## Introduction to Program Verification

Laura Kovács

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Example – Maximum of Two Natural Numbers

Given two natural numbers *x* and *y*. Compute the maximum value of *x* and *y*.

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\frac{\text{then } max := x}{\frac{\text{else } max := y}}}$ 

#### Example – Maximum of Two Natural Numbers

Given two natural numbers *x* and *y*. Compute the maximum value of *x* and *y*.

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\frac{\text{then } max := x}{\frac{\text{else } max := y}}}$ 

(日) (日) (日) (日) (日) (日) (日)

#### Example – Maximum of Two Natural Numbers

Given two natural numbers *x* and *y*. Compute the maximum value of *x* and *y*.

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\underbrace{\text{then } max}_{else} max := y}$ 

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example – Maximum of Two Natural Numbers

Given two natural numbers *x* and *y*.

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\underbrace{\text{then } max}_{else} max := y}$ 

REQUIREMENT ON PROGRAM'S INPUT

REQUIREMENT ON PROGRAM'S OUTPUT

PROGRAM

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Example – Maximum of Two Natural Numbers

Given two natural numbers *x* and *y*.

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\underbrace{\text{then } max}_{else} max := y}$ 

REQUIREMENT ON PROGRAM'S INPUT

PRECONDITION

REQUIREMENT ON PROGRAM'S OUTPUT

POSTCONDITION

PROGRAM

・ロト・日本・日本・日本・日本

#### Example – Maximum of Two Natural Numbers

Given two natural numbers x and y. ( $x \ge 0 \land y \ge 0$ )

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\underbrace{\text{then } max}_{else} max := y}$ 

REQUIREMENT ON PROGRAM'S INPUT

PRECONDITION

REQUIREMENT ON PROGRAM'S OUTPUT

POSTCONDITION

PROGRAM

・ロト・日本・日本・日本・日本

#### Example – Maximum of Two Natural Numbers

Given two natural numbers x and y.  $P: (x \ge 0 \land y \ge 0)$ 

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.  $Q: (max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\underbrace{\text{then } max}_{else} max := y}$ 

REQUIREMENT ON PROGRAM'S INPUT

**PRECONDITION** *P* 

REQUIREMENT ON PROGRAM'S OUTPUT

**POSTCONDITION** Q

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

PROGRAM

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y.  $P: (x \ge 0 \land y \ge 0)$ 

The maximum of x and y is x iff  $x \ge y$ . Otherwise, the maximum of x and y is y.  $Q: (max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

Computing the maximum (*max*) of *x* and *y*:

 $\frac{\text{if } (x \ge y)}{\underbrace{\text{then } max}_{else} max := y}$ 

REQUIREMENT ON PROGRAM'S INPUT

**PRECONDITION** *P* 

REQUIREMENT ON PROGRAM'S OUTPUT

**POSTCONDITION** Q

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

PROGRAM

#### **Program Verification:**

program satisfies its requirements (specification P, Q) (Vorbedingung P, Endbedingung Q)

#### Example.

Given two natural numbers *x* and *y*. Compute the maximum value(*max*) of *x* and *y*.

Precondition P:  $(x \ge 0) \land (y \ge 0)$ Initial StatePostcondition Q:  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ FINAL STATEProgram (code) S:if  $(x \ge y)$ <br/>then max := x<br/>else max := yHow?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Hoare triple (correctness formula): $\{P\} S \{Q\}$

#### **Program Verification:**

program satisfies its requirements (specification P, Q)

#### **PROGRAM CORRECTNESS**

#### Example.

Given two natural numbers *x* and *y*. Compute the maximum value(*max*) of *x* and *y*.

Precondition P:  $(x \ge 0) \land (y \ge 0)$ Initial StatePostcondition Q:  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ Final StateProgram (code) S:if  $(x \ge y)$ <br/>then max := x<br/>else max := yHow?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Hoare triple (correctness formula): $\{P\} S \{Q\}$

#### **Program Verification:**

program satisfies its requirements (specification P, Q)

#### **PROGRAM CORRECTNESS**

#### Example.

Given two natural numbers *x* and *y*. Compute the maximum value(*max*) of *x* and *y*.

