Problem 1.

(1.1) Let $a, b, c, d, e, f, x, y, z, w \in \mathbb{N}$. For each of the expressions

- (i) (x+y) * (x-3)
- (ii) ((x-y) * z + (y-w)) * x
- (ii) (((a * x + b) * x + c) * x + d) * x + e) * x + f

do the following:

- (a) Construct the syntax tree;
- (b) Find the equivalent prefix notation;
- (c) Find the equivalent postfix notation.

(1.2) Let $a, b, c, d, e, f \in \mathbb{N}$. Convert the expression abc * + def + -* from postfix to

- (a) infix;
- (b) prefix.

Problem 2.

(2.1) Consider the graph given by the adjacency matrix:

	1	2	3	4	5	6	7
1	0	1	0	1	1	0	0
2	1	0	1	0	1	1	1
3	0	1	0	0	1	1	1
4	1	0	0	0	1	1	0
5	1	1	1	1	0	1	1
6	0	1	1	1	1	0	1
7	0	1	1	0	1	1	0

- (a) What is the degree of node 7?
- (b) Find a 5-clique in the graph, and list the set of nodes defining this 5-clique!
- (2.2) Hamilton and Euler went to holiday. They visited a country with 7 cities (nodes) connected by a system of roads (edges) described by the graph given in the following adjacency matrix:

	1	2	3	4	5	6	7
1	0	1	0	1	0	0	0
2	1	0	1	1	1	0	0
3	0	1	0	0	1	1	0
4	1	1	0	0	1	0	0
5	0	1	1	1	0	1	1
6	0	0	1	0	1	0	1
7	0	0	0	0	1	1	0

- (a) Could Hamilton visit each city once and return to his starting city? If yes, list the path defining the corresponding hamiltonian cycle!
- (b) Could Euler visit each road once? If yes, give the path defining the corresponding eulerian path!

Problem 3. Estimate the upper bounds of the following functions in $n \in \mathbb{N}$. Your estimations should be as tight as possible!

- (3.1) $n + \log n;$
- (3.2) $(2*n^2)*2^n;$
- (3.3) $\log(3 * n^2)$ with n > 0;
- (3.4) $ld(3*n^2-1)$ with n > 0;
- (3.5) $\frac{n*(n+1)}{2} + 3*n;$
- (3.6) $O(f)^3 + O(g) * O(h)$, where f, g, h are functions in $n \in \mathbb{N}$;
- (3.7) 2 * O(f) + O(g), where f, g are functions in $n \in \mathbb{N}$.

Justify your answer!