
Introduction to Program Verification

Laura Kovács

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
Compute the maximum value of x and y .

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
Compute the maximum value of x and y .

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
Compute the maximum value of x and y .

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
Compute the maximum value of x and y .

REQUIREMENT ON
PROGRAM’S INPUT

PRECONDITION P

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .

REQUIREMENT ON
PROGRAM’S OUTPUT

POSTCONDITION Q

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM S

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
Compute the maximum value of x and y .

REQUIREMENT ON
PROGRAM’S INPUT

PRECONDITION P

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .

REQUIREMENT ON
PROGRAM’S OUTPUT

POSTCONDITION Q

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM S

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
P : (x ≥ 0 ∧ y ≥ 0)

REQUIREMENT ON
PROGRAM’S INPUT

PRECONDITION P

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .
Q : (max ≥ x)∧(max ≥ y)∧(max = x∨max = y)

REQUIREMENT ON
PROGRAM’S OUTPUT

POSTCONDITION Q

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM S

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
P : (x ≥ 0 ∧ y ≥ 0)

REQUIREMENT ON
PROGRAM’S INPUT

PRECONDITION P

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .
Q : (max ≥ x)∧(max ≥ y)∧(max = x∨max = y)

REQUIREMENT ON
PROGRAM’S OUTPUT

POSTCONDITION Q

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM S

Program Verification: Programs and Specifications

Example – Maximum of Two Natural Numbers

Given two natural numbers x and y .
P : (x ≥ 0 ∧ y ≥ 0)

REQUIREMENT ON
PROGRAM’S INPUT

PRECONDITION P

The maximum of x and y is x iff x ≥ y .
Otherwise, the maximum of x and y is y .
Q : (max ≥ x)∧(max ≥ y)∧(max = x∨max = y)

REQUIREMENT ON
PROGRAM’S OUTPUT

POSTCONDITION Q

Computing the maximum (max) of x and y :

if (x ≥ y)
then max := x
else max := y

PROGRAM S

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q) (Vorbedingung P, Endbedingung Q)

Example.
Given two natural numbers x and y .
Compute the maximum value(max) of x and y .

Precondition P: (x ≥ 0)∧ (y ≥ 0) INITIAL STATE

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y) FINAL STATE

Program (code) S: if (x ≥ y)
then max := x HOW?

else max := y

Hoare triple (correctness formula): {P} S {Q}
T. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)︸ ︷︷ ︸

PROGRAM CORRECTNESS

Example.
Given two natural numbers x and y .
Compute the maximum value(max) of x and y .

Precondition P: (x ≥ 0)∧ (y ≥ 0) INITIAL STATE

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y) FINAL STATE

Program (code) S: if (x ≥ y)
then max := x HOW?

else max := y

Hoare triple (correctness formula): {P} S {Q}
T. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)︸ ︷︷ ︸

PROGRAM CORRECTNESS

Example.
Given two natural numbers x and y .
Compute the maximum value(max) of x and y .

Precondition P: (x ≥ 0)∧ (y ≥ 0) INITIAL STATE

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y) FINAL STATE

Program (code) S: if (x ≥ y)
then max := x HOW?

else max := y

Hoare triple (correctness formula): {P} S {Q}
T. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)︸ ︷︷ ︸

PROGRAM CORRECTNESS

Program . . . HOW to compute
using program statements S

Specifications . . . WHAT to compute
using predicate logic formulas P, Q (assertions, Zusicherungen)

Program state . . . every program variable has a value

Hoare triple (correctness formula): {P} S {Q}
T. Hoare (1969)

Program Verification: Programs and Specifications

Program Verification:
program satisfies its requirements (specification P, Q)︸ ︷︷ ︸

PROGRAM CORRECTNESS

Program . . . HOW to compute
using program statements S

Specifications . . . WHAT to compute
using predicate logic formulas P, Q (assertions, Zusicherungen)

Program state . . . every program variable has a value

Hoare triple (correctness formula): {P} S {Q}
T. Hoare (1969)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Programs

Program statements and their meaning (semantics):

(Zuweisung, Sequenz, Konditional, Schleife)

