Problem 1. INFORMATION THEORY

A traffic controller signals the message "STOP" with a probability of $\frac{1}{4}$, the message "PRE-PARE" with a probability of $\frac{1}{2}$, and the message "START" with a probability of $\frac{1}{4}$.

- (a) What is the information content of signalling the message "STOP"?
- (b) What is the information content of signalling the message "START"?
- (c) What is the information content of signalling the message "PREPARE"?
- (d) What is the information content of signalling an event?

Problem 2. BOOLEAN ALGEBRA (PROPOSITIONAL LOGIC)

- (2.1) Construct the truth table for each of the following propositional formulas, and determine whether the formulas are tautologies, satisfiable, or contradictions.
 - (a) $p \land \neg p$ (b) $p \lor \neg p$ (c) $(p \lor \neg q) \Longrightarrow q$ (d) $(p \lor q) \Longrightarrow (p \land q)$ (e) $(p \Longrightarrow q) \Leftrightarrow (\neg q \Longrightarrow \neg p)$ (f) $(p \Longrightarrow q) \Longrightarrow q$ (g) $(p \lor q) \Longrightarrow (p \operatorname{XOR} q)$ (h) $(p \operatorname{XOR} q) \Longrightarrow (p \land q)$ (i) $p \Longrightarrow \neg q$ (j) $\neg p \Leftrightarrow q$ (k) $(p \Longrightarrow q) \lor (\neg p \Longrightarrow q)$ (l) $(p \Leftrightarrow q) \lor (\neg p \Leftrightarrow \neg q)$

(2.2) Using equivalent transformation rules, show that the formulas below are tautologies.
(a) (p ∧ q) ⇒ (p ∨ q)
(b) (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)
(c) (p ∨ q) ∧ (¬p ∨ r) ⇒ (q ∨ r)
(d) (p ⇔ q) ⇔ ((p ∧ q) ∨ (¬p ∧ ¬q))

- (2.3) Using equivalent transformation rules, show that:
 - (a) $p \implies q$ and $\neg q \implies \neg p$ are logically equivalent;
 - (b) $\neg p \Leftrightarrow q$ and $p \Leftrightarrow \neg q$ are logically equivalent;
 - (c) $\neg(p \Leftrightarrow q)$ and $\neg p \Leftrightarrow q$ are logically equivalent.
- (2.4) Find the dual of each of the below formulas:

(a)
$$p \land \neg q \land \neg r$$

(b) $(p \land q \land r) \lor s$
(c) $(p \lor 0) \land (q \lor q)$
(d) $p \lor \neg q$
(e) $p \land (q \lor (r \land 1))$
(f) $(p \land \neg q) \lor (q \land 0)$

Problem 3. PREDICATE LOGIC

(3.1) Suppose that the domain of the variable x consists of 1, 2, 3, and 4. What is the truth value of the formulas below, where P(x) is the statement " $x^2 < 10$ ".

(a)
$$\forall x :: P(x)$$
 (b) $\exists x : P(x)$ (c) $P(3)$

(3.2) Suppose that the domain of the variable x consists of -5, -3, -1, 1, 3 and 5. Express (and simplify) the statements below without using quantifiers, instead using only negations, conjunctions and disjunctions.

(a)
$$\exists x :: P(x)$$
(b) $\forall x : P(x)$ (b) $\forall x :: ((x \neq 1) \implies P(x))$ (c) $\exists x : ((x \geq 0) \land P(x))$ (d) $\neg \exists x :: P(x)$ (e) $\neg \forall x : P(x)$ (f) $\forall x :: ((x < 0) \implies P(x))$ (g) $\forall x : ((x \neq 3) \implies P(x))$

- (3.3) Suppose that the domain of the variable x is the set of natural numbers \mathbb{N} . What are the truth values of the formulas below:
 - (a) $\exists x :: (x^2 = 2)$ (b) $\forall x : (x^2 = 2)$ (c) $\exists x :: (x^2 = -1)$ (d) $\forall x : (x^2 \neq x)$
- (3.4) Let x denote a variable, and P be a predicate formula. Assume that the domain of variables is nonempty.

Using equivalent transformation rules, prove the formulas below:

- (a) $\forall x :: P(x) \implies \exists x :: P(x);$
- (b) $\neg(\exists x :: \neg P(x)) \implies \forall x :: P(x)$

Problem 4. RELATIONS

(4.1) Consider the binary relation \equiv_3 over the integer numbers \mathbb{Z} defined as below:

 $a \equiv_3 b$ if and only if a - b is divisible by 3.

