Introduction to Program Verification

Laura Kovács

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.
Compute the maximum value of x and y.

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.
Compute the maximum value of x and y.

The maximum of x and y is x iff $x \geq y$.
Otherwise, the maximum of x and y is y.

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.
Compute the maximum value of x and y.

The maximum of x and y is x iff $x \geq y$.
Otherwise, the maximum of x and y is y.

Computing the maximum (max) of x and y :

$$
\begin{aligned}
& \text { if }(x \geq y) \\
& \text { then max }:=x \\
& \text { else } \max :=y
\end{aligned}
$$

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.

REQUIREMENT ON Program's InPut

The maximum of x and y is x iff $x \geq y$. Otherwise, the maximum of x and y is y.

Requirement on Program's Output

Computing the maximum (max) of x and y :

$$
\begin{aligned}
& \text { if }(x \geq y) \\
& \text { then max }:=x \\
& \text { else } \max :=y
\end{aligned}
$$

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.
REQUIREMENT ON Program's InPut

Precondition

REQUIREMENT ON
Program's Output
Postcondition
Computing the maximum (max) of x and y :

$$
\begin{aligned}
& \text { if }(x \geq y) \\
& \text { then max }:=x \\
& \text { else } \max :=y
\end{aligned}
$$

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.

$$
(x \geq 0 \wedge y \geq 0)
$$

Requirement on Program's Input

Precondition

The maximum of x and y is x iff $x \geq y$.
Otherwise, the maximum of x and y is y.

$$
(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)
$$

Requirement on Program's Output

Postcondition
Computing the maximum (max) of x and y :

$$
\begin{aligned}
& \text { if }(x \geq y) \\
& \text { then max }:=x \\
& \text { else max }:=y
\end{aligned}
$$

Program

Program Verification

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.
$P:(x \geq 0 \wedge y \geq 0)$
REQUIREMENT ON Program's InPut

Precondition P

The maximum of x and y is x iff $x \geq y$.
Otherwise, the maximum of x and y is y.
$Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$
REQUIREMENT ON
Program's Output
Postcondition Q
Computing the maximum (max) of x and y :

$$
\begin{aligned}
& \text { if }(x \geq y) \\
& \text { then max }:=x \\
& \text { else } \max :=y
\end{aligned}
$$

Program Verification: Programs and Specifications

Example - Maximum of Two Natural Numbers

Given two natural numbers x and y.
$P:(x \geq 0 \wedge y \geq 0)$
Requirement on
Program's Input
Precondition P

The maximum of x and y is x iff $x \geq y$.
Otherwise, the maximum of x and y is y.
$Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$
Requirement on
Program's Output
Postcondition Q
Computing the maximum (max) of x and y :

$$
\begin{aligned}
& \text { if }(x \geq y) \\
& \text { then max }:=x \\
& \text { else } \max :=y
\end{aligned}
$$

Program Verification: Programs and Specifications

Program Verification:

program satisfies its requirements (specification $P, Q)($ vorredingung P, Endoedingung $Q)$

Example.

Given two natural numbers x and y.
Compute the maximum value(max) of x and y.
Precondition $P:(x \geq 0) \wedge(y \geq 0)$
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$
Program (code) S : $\quad \underline{\text { if }}(x \geq y)$

$$
\text { then max }:=x
$$

$$
\overline{\text { else }} \max :=y
$$

Hoare triple (correctness formula): $\{P\} S\{Q\}$

Program Verification: Programs and Specifications

Program Verification:
$\underbrace{\text { program satisfies its requirements (specification } P, Q \text {) }}$
PROGRAM CORRECTNESS

Example.

Given two natural numbers x and y.
Compute the maximum value(max) of x and y.
Precondition $P:(x \geq 0) \wedge(y \geq 0)$
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$
Program (code) S : $\quad \underline{i f}(x \geq y)$

$$
\begin{aligned}
& \text { then } \max :=x \\
& \text { else } \max :=y
\end{aligned}
$$

Hoare triple (correctness formula): $\{P\} S\{Q\}$

Program Verification: Programs and Specifications

Program Verification:

$\underbrace{\text { program satisfies its requirements (specification } P, Q}$
PROGRAM CORRECTNESS

Example.

Given two natural numbers x and y.
Compute the maximum value(max) of x and y.
Precondition $P:(x \geq 0) \wedge(y \geq 0)$
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y) \quad$ Final state
Program (code) S : $\quad \underline{\text { if }}(x \geq y)$

$$
\text { then max }:=x
$$

How?