• Assignments: var := A, where var is a program variable (scalar x or array a[x]), and A is an arithmetic expression;

variable var receives (is updated by) the value A

A =
def n | x | a[n] | a[x] | A1 + A2 | A1 − A2 | A1 ∗ A2, where n ∈ N; x is a scalar variable with values from N;

a is an array variable; A1, A2 are arithmetic expressions

• Sequencing: s1; s2, where s1 and s2 are program statements;

execution of statement s1 is followed by execution of statement s2

• Conditionals: if (B) then s1 else s2, where B is a boolean expression;

if B holds then s1 is executed, otherwise s2 is executed

B =
def True | False | ¬B1 | B1 ∧ B2 | B1 ∨ B2 | A1 ≤ A2, where B1, B2 are boolean expressions;

A1, A2 are arithmetic expressions

• Loops: while (B) do s end while, where s is a program statement.

until B holds, statement s is executed

Program S is a finite sequence of statements:
S = s1; s2; . . . ; sn−1; sn

NOTE: LOOPS MAY NOT TERMINATE! (infinite loop)

Example: Integer Division

Example.
Given two natural numbers x and y , with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y .

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Program (code) S: quo := 0; rem := x ;
while y ≤ rem do

rem := rem − y ; quo := quo + 1
end while

Hoare triple (correctness formula): {P} S {Q}

Example: Integer Division

Example.
Given two natural numbers x and y , with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y .

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Program (code) S: quo := 0; rem := x ;
while y ≤ rem do

rem := rem − y ; quo := quo + 1
end while

Hoare triple (correctness formula): {P} S {Q}

Example: Integer Division

Example.
Given two natural numbers x and y , with y being non zero.

Compute:

the quotient (quo) and the remainder (rem) of the integer division of x by y .

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Program (code) S: quo := 0; rem := x ;
while y ≤ rem do

rem := rem − y ; quo := quo + 1
end while

Hoare triple (correctness formula): {P} S {Q}

Program Correctness

Partial correctness (partiell/teilweise korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P and
• is terminating,

ends in a state satisfying Q.

Program Correctness

Partial correctness (partiell/teilweise korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P and
• is terminating,

ends in a state satisfying Q.

Total correctness (total/vollständig korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P,

terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

Program Correctness

Partial correctness (partiell/teilweise korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P and
• is terminating,

ends in a state satisfying Q.

Total correctness (total/vollständig korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P,

terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

Program Correctness

Partial correctness (partiell/teilweise korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P and
• is terminating,

ends in a state satisfying Q.

Total correctness (total/vollständig korrekt) of {P} S {Q}:
Every execution of S that:
• starts in a state satisfying P,

terminates in a state satisfying Q.

Total correctness = Partial correctness + Termination

Verifying Program Correctness – the Process of Program Verification

Specification Program

Weakest Precondition

Verification Conditions (in Predicate Logic)

Prove Verification Conditions

E. W. Dijsktra (1975)

Verifying Program Correctness – the Process of Program Verification

Specification Program

Weakest Precondition

Verification Conditions (in Predicate Logic)

Prove Verification Conditions

E. W. Dijsktra (1975)

Verifying Program Correctness – the Process of Program Verification

Specification Program

Weakest Precondition

Verification Conditions (in Predicate Logic)

Prove Verification Conditions

E. W. Dijsktra (1975)

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff R =⇒ P.

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q:
for any {R} S {Q} we have R =⇒ wp(S, Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}:

S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove P =⇒ wp(S, Q)

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff R =⇒ P.

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q:
for any {R} S {Q} we have R =⇒ wp(S, Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}:

S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove P =⇒ wp(S, Q)

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff R =⇒ P.

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q:
for any {R} S {Q} we have R =⇒ wp(S, Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}:

S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove P =⇒ wp(S, Q)

{P}
← wp(s1, wp(. . . , wp(sn, Q)))︸ ︷︷ ︸

wp(S,Q)
s1;
...

← wp(sn−1, wp(sn, Q))
sn−1;

← wp(sn, Q)
sn

{Q}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff R =⇒ P.

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q:
for any {R} S {Q} we have R =⇒ wp(S, Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}:

S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove P =⇒ wp(S, Q)

{P}
← wp(s1, wp(. . . , wp(sn, Q)))︸ ︷︷ ︸

wp(S,Q)
s1;
...

← wp(sn−1, wp(sn, Q))
sn−1;

← wp(sn, Q)
sn

{Q}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff R =⇒ P.

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q:
for any {R} S {Q} we have R =⇒ wp(S, Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}:

S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove P =⇒ wp(S, Q)

{P}
← wp(s1, wp(. . . , wp(sn, Q)))︸ ︷︷ ︸

wp(S,Q)
s1;
...

