { Implication } & \Longleftrightarrow \\
& \neg((p \vee q) \wedge(\neg p \vee r)) \vee(q \vee r) \\
\text { deMorgan } & \\
& (\neg(p \vee q) \vee \neg(\neg p \vee r)) \vee q \vee r \\
\text { deMorgan } & \\
\text { Associativity } & (\neg p \wedge \neg q) \vee(p \wedge \neg r) \vee q \vee r \\
& (\neg p \wedge \neg q) \vee q \vee(p \wedge \neg r) \vee r \\
\text { Distributivity } & \Longleftrightarrow \\
& ((\neg p \vee q) \wedge(\neg q \vee q)) \vee((p \vee r) \wedge(\neg r \vee r)) \\
& ((\neg p \vee q) \wedge 1) \vee((p \vee r) \wedge 1) \\
& \\
& (\neg p \vee q) \vee(p \vee r) \\
\text { Associativity } & \Longleftrightarrow \\
& \neg p \vee p \vee q \vee r \\
& 1 \vee q \vee r \\
& \Longleftrightarrow
\end{array}
$$

Hence, $(p \vee q) \wedge(\neg p \vee r) \Longrightarrow(q \vee r)$ is always 1, and therefore it is a tautology.
2.4 Consider the propositional formula

$$
(p \vee q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)
$$

Is this formula satisfiable? Is it a tautology? Is it a contradiction?
Solution. Let us first simplify $(p \vee q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$.

$$
\begin{array}{cl}
\text { Distributivity } & (p \vee q \vee \neg r) \wedge(p \vee \neg q \vee \neg r) \\
& (p \vee \neg r) \wedge(q \vee \neg q) \\
\Longleftrightarrow & (p \vee \neg r) \wedge 1 \\
\Longleftrightarrow & p \vee \neg r
\end{array}
$$

Hence, formula $(p \vee q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$ is logically equivalent to $(p \vee \neg r)$. That is, $(p \vee q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$ is satisfiable/tautology/contradiction iff $(p \vee \neg r)$ is, respectively, satisfiable/tautology/contradiction.
Formula ($p \vee \neg r$) is

- satisfiable, for example when $p=1$;
- is not a contradiction (as it is satisfiable, it cannot be always 0);
- is not a tautology as it is not 1 always (for example, it is 0 when $p=0$ and $r=1$).

Thus, formula ($p \vee q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$ is satisfiable, and it is not a tautology, nor a contradiction.

Note: An alternative solution could have been to compute the truth table of ($p \vee q \vee$ $\neg r) \wedge(p \vee \neg q \vee \neg r)$, and conclude from the truth table whether the formula is satisfiable/tautology/contradiction.

Problem 3. Let x denote a variable, and P, Q and R be predicate formulas such that the variable x does not occur as a free variable in Q. Assume that the domain of variables is nonempty.
3.1 Prove using equivalent transformation rules the following formula:

$$
((\exists x:: P(x)) \Longrightarrow Q) \Longrightarrow((\forall x:: P(x)) \Longrightarrow Q)
$$

Solution.

$$
\begin{aligned}
& ((\exists x:: P(x)) \Longrightarrow Q) \Longrightarrow((\forall x:: P(x)) \Longrightarrow Q) \\
& \text { Implication } \\
& \neg((\exists x:: P(x)) \Longrightarrow Q) \vee((\forall x:: P(x)) \Longrightarrow Q) \\
& \text { Implication } \\
& \neg(\neg(\exists x:: P(x)) \vee Q) \vee \neg(\forall x:: P(x)) \vee Q \\
& \stackrel{\text { deMorgan }}{\Longleftrightarrow} \\
& ((\exists x:: P(x)) \wedge \neg Q) \vee(\exists x:: \neg P(x)) \vee Q \\
& \text { Associativity } \\
& ((\exists x:: P(x)) \wedge \neg Q) \vee Q \vee(\exists x:: \neg P(x)) \\
& \text { Distributivity } \\
& (((\exists x:: P(x)) \vee Q) \wedge(\neg Q \vee Q)) \vee(\exists x:: \neg P(x)) \\
& \Longleftrightarrow \\
& (((\exists x:: P(x)) \vee Q) \wedge 1) \vee(\exists x:: \neg P(x)) \\
& \Longleftrightarrow \\
& (\exists x:: P(x)) \vee Q \vee(\exists x:: \neg P(x))
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{\text { Associativity }}{\Longleftrightarrow} & \\
& (\exists x:: P(x)) \vee(\exists x:: \neg P(x)) \vee Q \\
\text { Distributivity } \exists \vee & \\
& (\exists x::(P(x) \vee \neg P(x))) \vee Q \\
& \\
& (\exists x:: 1) \vee Q \\
& \\
& 1 \vee Q \\
& \\
& 1
\end{aligned}
$$