Hoare triple (correctness formula): $\{P\} S\{Q\}$

Program Verification: Programs and Specifications

Program Verification:
$\underbrace{\text { program satisfies its requirements (specification } P, Q \text {) }}_{\text {PROGRAM Correctness }}$

Program ... HOW to compute using program statements S

Specifications ... WHAT to compute using predicate logic formulas P, Q (assertions, zusicherungen)

Program state
every program variable has a value

Hoare triple (correctness formula): $\{P\} S\{Q\}$
T. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
$\underbrace{\text { program satisfies its requirements (specification } P, Q \text {) }}_{\text {PROGRAM Correctness }}$

Program ... HOW to compute using program statements S

Specifications ... WHAT to compute using predicate logic formulas P, Q (assertions, zusicherungen)

Program state ... every program variable has a value

Hoare triple (correctness formula): $\{P\} S\{Q\}$
T. Hoare (1969)

Programs

Program statements and their meaning (semanics):

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A

Programs

Program statements and their meaning semanices:

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array $a[x]$), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $S_{1} ; s_{2}$, where s_{1} and s_{2} are program statements; execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionais: '. 'B' Hinen Sy eise S_{2}, where B is a booleanexpresson:

Programs

Program statements and their nearing semanaics:

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array $a[x]$), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $s_{1} ; s_{2}$, where s_{1} and s_{2} are program statements;
execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionals: if (B) then S_{1} else S_{2}, where B is a boolean expression; if B holds then s_{1} is executed, otherwise s_{2} is executed

Programs

Program statements ${ }_{\text {and ther meaning Senanises: }}$

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array $a[x]$), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $s_{1} ; s_{2}$, where s_{1} and s_{2} are program statements;
execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionals: if (B) then s_{1} else s_{2}, where B is a boolean expression; if B holds then s_{1} is executed, otherwise s_{2} is executed

Programs

Program statements and their meaning seanaitics:

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array $a[x]$), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $s_{1} ; s_{2}$, where s_{1} and s_{2} are program statements;
execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionals: if (B) then s_{1} else s_{2}, where B is a boolean expression;
if B holds then s_{1} is executed, otherwise s_{2} is executed
$B \stackrel{\text { def }}{=}$ True \mid False $\left|\neg B_{1}\right| B_{1} \wedge B_{2}\left|B_{1} \vee B_{2}\right| A_{1} \leq A_{2}$, where B_{1}, B_{2} are boolean expressions; A_{1}, A_{2} are arithmetic expressions
- Loops: While (B) do s end while, where s is a program statement.

Program S is a finite sequence of statements:

Programs

Program statements and ther meaning (semanics:

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array $a[x]$), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $s_{1} ; s_{2}$, where s_{1} and s_{2} are program statements;
execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionals: if (B) then s_{1} else s_{2}, where B is a boolean expression;
if B holds then s_{1} is executed, otherwise s_{2} is executed
$B \stackrel{\text { def }}{=}$ True \mid False $\left|\neg B_{1}\right| B_{1} \wedge B_{2}\left|B_{1} \vee B_{2}\right| A_{1} \leq A_{2}$, where B_{1}, B_{2} are boolean expressions; A_{1}, A_{2} are arithmetic expressions
- Loops: while (B) do s end while, where s is a program statement.
until B holds, statement s is executed

Programs

Program statements and ther meaning (semanics:

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $s_{1} ; S_{2}$, where s_{1} and s_{2} are program statements; execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionals: if (B) then s_{1} else s_{2}, where B is a boolean expression; if B holds then s_{1} is executed, otherwise s_{2} is executed
$B \stackrel{\text { def }}{=}$ True \mid False $\left|\neg B_{1}\right| B_{1} \wedge B_{2}\left|B_{1} \vee B_{2}\right| A_{1} \leq A_{2}$, where B_{1}, B_{2} are boolean expressions; A_{1}, A_{2} are arithmetic expressions
- Loops: while (B) do s end while, where s is a program statement. until B holds, statement s is executed

Program S is a finite sequence of statements:

$$
S=s_{1} ; s_{2} ; \ldots ; s_{n-1} ; s_{n}
$$

Programs

Program statements and ther meaning (semanics:

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: var $:=A$, where var is a program variable (scalar x or array $a[x]$), and A is an arithmetic expression; variable var receives (is updated by) the value A $A \stackrel{\text { def }}{=} n|x| a[n]|a[x]| A_{1}+A_{2}\left|A_{1}-A_{2}\right| A_{1} * A_{2}$, where $n \in \mathbb{N} ; x$ is a scalar variable with values from \mathbb{N}; a is an array variable; A_{1}, A_{2} are arithmetic expressions
- Sequencing: $s_{1} ; S_{2}$, where s_{1} and s_{2} are program statements; execution of statement s_{1} is followed by execution of statement s_{2}
- Conditionals: if (B) then s_{1} else s_{2}, where B is a boolean expression;
if B holds then s_{1} is executed, otherwise s_{2} is executed
$B \stackrel{\text { def }}{=}$ True \mid False $\left|\neg B_{1}\right| B_{1} \wedge B_{2}\left|B_{1} \vee B_{2}\right| A_{1} \leq A_{2}$, where B_{1}, B_{2} are boolean expressions; A_{1}, A_{2} are arithmetic expressions
- Loops: while (B) do s end while, where s is a program statement. until B holds, statement s is executed

Program S is a finite sequence of statements:

$$
S=s_{1} ; s_{2} ; \ldots ; s_{n-1} ; s_{n}
$$

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Example: Integer Division

Example.

