Problem 1. Consider the binary relation \approx_{3} over the integer numbers \mathbb{Z} defined as:

$$
a \approx_{3} b \quad \text { if and only if } a-b \text { is a multiple of } 3 \quad \text { (where } a, b \in \mathbb{Z} \text {) }
$$

Prove that \approx_{3} is an equivalence relation!

Problem 2.

(2.1) Consider the binary relation \gg over the natural numbers \mathbb{N} defined as:

$$
a \gg b \quad \text { if and only if } b=a^{r} \text { for some } r \in \mathbb{N} \quad \text { (where } a, b \in \mathbb{N} \text {) }
$$

(a) Prove that \gg is a partial order!
(b) Consider the set $A=\{1,2,4,16\} \subset \mathbb{N}$. Give three different upper bounds of A with respect to the relation \gg. What is $\operatorname{lub}(A)$?
(c) Is \gg an equivalence relation? Justify your answer!
(d) Is \gg a total order? Justify your answer!

Problem 3. Let s_{1}, s_{2} and s_{3} be program statements, and consider Q be a predicate formula over program variables. What are the truth values of the following statements?
(3.1) $\operatorname{wp}\left(s_{1} ; s_{2} ; s_{3}, Q\right)=\operatorname{wp}\left(s_{1} ; s_{2}, \operatorname{wp}\left(s_{3}, Q\right)\right)$;
(3.2) $\operatorname{wp}\left(s_{1} ; s_{2} ; s_{3}, Q\right)=\operatorname{wp}\left(s_{2} ; s_{1}, \operatorname{wp}\left(s_{3}, Q\right)\right)$;
(3.2) $\mathrm{wp}\left(\underline{\text { while }}(\right.$ True $\left.) \underline{\text { do }} s_{1}, Q\right) \Longrightarrow \operatorname{wp}\left(s_{1}, \mathrm{wp}\left(\right.\right.$ while (True) do $\left.\left.s_{1}, Q\right)\right)$;

Problem 4. Let x and y be program variables with values from the natural numbers \mathbb{N}.
(4.1) What is $\operatorname{wp}(x:=x+1, x \leq 10)$?
(4.2) What is $\operatorname{wp}(x:=x+1 ; y:=y+x, x \leq 10)$?
(4.3) What is $\operatorname{wp}(y:=y+x ; x:=x+1, x+y \leq 10)$?
(4.4) What is $\operatorname{wp}(x:=x+1 ; y:=y+x, x+y \leq 10)$?
(4.5) What is $\operatorname{wp}(x:=x+1 ; y:=y+x$, True)?
(4.6) What is $\operatorname{wp}(x:=x+1 ; x:=x-1, x+y \leq 10)$?
(4.7) What is $\operatorname{wp}(y:=x-1 ; x:=y+1, x+y \leq 10)$?
(4.8) What is $\operatorname{wp}(\underline{\text { if }}(x>5)$ then $x:=x-1$ else $x:=x+1, x+y \leq 10)$?
(4.9) What is $\operatorname{wp}($ if $(x>5)$ then $x:=x-1 ; y:=y-x$ else $x:=x+1 ; y:=y+x, x+y \leq 10)$?

Problem 5. Let x and y be program variables with values from the integer numbers \mathbb{Z}. Consider the Hoare triple:

$$
\{x=1 \wedge y=1\} \quad \underline{\text { while }}(x<10) \text { do } x:=x+1 ; y:=y+1 \underline{\text { end while }} \quad\{x=10 \wedge y=10\},
$$

annotated with the loop invariant $(x \leq 10 \wedge x=y)$.
What are the verification conditions of the above given Hoare triple?
Problem 6. Let x and y be program variables with values from the natural numbers \mathbb{N}. Consider the Hoare triple:

$$
\{x=1\} \text { while }(x<10) \text { do } x:=x+1 \text { end while } \quad\{x=10\} .
$$

What are the truth values of the following statements?
(6.1) $x \leq 10$ is an invariant;
(6.2) $x<10$ is an invariant;
(6.3) $x=10$ is an invariant.