# Precondition P: $(x \ge 0) \land (y \ge 0)$ INITIAL STATEPostcondition Q: $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ FINAL STATEProgram (code) S:if $(x \ge y)$ <br/>then max := x<br/>else max := yHow?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Hoare triple (correctness formula): $\{P\} S \{Q\}$

| Program Verification:<br>program satisfies its requirements (specification P, Q) |                     |                                                                                                |  |  |
|----------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------|--|--|
|                                                                                  | PROGRAM CORRECTNESS |                                                                                                |  |  |
| Program                                                                          |                     | HOW <b>to compute</b><br>using program statements <i>S</i>                                     |  |  |
| Specifications                                                                   |                     | WHAT to compute using predicate logic formulas <i>P</i> , <i>Q</i> (assertions, Zusicherungen) |  |  |
|                                                                                  |                     |                                                                                                |  |  |

#### Hoare triple (correctness formula): $\{P\} S \{Q\}$

| Program Verification:<br>program satisfies its requirements (specification P, Q) |      |                                                                                                |  |  |
|----------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------|--|--|
|                                                                                  | PROG | PROGRAM CORRECTNESS                                                                            |  |  |
| Program                                                                          |      | HOW <b>to compute</b><br>using program statements <i>S</i>                                     |  |  |
| Specifications                                                                   |      | WHAT to compute using predicate logic formulas <i>P</i> , <i>Q</i> (assertions, Zusicherungen) |  |  |
| Program state                                                                    |      | every program variable has a value                                                             |  |  |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### Hoare triple (correctness formula): $\{P\} S \{Q\}$

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: Var := A, where *var* is a program variable (scalar *x* or array *a*[*x*]), and *A* is an arithmetic expression; variable *var* receives (is updated by) the value *A*  $A^{\frac{def}{2}} = n |x| |a[n] |a[x] |A_1 + A_2 |A_1 - A_2 |A_1 + A_2$ , where  $n \in \mathbb{N}$ ; *x* is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

- Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements; execution of statement s<sub>1</sub> is followed by execution of statement s<sub>2</sub>
- Conditionals: if (B) then  $s_1$  else  $s_2$ , where B is a bodiean expression; if B holds then  $s_1$  is executed, otherwise  $s_2$  is executed
- Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
   A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
   a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions
- Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements; execution of statement s<sub>1</sub> is followed by execution of statement s<sub>2</sub>
- Conditionals: if (B) then  $S_1$  else  $S_2$ , where B is a boolean expression; if B holds then  $s_1$  is executed, otherwise  $s_2$  is executed
- Loops: <u>while</u> (B) <u>do</u> s <u>end while</u>, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

#### ・ロト・四ト・モー・ ヨー うへぐ

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
   A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
   a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions
- Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements; execution of statement s<sub>1</sub> is followed by execution of statement s<sub>2</sub>
- Conditionals: if (B) then s<sub>1</sub> else s<sub>2</sub>, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

 $B \stackrel{\text{def}}{=}$  True | False |  $-B_1$  |  $B_1 \land B_2$  |  $B_1 \lor B_2$  |  $A_1 \le A_2$ , where  $B_1$ ,  $B_2$  are boolean expressions:  $A_1$ ,  $A_2$  are arithmetic expressions

• Loops: <u>while</u> (B) <u>do</u> s <u>end while</u>, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
   A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
   a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions
- Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then S<sub>1</sub> else S<sub>2</sub>, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

 $B \stackrel{Qer}{=} True | False | \neg B_1 | B_1 \land B_2 | B_1 \lor B_2 | A_1 \le A_2, \text{ where } B_1, B_2 \text{ are boolean expressions;} A_1, A_2 \text{ are arithmetic expressions}$ 

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
 A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> - A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
 a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions

(日) (日) (日) (日) (日) (日) (日)

• Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then  $s_1$  else  $s_2$ , where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

 $\begin{array}{l} B \stackrel{def}{=} \textit{True} \mid \textit{False} \mid \neg B_1 \mid B_1 \land B_2 \mid B_1 \lor B_2 \mid A_1 \leq A_2, \textit{ where } B_1, B_2 \textit{ are boolean expressions}; \\ A_1, A_2 \textit{ are arithmetic expressions} \end{array}$ 

Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
 A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> - A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
 a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions

(日) (日) (日) (日) (日) (日) (日)

• Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then S<sub>1</sub> else S<sub>2</sub>, where B is a boolean expression; if B holds then s<sub>1</sub> is executed, otherwise s<sub>2</sub> is executed

 $\begin{array}{l} B \stackrel{def}{=} \textit{True} \mid \textit{False} \mid \neg B_1 \mid B_1 \land B_2 \mid B_1 \lor B_2 \mid A_1 \leq A_2, \textit{ where } B_1, B_2 \textit{ are boolean expressions}; \\ A_1, A_2 \textit{ are arithmetic expressions} \end{array}$ 

Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
 A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> - A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
 a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions

(日) (日) (日) (日) (日) (日) (日)

• Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then  $S_1$  else  $S_2$ , where B is a boolean expression; if B holds then  $s_1$  is executed, otherwise  $s_2$  is executed

 $\begin{array}{l} B \stackrel{def}{=} \textit{True} \mid \textit{False} \mid \neg B_1 \mid B_1 \land B_2 \mid B_1 \lor B_2 \mid A_1 \leq A_2, \textit{ where } B_1, B_2 \textit{ are boolean expressions}; \\ A_1, A_2 \textit{ are arithmetic expressions} \end{array}$ 

Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

#### Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

- Assignments: Var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression; variable var receives (is updated by) the value A
   A <sup>def</sup> n | x | a[n] | a[x] | A<sub>1</sub> + A<sub>2</sub> | A<sub>1</sub> A<sub>2</sub> | A<sub>1</sub> \* A<sub>2</sub>, where n ∈ N; x is a scalar variable with values from N;
   a is an array variable; A<sub>1</sub>, A<sub>2</sub> are arithmetic expressions
- Sequencing: S<sub>1</sub>; S<sub>2</sub>, where s<sub>1</sub> and s<sub>2</sub> are program statements;

execution of statement  $s_1$  is followed by execution of statement  $s_2$ 

• Conditionals: if (B) then S<sub>1</sub> else S<sub>2</sub>, where B is a boolean expression; if B holds then s<sub>1</sub> is executed, otherwise s<sub>2</sub> is executed

 $\begin{array}{l} B \stackrel{def}{=} \textit{True} \mid \textit{False} \mid \neg B_1 \mid B_1 \land B_2 \mid B_1 \lor B_2 \mid A_1 \leq A_2, \textit{ where } B_1, B_2 \textit{ are boolean expressions}; \\ A_1, A_2 \textit{ are arithmetic expressions} \end{array}$ 

Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program *S* is a finite sequence of statements:  $S = s_1; s_2; ...; s_{n-1}; s_n$ 

# Example: Integer Division

#### Example.

Given two natural numbers x and y, with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Precondition P:  $(x \ge 0) \land (y > 0)$ Postcondition Q:  $(quo * y + rem = x) \land (0 \le rem < y)$ Program (code) S:quo := 0; rem := x;<br/> $while y \le rem do$ <br/>rem := rem - y; quo := quo + 1<br/>end while

Hoare triple (correctness formula):  $\{P\} \ S \ \{Q\}$ 

## Example: Integer Division

#### Example.

Given two natural numbers x and y, with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Precondition P:  $(x \ge 0) \land (y > 0)$ Postcondition Q:  $(quo * y + rem = x) \land (0 \le rem < y)$ Program (code) S: quo := 0; rem := x;while  $y \le rem \underline{do}$  rem := rem - y; quo := quo + 1end while

Hoare triple (correctness formula):  $\{P\} S \{Q\}$ 

## Example: Integer Division

#### Example.

Given two natural numbers x and y, with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Precondition P:  $(x \ge 0) \land (y > 0)$ Postcondition Q:  $(quo * y + rem = x) \land (0 \le rem < y)$ Program (code) S:quo := 0; rem := x;<br/> $while <math>y \le rem do$ <br/>rem := rem - y; quo := quo + 1<br/>end while

Hoare triple (correctness formula):  $\{P\} S \{Q\}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Partial correctness (partiell/teilweise korrekt) of  $\{P\} S \{Q\}$ :

Every execution of S that:

- starts in a state satisfying P and
- is terminating,

ends in a state satisfying Q.

Partial correctness (partiell/teilweise korrekt) of  $\{P\} S \{Q\}$ :

Every execution of S that:

- starts in a state satisfying P and
- is terminating,

ends in a state satisfying Q.

Total correctness (total/vollständig korrekt) of  $\{P\} S \{Q\}$ :

Every execution of *S* that:

• starts in a state satisfying P,

terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Partial correctness (partiell/teilweise korrekt) of  $\{P\} S \{Q\}$ :

Every execution of S that:

- starts in a state satisfying P and
- is terminating,

ends in a state satisfying Q.

Total correctness (total/vollständig korrekt) of  $\{P\} S \{Q\}$ : Every execution of *S* that:

• starts in a state satisfying P,

terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

(日) (日) (日) (日) (日) (日) (日)

Partial correctness (partiell/teilweise korrekt) of  $\{P\} S \{Q\}$ :

Every execution of S that:

- starts in a state satisfying P and
- is terminating,

ends in a state satisfying Q.

Total correctness (total/vollständig korrekt) of  $\{P\} S \{Q\}$ : Every execution of *S* that:

• starts in a state satisfying P,

terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Verifying Program Correctness – the Process of Program Verification

▲□▶▲□▶▲□▶▲□▶ □ のQ@



E. W. Dijsktra (1975)

## Verifying Program Correctness – the Process of Program Verification

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>



E. W. Dijsktra (1975)

## Verifying Program Correctness – the Process of Program Verification

▲□▶▲□▶▲□▶▲□▶ □ のQ@



E. W. Dijsktra (1975)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Formula *P* is weaker (schwächer) than formula *R* iff $R \implies P$ .

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q: for any  $\{R\} S \{Q\}$  we have  $R \implies wp(S, Q)$ . Note:  $\{wp(S, Q)\} S \{Q\}$ .