Given two natural numbers x and y, with y being non zero.
Compute:
the quotient (quo) and the remainder (rem) of the integer division of x by y.
Precondition P: $(x \geq 0) \wedge(y>0)$ Postondtion Q: (quo a,

Example: Integer Division

Example.

Given two natural numbers x and y, with y being non zero.
Compute:
the quotient (quo) and the remainder (rem) of the integer division of x by y.

Precondition $P:(x \geq 0) \wedge(y>0)$
Postcondition $Q:(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Program (code) S:

$$
\begin{aligned}
& \text { quo }:=0 ; \text { rem }:=x ; \\
& \underline{\text { while } y} \leq \text { rem do } \\
& \text { rem }:=\text { rem }-y ; \text { quo }:=\text { quo }+1 \\
& \text { end while }
\end{aligned}
$$

Example: Integer Division

Example.

Given two natural numbers x and y, with y being non zero.
Compute:
the quotient (quo) and the remainder (rem) of the integer division of x by y.

Precondition $P:(x \geq 0) \wedge(y>0)$
Postcondition Q : $(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Program (code) S:

$$
\begin{aligned}
& \text { quo }:=0 ; \text { rem }:=x ; \\
& \text { while } y \leq \text { rem do } \\
& \text { rem }:=\text { rem }-y ; \text { quo }:=q u o+1 \\
& \text { end while }
\end{aligned}
$$

Hoare triple (correctness formula): $\{P\} S\{Q\}$

Program Correctness

Partial correctness (naritienememesese ororet) of $\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P and
- is terminating,
ends in a state satisfying Q.

Program Correctness

Partial correctness (paritionememesse ororet) of $\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P and
- is terminating,
ends in a state satisfying Q.

Total correctness total/voliständig korext) $^{\text {of }}\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P,
terminates in a state satisfying Q.

Program Correctness

Partial correctness ${ }_{\text {(paritillememesese ororext) }}$ of $\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P and
- is terminating,
ends in a state satisfying Q.

Total correctness total/voliständig korext) $^{\text {of }}\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P,
terminates in a state satisfying Q.
Total correctness $=$ Partial correctness + Termination

Program Correctness

Partial correctness ${ }_{\text {(paritillememesese ororext) }}$ of $\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P and
- is terminating,
ends in a state satisfying Q.

Total correctness totallvolstsañdig koremti) $^{\text {of }}\{P\} S\{Q\}$:
Every execution of S that:

- starts in a state satisfying P,
terminates in a state satisfying Q.

Total correctness $=$ Partial correctness + Termination

Verifying Program Correctness - the Process of Program Verification

Specification

Program

Verification Conditions

Prove Verification Conditions

Verifying Program Correctness - the Process of Program Verification

Verifying Program Correctness - the Process of Program Verification

Weakest Precondition (WP) Strategy

Formula P is weaker (schwähere) than formula R iff $R \Longrightarrow P$.

Weakest Precondition (WP) Strategy

Formula P is weaker (schwäher) than formula R iff $R \Longrightarrow P$.

Weakest Precondition $\mathrm{wp}(S, Q)$ (schwächste vorredingung) for S with Q :

$$
\text { for any }\{R\} S\{Q\} \text { we have } \quad R \Longrightarrow w p(S, Q) \text {. }
$$

Note: $\{w p(S, Q)\} S\{Q\}$.

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff $R \Longrightarrow P$.

Weakest Precondition $w p(S, Q)$ (schwächste Vorbedingung) for S with Q : for any $\{R\} S\{Q\}$ we have $R \Longrightarrow \operatorname{wp}(S, Q)$.

Note: $\{w p(S, Q)\} S\{Q\}$.

Verification of $\{P\} S\{Q\}$:
$\{P\}$
$S=s_{1} ; \ldots ; s_{n-1} ; s_{n}$

1. Compute wp (S, Q);

$$
\vdots
$$

2. Prove $P \Longrightarrow \mathrm{wp}(S, Q)$

$$
s_{1}
$$

$$
s_{n-1}
$$

$$
s_{n}
$$

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff $R \Longrightarrow P$.

Weakest Precondition $w p(S, Q)$ (schwächste Vorbedingung) for S with Q : for any $\{R\} S\{Q\}$ we have $R \Longrightarrow \operatorname{wp}(S, Q)$.

Note: $\{w p(S, Q)\} S\{Q\}$.

Verification of $\{P\} S\{Q\}$:
$\{P\}$
$S=s_{1} ; \ldots ; s_{n-1} ; s_{n}$

1. Compute wp (S, Q);
2. Prove $P \Longrightarrow \mathrm{wp}(S, Q)$

$$
s_{1}
$$

:

$$
s_{n-1} ; \quad \leftarrow \mathrm{wp}\left(s_{n}, Q\right)
$$

s_{n}
\{Q\}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff $R \Longrightarrow P$.

