
Foundation of Computer Science 1
c©Laura Kovács

Revision 3
December 9, 2009

Problem 1.

(1.1) Let a, b, c, d, e, f, x, y, z, w ∈ N. For each of the expressions

(i) (x + y) ∗ (x− 3)

(ii) ((x− y) ∗ z + (y − w)) ∗ x

(ii)
((

((a ∗ x + b) ∗ x + c) ∗ x + d
)
∗ x + e

)
∗ x + f

do the following:

(a) Construct the syntax tree;

(b) Find the equivalent prefix notation;

(c) Find the equivalent postfix notation.

Solution.

(i) Expression (x + y) ∗ (x− 3).

(a) Syntax Tree:

*

+ -

x y x 3

(b) Prefix notation: ∗+ xy − x3

(c) Postfix notation: xy + x3− ∗

(ii) Expression ((x− y) ∗ z + (y − w)) ∗ x.

(a) Syntax Tree:

*

+ x

* -

- y wz

yx

(b) Prefix notation: ∗+ ∗ − xyz − ywx

(c) Postfix notation: xy − z ∗ yw −+x∗

(iii) Expression
((

((a ∗ x + b) ∗ x + c) ∗ x + d
)
∗ x + e

)
∗ x + f

(a) Syntax Tree:

+

* f

+ x

* e

x+

d*

x+

c*

x+

b*

xa

(b) Prefix notation: + ∗ + ∗ + ∗ + ∗ + ∗ a x b x c x d x e x f

(c) Postfix notation: a x ∗ b + x ∗ c + x ∗ d + x ∗ e + x ∗ f +

(1.2) Let a, b, c, d, e, f ∈ N. Convert the expression abc ∗+def +−∗ from postfix to

(a) infix;

(b) prefix.

Solution. We first construct the syntax tree of the arithmetic expression abc∗+def +−∗ given
in postfix. The syntax tree is:

*

+ -

a *

b c

d +

e f

(a) By the infix traversal of the above syntax tree, the infix notation of the arithmetic ex-
pression is:

a + b ∗ c ∗ d − e + f

(b) By the prefix traversal of the above syntax tree, the prefix notation of the arithmetic
expression is:

∗ + a ∗ b c − d + e f

Problem 2.

(2.1) Consider the graph given by the adjacency matrix:

1 2 3 4 5 6 7
1 0 1 0 1 1 0 0
2 1 0 1 0 1 1 1
3 0 1 0 0 1 1 1
4 1 0 0 0 1 1 0
5 1 1 1 1 0 1 1
6 0 1 1 1 1 0 1
7 0 1 1 0 1 1 0

(a) What is the degree of node 7?

(b) Find a 5-clique in the graph, and list the set of nodes defining this 5-clique!

Solution. We first construct the graph represented by the above given adjacency matrix.
The graph is:

1 2 3

4 6 7

5

(a) As there are 4 edges to which node 7 is incident to, the degree of node 7 is 4.

(b) A 5-clique (that is a complete subgraph with 5 nodes) in the graph is formed by the nodes:

{2, 3, 5, 6, 7}.

(2.2) Hamilton and Euler went to holiday. They visited a country with 7 cities (nodes) con-
nected by a system of roads (edges) described by the graph given in the following adjacency
matrix:

1 2 3 4 5 6 7
1 0 1 0 1 0 0 0
2 1 0 1 1 1 0 0
3 0 1 0 0 1 1 0
4 1 1 0 0 1 0 0
5 0 1 1 1 0 1 1
6 0 0 1 0 1 0 1
7 0 0 0 0 1 1 0

(a) Could Hamilton visit each city once and return to his starting city? If yes, list the
path defining the corresponding hamiltonian cycle!

(b) Could Euler visit each road once? If yes, give the path defining the corresponding
eulerian path!

Solution. We first construct the graph represented by the above given adjacency matrix.
The graph is:

1 2 3

4 5 6

7

(a) Hamilton could follow, for example, the hamiltonian cycle:

(1, 2, 3, 6, 7, 5, 4, 1)

(b) Euler could not find an eulerian path in the graph!

The reason is as follows.

Suppose that Euler wants to start at city a and finish at city b.
(a and b denote nodes of the graph).

- Let c be a city different than a and b. Whenever Euler arrives at c, he needes to
leave c via a road that he has not taken before. So, c has to be incident to an even
number of roads, that is c has to have an even degree. Hence, any city c different
than a and b has to have an even degree.

- Further, if a is the same as b (that is Euler wants to make an eulerian cycle), then a (and b) has
to have even degree.

- Finally, if a and b are not the same (that is Euler wants to make an eulerian path that is not a cycle),
then a and b have to have odd degrees.

Hence, as summary, Euler could visit each road in the graph exactly once if there
are at most two cities with odd degrees. However, the cities 1, 2, 3, 4, 5, 6, 7 have
respectively degrees 2, 4, 3, 3, 5, 3, 2. Hence, there are four cities (nodes 3, 4, 5 and
6) with odd degrees. Therefore, Euler cannot make an eulerian path in the graph!

Problem 3. Estimate the upper bounds of the following functions in n ∈ N. Your estimations
should be as tight as possible!
Justify your answer!

(3.1) n + log n;

Solution.

n + log n ∈ O(n + log n)O(log n) ⊂ O(n)=
PlusRule=

O(n) + O(log n)O(log n) ⊂ O(n)=
O(log n) ⊂ O(n)=

O(n)O(log n) ⊂ O(n)=
Hence,

n + log n ∈ O(n).

(3.2) (2 ∗ n2) ∗ 2n;

Solution.