**VERIFICATION OF**  $\{P\}$  *S*  $\{Q\}$ :

 $S = s_1; \ldots; s_{n-1}; s_n$ 

- 1. Compute wp(S, Q);
- 2. Prove  $P \implies wp(S, Q)$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Formula *P* is weaker (schwächer) than formula *R* iff  $R \implies P$ .

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q: for any  $\{R\} S \{Q\}$  we have  $R \implies wp(S, Q)$ . Note:  $\{wp(S, Q)\} S \{Q\}$ .

```
VERIFICATION OF \{P\} S \{Q\}:
```

 $S = s_1; \ldots; s_{n-1}; s_n$ 

- 1. Compute wp(S, Q);
- 2. Prove  $P \implies wp(S, Q)$

Formula *P* is weaker (schwächer) than formula *R* iff  $R \implies P$ .

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q: for any  $\{R\} S \{Q\}$  we have  $R \implies wp(S, Q)$ . Note:  $\{wp(S, Q)\} S \{Q\}$ .

```
VERIFICATION OF \{P\} S \{Q\}:

S = s_1; ...; s_{n-1}; s_n

1. Compute wp(S, Q);

2. Prove P \implies wp(S, Q)

s_{n-1}; s_n
```



Formula *P* is weaker (schwächer) than formula *R* iff  $R \implies P$ .

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q: for any  $\{R\} S \{Q\}$  we have  $R \implies wp(S, Q)$ . Note:  $\{wp(S, Q)\} S \{Q\}$ .

VERIFICATION OF  $\{P\}$  S  $\{Q\}$ : $\{P\}$  $S = s_1; \ldots; s_{n-1}; s_n$  $s_1;$ 1. Compute wp(S, Q);:2. Prove  $P \implies wp(S, Q)$  $s_{n-1};$  $s_n$  $s_n$ 



Formula *P* is weaker (schwächer) than formula *R* iff  $R \implies P$ .

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q: for any  $\{R\} S \{Q\}$  we have  $R \implies wp(S, Q)$ . Note:  $\{wp(S, Q)\} S \{Q\}$ .

VERIFICATION OF  $\{P\}$  S  $\{Q\}$ : $\{P\}$  $S = s_1; \ldots; s_{n-1}; s_n$  $s_1;$ 1. Compute wp(S, Q);:2. Prove  $P \implies wp(S, Q)$  $s_{n-1}$  $s_n$  $s_n$ 

 $\{P\}$   $s_{1};$   $\vdots$   $(wp(s_{n-1}, wp(s_{n}, Q)))$   $s_{n-1};$   $(wp(s_{n}, Q))$   $s_{n}$   $\{Q\}$ 

A D F A 同 F A E F A E F A Q A

Formula *P* is weaker (schwächer) than formula *R* iff  $R \implies P$ .

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q: for any  $\{R\} S \{Q\}$  we have  $R \implies wp(S, Q)$ . Note:  $\{wp(S, Q)\} S \{Q\}$ .

VERIFICATION OF  $\{P\}$  S  $\{Q\}$ : S = s<sub>1</sub>;...; s<sub>n-1</sub>; s<sub>n</sub> 1. Compute wp(S, Q);

2. Prove  $P \implies wp(S, Q)$ 



• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

 $wp(x := A, Q) = Q_{x \leftarrow A}$ 

formula  $Q_{x \leftarrow A}$  results from Q by substituting every occurrence of x by A

 $wp(x := \underline{5}, \underline{x} + y = 6) = \underline{5} + y = 6$  $wp(x := x + 1, \underline{x} + y = 6) = x + 1 + y = 6$ 

- Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):
- $wp(a[x] := A, Q) = Q_{a \leftarrow a'}$

formula  $Q_{a \leftarrow a'}$  results from Q by substituting every occurence of a by array a'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where a' results from a by replacing the xth element by A

#### wp(a[1] := x + 1, a[1] = a[2]) = a'[1] = a'[2]

 $\label{eq:states} \left\{ g = g \right\} = \left\{ g = g \right$ 

• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) $Q_{x \leftarrow A}$ 

formula  $Q_{x}$  fresults from Q by substituting every occurrence of x by A

- wp(x := 5, x + y = 6) = 5 + y = 6wp(x := x + 1, x + y = 6) = x + 1 + y = 6

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

 $wp(x := A, Q) = Q_{x \leftarrow A}$ 

formula  $Q_{x \leftarrow A}$  results from Q by substituting every occurrence of x by A

- $wp(x := \underline{5}, \underline{x} + y = 6) = \underline{5} + y = 6$  $wp(x := \underline{x + 1}, \underline{x} + y = 6) = \underline{x + 1} + y = 6$
- Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):
- $wp(a[x] := A, Q) = Q_{a \leftarrow a'}$

formula  $Q_{a \leftarrow a'}$  results from Q by substituting every occurrence of a by array a',

where a' results from a by replacing the xth element by A

wp(*a*[1] := <u>x + 1</u>, *a*[1] = *a*[2]) =

a'[1] = a'[2]

where a'[1] = x + 1 and a'[i] = a[i] for every  $i \neq 1$ 

= x + 1 = a[2]

• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) $= Q_{x \leftarrow A}$ 

formula  $Q_{x}$  fresults from Q by substituting every occurrence of x by A

- wp(x := 5, x + y = 6) = 5 + y = 6wp(x := x + 1, x + y = 6) = x + 1 + y = 6
- Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression).
- wp(a[x] := A, Q) $= Q_{\alpha_{-\alpha'}}$

formula  $Q_{a \leftarrow a'}$  results from Q by substituting every occurrence of a by array a',

where a' results from a by replacing the xth element by A

wp(a[1] := x + 1, a[1] = a[2]) = a'[1] = a'[2]

where a'[1] = x + 1 and a'[i] = a[i] for every  $i \neq 1$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

 $wp(x := A, Q) = Q_{x \leftarrow A}$ 

formula  $Q_{x \leftarrow A}$  results from Q by substituting every occurrence of x by A

- $wp(x := \underline{5}, \underline{x} + y = 6) = \underline{5} + y = 6$  $wp(x := \underline{x} + 1, \underline{x} + y = 6) = \underline{x} + 1 + y = 6$
- Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):
- $wp(a[x] := A, Q) = Q_{a \leftarrow a'}$

formula  $Q_{a \leftarrow a'}$  results from Q by substituting every occurrence of a by array a',

where a' results from a by replacing the xth element by A

wp(a[1] := x + 1, a[1] = a[2]) = a'[1] = a'[2]

- $\underline{a'[1]}_{\text{where }a'[1]} = \underline{a'[2]}_{\text{where }a'[1] = x + 1} \text{ and } a'[i] = a[i] \text{ for every } i \neq 1$
- $= \underline{x+1} = a[2]$

• Sequencing:

 $wp(s_1; s_2, Q) = wp(s_1, wp(s_2, Q))$ 

wp(x := x + 1; y := y + x, y > 10) = wp(x := x + 1, wp(y := y + x, y > 10))

$$=$$
 wp( $x := \underline{x+1}, y + \underline{x} > 10$ )

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

= y + x + 1 > 10

• Sequencing:

 $wp(s_1; s_2, Q) = wp(s_1, wp(s_2, Q))$ 

wp(x := x + 1; y := y + x, y > 10) = wp(x := x + 1, wp(y := y + x, y > 10))

$$=$$
 wp( $x := \underline{x+1}, y + \underline{x} > 10$ )

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$= y + x + 1 > 10$$

• Sequencing:

 $wp(s_1; s_2, Q) = wp(s_1, wp(s_2, Q))$ 

wp(x := x + 1; y := y + x, y > 10) = wp(x := x + 1, wp(y := y + x, y > 10))= wp(x := x + 1, y + x > 10)= y + x + 1 > 10

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Sequencing:

 $wp(s_1; s_2, Q) = wp(s_1, wp(s_2, Q))$ 

wp(x := x + 1; y := y + x, y > 10) = wp(x := x + 1, wp(y := y + x, y > 10))= wp(x := x + 1, y + x > 10)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Sequencing:

 $wp(s_1; s_2, Q) = wp(s_1, wp(s_2, Q))$ 

 $wp(x := x + 1; y := y + x, y > 10) = wp(x := x + 1, wp(y := \underline{y + x}, \underline{y} > 10))$ = wp(x := <u>x + 1</u>, y + <u>x</u> > 10) = y + x + 1 > 10

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Conditionals:

 $wp(\underline{if} (B) \underline{then} s_1 \underline{else} s_2, Q) = (B \Longrightarrow wp(s_1, Q)) \land (\neg B \Longrightarrow wp(s_2, Q))$ 

Conditionals:

 $wp(\underline{if} (B) \underline{then} s_1 \underline{else} s_2, Q) = (B \Longrightarrow wp(s_1, Q)) \land (\neg B \Longrightarrow wp(s_2, Q))$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Special Case:

 $wp(if(B) then s_1, Q) = (B \implies wp(s_1, Q)) \land (\neg B \implies Q)$ 

Conditionals:

 $wp(\underline{if} (B) \underline{then} s_1 \underline{else} s_2, Q) = (B \Longrightarrow wp(s_1, Q)) \land (\neg B \Longrightarrow wp(s_2, Q))$ 

#### Example revisited: Maximum of Two Natural Numbers

Postcondition *Q*:  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

 $wp(if x \ge y then max := x else max := y, Q) =$ 

$$(x \ge y \implies wp(max := \underline{x}, Q)) \land (x < y \implies wp(max := \underline{y}, Q)) =$$

$$(x \ge y \implies Q_{max \leftarrow x}) \land (x < y \implies Q_{max \leftarrow y}) =$$

$$\begin{pmatrix} x \ge y \implies ((\underline{x} \ge x) \land (\underline{x} \ge y) \land (\underline{x} = x \lor \underline{x} = y)) \end{pmatrix}$$

$$\land$$

$$((x < y \implies ((\underline{y} \ge x) \land (\underline{y} \ge y) \land (\underline{y} = x \lor \underline{y} = y)))$$

