There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always says the truth when he is joking.

(日) (日) (日) (日) (日) (日) (日)

We have to establish that Eismann is not a Russian spy.

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always says the truth when he is joking.

(日) (日) (日) (日) (日) (日) (日)

We have to establish that Eismann is not a Russian spy.

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always says the truth when he is joking.

We have to establish that Eismann is not a Russian spy.

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. Moreover, every Russian must be a spy.

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian". It is known that Stirlitz always says the truth when he is joking.

(ロ) (同) (三) (三) (三) (○) (○)

We have to establish that Eismann is not a Russian spy.

Introduce propositions (atomic formulas, boolean variables) XY, where

 $X \in \{R, G, S\}$ (denoting Russian, German, Spy) $Y \in \{S, M, E\}$ (denoting Stirlitz, Müller, Eismann)

For example,

SE : Eismann is a Spy RS : Stirlitz is Russian

(ロ) (同) (三) (三) (三) (○) (○)

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans.

$(RS \land GM \land GE) \lor (GS \land RM \land GE) \lor (GS \land GM \land RE).$

Moreover, every Russian must be a spy.

$RS \rightarrow SS$) \land ($RM \rightarrow SM$) \land ($RE \rightarrow SE$).

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

$RS \leftrightarrow GM.$

We have to establish that Eismann is not a Russian spy.

$RE \wedge SE$

Hidden:

 $(RS \leftrightarrow \neg GS) \land (RM \leftrightarrow \neg GM) \land (RE \leftrightarrow \neg GE).$

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans. $(PS \land CM \land CE) \lor (CS \land CM \land CE) \lor (CS \land CM \land CE)$

 $(RS \land GM \land GE) \lor (GS \land RM \land GE) \lor (GS \land GM \land RE).$

Moreover, every Russian must be a spy.

 $RS \rightarrow SS$) \land ($RM \rightarrow SM$) \land ($RE \rightarrow SE$).

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

 $RS \leftrightarrow GM.$

We have to establish that Eismann is not a Russian spy.

 $RE \wedge SE$

Hidden:

 $(RS \leftrightarrow \neg GS) \land (RM \leftrightarrow \neg GM) \land (RE \leftrightarrow \neg GE)$

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans.

 $(RS \land GM \land GE) \lor (GS \land RM \land GE) \lor (GS \land GM \land RE).$

Moreover, every Russian must be a spy.

 $(RS \rightarrow SS) \land (RM \rightarrow SM) \land (RE \rightarrow SE).$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

 $RS \leftrightarrow GM.$

We have to establish that Eismann is not a Russian spy.

 $RE \wedge SE$.

Hidden:

 $(RS \leftrightarrow \neg GS) \land (RM \leftrightarrow \neg GM) \land (RE \leftrightarrow \neg GE)$

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans.

 $(RS \land GM \land GE) \lor (GS \land RM \land GE) \lor (GS \land GM \land RE).$

Moreover, every Russian must be a spy.

 $(RS \rightarrow SS) \land (RM \rightarrow SM) \land (RE \rightarrow SE).$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

 $RS \leftrightarrow GM$.

We have to establish that Eismann is not a Russian spy.

 $RE \wedge SE$.

Hidden:

 $(RS \leftrightarrow \neg GS) \land (RM \leftrightarrow \neg GM) \land (RE \leftrightarrow \neg GE).$

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans.

 $(RS \land GM \land GE) \lor (GS \land RM \land GE) \lor (GS \land GM \land RE).$

Moreover, every Russian must be a spy.

 $(RS \rightarrow SS) \land (RM \rightarrow SM) \land (RE \rightarrow SE).$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

 $RS \leftrightarrow GM$.

We have to establish that Eismann is not a Russian spy. $BE \land SE$

Hidden:

 $(RS \leftrightarrow \neg GS) \land (RM \leftrightarrow \neg GM) \land (RE \leftrightarrow \neg GE).$

There are three persons: Stirlitz, Müller, and Eismann. It is known that exactly one of them is Russian, while the other two are Germans.

 $(RS \land GM \land GE) \lor (GS \land RM \land GE) \lor (GS \land GM \land RE).$

Moreover, every Russian must be a spy.

 $(RS \rightarrow SS) \land (RM \rightarrow SM) \land (RE \rightarrow SE).$

When Stirlitz meets Müller in a corridor, he makes the following joke: "you know, Müller, you are as German as I am Russian".

 $RS \leftrightarrow GM$.

We have to establish that Eismann is not a Russian spy.

 $RE \wedge SE$.

Hidden:

$$(RS \leftrightarrow \neg GS) \land (RM \leftrightarrow \neg GM) \land (RE \leftrightarrow \neg GE)$$

If this set of formulas is satisfiable in some situation *I*, then

- 1. All conditions of the puzzle are satisfied by *I*.
- 2. I also satisfies the property that Eismann is a Russian spy.

If we demonstrate that the problem is unsatisfiable (it is a contradiction), then we prove that Eismann cannot be a Russian spy.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>