Problem 1. Consider the binary relation \approx_3 over the integer numbers \mathbb{Z} defined as:

 $a \approx_3 b$ if and only if a - b is a multiple of 3 (where $a, b \in \mathbb{Z}$)

Prove that \approx_3 is an equivalence relation!

Problem 2.

(2.1) Consider the binary relation \gg over the natural numbers \mathbb{N} defined as:

 $a \gg b$ if and only if $b = a^r$ for some $r \in \mathbb{N}$ (where $a, b \in \mathbb{N}$)

- (a) Prove that \gg is a partial order!
- (b) Consider the set $A = \{1, 2, 4, 16\} \subset \mathbb{N}$. Give three different upper bounds of A with respect to the relation \gg . What is lub(A)?
- (c) Is \gg an equivalence relation? Justify your answer!
- (d) Is \gg a total order? Justify your answer!

Problem 3. Let s_1 , s_2 and s_3 be program statements, and consider Q be a predicate formula over program variables. What are the truth values of the following statements?

(3.1)
$$\operatorname{wp}(s_1; s_2; s_3, Q) = \operatorname{wp}(s_1; s_2, \operatorname{wp}(s_3, Q));$$

(3.2) wp $(s_1; s_2; s_3, Q) = wp(s_2; s_1, wp(s_3, Q));$

(3.2) wp(<u>while</u> (*True*) <u>do</u> s_1, Q) \implies wp($s_1,$ wp(<u>while</u> (*True*) <u>do</u> s_1, Q));

Problem 4. Let x and y be program variables with values from the natural numbers \mathbb{N} .

- (4.1) What is $wp(x := x + 1, x \le 10)$?
- (4.2) What is wp $(x := x + 1; y := y + x, x \le 10)$?
- (4.3) What is wp $(y := y + x; x := x + 1, x + y \le 10)$?
- (4.4) What is wp $(x := x + 1; y := y + x, x + y \le 10)$?
- (4.5) What is wp(x := x + 1; y := y + x, True)?
- (4.6) What is wp $(x := x + 1; x := x 1, x + y \le 10)$?
- (4.7) What is wp $(y := x 1; x := y + 1, x + y \le 10)$?
- (4.8) What is wp(if (x > 5) then x := x 1 else x := x + 1, $x + y \le 10$?
- (4.9) What is wp(if (x > 5) then x := x 1; y := y x else $x := x + 1; y := y + x, x + y \le 10$?

Problem 5. Let x and y be program variables with values from the integer numbers \mathbb{Z} . Consider the Hoare triple:

 $\{x = 1 \land y = 1\} \quad \underline{\text{while}} \ (x < 10) \ \underline{\text{do}} \ x := x + 1; \\ y := y + 1 \ \underline{\text{end while}} \quad \{x = 10 \land y = 10\},$

annotated with the loop invariant $(x \leq 10 \land x = y)$.

What are the verification conditions of the above given Hoare triple?

Problem 6. Let x and y be program variables with values from the natural numbers \mathbb{N} . Consider the Hoare triple:

 $\{x = 1\}$ while (x < 10) do x := x + 1 end while $\{x = 10\}$.

What are the truth values of the following statements?

(6.1) $x \leq 10$ is an invariant;

(6.2) x < 10 is an invariant;

(6.3) x = 10 is an invariant.