Weakest Precondition $w p(S, Q)$ (schwächste Vorbedingung) for S with Q : for any $\{R\} S\{Q\}$ we have $R \Longrightarrow w p(S, Q)$.

Note: $\{w p(S, Q)\} S\{Q\}$.

Verification of $\{P\} S\{Q\}$:
$\{P\}$
$S=s_{1} ; \ldots ; s_{n-1} ; s_{n}$

1. Compute wp (S, Q);
2. Prove $P \Longrightarrow \mathrm{wp}(S, Q)$

$$
s_{1}
$$

:

$$
\leftarrow \mathrm{wp}\left(s_{n-1}, \mathrm{wp}\left(s_{n}, Q\right)\right)
$$

$s_{n-1} ;$

$$
\leftarrow \mathrm{wp}\left(s_{n}, Q\right)
$$

s_{n}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff $R \Longrightarrow P$.

Weakest Precondition $\operatorname{wp}(S, Q)$ (schwächste Vorbedingung) for S with Q : for any $\quad\{R\} S\{Q\} \quad$ we have $\quad R \Longrightarrow w p(S, Q)$.

Note: $\{w p(S, Q)\} S\{Q\}$.

Verification of $\{P\} S\{Q\}$:
$S=s_{1} ; \ldots ; s_{n-1} ; s_{n}$

1. Compute wp (S, Q);
2. Prove $P \Longrightarrow \mathrm{wp}(S, Q)$
$\{P\}$
$s_{1} ; \quad \leftarrow \underbrace{\operatorname{wp}\left(s_{1}, \operatorname{wp}\left(\ldots, \operatorname{wp}\left(s_{n}, Q\right)\right)\right)}_{\mathrm{wp}(S, Q)}$
:

$$
\leftarrow \mathrm{wp}\left(s_{n-1}, \mathrm{wp}\left(s_{n}, Q\right)\right)
$$

S_{n-1};
$\leftarrow \mathrm{wp}\left(s_{n}, Q\right)$
s_{n}
\{Q\}

WP Rules

- Scalar Assignments (xis a scalar variable, Ais arithmetic expression):

$$
\operatorname{wp}(x:=A, Q) \quad=\quad Q_{x \leftarrow A}
$$

formula $Q_{X \leftarrow A}$ results from Q by substituting every occurence of x by A

- Array Assignments (a is an array variable, x is a scalar variable, Ais artithmetic expression):

\qquad

WP Rules

- Scalar Assignments (xis a scalar varable, Ais arithmetic expession):

$$
\begin{aligned}
\operatorname{wp}(x:=A, Q)= & Q_{x \leftarrow A} \\
& \text { formula } Q_{x \leftarrow A} \text { results fro } \\
\operatorname{wp}(x:=\underline{5}, \underline{x}+y=6) & =\underline{5}+y=6 \\
\operatorname{wp}(x:=\underline{x+1}, \underline{x}+y=6)= & \underline{x+1}+y=6
\end{aligned}
$$

formula $Q_{X \leftarrow A}$ results from Q by substituting every occurence of x by A

WP Rules

- Scalar Assignments (xis a scalar variable, Ais arithmetic expession):

$$
\begin{array}{lll}
\operatorname{wp}(x:=A, Q) & = & Q_{x \leftarrow A} \\
& \text { formula } Q_{x \leftarrow A} \text { results fro } \\
& =\underline{5}+y=6 \\
\operatorname{wp}(x:=\underline{5}, \underline{x}+y=6) & \underline{x+1}+y=6
\end{array}
$$

$$
\text { formula } Q_{X \leftarrow A} \text { results from } Q \text { by substituting every occurence of } x \text { by } A
$$

- Array Assignments (ais an araya variable, x is a scalar variable, A is arithmeitic expression):

$$
\operatorname{wp}(a[x]:=A, Q) \quad=Q_{a \leftarrow a^{\prime}}
$$

formula $Q_{a \leftarrow a^{\prime}}$ results from Q by substituting every occurence of a by array a^{\prime}, where a^{\prime} results from a by replacing the x th element by A

WP Rules

- Scalar Assignments (xis a scalar variable, Ais arithmetic expession):

$$
\begin{array}{ll}
\operatorname{wp}(x:=A, Q)= & Q_{x \leftarrow A} \\
& \text { formula } Q_{x \leftarrow A} \text { results tro } \\
\operatorname{wp}(x:=\underline{5}, \underline{x}+y=6) & =\underline{5}+y=6 \\
\operatorname{wp}(x:=\underline{x+1}, \underline{x}+y=6)= & \underline{x+1}+y=6
\end{array}
$$

$$
\text { formula } Q_{X \leftarrow A} \text { results from } Q \text { by substituting every occurence of } x \text { by } A
$$

