Foundation of Computer Science 1

©Laura Kovács

Revision 1 October 21, 2009

Problem 1. Consider an information system $X = \{x_1, x_2, x_3, x_4, x_5\}$ with 5 messages x_1, \ldots, x_5 . The probabilities of transmitting the messages x_1, \ldots, x_5 are, respectively, $p_1 = 0.5$, $p_2 = 0.25$, $p_3 = 0.125$, $p_4 = 0.0625$, and $p_5 = 0.0625$.

What is the minimal length of a word code in a binary encoding of X?

Solution. The minimal word length cannot be bigger than the average word length L(X) of

X, nor smaller than the entropy E(X) of X. To this end, as $L(X) \ge E(X)$, the minimal word length is (lower-)bounded by E(X), and it is the closest integer to E(X). We have:

$$E(X) = \sum_{i=1}^{5} p_i \mathrm{ld}(1/p_i) = \frac{1}{2} \mathrm{ld}(2) + \frac{1}{4} \mathrm{ld}(4) + \frac{1}{8} \mathrm{ld}(8) + 2 \cdot \frac{1}{16} \mathrm{ld}(16) = \frac{15}{8} = 1.875 \mathrm{bits}$$

Hence, the minimal word length is 2 bits.

Problem 2. Let p, q and r be propositional formulas.

2.1 By computing truth tables, show that $p \land q \land (\neg p \lor \neg q)$ and $\neg p \land \neg q \land (p \lor q)$ are logically equivalent.

Solution.

p	q	$\neg p$	$\neg q$	$\neg p \vee \neg q$	$p \wedge q \wedge (\neg p \vee \neg q)$	$p \vee q$	$\neg p \land \neg q \land (p \lor q)$
0	0	1	1	1	0	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	0	1	0
1	1	0	0	0	0	1	0

The formulas $p \wedge q \wedge (\neg p \vee \neg q)$ and $\neg p \wedge \neg q \wedge (p \vee q)$ are logically equivalent as they have the same truth values.

2.2 Prove that $(p \implies r) \land (q \implies r)$ and $(p \lor q) \implies r$ are logically equivalent. Your proof should rely on using equivalent transformations rules.

Solution.

$$\begin{array}{ccc} (p \lor q) \implies r \\ \\ Implication & \\ \neg (p \lor q) \lor r \\ \\ de \underbrace{Morgan} & \\ (\neg p \land \neg q) \lor r \\ \\ Distributivity & \\ (\neg p \lor r) \land (\neg q \lor r) \\ \\ Implication & \\ (p \implies r) \land (q \implies r) \end{array}$$

2.3 Consider the propositional formula

$$(p \lor q) \land (\neg p \lor r) \implies (q \lor r).$$

By using those simplification rules which you consider appropriate, show that it is a tautology.

Solution.

$$\begin{array}{c} (p \lor q) \land (\neg p \lor r) \implies (q \lor r) \\ \hline \text{Implication} \\ \neg ((p \lor q) \land (\neg p \lor r)) \lor (q \lor r) \\ \hline \text{deMorgan} \\ (\neg (p \lor q) \lor (\neg (\neg p \lor r))) \lor q \lor r \\ \hline \text{deMorgan} \\ (\neg p \land \neg q) \lor (p \land \neg r) \lor q \lor r \\ \hline \text{Associativity} \\ ((\neg p \land q) \land (q \lor q)) \lor ((p \lor r) \land (\neg r \lor r)) \\ \hline \\ \text{Distributivity} \\ ((\neg p \lor q) \land (\neg q \lor q)) \lor ((p \lor r) \land (\neg r \lor r)) \\ \Leftrightarrow \\ ((\neg p \lor q) \land (1) \lor ((p \lor r) \land 1) \\ \Leftrightarrow \\ (\neg p \lor q) \lor (p \lor r) \\ \hline \\ \text{Associativity} \\ \neg p \lor p \lor q \lor r \\ \Leftrightarrow \\ 1 \lor q \lor r \\ \Leftrightarrow \\ 1 \end{array}$$

Hence, $(p \lor q) \land (\neg p \lor r) \implies (q \lor r)$ is always 1, and therefore it is a tautology.

2.4 Consider the propositional formula

$$(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$$

Is this formula satisfiable? Is it a tautology? Is it a contradiction? Solution. Let us first simplify $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$.

$$\begin{array}{c} (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r) \\ Distributivity \\ (p \lor \neg r) \land (q \lor \neg q) \\ \Longleftrightarrow \\ (p \lor \neg r) \land 1 \\ \Longleftrightarrow \\ p \lor \neg r \end{array}$$

Hence, formula $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$ is logically equivalent to $(p \lor \neg r)$. That is, $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$ is satisfiable/tautology/contradiction iff $(p \lor \neg r)$ is, respectively, satisfiable/tautology/contradiction.

Formula $(p \lor \neg r)$ is

- satisfiable, for example when p = 1;
- is not a contradiction (as it is satisfiable, it cannot be always 0);
- is not a tautology as it is not 1 always (for example, it is 0 when p = 0 and r = 1).