← wp(sn−1, wp(sn, Q))
sn−1;

← wp(sn, Q)
sn

{Q}

Weakest Precondition (WP) Strategy

Formula P is weaker (schwächer) than formula R iff R =⇒ P.

Weakest Precondition wp(S, Q) (schwächste Vorbedingung) for S with Q:
for any {R} S {Q} we have R =⇒ wp(S, Q).

Note: {wp(S, Q)} S {Q}.

VERIFICATION OF {P} S {Q}:

S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove P =⇒ wp(S, Q)

{P}
← wp(s1, wp(. . . , wp(sn, Q)))︸ ︷︷ ︸

wp(S,Q)
s1;
...

← wp(sn−1, wp(sn, Q))
sn−1;

← wp(sn, Q)
sn

{Q}

WP Rules
• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) = Qx←A

formula Qx←A results from Q by substituting every occurence of x by A

wp(x := 5, x + y = 6) = 5 + y = 6

wp(x := x + 1, x + y = 6) = x + 1 + y = 6

• Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] := A, Q) = Qa←a′

formula Qa←a′ results from Q by substituting every occurence of a by array a′ ,

where a′ results from a by replacing the x th element by A

wp(a[1] := x + 1, a[1] = a[2]) = a′[1] = a′[2]

where a′ [1] = x + 1 and a′ [i] = a[i] for every i 6= 1

= x + 1 = a[2]

WP Rules
• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) = Qx←A

formula Qx←A results from Q by substituting every occurence of x by A

wp(x := 5, x + y = 6) = 5 + y = 6

wp(x := x + 1, x + y = 6) = x + 1 + y = 6

• Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] := A, Q) = Qa←a′

formula Qa←a′ results from Q by substituting every occurence of a by array a′ ,

where a′ results from a by replacing the x th element by A

wp(a[1] := x + 1, a[1] = a[2]) = a′[1] = a′[2]

where a′ [1] = x + 1 and a′ [i] = a[i] for every i 6= 1

= x + 1 = a[2]

WP Rules
• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) = Qx←A

formula Qx←A results from Q by substituting every occurence of x by A

wp(x := 5, x + y = 6) = 5 + y = 6

wp(x := x + 1, x + y = 6) = x + 1 + y = 6

• Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] := A, Q) = Qa←a′

formula Qa←a′ results from Q by substituting every occurence of a by array a′ ,

where a′ results from a by replacing the x th element by A

wp(a[1] := x + 1, a[1] = a[2]) = a′[1] = a′[2]

where a′ [1] = x + 1 and a′ [i] = a[i] for every i 6= 1

= x + 1 = a[2]

WP Rules
• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) = Qx←A

formula Qx←A results from Q by substituting every occurence of x by A

wp(x := 5, x + y = 6) = 5 + y = 6

wp(x := x + 1, x + y = 6) = x + 1 + y = 6

• Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] := A, Q) = Qa←a′

formula Qa←a′ results from Q by substituting every occurence of a by array a′ ,

where a′ results from a by replacing the x th element by A

wp(a[1] := x + 1, a[1] = a[2]) = a′[1] = a′[2]

where a′ [1] = x + 1 and a′ [i] = a[i] for every i 6= 1

= x + 1 = a[2]

WP Rules
• Scalar Assignments (x is a scalar variable, A is arithmetic expression):

wp(x := A, Q) = Qx←A

formula Qx←A results from Q by substituting every occurence of x by A

wp(x := 5, x + y = 6) = 5 + y = 6

wp(x := x + 1, x + y = 6) = x + 1 + y = 6

• Array Assignments (a is an array variable, x is a scalar variable, A is arithmetic expression):

wp(a[x] := A, Q) = Qa←a′

formula Qa←a′ results from Q by substituting every occurence of a by array a′ ,

where a′ results from a by replacing the x th element by A

wp(a[1] := x + 1, a[1] = a[2]) = a′[1] = a′[2]

where a′ [1] = x + 1 and a′ [i] = a[i] for every i 6= 1

= x + 1 = a[2]

WP Rules

• Sequencing:

wp(s1; s2, Q) = wp(s1, wp(s2, Q))

wp(x := x + 1; y := y + x , y > 10) = wp(x := x + 1, wp(y := y + x , y > 10))

= wp(x := x + 1, y + x > 10)