- Array Assignments (ais an araza variable, x is a scalar variable, A is arithmeitic expression):

$$
\begin{aligned}
\operatorname{wp}(a[x]:=A, Q) \quad= & Q_{a \leftarrow a^{\prime}} \\
& \text { formula } Q_{a \leftarrow a^{\prime}} \text { results tom } Q \text { by substitutung every occurence of aby aray } a^{\prime}, \\
& \text { where } a^{\prime} \text { results tom aby reppacing the xth element by } A
\end{aligned}
$$

WP Rules

- Scalar Assignments (xis a scalar variable, Ais arithmetic expression):

$$
\begin{array}{ll}
\operatorname{wp}(x:=A, Q)= & Q_{x \leftarrow A} \\
& \text { formula } Q_{x \leftarrow A} \text { results tro } \\
\operatorname{wp}(x:=\underline{5}, \underline{x}+y=6) & =\underline{5}+y=6 \\
\operatorname{wp}(x:=\underline{x+1}, \underline{x}+y=6)= & \underline{x+1}+y=6
\end{array}
$$

formula $Q_{X \leftarrow A}$ results from Q by substituting every occurence of x by A

- Array Assignments (ais an araza variable, x is a scalar variable, A is arithmeitic expression):

$$
\begin{aligned}
& \text { wp }(a[x]:=A, Q) \\
& =Q_{a \leftarrow a^{\prime}} \\
& \text { where } a^{\prime} \text { results from aby replacing the } x \text { th element by } A \\
& \operatorname{wp}(a[1]:=\underline{x+1}, \underline{a[1]}=a[2])=\quad \underline{a^{\prime}[1]}=\underline{a^{\prime}[2]} \\
& =\quad \underline{x+1}=a[2]
\end{aligned}
$$

WP Rules

- Sequencing:

$$
\operatorname{wp}\left(s_{1} ; s_{2}, Q\right)=\operatorname{wp}\left(s_{1}, \operatorname{wp}\left(s_{2}, Q\right)\right)
$$

WP Rules

- Sequencing:

$$
\begin{array}{r}
\operatorname{wp}\left(s_{1} ; s_{2}, Q\right)=\operatorname{wp}\left(s_{1}, \operatorname{wp}\left(s_{2}, Q\right)\right) \\
\operatorname{wp}(x:=x+1 ; y:=y+x, y>10)
\end{array}
$$

WP Rules

- Sequencing:

$$
\begin{gathered}
\operatorname{wp}\left(s_{1} ; s_{2}, Q\right)=\operatorname{wp}\left(s_{1}, \operatorname{wp}\left(s_{2}, Q\right)\right) \\
\operatorname{wp}(x:=x+1 ; y:=y+x, y>10)=\operatorname{wp}(x:=x+1, \operatorname{wp}(y:=\underline{y}+x, \underline{y}>10))
\end{gathered}
$$

WP Rules

- Sequencing:

$$
\begin{aligned}
& \operatorname{wp}\left(s_{1} ; s_{2}, Q\right)=\operatorname{wp}\left(s_{1}, \operatorname{wp}\left(s_{2}, Q\right)\right) \\
& \operatorname{wp}(x:=x+1 ; y:=y+x, y>10)=\operatorname{wp}(x:=x+1, \operatorname{wp}(y:=\underline{y+x}, \underline{y}>10)) \\
&=\operatorname{wp}(x:=\underline{x+1}, y+\underline{x}>10)
\end{aligned}
$$

WP Rules

- Sequencing:

$$
\begin{aligned}
& \operatorname{wp}\left(s_{1} ; s_{2}, Q\right)=\operatorname{wp}\left(s_{1}, \operatorname{wp}\left(s_{2}, Q\right)\right) \\
& \operatorname{wp}(x:=x+1 ; y:=y+x, y>10)=\operatorname{wp}(x:=x+1, \operatorname{wp}(y:=\underline{y+x}, \underline{y}>10)) \\
&=\operatorname{wp}(x:=\underline{x+1}, y+\underline{x}>10) \\
&=y+x+1>10
\end{aligned}
$$

WP Rules

- Conditionals:
$\mathrm{wp}\left(\right.$ if (B) then s_{1} else $\left.s_{2}, Q\right)=\left(B \Longrightarrow \operatorname{wp}\left(s_{1}, Q\right)\right) \wedge\left(\neg B \Longrightarrow \operatorname{wp}\left(s_{2}, Q\right)\right)$

WP Rules

- Conditionals:
$\mathrm{wp}\left(\right.$ if (B) then s_{1} else $\left.s_{2}, Q\right)=\left(B \Longrightarrow \operatorname{wp}\left(s_{1}, Q\right)\right) \wedge\left(\neg B \Longrightarrow \operatorname{wp}\left(s_{2}, Q\right)\right)$

Special Case:
$\mathrm{wp}\left(\mathrm{if}(B)\right.$ then $\left.s_{1}, Q\right)=\left(B \Longrightarrow \mathrm{wp}\left(s_{1}, Q\right)\right) \wedge(\neg B \Longrightarrow Q)$