Conditionals:

 $wp(\underline{if} (B) \underline{then} s_1 \underline{else} s_2, Q) = (B \Longrightarrow wp(s_1, Q)) \land (\neg B \Longrightarrow wp(s_2, Q))$ 

#### Example revisited: Maximum of Two Natural Numbers

Postcondition *Q*:  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

$$wp(\underline{if} \ x \ge y \ \underline{then} \ max := x \ \underline{else} \ max := y, \ Q) = \\ (x \ge y \implies wp(max := \underline{x}, \ Q)) \land (x < y \implies wp(max := \underline{y}, \ Q)) = \\ (x \ge y \implies Q_{max \leftarrow x}) \land (x < y \implies Q_{max \leftarrow y}) = \\ (x \ge y \implies ((\underline{x} \ge x) \land (\underline{x} \ge y) \land (\underline{x} = x \lor \underline{x} = y))) \land \land \\ ((x < y \implies ((\underline{y} \ge x) \land (\underline{y} \ge y) \land (\underline{y} = x \lor \underline{y} = y))) \land \land \end{cases}$$

Conditionals:

 $wp(\underline{if} (B) \underline{then} s_1 \underline{else} s_2, Q) = (B \Longrightarrow wp(s_1, Q)) \land (\neg B \Longrightarrow wp(s_2, Q))$ 

#### Example revisited: Maximum of Two Natural Numbers

Postcondition *Q*:  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

$$\begin{split} & \mathsf{wp}(\underline{if} \ x \ge y \ \underline{then} \ max := x \ \underline{else} \ max := y, \ Q) = \\ & (x \ge y \implies \mathsf{wp}(max := \underline{x}, \ Q)) \land (x < y \implies \mathsf{wp}(max := \underline{y}, \ Q)) = \\ & (x \ge y \implies Q_{max \leftarrow x}) \land (x < y \implies Q_{max \leftarrow y}) = \\ & (x \ge y \implies ((\underline{x} \ge x) \land (\underline{x} \ge y) \land (\underline{x} = x \lor \underline{x} = y))) \land \\ & \land \\ & ((x < y \implies ((\underline{y} \ge x) \land (\underline{y} \ge y) \land (\underline{y} = x \lor \underline{y} = y))) \end{split}$$

Conditionals:

 $wp(\underline{if} (B) \underline{then} s_1 \underline{else} s_2, Q) = (B \Longrightarrow wp(s_1, Q)) \land (\neg B \Longrightarrow wp(s_2, Q))$ 

#### Example revisited: Maximum of Two Natural Numbers

Postcondition *Q*:  $(max \ge x) \land (max \ge y) \land (max = x \lor max = y)$ 

$$\begin{split} & \mathsf{wp}(\underline{if} \ x \ge y \ \underline{then} \ max := x \ \underline{else} \ max := y, \ Q) = \\ & (x \ge y \implies \mathsf{wp}(max := \underline{x}, \ Q)) \land (x < y \implies \mathsf{wp}(max := \underline{y}, \ Q)) = \\ & (x \ge y \implies Q_{max \leftarrow x}) \land (x < y \implies Q_{max \leftarrow y}) = \\ & (x \ge y \implies ((\underline{x} \ge x) \land (\underline{x} \ge y) \land (\underline{x} = x \lor \underline{x} = y))) \\ & \land \\ & ((x < y \implies ((\underline{y} \ge x) \land (\underline{y} \ge y) \land (\underline{y} = x \lor \underline{y} = y))) ) \end{split}$$

#### • Loops $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

#### wp(while (B) do s end while, Q) = 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-

Invariant)

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

#### wp(while (B) do s end while, Q) = 1

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

use conditional together with loop: instead of a single loop:

{wp(*L*, *Q*)}

 $\underline{if}(B) \underline{then} s;$ 

while (B) do s end while

while (B) do s end while

{**Q**}

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

#### wp(while (B) do s end while, Q) = 1

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

use conditional together with loop: instead of a single loop:



while (B) do s end while

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

#### wp(while (B) do s end while, Q) = I

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

use conditional together with loop: instead of a single loop:



(日) (日) (日) (日) (日) (日) (日)

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

wp(while (B) do s end while, Q) = I

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

1.  $I \land B \implies I'$ , where I' = wp(S, I); 2.  $I \land \neg B \implies Q$ .