= y + x + 1 > 10

WP Rules

• Sequencing:

wp(s1; s2, Q) = wp(s1, wp(s2, Q))

wp(x := x + 1; y := y + x , y > 10) = wp(x := x + 1, wp(y := y + x , y > 10))

= wp(x := x + 1, y + x > 10)

= y + x + 1 > 10

WP Rules

• Sequencing:

wp(s1; s2, Q) = wp(s1, wp(s2, Q))

wp(x := x + 1; y := y + x , y > 10) = wp(x := x + 1, wp(y := y + x , y > 10))

= wp(x := x + 1, y + x > 10)

= y + x + 1 > 10

WP Rules

• Sequencing:

wp(s1; s2, Q) = wp(s1, wp(s2, Q))

wp(x := x + 1; y := y + x , y > 10) = wp(x := x + 1, wp(y := y + x , y > 10))

= wp(x := x + 1, y + x > 10)

= y + x + 1 > 10

WP Rules

• Sequencing:

wp(s1; s2, Q) = wp(s1, wp(s2, Q))

wp(x := x + 1; y := y + x , y > 10) = wp(x := x + 1, wp(y := y + x , y > 10))

= wp(x := x + 1, y + x > 10)

= y + x + 1 > 10

WP Rules
• Conditionals:

wp(if (B) then s1 else s2, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ wp(s2, Q))

WP Rules
• Conditionals:

wp(if (B) then s1 else s2, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ wp(s2, Q))

Special Case:

wp(if (B) then s1, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ Q)

WP Rules
• Conditionals:

wp(if (B) then s1 else s2, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ wp(s2, Q))

Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y)

wp(if x ≥ y then max := x else max := y , Q) =(
x ≥ y =⇒ wp(max := x , Q)

)
∧

(
x < y =⇒ wp(max := y , Q)

)
=(

x ≥ y =⇒ Qmax←x
)
∧

(
x < y =⇒ Qmax←y

)
=(

x ≥ y =⇒
(
(x ≥ x) ∧ (x ≥ y) ∧ (x = x ∨ x = y)

))
∧((

x < y =⇒
(
(y ≥ x) ∧ (y ≥ y) ∧ (y = x ∨ y = y)

))

WP Rules
• Conditionals:

wp(if (B) then s1 else s2, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ wp(s2, Q))

Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y)

wp(if x ≥ y then max := x else max := y , Q) =(
x ≥ y =⇒ wp(max := x , Q)

)
∧

(
x < y =⇒ wp(max := y , Q)

)
=(

x ≥ y =⇒ Qmax←x
)
∧

(
x < y =⇒ Qmax←y

)
=(

x ≥ y =⇒
(
(x ≥ x) ∧ (x ≥ y) ∧ (x = x ∨ x = y)

))
∧((

x < y =⇒
(
(y ≥ x) ∧ (y ≥ y) ∧ (y = x ∨ y = y)

))

WP Rules
• Conditionals:

wp(if (B) then s1 else s2, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ wp(s2, Q))

Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y)

wp(if x ≥ y then max := x else max := y , Q) =(
x ≥ y =⇒ wp(max := x , Q)

)
∧

(
x < y =⇒ wp(max := y , Q)

)
=(

x ≥ y =⇒ Qmax←x
)
∧

(
x < y =⇒ Qmax←y

)
=(

x ≥ y =⇒
(
(x ≥ x) ∧ (x ≥ y) ∧ (x = x ∨ x = y)

))
∧((

x < y =⇒
(
(y ≥ x) ∧ (y ≥ y) ∧ (y = x ∨ y = y)

))

WP Rules
• Conditionals:

wp(if (B) then s1 else s2, Q) = (B =⇒ wp(s1, Q)) ∧ (¬B =⇒ wp(s2, Q))

Example revisited: Maximum of Two Natural Numbers

Postcondition Q: (max ≥ x) ∧ (max ≥ y) ∧ (max = x ∨max = y)

wp(if x ≥ y then max := x else max := y , Q) =(
x ≥ y =⇒ wp(max := x , Q)

)
∧

(
x < y =⇒ wp(max := y , Q)

)
=(

x ≥ y =⇒ Qmax←x
)
∧

(
x < y =⇒ Qmax←y

)
=(

x ≥ y =⇒
(
(x ≥ x) ∧ (x ≥ y) ∧ (x = x ∨ x = y)

))
∧((

x < y =⇒
(
(y ≥ x) ∧ (y ≥ y) ∧ (y = x ∨ y = y)