WP Rules

- Conditionals:
$\mathrm{wp}\left(\mathrm{if}(B)\right.$ then s_{1} else $\left.s_{2}, Q\right)=\left(B \Longrightarrow \operatorname{wp}\left(s_{1}, Q\right)\right) \wedge\left(\neg B \Longrightarrow \operatorname{wp}\left(s_{2}, Q\right)\right)$

Example revisited: Maximum of Two Natural Numbers
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$

$$
\text { wp(if } x \geq y \text { then max }:=x \text { else max }:=y, Q)=
$$

WP Rules

- Conditionals:
$\mathrm{wp}\left(\right.$ if (B) then s_{1} else $\left.s_{2}, Q\right)=\left(B \Longrightarrow \operatorname{wp}\left(s_{1}, Q\right)\right) \wedge\left(\neg B \Longrightarrow \operatorname{wp}\left(s_{2}, Q\right)\right)$

Example revisited: Maximum of Two Natural Numbers
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$

$$
\begin{aligned}
& \mathrm{wp}(\text { if } x \geq y \text { then } \max :=x \text { else } \max :=y, Q)= \\
& \qquad(x \geq y \Longrightarrow \operatorname{wp}(\max :=\underline{x}, Q)) \wedge(x<y \Longrightarrow \operatorname{wp}(\max :=\underline{y}, Q))=
\end{aligned}
$$

WP Rules

- Conditionals:
$\mathrm{wp}\left(\right.$ if (B) then s_{1} else $\left.s_{2}, Q\right)=\left(B \Longrightarrow \operatorname{wp}\left(s_{1}, Q\right)\right) \wedge\left(\neg B \Longrightarrow \operatorname{wp}\left(s_{2}, Q\right)\right)$

Example revisited: Maximum of Two Natural Numbers
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$

$$
\begin{aligned}
& \text { wp(if } x \geq y \text { then } \max :=x \text { else } \max :=y, Q)= \\
& \qquad(x \geq y \Longrightarrow \operatorname{wp}(\max :=\underline{x}, Q)) \wedge(x<y \Longrightarrow \operatorname{wp}(\max :=\underline{y}, Q))= \\
& \quad\left(x \geq y \Longrightarrow Q_{\max -x}\right) \wedge\left(x<y \Longrightarrow Q_{\max \leftarrow y}\right)=
\end{aligned}
$$

WP Rules

- Conditionals:
$\mathrm{wp}\left(\right.$ if (B) then s_{1} else $\left.s_{2}, Q\right)=\left(B \Longrightarrow \operatorname{wp}\left(s_{1}, Q\right)\right) \wedge\left(\neg B \Longrightarrow \operatorname{wp}\left(s_{2}, Q\right)\right)$

Example revisited: Maximum of Two Natural Numbers
Postcondition $Q:(\max \geq x) \wedge(\max \geq y) \wedge(\max =x \vee \max =y)$

$$
\begin{aligned}
& \text { wp }(\text { if } x \geq y \text { then } \max :=x \text { else } \max :=y, Q)= \\
& (x \geq y \Longrightarrow \operatorname{wp}(\max :=\underline{x}, Q)) \wedge(x<y \Longrightarrow \operatorname{wp}(\max :=\underline{y}, Q))= \\
& \left(x \geq y \Longrightarrow Q_{\max -x}\right) \wedge\left(x<y \Longrightarrow Q_{\max -y}\right)= \\
& (x \geq y \Longrightarrow((\underline{x} \geq x) \wedge(\underline{x} \geq y) \wedge(\underline{x}=x \vee \underline{x}=y))) \\
& \wedge \\
& ((x<y \Longrightarrow((\underline{y} \geq x) \wedge(\underline{y} \geq y) \wedge(\underline{y}=x \vee \underline{y}=y)))
\end{aligned}
$$

WP Rules

- Loops $L \equiv$ while (B) do s end while:
$\mathrm{wp}($ while (B) do s end while, $Q)=$

WP Rules

- Loops $L \equiv$ while (B) do s end while :
$w p($ while (B) do s end while, $Q)=$
where I is a loop invariant (I is invariant/remains unchanged) (Schlauten-Invariant)
use conditional together with loop: $\|$ instead of a single loop:
$\{w p(L, Q)\}$
if (B) then s;
while (B) do s end while
while (B) do s end while

WP Rules

- Loops $L \equiv$ while (B) do s end while:

$$
\text { wp }(\text { while }(B) \text { do } s \text { end while, } Q)=
$$

where I is a loop invariant (I is invariant/remains unchanged) (Schlauten-Invariant)
use conditional together with loop: \| instead of a single loop:
$\{w p(L, Q)\}$
$\{\mathrm{wp}(L, Q)\} \begin{aligned} & \begin{array}{l}\text { if }(B) \text { then } s ; \\ \underline{\text { while }(B) \text { do } s \text { end while }}\end{array}\end{aligned}$
while (B) do s end while
\{Q\}