LOOP INVARIANTS (INDUCTIVE ASSERTIONS): evaluate to true before and after each loop iteration

*I* is an invariant for  $\{P\}$  while (B) do s end while  $\{Q\}$  iff

- 0. initial condition:  $P \implies I$ ;
- 1. iterative (inductive) condition:  $\{I \land B\} \ s \ \{I\};$
- 2. final condition:  $I \land \neg B \implies Q$

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

wp(while (B) do s end while, Q) = I

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

1.  $I \land B \implies I'$ , where I' = wp(S, I); 2.  $I \land \neg B \implies Q$ .

**LOOP INVARIANTS (INDUCTIVE ASSERTIONS):** evaluate to true before and after each loop iteration

*I* is an invariant for  $\{P\}$  while (B) do s end while  $\{Q\}$  iff:

- 0. initial condition:  $P \implies I$ ;
- 1. iterative (inductive) condition:  $\{I \land B\} \ s \ \{I\};$
- 2. final condition:  $I \land \neg B \implies Q$

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

wp(while (B) do s end while, Q) = I

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

and VERIFICATION CONDITIONS:

- 1.  $I \wedge B \implies I'$ , where I' = wp(s, I);
- 2.  $I \wedge \neg B \implies Q$ .

# LOOP INVARIANTS (INDUCTIVE ASSERTIONS):

evaluate to true before and after each loop iteration

*I* is an invariant for  $\{P\}$  while (B) do s end while  $\{Q\}$  iff:

- 0. initial condition:  $P \implies I$ ;
- 1. iterative (inductive) condition:  $\{I \land B\} \ s \ \{I\};$
- 2. final condition:  $I \land \neg B \implies Q$

• Loops  $L \equiv \underline{\text{while}}(B) \underline{\text{do}} s \underline{\text{end while}}$ :

wp(while (B) do s end while, Q) = I

where / is a loop invariant (/ is invariant/remains unchanged) (Schlaufen-Invariant)

and VERIFICATION CONDITIONS:

1. 
$$I \wedge B \implies I'$$
, where  $I' = wp(s, I)$ ;

2.  $I \wedge \neg B \implies Q$ .

**VERIFICATION OF**  $\{P\}$  <u>WHILE</u> (B) <u>DO</u> s <u>END WHILE</u>  $\{Q\}$  :

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Compute wp(while (B) do s end while , Q) = I;
- Prove VERIFICATION CONDITIONS:

0. 
$$P \implies I$$
;  
1.  $I \land B \implies I'$ , where  $I' = wp(s, I)$ ;  
2.  $I \land \neg B \implies Q$ .

Example revisited: Integer Division ANNOTATED manufacture

Precondition *P*:  $(x \ge 0) \land (y > 0)$ Postcondition *Q*:  $(quo * y + rem = x) \land (0 \le rem < y)$ Loop *DivLoop*:

Invariant I:  $(quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ while  $(y \le rem) do$ rem := rem - y; quo := quo + 1end while

 $wp(DivLoop, Q) = (quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ 

VERIFICATION CONDITIONS:

 $P \implies I$ 

 $I \land (y \le rem) \implies ((quo + 1) * y + (rem - y) = x) \land (0 \le rem - y) \land (0 < y) \land (x \ge 0)$  $I \land (y > rem) \implies Q$ 

Example revisited: Integer Division ANNOTATED with invariant

Precondition *P*:  $(x \ge 0) \land (y > 0)$ Postcondition *Q*:  $(quo * y + rem = x) \land (0 \le rem < y)$ Loop *DivLoop*:

Invariant I:  $(quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ while  $(y \le rem) do$ rem := rem - y; quo := quo + 1end while

 $wp(DivLoop, Q) = (quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ 

VERIFICATION CONDITIONS:

 $P \implies I$ 

 $l \land (y \le rem) \implies ((quo + 1) * y + (rem - y) = x) \land (0 \le rem - y) \land (0 < y) \land (x \ge 0)$  $l \land (y > rem) \implies Q$ 

Example revisited: Integer Division ANNOTATED with invariant

Precondition *P*:  $(x \ge 0) \land (y > 0)$ Postcondition *Q*:  $(quo * y + rem = x) \land (0 \le rem < y)$ Loop *DivLoop*:

Invariant I:  $(quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ while  $(y \le rem) do$ rem := rem - y; quo := quo + 1end while

 $wp(DivLoop, Q) = (quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ 

VERIFICATION CONDITIONS:

 $P \implies l$ 

 $l \land (y \le rem) \implies ((quo + 1) * y + (rem - y) = x) \land (0 \le rem - y) \land (0 < y) \land (x \ge 0)$  $l \land (y > rem) \implies Q$ 

Example revisited: Integer Division ANNOTATED with invariant

Precondition *P*:  $(x \ge 0) \land (y > 0)$ Postcondition *Q*:  $(quo * y + rem = x) \land (0 \le rem < y)$ Loop *DivLoop*: *Invariant I*:  $(quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)$ 

while  $(y \le rem) do$  rem := rem - y; quo := quo + 1end while

 $wp(DivLoop, Q) = \underbrace{(quo * y + rem = x) \land (0 \le rem) \land (0 < y) \land (x \ge 0)}_{I}$ 