- (a) Show that \equiv_3 is an equivalence relation!
- (b) Is \equiv_3 a total relation?
- (c) Is \equiv_3 a partial order?
- (d) Is \equiv_3 irreflexive?
- (2.2) For each of the following relations R on the set of integer numbers \mathbb{Z} , determine whether the relation is reflexive, symmetric, transitive, or antisymmetric.
 - (a) aRb if and only if a + b is odd;
 - (b) aRb if and only if a + b is even;
 - (c) aRb if and only if $a = b^2$;
 - (d) aRb if and only if a b = 0;
- (2.3) Consider the binary relation \mid over the integer numbers \mathbb{Z} defined as below:

a|b if and only if a divides b.

- (a) Show that | is a partial order;
- (b) Consider the set $X = \{1, 2, 3, 6\}$. Give an upper bound for X with respect to the relation |. What is lub(X)?

(b) Consider the set $X_2 = \{2, 4, 6, 12\}$. Give an upper bound for X with respect to the relation |. What is lub(X)?

Problem 5. PROGRAM VERIFICATION

- (5.1) Let x and y be program variables with values from the natural numbers \mathbb{N} . What is:
 - (a) wp(x := x + 1, x > 2)?
 - (b) wp(y := y + 1, x > 2)?
 - (c) wp(x := x + y; y := y + 1, x > 2)?
 - (d) wp(y := y + x; x := x + y, x > 2)?
 - (e) wp(y := y + x; x := x + y, True)?
 - (f) wp(if $x \le 2$ then x := x + y; y := y + x else $x := x y; y := y + x, x = 3 \land y = 3$)?
 - (f) wp(if $x \ge 2$ then x := x + y; y := y + x else $x := x y; y := y + x, x > 10 \land y > 10$)?
- (5.2) Let x and y be program variables with values from the natural numbers \mathbb{N} . Which of the following Hoare triples are correct?
 - (a) $\{x = 1\}$ if $x \ge 2$ then x := x 1 else x := x + 1 $\{x = 2\}$
 - (b) $\{x = 1\}$ if $x \ge 2$ then x := x 1 else x := x + 1 $\{x = 0\}$
 - (c) $\{x = 1 \land y = 1\}$ if x < 2 then x := x + y else x := x y $\{x = 2 \land y = 1\}$
 - (d) $\{x = 1 \land y = 1\}$ if x < 2 then x := x + y else x := x y $\{x = 0 \land y = 1\}$
 - (d) $\{x = 2 \land y = 1\}$ if $x \le 2$ then x := x + y; y := y + x else x := x y; y := y + x $\{x = 3 \land y = 4\}$
 - (e) $\{x = 2 \land y = 1\}$ if $x \le 2$ then x := x + y; y := y + x else x := x y; y := y + x $\{x = 3 \land y = 3\}$
- (5.3) Let x and y be program variables with values from the natural numbers \mathbb{N} . Consider the Hoare triple:

$$\{x = 0 \land y = 0\} \quad \underline{\text{while}} \ (x < 2009) \ \underline{\text{do}} \ x := x + 1; \\ y := y + 1 \ \underline{\text{end while}} \ \{x = 2009 \land y = 2009\}$$

Which of the following statements are true (and which are false)?

- (a) $x = y \land x \le 2009$ is an invariant;
- (b) $x = y \land x < 2009$ is an invariant;
- (c) x = 2009 is an invariant.
- (5.3) Let x and y be program variables with values from the natural numbers \mathbb{N} . Consider the Hoare triple:

$$\{x = 0 \land y = 0\}$$
 while $(x < 10)$ do $x := x + 1; y := y + 1$ end while $\{x = 10 \land y = 10\},\$

annotated with the loop invariant $x \leq 10 \land x = y$.

- (a) What is wp(while (x < 10) do x := x + 1; y := y + 1 end while, $x = 10 \land y = 10$?
- (b) What are the verification conditions of the above given Hoare triple?
- (5.4) Let x and y be program variables with values from the integer numbers \mathbb{Z} . Consider the Hoare triple:

 $\{x = 0 \land y = 0\} \quad \underline{\text{while}} \ (x < 5) \ \underline{\text{do}} \ y := y + x; \\ x := x + 1 \ \underline{\text{end while}} \quad \{x = 5 \land y = 10\}, \\ \text{annotated with the loop invariant} \ (x^2 = 2 * y + x) \land (x \le 5).$

What are the verification conditions of the above given Hoare triple?