Thus, formula $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$ is satisfiable, and it is not a tautology, nor a contradiction.

Note: An alternative solution could have been to compute the truth table of $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$, and conclude from the truth table whether the formula is satisfiable/tautology/contradiction.

Problem 3. Let x denote a variable, and P, Q and R be predicate formulas such that the variable x does not occur as a free variable in Q. Assume that the domain of variables is nonempty.

3.1 Prove using equivalent transformation rules the following formula:

$$((\exists x :: P(x)) \implies Q) \implies ((\forall x :: P(x)) \implies Q)$$

Solution.

$$((\exists x :: P(x)) \implies Q) \implies ((\forall x :: P(x)) \implies Q)$$

$$Implication$$

$$\neg((\exists x :: P(x)) \implies Q) \lor ((\forall x :: P(x)) \implies Q)$$

$$Implication$$

$$\neg((\exists x :: P(x)) \lor Q) \lor (\forall x :: P(x)) \lor Q$$

$$de \underbrace{Morgan}$$

$$((\exists x :: P(x)) \land \neg Q) \lor (\exists x :: \neg P(x)) \lor Q$$

$$Associativity$$

$$((\exists x :: P(x)) \land \neg Q) \lor Q \lor (\exists x :: \neg P(x))$$

$$Distributivity$$

$$(((\exists x :: P(x)) \lor Q) \land (\neg Q \lor Q)) \lor (\exists x :: \neg P(x))$$

$$\Leftrightarrow$$

$$(((\exists x :: P(x)) \lor Q) \land 1) \lor (\exists x :: \neg P(x))$$

$$\Leftrightarrow$$

$$(\exists x :: P(x)) \lor Q \lor (\exists x :: \neg P(x))$$

3.2 Establish the logical equivalence:

$$\forall x :: (P(x) \implies Q) \Leftrightarrow (\exists x :: P(x)) \implies Q$$

Solution.

Implication

$$\forall x :: (\neg P(x) \lor Q)$$

 $(\forall x :: \neg P(x)) \lor Q$

 $\neg(\exists x :: P(x)) \lor Q$

 $\forall x :: (P(x) \implies Q)$

x is not a free variable in Q

 $\overset{deMorgan}{\longleftrightarrow}$

Implication

 $(\exists x :: P(x)) \implies Q$

- **3.3** Suppose that the domain of x consists of -4, -2, 4, and 8. Express the statements below without using quantifiers, instead using only negations, conjunctions and disjunctions.
 - (a) $\forall x :: P(x);$ (b) $\exists x :: (\neg P(x)) \land \forall x :: ((x \neq 2) \implies P(x))$

Solution.

- (a) $P(-4) \wedge P(-2) \wedge P(4) \wedge P(8);$
- (b) Note that $\exists x :: (\neg P(x))$ is logically equivalent to $\neg P(-4) \lor \neg P(-2) \lor \neg P(4) \lor \neg P(8)$. Further, $\forall x :: ((x \neq 2) \implies P(x))$ is logically equivalent to $\forall x :: ((x = 2) \lor P(x))$, which is logically equivalent to $P(-4) \wedge P(-2) \wedge P(4) \wedge P(8)$.¹ Thus, $\exists x :: (\neg P(x)) \land \forall x :: ((x \neq 2) \implies P(x))$ is logically equivalent to

$$\left(\neg P(-4) \lor \neg P(-2) \lor \neg P(4) \lor \neg P(8)\right) \land P(-4) \land P(-2) \land P(4) \land P(8)$$

that is always 0.

¹We have $(-4 = 2 \lor P(-4)) \land (-2 = 2 \lor P(-2)) \land (4 = 2 \lor P(4)) \land (8 = 2 \lor P(8))$, which is equivalent to $P(-4) \wedge P(-2) \wedge P(4) \wedge P(8).$

3.4 What is the truth value of the formula (Anz x :: P(x)) = 1 $\implies \exists x :: P(x)$?

Solution. The truth value of the formula is 1.

Explanation:

Assume that (Anz x :: P(x)) = 1 holds. Thus, the number of objects x such that P(x) holds is 1. Therefore, there exists an x (actually, only one x) such that P(x) holds. Hence, $\exists x :: P(x)$ holds.

Note: However, $(\text{Anz } x :: P(x)) = 1 \iff \exists x :: P(x) \text{ does NOT hold in general! (Why?)}$

3.5 Determine whether $\forall x :: (P(x) \implies R(x))$ and $\forall x :: P(x) \implies \forall x :: R(x)$ are logically equivalent. Justify your answer!

Solution. They are not equivalent.

Let P(x) be any predicate that is sometimes 1 and sometimes 0. Let R(x) be a predicate that is always 0 (independently what the value of x is).

Note that $\forall x :: P(x) \text{ is } 0$. Then, $\forall x :: P(x) \implies \forall x :: R(x) \text{ is } 1$, but $\forall x :: (P(x) \implies R(x))$ is 0. Hence, $\forall x :: P(x) \implies \forall x :: R(x) \text{ and } \forall x :: (P(x) \implies R(x))$ have different truth values, therefore they are not logically equivalent.