VERIFICATION CONDITIONS:

 $P \implies I$   $I \land (y \le rem) \implies ((quo + 1) * y + (rem - y) = x) \land (0 \le rem - y) \land (0 < y) \land (x \ge 0)$   $I \land (y > rem) \implies Q$ 

## Weakest Precondition Strategy – Revised Summary

#### VERIFICATION OF $\{P\} S \{Q\}$ :

 $S = s_1; \ldots; s_{n-1}; s_n$ 

- 1. Compute wp(S, Q);
- 2. Prove:
  - $P \implies wp(S,Q)$ ;
  - additional verification conditions

 $\{P\} \leftarrow \underbrace{wp(s_1, wp(\dots, wp(s_n, Q)))}_{wp(S,Q)}$   $: \leftarrow wp(s_{n-1}, wp(s_n, Q)) \qquad \uparrow \begin{array}{c} \text{verification} \\ \text{conditions} \\ s_{n-1}; \\ \text{c} wp(s_n, Q) \\ s_n \\ \{Q\} \end{array}$ 

▲ロト▲圖ト▲目ト▲目ト 目 のへで

# Example

#### Example (Integer Division.)

Verify the partial correctness of the annotated  $\{P\} S \{Q\}$ , where:

 $P: (x \ge 0) \land (y > 0)$ 

 $Q: (quo * y + rem = x) \land (0 \le rem < y)$ 

Annotated S (S annotated with invariant):

 $\begin{array}{l} quo := 0; \ rem := x;\\ \underline{invariant} \ (quo * y + rem = x) \land (0 \leq rem) \land (0 < y) \land (x \geq 0)\\ \underline{while} \ (y \leq rem) \ \underline{do}\\ rem := rem - y; \ quo := quo + 1\\ \underline{end \ while} \end{array}$ 

Verification Conditions:

 $(x \ge 0) \land (y > 0) \implies$  $(x = x) \land x \ge 0 \land x \ge 0 \land y > 0$ 

 $\begin{array}{l} (x = rem + y * quo) \land x \ge 0 \land rem \ge 0 \land y > 0 \land y \le rem \implies \\ (x = (rem - y) + y * (quo + 1)) \land x \ge 0 \land rem - y \ge 0 \land y > 0 \end{array}$ 

 $(x = rem + y * quo) \land x \ge 0 \land rem \ge 0 \land y > 0 \land y > rem \implies$  $(x = rem + y * quo) \land 0 \le rem < y$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

## Example

#### Example (Integer Division.)

Verify the partial correctness of the annotated  $\{P\} S \{Q\}$ , where:

 $P: (x \ge 0) \land (y > 0)$ 

 $Q: (quo * y + rem = x) \land (0 \le rem < y)$ 

Annotated S (S annotated with invariant): quo := 0; rem := x;<u>invariant</u> (quo \* y + rem = x)  $\land$  (0  $\leq$  rem)  $\land$  (0 < y)  $\land$  (x  $\geq$  0) <u>while</u> (y  $\leq$  rem) <u>do</u> rem := rem - y; quo := quo + 1 end while

Verification Conditions:

 $\begin{array}{l} (x \ge 0) \land (y > 0) \implies \\ (x = x) \land x \ge 0 \land x \ge 0 \land y > 0 \\ (x = rem + y * quo) \land x \ge 0 \land rem \ge 0 \land y > 0 \land y \le rem \implies \\ (x = (rem - y) + y * (quo + 1)) \land x \ge 0 \land rem - y \ge 0 \land y > 0 \\ (x = rem + y * quo) \land x \ge 0 \land rem \ge 0 \land y > 0 \land y > rem \implies \\ (x = rem + y * quo) \land 0 \le rem < y \end{array}$ 

・ロト・個ト・モト・モト ヨー のへで

#### Exercise (1)

*Is the Hoare triple*  $\{x := 1\}$  x := x + 1; y := x + 1  $\{y \ge 2\}$  *correct?* 

#### Exercise (2)

*Compute:*  $wp(t := x; x := y; y := t, x = Y \land y = X).$ 

#### Exercise (3) Verify the partial correctness of the annotated $\{P\} S \{Q\}$ , where: $P: x = 0 \land y = 0$ $Q: x = 10 \land y = 10$ Annotated S: <u>invariant</u> $(x = y) \land (x \le 10)$ <u>while</u> (x < 10) <u>do</u> x := x + 1; y := y + 1 <u>end while</u> Exercise (4)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Exercise (4)

Consider the Hoare triple  $\{P\} S \{Q\}$ , where:

 $P: \quad x=0$ 

*Q*: *x* = 5

- S: while (x < 5) do x := x + 1 end while
- Is  $x \le 5$  an invariant?
- Is x < 5 an invariant?
- Is x = 5 an invariant?