2 ∗ n2 ∗ 2n ∈ O(2 ∗ n2 ∗ 2n)MultiplicationRule=
ConstantRule=

O(n2 ∗ 2n)MultiplicationRule=
MultiplicationRule=

O(n2) ∗O(2n)MultiplicationRule=

Since, n2 ≤ 2n, we have n2 ∗ 2n ≤ 4n. That is O(n2 ∗ 2n)⊆O(4n), and hence:

2 ∗ n2 ∗ 2n ∈ O(4n)

Moreover, we claim that O(4n) is the tightest upper bound for 2 ∗ n2 ∗ 2n. To justify this
claim, we need to prove that O(4n) = O(n2 ∗ 2n), that is we need to prove that

O(n2 ∗ 2n) ⊆ O(4n) and O(4n) ⊆ O(n2 ∗ 2n).

We have already proved that O(n2 ∗ 2n) ⊆ O(4n). We are thus left with proving

O(4n) ⊆ O(n2 ∗ 2n), that is 4n ∈ O(n2 ∗ 2n).

This is equivalent with proving that log 4n ∈ O(log
(
n2 ∗ 2n

)
). To this end, we have:

log 4n = n ∗ log 4 ∈ O(n ∗ log 4) ConstantRule= O(n),

that is log 4n ∈ O(n).
Further,

O(log
(
n2 ∗ 2n

)
) = O(log n2 + log 2n)

AdditionRule= O(2 ∗ log n) + O(n ∗ log 2)

ConstantRule= O(log n) + O(n)

O(log n)⊂O(n)= O(n)

Hence, log 4n ∈ O(n) = O(log
(
n2 ∗ 2n

)
), concluding that 4n ∈ O(n2 ∗ 2n). We thus have

O(4n) = O(n2 ∗ 2n), yielding finally that

2 ∗ n2 ∗ 2n ∈ O(4n) is the tightest upper bound.

Let us next show that O(cn) = O(en) for any constant c ≥ 2. This is equivalent to
showing that O(log cn) = O(log en), as it is given below.

O(n ∗ log c) = O(n ∗ log c)

ConstantRule= O(n)

= O(log en)

Thus, O(cn) = O(en) for any constant c ≥ 2.

In particular, we hence have O(4n) = O(en), and therefore we conclude:

2 ∗ n2 ∗ 2n ∈ O(en).

As a consequence of the above reasoning, note the following two rules:

O(cn) = O(en) for any constant c ≥ 2

O(cn) = O(ck∗n) for any constants c, k ≥ 1

That is, for example, O(2n) = O(2n ∗ 2n) and O(en) = O(4n).

(3.3) log(3 ∗ n2) with n > 0;

Solution.

log(3 ∗ n2) ∈ O(log(3 ∗ n2))MultiplicationRule=
=

O(log3 + log n2))MultiplicationRule=
AdditionRule=

O(log 3) + O(2 ∗ log n)MultiplicationRule=
ConstantRule=

O(1) + O(log n)MultiplicationRule=
O(1)⊂O(log n)=

O(log n)MultiplicationRule=

Hence,
log(3 ∗ n2) ∈ O(log n).

(3.4) ld(3 ∗ n2 − 1) with n > 0;

Solution. Since 3 ∗ n2 − 1 ≤ 3 ∗ n2 for every n ∈ N, we have ld(3 ∗ n2 − 1) ≤ ld(3 ∗ n2).
Hence,

ld(3 ∗ n2 − 1) ∈ O(ld(3 ∗ n2))MultiplicationRule=
=

O(ld(3) + ld(n2))MultiplicationRule=
AdditionRule=

O(ld(3)) + O(2 ∗ ld(n))MultiplicationRule=
ConstantRule=

O(1) + O(ld(n))MultiplicationRule=
O(1)⊂O(ld(n))=

O(ld(n))MultiplicationRule=
=

O(1
log 2 ∗ log n)MultiplicationRule=

ConstantRule=
O(log n)MultiplicationRule=

Hence,
ld(3 ∗ n2 − 1) ∈ O(log n).

Note that this is the tighest upper bound.

(3.5) n∗(n+1)
2 + 3 ∗ n;

Solution.

n∗(n+1)
2 + 3 ∗ n ∈ O(n∗(n+1)

2 + 3 ∗ n)MultiplicationRule=
AdditionRule=

O(n∗(n+1)
2) + O(3 ∗ n)MultiplicationRule=

ConstantRule=
O(n ∗ (n + 1)) + O(n)MultiplicationRule=

AdditionRule=
O(n2 + 3 ∗ n)MultiplicationRule=

AdditionRule=
O(n2) + O(3 ∗ n)MultiplicationRule=

ConstantRule=
O(n2) + O(n)MultiplicationRule=

O(n)⊂O(n2)=
O(n2)MultiplicationRule=

Hence,
n ∗ (n + 1)

2
+ 3 ∗ n ∈ O(n2).

(3.6) O(f)3 + O(g) ∗O(h), where f, g, h are functions in n ∈ N;

Solution.

O(f)3 + O(g) ∗O(h) MultiplicationRule= O(f3) + O(g ∗ h)

AdditionRule= O(f3 + g ∗ h)

Hence,
O(f)3 + O(g) ∗O(h) = O(f3 + g ∗ h).

(3.7) 2 ∗O(f) + O(g), where f, g are functions in n ∈ N.

Solution.

2 ∗O(f) + O(g) AdditionRule= O(2 ∗ f) + O(g)

ConstantRule= O(f) + O(g)

AdditionRule= O(f + g)

Hence,
2 ∗O(f) + O(g) = O(f + g).