3.2 Establish the logical equivalence:

$$
\forall x::(P(x) \Longrightarrow Q) \Leftrightarrow(\exists x:: P(x)) \Longrightarrow Q
$$

Solution.

$$
\begin{array}{cl}
& \forall x::(P(x) \Longrightarrow Q) \\
x \text { is not a free xariable in } Q & \\
& \forall x::(\neg P(x) \vee Q) \\
\text { IeMcation } & (\forall x:: \neg P(x)) \vee Q \\
& \neg(\exists x:: P(x)) \vee Q \\
\text { Implication } & (\exists x:: P(x)) \Longrightarrow Q
\end{array}
$$

3.3 Suppose that the domain of x consists of $-4,-2,4$, and 8 . Express the statements below without using quantifiers, instead using only negations, conjunctions and disjunctions.
(a) $\forall x:: P(x)$;
(b) $\exists x::(\neg P(x)) \wedge \forall x::((x \neq 2) \Longrightarrow P(x))$

Solution.

(a) $P(-4) \wedge P(-2) \wedge P(4) \wedge P(8)$;
(b) Note that $\exists x::(\neg P(x))$ is logically equivalent to $\neg P(-4) \vee \neg P(-2) \vee \neg P(4) \vee \neg P(8)$. Further, $\forall x::((x \neq 2) \Longrightarrow P(x))$ is logically equivalent to $\forall x::((x=2) \vee P(x))$, which is logically equivalent to $P(-4) \wedge P(-2) \wedge P(4) \wedge P(8) .{ }^{1}$ Thus, $\exists x::(\neg P(x)) \wedge \forall x::((x \neq 2) \Longrightarrow P(x))$ is logically equivalent to

$$
(\neg P(-4) \vee \neg P(-2) \vee \neg P(4) \vee \neg P(8)) \wedge P(-4) \wedge P(-2) \wedge P(4) \wedge P(8)
$$

that is always 0 .

[^0]3.4 What is the truth value of the formula $(\operatorname{Anz} x:: P(x))=1 \Longrightarrow \exists x:: P(x)$?

Solution. The truth value of the formula is 1 .
Explanation:
Assume that $(\operatorname{Anz} x:: P(x))=1$ holds. Thus, the number of objects x such that $P(x)$ holds is 1 . Therefore, there exists an x (actually, only one x) such that $P(x)$ holds. Hence, $\exists x:: P(x)$ holds.

Note: However, (Anz $x:: P(x))=1 \Longleftrightarrow \exists x:: P(x)$ does NOT hold in general! (Why?)
3.5 Determine whether $\forall x::(P(x) \Longrightarrow R(x))$ and $\forall x:: P(x) \Longrightarrow \forall x:: R(x)$ are logically equivalent. Justify your answer!

Solution. They are not equivalent.
Let $P(x)$ be any predicate that is sometimes 1 and sometimes 0 . Let $R(x)$ be a predicate that is always 0 (independently what the value of x is).
Note that $\forall x:: P(x)$ is 0 . Then, $\forall x:: P(x) \Longrightarrow \forall x:: R(x)$ is 1 , but $\forall x::(P(x) \Longrightarrow$ $R(x))$ is 0 . Hence, $\forall x:: P(x) \Longrightarrow \forall x:: R(x)$ and $\forall x::(P(x) \Longrightarrow R(x))$ have different truth values, therefore they are not logically equivalent.

[^0]: ${ }^{1}$ We have $(-4=2 \vee P(-4)) \wedge(-2=2 \vee P(-2)) \wedge(4=2 \vee P(4)) \wedge(8=2 \vee P(8))$, which is equivalent to $P(-4) \wedge P(-2) \wedge P(4) \wedge P(8)$.