))

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-

Invariant)

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

use conditional together with loop: instead of a single loop:

{wp(L, Q)}

{wp(L, Q)}

{Q}

if (B) then s;

while (B) do s end while

while (B) do s end while
while (B) do s end while

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

use conditional together with loop: instead of a single loop:

{wp(L, Q)}

{wp(L, Q)}

{Q}

if (B) then s;

while (B) do s end while

while (B) do s end while
while (B) do s end while

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

use conditional together with loop: instead of a single loop:

{wp(L, Q)}

{wp(L, Q)}

{Q}

if (B) then s;

if (B) then s;
while (B) do s end while

while (B) do s end while
while (B) do s end while

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

and VERIFICATION CONDITIONS:

1. I ∧ B =⇒ I′, where I′ = wp(S, I);

2. I ∧ ¬B =⇒ Q.

LOOP INVARIANTS (INDUCTIVE ASSERTIONS):
evaluate to true before and after each loop iteration

I is an invariant for {P} while (B) do s end while {Q} iff:

0. initial condition: P =⇒ I;

1. iterative (inductive) condition: {I ∧ B} s {I};
2. final condition: I ∧ ¬B =⇒ Q

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

and VERIFICATION CONDITIONS:

1. I ∧ B =⇒ I′, where I′ = wp(S, I);

2. I ∧ ¬B =⇒ Q.

LOOP INVARIANTS (INDUCTIVE ASSERTIONS):
evaluate to true before and after each loop iteration

I is an invariant for {P} while (B) do s end while {Q} iff:

0. initial condition: P =⇒ I;

1. iterative (inductive) condition: {I ∧ B} s {I};
2. final condition: I ∧ ¬B =⇒ Q

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

and VERIFICATION CONDITIONS:

1. I ∧ B =⇒ I′, where I′ = wp(s, I);

2. I ∧ ¬B =⇒ Q.

LOOP INVARIANTS (INDUCTIVE ASSERTIONS):
evaluate to true before and after each loop iteration

I is an invariant for {P} while (B) do s end while {Q} iff:

0. initial condition: P =⇒ I;

1. iterative (inductive) condition: {I ∧ B} s {I};
2. final condition: I ∧ ¬B =⇒ Q

WP Rules
• Loops L ≡ while (B) do s end while :

wp(while (B) do s end while, Q) = I

where I is a loop invariant (I is invariant/remains unchanged) (Schlaufen-Invariant)

and VERIFICATION CONDITIONS:

1. I ∧ B =⇒ I′, where I′ = wp(s, I);

2. I ∧ ¬B =⇒ Q.

VERIFICATION OF {P} WHILE (B) DO s END WHILE {Q} :

• Compute wp(while (B) do s end while , Q) = I;
• Prove VERIFICATION CONDITIONS:

0. P =⇒ I;
1. I ∧ B =⇒ I′, where I′ = wp(s, I);
2. I ∧ ¬B =⇒ Q.

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Loop DivLoop:

Invariant I : (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)
while (y ≤ rem) do

rem := rem − y ; quo := quo + 1
end while

wp(DivLoop, Q) = (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)︸ ︷︷ ︸
I

VERIFICATION CONDITIONS:

P =⇒ I

I ∧ (y ≤ rem) =⇒ ((quo + 1) ∗ y + (rem − y) = x) ∧ (0 ≤ rem − y) ∧ (0 < y) ∧ (x ≥ 0)

I ∧ (y > rem) =⇒ Q

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Loop DivLoop:

Invariant I : (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)
while (y ≤ rem) do

rem := rem − y ; quo := quo + 1
end while

wp(DivLoop, Q) = (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)︸ ︷︷ ︸
I

VERIFICATION CONDITIONS:

P =⇒ I

I ∧ (y ≤ rem) =⇒ ((quo + 1) ∗ y + (rem − y) = x) ∧ (0 ≤ rem − y) ∧ (0 < y) ∧ (x ≥ 0)

I ∧ (y > rem) =⇒ Q

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Loop DivLoop:

Invariant I : (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)
while (y ≤ rem) do

rem := rem − y ; quo := quo + 1
end while

wp(DivLoop, Q) = (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)︸ ︷︷ ︸
I

VERIFICATION CONDITIONS:

P =⇒ I

I ∧ (y ≤ rem) =⇒ ((quo + 1) ∗ y + (rem − y) = x) ∧ (0 ≤ rem − y) ∧ (0 < y) ∧ (x ≥ 0)