WP Rules

- Loops $L \equiv$ while (B) do s end while:

$$
\mathrm{wp}(\text { while }(B) \text { do } s \text { end while, } Q)=1
$$

where I is a loop invariant (Is is ivvariantremanins unchanged) (Schlauefen-IVvariant)

```
use conditional together with loop: || instead of a single loop:
```

$\{\mathrm{wp}(L, Q)\}$

$\{\mathrm{wp}(L, Q)\}$	if (B) then $s ;$ if (B) then $s ;$ while (B) do $~$ end while

$\frac{\text { while }(B) \text { do } s \text { end while }}{\text { while }(B) \text { do } s \text { end while }}$

WP Rules

- Loops $L \equiv$ while (B) do s end while :

$$
\mathrm{wp}(\text { while }(B) \text { do } s \text { end while, } Q)=1
$$

where I is a loop invariant (IIs invariantremans unchanged) (schauren-lvwariant)

LOOP InVARIANTS (Inductive Assertions):

evaluate to true before and after each loop iteration

WP Rules

- Loops $L \equiv$ while (B) do s end while:

$$
\mathrm{wp}(\text { while }(B) \text { do } s \text { end while, } Q)=1
$$

where I is a loop invariant (Is is ivariantremanins unchanged) (Schlauten-lwariant)

LOOP InVARIANTS (Inductive Assertions):

evaluate to true before and after each loop iteration
/ is an invariant for $\{P\}$ while (B) do s end while $\{Q\} \quad$ iff:
0 . initial condition: $P \Longrightarrow I$;

1. iterative (inductive) condition: $\{I \wedge B\} s\{I\}$;
2. final condition: $I \wedge \neg B \Longrightarrow Q$

WP Rules

- Loops $L \equiv$ while (B) do s end while :

$$
\mathrm{wp}(\text { while }(B) \text { do } s \text { end while, } Q)=1
$$

where I is a loop invariant (IIs ivvariantremains unchanged) (Schlaueien-Invaiant) and VERIFICATION CONDITIONS:

1. $I \wedge B \Longrightarrow I^{\prime}$, where $I^{\prime}=\mathrm{wp}(s, l)$;
2. $I \wedge \neg B \Longrightarrow Q$.

LOOP INVARIANTS (Inductive Assertions):

evaluate to true before and after each loop iteration
/ is an invariant for $\{P\}$ while (B) do s end while $\{Q\} \quad$ iff:
0 . initial condition: $P \Longrightarrow I$;

1. iterative (inductive) condition: $\{I \wedge B\} s\{/\}$;
2. final condition: $I \wedge \neg B \Longrightarrow Q$

WP Rules

- Loops $L \equiv$ while (B) do s end while :

$$
\mathrm{wp}(\text { while }(B) \text { do } s \text { end while, } Q)=1
$$

where I is a loop invariant (Iis invariantremanins unchanged) (Schluaten-IVvariant)
and VERIFICATION CONDITIONS:

1. $I \wedge B \Longrightarrow I^{\prime}$, where $I^{\prime}=\mathrm{wp}(s, l)$;
2. $I \wedge \neg B \Longrightarrow Q$.

Verification of $\{P\}$ while (B) do s end while $\{Q\}$:

- Compute wp(while (B) do s end while,Q) $=I$;
- Prove verification conditions:

0. $P \Longrightarrow 1$;
1. $I \wedge B \Longrightarrow l^{\prime}$, where $I^{\prime}=\mathrm{wp}(s, l)$;
2. $I \wedge \neg B \Longrightarrow Q$.

Example revisited: Integer Division

Precondition $P:(x \geq 0) \wedge(y>0)$
Postcondition $Q:(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Loop DivLoop:
while ($y \leq r e m$) do
rem $:=$ rem $-y$; quo $:=q u o+1$
end while
$\boldsymbol{w p}($ DivLoop, $Q)=$

Example revisited: Integer Division ANNOTATED with invariant

Precondition $P:(x \geq 0) \wedge(y>0)$
Postcondition Q : $(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Loop DivLoop:
Invariant I: $(q u o * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0)$
while ($y \leq r e m$) do
rem $:=$ rem $-y ;$ quo $:=q u o+1$
end while
$\boldsymbol{w p}($ DivLoop, $Q)=$

Example revisited: Integer Division ANNOTATED with invariant

Precondition $P:(x \geq 0) \wedge(y>0)$
Postcondition Q : $(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Loop DivLoop:
Invariant I: $(q u o * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0)$
while ($y \leq r e m$) do
rem $:=$ rem $-y ;$ quo $:=q u o+1$
end while
$\mathbf{w p}(\operatorname{DivLoop}, Q)=\underbrace{(q u o * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0)}_{\mathbf{I}}$