I ∧ (y > rem) =⇒ Q

Example revisited: Integer Division ANNOTATED with invariant

Precondition P: (x ≥ 0) ∧ (y > 0)

Postcondition Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Loop DivLoop:

Invariant I : (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)
while (y ≤ rem) do

rem := rem − y ; quo := quo + 1
end while

wp(DivLoop, Q) = (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)︸ ︷︷ ︸
I

VERIFICATION CONDITIONS:

P =⇒ I

I ∧ (y ≤ rem) =⇒ ((quo + 1) ∗ y + (rem − y) = x) ∧ (0 ≤ rem − y) ∧ (0 < y) ∧ (x ≥ 0)

I ∧ (y > rem) =⇒ Q

Weakest Precondition Strategy – Revised Summary

VERIFICATION OF {P} S {Q}:
S = s1; . . . ; sn−1; sn

1. Compute wp(S, Q);

2. Prove:
• P =⇒ wp(S, Q) ;

• additional verification
conditions

{P}
← wp(s1, wp(. . . , wp(sn, Q)))︸ ︷︷ ︸

wp(S,Q)
s1;
...
← wp(sn−1, wp(sn, Q))

sn−1;

← wp(sn, Q)
sn

{Q}

↑ verification
conditions

Example
Example (Integer Division.)
Verify the partial correctness of the annotated {P} S {Q}, where:

P: (x ≥ 0) ∧ (y > 0)

Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Annotated S (S annotated with invariant):
quo := 0; rem := x ;

invariant (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)

while (y ≤ rem) do
rem := rem − y ; quo := quo + 1

end while

Verification Conditions:
(x ≥ 0) ∧ (y > 0) =⇒
(x = x) ∧ x ≥ 0 ∧ x ≥ 0 ∧ y > 0

(x = rem + y ∗ quo) ∧ x ≥ 0 ∧ rem ≥ 0 ∧ y > 0 ∧ y ≤ rem =⇒
(x = (rem − y) + y ∗ (quo + 1)) ∧ x ≥ 0 ∧ rem − y ≥ 0 ∧ y > 0

(x = rem + y ∗ quo) ∧ x ≥ 0 ∧ rem ≥ 0 ∧ y > 0 ∧ y > rem =⇒
(x = rem + y ∗ quo) ∧ 0 ≤ rem < y

Example
Example (Integer Division.)
Verify the partial correctness of the annotated {P} S {Q}, where:

P: (x ≥ 0) ∧ (y > 0)

Q: (quo ∗ y + rem = x) ∧ (0 ≤ rem < y)

Annotated S (S annotated with invariant):
quo := 0; rem := x ;

invariant (quo ∗ y + rem = x) ∧ (0 ≤ rem) ∧ (0 < y) ∧ (x ≥ 0)

while (y ≤ rem) do
rem := rem − y ; quo := quo + 1

end while

Verification Conditions:
(x ≥ 0) ∧ (y > 0) =⇒
(x = x) ∧ x ≥ 0 ∧ x ≥ 0 ∧ y > 0

(x = rem + y ∗ quo) ∧ x ≥ 0 ∧ rem ≥ 0 ∧ y > 0 ∧ y ≤ rem =⇒
(x = (rem − y) + y ∗ (quo + 1)) ∧ x ≥ 0 ∧ rem − y ≥ 0 ∧ y > 0

(x = rem + y ∗ quo) ∧ x ≥ 0 ∧ rem ≥ 0 ∧ y > 0 ∧ y > rem =⇒
(x = rem + y ∗ quo) ∧ 0 ≤ rem < y

Exercise (1)
Is the Hoare triple {x := 1} x := x + 1; y := x + 1 {y ≥ 2} correct?

Exercise (2)
Compute: wp(t := x ; x := y ; y := t , x = Y ∧ y = X).

Exercise (3)
Verify the partial correctness of the annotated {P} S {Q}, where:
P: x = 0 ∧ y = 0
Q: x = 10 ∧ y = 10
Annotated S: invariant (x = y) ∧ (x ≤ 10)

while (x < 10) do x := x + 1; y := y + 1 end while

Exercise (4)
Consider the Hoare triple {P} S {Q}, where:
P: x = 0
Q: x = 5
S: while (x < 5) do x := x + 1 end while

• Is x ≤ 5 an invariant?
• Is x < 5 an invariant?
• Is x = 5 an invariant?