Example revisited: Integer Division ANNOTATED with invariant

Precondition $P:(x \geq 0) \wedge(y>0)$
Postcondition $Q:(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Loop DivLoop:
Invariant I : $(q u o * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0)$
while ($y \leq r e m$) do
rem $:=$ rem $-y ;$ quo $:=q u o+1$
end while
$\mathbf{w p}($ DivLoop, $Q)=\underbrace{(q u o * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0)}_{1}$
Verification Conditions:
$P \Longrightarrow 1$
$I \wedge(y \leq r e m) \Longrightarrow((q u o+1) * y+(r e m-y)=x) \wedge(0 \leq r e m-y) \wedge(0<y) \wedge(x \geq 0)$
$I \wedge(y>$ rem $) \Longrightarrow Q$

Weakest Precondition Strategy - Revised Summary

Verification of $\{P\} S\{Q\}$:
$S=s_{1} ; \ldots ; s_{n-1} ; s_{n}$

1. Compute wp (S, Q);
2. Prove:

- $P \Longrightarrow w p(S, Q)$;
- additional verification conditions

$$
\begin{aligned}
& \begin{array}{l}
\{P\} \\
\quad \leftarrow \underbrace{\mathrm{wp}\left(s_{1}, \mathrm{wp}\left(\ldots, \mathrm{wp}\left(s_{n}, Q\right)\right)\right)}_{\mathrm{wp}(S, Q)} \\
s_{1} ; \\
\vdots \\
\\
\quad \leftarrow \mathrm{wp}\left(s_{n-1}, \mathrm{wp}\left(s_{n}, Q\right)\right) \quad \uparrow \\
s_{n-1} ; \\
\\
\quad \leftarrow \mathrm{wp}\left(s_{n}, Q\right) \\
s_{n} \\
\{Q\}
\end{array}
\end{aligned}
$$

Example

Example (Integer Division.)
Verify the partial correctness of the annotated $\{P\} S\{Q\}$, where:
$P:(x \geq 0) \wedge(y>0)$
Q: $(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Annotated $S(s$ annotated with ivaraian):

$$
\begin{aligned}
& \text { quo }:=0 ; \text { rem }:=x ; \\
& \frac{\text { invariant }}{}(\text { quo } * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0) \\
& \frac{\text { while }(y \leq r e m)}{\text { rem }:=\text { do }} \overline{y ;} \text { quo }:=\text { quo }+1 \\
& \text { end while }
\end{aligned}
$$

Example

Example (Integer Division.)

Verify the partial correctness of the annotated $\{P\} S\{Q\}$, where:
$P:(x \geq 0) \wedge(y>0)$
Q: $(q u o * y+r e m=x) \wedge(0 \leq r e m<y)$
Annotated $S(s$ annotated with ivaraian):

$$
\begin{aligned}
& \text { quo }:=0 ; \text { rem }:=x ; \\
& \text { invariant }(q u o * y+r e m=x) \wedge(0 \leq r e m) \wedge(0<y) \wedge(x \geq 0) \\
& \frac{\text { while }(y \leq r e m)}{\text { rem }:=r e m}-\overline{y ;} \text { quo }:=\text { quo }+1 \\
& \text { end while }
\end{aligned}
$$

Verification Conditions:

$$
\begin{aligned}
& (x \geq 0) \wedge(y>0) \Longrightarrow \\
& (x=x) \wedge x \geq 0 \wedge x \geq 0 \wedge y>0 \\
& (x=\text { rem }+y * q u o) \wedge x \geq 0 \wedge \text { rem } \geq 0 \wedge y>0 \wedge y \leq r e m \Longrightarrow \\
& (x=(r e m-y)+y *(q u o+1)) \wedge x \geq 0 \wedge r e m-y \geq 0 \wedge y>0 \\
& (x=\text { rem }+y * \text { quo }) \wedge x \geq 0 \wedge \text { rem } \geq 0 \wedge y>0 \wedge y>\text { rem } \Longrightarrow \\
& (x=\text { rem }+y * \text { quo }) \wedge 0 \leq \text { rem }<y
\end{aligned}
$$

Exercise (1)

Is the Hoare triple $\{x:=1\} x:=x+1 ; y:=x+1\{y \geq 2\}$ correct?

Exercise (2)

Compute:

$$
w p(t:=x ; x:=y ; y:=t, x=Y \wedge y=X) .
$$

Exercise (3)

Verify the partial correctness of the annotated $\{P\} S\{Q\}$, where:
$P: \quad x=0 \wedge y=0$
Q: $\quad x=10 \wedge y=10$
Annotated S: invariant $(x=y) \wedge(x \leq 10)$

$$
\underline{\text { while }}(x<10) \underline{d o} x:=x+1 ; y:=y+1 \text { end while }
$$

Exercise (4)

Consider the Hoare triple $\{P\} S\{Q\}$, where:
P : $\quad x=0$
Q: $\quad x=5$
S: while $(x<5)$ do $x:=x+1$ end while

- Is $x \leq 5$ an invariant?
- Is $x<5$ an invariant?
- Is $x=5$ an invariant?

